Wireless Personal Area Networks

David Tipper
Associate Professor
Graduate Telecommunications and Networking Program
University of Pittsburgh
Slides 16

Wireless Networks

- Wireless Wide Area Networks (WWANs)
 - Cellular Networks:
 - GSM, cdmaone (IS-95), UMTS, cdma2000 EV-DO
 - Satellite Networks:
 - Iridium, Globalstar, GPS, etc.
- Wireless Metro Area Networks (WMANs)
 - IEEE 802.16 WiMAX
- Wireless Local Area Networks (WLANs)
 - IEEE 802.11, a, b, g, etc. (infrastructure, ad hoc, sensor)
- Wireless Personal Area Networks (WPANs)
 - IEEE 802.15 (Bluetooth), IrDa, Zigbee, 6LowWPAN, proprietary sensor, etc.
What is a personal area network?

- Origins in the BodyLAN project initiated by BBN in the early 1990s for military
- Networking “personal” devices around a soldier
 - Now networking devices around an individual
 - sensors, cameras, handheld computers, audio devices, cell phone, printers, etc.
- Goal was smart technology that self configures, recognizes other units within range and provides on the fly communications
- Universal short-range wireless capability
 - Use band available globally for unlicensed users
 - Low powered – medium data rate
Applications of WPANs

(a) Cable Replacement

(b) Ad hoc connectivity

(c) Access to wired network or PSTN or the Internet

Bluetooth

- Much of the WPAN focus today is around Bluetooth
- Originated by Ericsson, Nokia, IBM, Toshiba, Intel formed a WPAN special interest group (SIG) 1998
- Named after King of Denmark and Norway
 - Kong Harald Blaatand (Bluetooth), 940 – 981.
- Specifies the complete system from the radio level up to the application level
- Protocol stack is partly in hardware and partly in software running on a microprocessor
- Embedded devices
 - Low power
 - Low cost
- Uses ISM band of spectrum
IEEE 802.15

- Started in 1997 as a sub-group of IEEE 802.11
- Focused on WPANS
- Initial functional requirements
 - Low power devices
 - Range of 0-10m
 - Low data rates (19.2-100 kbps)
 - Small sizes (0.5 cubic inches)
 - Low cost
 - Multiple networks in the same area
 - Up to 16 separate devices in a PAN
- IEEE Took over Bluetooth standardization in 2000
 - Today over 2500 companies as Bluetooth SIG members
 - http://www.bluetooth.com
 - Built-in Bluetooth chip shipped in more than 100 million cellular phones and laptops last year
 - Several millions of other communication devices
 - Cameras, headsets, microphones, keyboards etc.

IEEE 802.15 today

- Task Group 1 (802.15.1)
 - PHY and MAC layer design for wirelessly connecting devices entering a personal operating space (POS)
 - POS is a 10m space around a person who is stationary or in motion
- Task Group 2 (802.15.2)
 - Coexistence of WLANs and WPANs
 - Interoperability between a WLAN and WPAN device
- Task Group 3 (802.15.3)
 - Higher data rates (> 20 Mbps) (Kodak, Cisco, Motorola)
 - Multimedia applications like digital imaging and video
 - UWB radios – WiMedia protocol stack at higher layers
- Task Group 4 (802.15.4)
 - Low data rates and ultra low power/complexity devices for sensor networking
 - Home automation, smart tags, interactive toys, location tracking, etc.
 - Zigbee is now part of this group
Bluetooth Protocol Architecture

- Bluetooth architecture has three types of protocols
 1. Core protocols
 - Radio
 - Baseband
 - Link manager protocol (LMP)
 - Logical link control and adaptation protocol (L2CAP)
 - Service discovery protocol (SDP)
 2. Cable replacement and Telephony protocols
 - RFCOMM
 - Telephony control specification – binary (TCS BIN)
 3. Adopted protocols
 - PPP
 - TCP/UDP/IP
 - WAP
 - Etc.

Example Protocol Stack
Bluetooth RF and Baseband Layers

- Operates in the same 2.4 GHz bands as IEEE 802.11b
- Channels are 1MHz wide (79 or 23 channels depending on country)
- Modulation:
 - GFSK at 1Mbps on air
 - Version 2.0 Enhanced Data Rate 2-level - GFSK : 2Mbps rate
- Error control depends on connection and rate either
 - 1/3 convolutional coded FEC,
 - 2/3 FEC
 - ARQ
- Single chip implementation < $5 a chip

Bluetooth FHSS

Employs frequency hopping spread spectrum
Reduce interference with other devices

Pseudorandom hopping
1600 hops/sec- time slot is defined as 625 microseconds

Packet 1-5 time slots long
TDD up/downlink
System is FH/FDMA/TDD
Bluetooth Architecture

- Scattered ad-hoc topology – called a "scatter-net"
- A “cell” or “piconet” is defined by a Master device
 - The master controls the frequency hopping sequence
 - The master also controls the transmission within its piconet using a TDMA structure
- There is NO contention within a piconet
- There is interference between piconets in the same geographic space

Bluetooth Architecture (2)

- A device can belong to several piconets
- A device can be the master of only one piconet
- A device can be the master of one piconet and slave of another piconet or a slave in different piconets
Bluetooth Architecture (3)

• The Master device is the device that initiates an exchange of data
• The Slave device is a device that responds to the Master
 – Slaves use the frequency hopping pattern specified by the Master
• A slave can transmit ONLY in response to a Master
• A Master device can simultaneously control seven slave devices and
 might have up to 200 slave devices in a piconet
• Multiple piconets in the same geographic space interfere with each other
 – FH-SS is used so multiple piconets can coexist in same space

![Diagram of Bluetooth piconets](image)

Bluetooth Device Address

• Each Bluetooth device has a 48 bit IEEE 802 MAC address
 – Called the Bluetooth Device Address (BD_ADDR)
• This MAC address is split into three parts
 – The Non-significant Address Part (NAP)
 • Used for encryption seed
 – The Upper Address part (UAP)
 • Used for error correction seed initialization and FH sequence generation
 – The Lower Address Part (LAP)
 • Used for FH sequence generation
• Additional address fields are used once in a piconet
 – Active member address
 • Address valid as long as device is active slave in a piconet
 – Parked member address
 • Address valid as long as a device is a parked slave in a piconet
Bluetooth connections

• Synchronous connection-oriented (SCO) link
 – “Circuit-switched”
 • periodic single-slot packet assignment
 – Symmetric 64 kbps full-duplex
 – Up to three simultaneous links from master
• Asynchronous connection-less (ACL) link
 – Packet data
 – Variable packet size (1-5 slots)
 – Asymmetric bandwidth – point to multipoint
 • Maximum Asymmetric rate: 723.2 kbps (57.6 kbps return channel)
 – Symmetric data rates: 108.8 - 432.6 kbps
 – FEC/ARQ used for error control

Bluetooth Power Control

• Three classes of devices exist
 – Class 1: 100 mW (20 dBm) (~100m)
 – Class 2: 2.5 mW (4 dBm) (~10m)
 – Class 3: 1 mW (0 dBm) (~1m)
• Mixture of devices can exist in a piconet
• Range of devices is subject to their class
• Mandatory power control is implemented
 – Steps of 2 dB to 8 dB
 – Only the power required for adequate RSS is to be used
 – Based on feedback (closed loop) using link management protocol control commands
Clock Synchronization

- Each Bluetooth device has a free running clock called the native clock or CLKN
 - A Master device uses its CLKN for timing
 - A Slave device determines an offset from its own CLKN to synchronize to the Master
 - The Master also uses an offset to determine the slave’s clock to establish an initial connection with a slave

Discovering Bluetooth Devices

- A device wishes to discover what Bluetooth devices exist in its vicinity and what services they offer
- Performs an “inquiry” procedure
 - It transmits a series of inquiry packets on different frequencies and awaits a response
 - Devices scanning for inquiries use a sliding window to detect such inquiries
 - If an inquiry is detected by a scanning device it responds with a “frequency hop synchronization” (FHS) packet that enables completion of a successful connection
 - FHS contains ID and clock info
 - If collision occurs on inquiry – device implement random backoff and retries
 - Connection is established
 - Device that initiates connection is master in resulting piconet
Paging a device

- Paging is similar to “inquiry” except that the slave address is known
 - Slave clock/frequency hopping pattern is known
 - The page packet is transmitted at the expected frequency of the slave
- The Master sends a page train with a duration of 10 ms covering 16 frequency hops, repeat if necessary
- The Slave listens for its own device access code (DAC) for the duration of a scan window
- The Slave sends a “slave response” when its own DAC is heard
- The Master sends a “master response”
- The Slave responds to the master with its own DAC using the Master’s clock included in FHS packet

Bluetooth connection states
Connection States (2)

- Standby (default)
 - Waiting to join a piconet
- Inquire
 - Discover device within range or find out unknown destination address
- Page
 - Establish actual connection using device access code (DAC)
- Connected
 - Actively on a piconet (master or slave)
- Park/Hold/Sniff (Low-power connected states)
 - Hold mode stops traffic for a specified period of time
 - Sniff mode reduces traffic to periodic sniff slots
 - Park mode gives up its active member address and ceases to be a member of the piconet
- Active
 - Unit participates on channel – master schedule transmissions

Service Discovery

- After “inquiry” or “paging” an ACL or SCO is set up
- SCO is used for telephony or audio connection
- If ACL connection, the Master sets up an L2CAP connection with the slave
 - L2CAP is logical link control layer
 - Responsible for segmenting and reassembling data packets
 - L2CAP allows several protocols to be multiplexed over it using a Protocol and Service Multiplexer (PSM) number – emulates serial port
- The master’s service discovery client can use SDP to obtain the services that slave devices within the piconet can offer
- The Master can then decide what slave devices to communicate with and what services to employ
Service Discovery

- After “inquiry” or “paging” an ACL or SCO is set up
- SCO is used for telephony or audio
- If ACL connection, the Master sets up an L2CAP connection with the slave
 - L2CAP is logical link control layer
 - Responsible for segmenting and reassembling data packets
 - L2CAP allows several protocols to be multiplexed over it using a Protocol and Service Multiplexor (PSM) number – emulates serial port
- The master’s service discovery client can use SDP to obtain the services that slave devices within the piconet can offer
- The Master can then decide what slave devices to communicate with and what services to employ

Link Manager

- The Link manager manages the following operations
 - Attaching slaves to the piconet
 - Allocates an active member address to a slave
 - Breaks connections to slaves
 - Establishes SCO or ACL links
 - Changes the connection state of devices (like sniff, park or hold)
- Uses the Link Management Protocol (LMP) to connect between devices
Comments

- A device can be part of several piconets simultaneously (scatternet)
 - This implies that the device should maintain multiple sets of clocks and timers and switch between them
 - The throughput of the device is substantially reduced compared to what it might have if connected to a single piconet
- Audio part of Bluetooth specifies different codecs
 - Supports A-law and μ-law for PCM
 - Also supports DPCM
- RFCOMM (Radio Frequency Virtual Communications Port Emulation)
 - Similar to RS-232 serial connections
- No handoffs between piconets for mobile users

Bluetooth Packet Fields

- Access code – used for timing synchronization, offset compensation, paging, and inquiry
- Header – used to identify packet type, packet numbering, slave address, error checking info and control info
- Payload – contains user voice, data or both and payload header, if present
Baseband Frame Format

- General packet format

- Access code

- Payload
 - Voice field: fixed length, 240 bits
 - Data field: Payload header, body, CRC
 <Header: single-slot vs. multi-slot packets>

Packet Header Fields

- AM_ADDR – contains “active mode” address of one of the slaves
- Type – identifies type of packet
- Flow – 1-bit flow control
- ARQN – 1-bit acknowledgment
- SEQN – 1-bit sequential numbering schemes
- Header error control (HEC) – 8-bit error detection code
Security

- Due to low radio range – security threat must be in very close range
- Link Management Protocol layer of Bluetooth provides security and encryption services
 - Security in piconet involves identifying device itself, not who is using device

Three security mode in Bluetooth
- Level 1: No security
- Level 2: Service-level security is established after connection is made
- Level 3: Link-level security is performed before a connection is made

Authentication

- Authentication involves verifying that a device should be allowed to join piconet
 - Bluetooth uses a challenge-response strategy to confirm that other device knows a shared identical secret key
 - Secret key entered as PIN by hand
 - Version 1.1 improves authentication process by first confirming roles of master and slave before generating response number
Encryption

- Encoding communications ensures that transmissions cannot be intercepted and decoded
- Three encryption modes
 - Encryption Mode 1—Nothing is encrypted
 - Encryption Mode 2—Traffic from master to one slave is encrypted, but traffic from master to multiple slaves is not
 - Encryption Mode 3—All traffic is encrypted
 - Uses variable bit key (64 is default value)

State of Bluetooth

- Bluetooth shipped in over 1 Billion devices
- Bluetooth challenges
 - Reduce Cost ~$5 a port vs cable
 - Conflicts with other devices in radio spectrum
 - Limited security
- Most of the focus in the standards group is on other 802.15 tasks
- IEEE 802.15.4 for low power, low data rate, cheap, WPANs (Zigbee)
- IEEE 802.15.5 Mesh Networking WPANs
- IEEE 802.15.3 for high data rate WPANs (WiMedia) 802.15.3a focus is Ultra WideBand (UWB) WPANs
802.15.4 Standard

- Focus on low data rates/low power/moderate range/low complexity devices for WPAN sensor networks
 - Took over Zigbee interest group work
 - Data rates of 250 kb/s, 40 kb/s and 20 kb/s.
 - Distances 10-50 meters
 - Star or Peer-to-Peer operation.
 - Support for low latency devices.
 - Full handshake protocol for transfer reliability.
 - Very Low power consumption
 - multi-year battery based lifetime
 - Frequency Bands of Operation
 - 16 channels in the 2.4GHz ISM* band
 - 10 channels in the 915MHz ISM band
 - 1 channel in the European 868MHz band.
 - Early applications: home/factory monitoring, medical monitoring

ZigBee Stack Architecture

- ZDO - Zigbee device objects
- GOF - General operational framework
- NWK - Network layer
- MAC (IEEE 802.15.4)
- PHY (IEEE 802.15.4)
IEEE 802.15.4 Frequency Bands

868MHz / 915MHz PHY
- Channel 0: 868.3 MHz
- Channels 1-10: 928 MHz and 902 MHz
- 2 MHz bandwidth
- BPSK 20Kbps
- BPSK 40 Kbps

2.4 GHz PHY
- Channels 11-26
- 5 MHz bandwidth
- OQPSK 250Kbps
- 2.4835 GHz

IEEE 802.15.4 PHY Packet Structure

PHY Packet Fields
- Preamble (32 bits) – synchronization
- Start of Packet Delimiter (8 bits)
- PHY Header (8 bits) – PSDU length
- PSDU (0 to 1016 bits) – Data field

<table>
<thead>
<tr>
<th>Preamble</th>
<th>Start of Packet Delimiter</th>
<th>PHY Header</th>
<th>PHY Service Data Unit (PSDU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Octets</td>
<td></td>
<td></td>
<td>0-127 Octets</td>
</tr>
</tbody>
</table>

Slide courtesy Joe Dvorak, Motorola
IEEE 802.15.4 Device Classes

- Three Device Classes
 - Full function device (FFD)
 - Any topology
 - Can maintain connection to multiple devices
 - Talks to any other device
 - PAN Coordinator (PANC)
 - FFD responsible for starting and maintaining networks
 - First FFD powered on in an area becomes PANC
- Reduced function device (RFD)
 - Limited to star topology
 - Talks only to a network coordinator
 - Can not be a relay for other RFD or FFD
 - Very simple implementation – expect to transmit 0.1%-2% of the time → long battery life

IEEE 802.15.4 Topologies

- PAN Coordinator
- Master/slave

Full function device
Reduced function device
IEEE 802.15.4 Topologies

Clustered stars: basically a tree composed of multiple stars
Note backbone/trunk of tree made up of FFDs

Telcom 2700

IEEE 802.15.4 MAC Overview

Uses 802.15 64bit static MAC addresses

4 Types of MAC Frames:
- Data Frame
- Beacon Frame – from PANC defines timeslots
- Acknowledgment Frame
- MAC Command Frame
- CSMA/CA is used except for synchronous traffic which get guaranteed time slots

Telcom 2700
IEEE 802.15.4 MAC

- Periodic data
 - Application defined rate (e.g. sensors)
- Intermittent data
 - Application/external stimulus defined rate (e.g. light switch)
- Repetitive low latency data
 - Allocation of time slots (e.g. mouse)

- Security
 - Three modes:
 1. Unsecured
 2. Access control list mode – devices only communicated with stored list of addresses
 3. Secured mode
 - Symmetric key for authentication and encryption with 4,6,8,12, 14 octets length key options
 - Frame/message integrity – (checksum like security feature)
 - Sequential freshness – frames numbered

Typical ZigBee-Enabled Device Design

Typical design consist of RF IC and 8-bit microprocessor with peripherals connected to an application sensor or actuators
Wireless Technology Comparison Chart

<table>
<thead>
<tr>
<th>Standard</th>
<th>Bandwidth</th>
<th>Power Consumption</th>
<th>Protocol Stack Size</th>
<th>Stronghold</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>802.15.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Internet browsing, PC networking, file transfers</td>
</tr>
<tr>
<td>Telcom 2700</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Wireless USB, handset, headset</td>
</tr>
</tbody>
</table>

• 802.15.4 Energy consumption typically support 2 packets per sec for > 1 year on AA battery

802.15.4

• IETF effort on IEEE 802.15.4 sensor networks
 • 6LowWPAN – Transmission of IPV6 Packets over 802.15.4 networks
 – IETF RFC 4994
 – Compresses IPV6 header, TCP, ICMP, UDP to fit 802.15.4 frame format
 – Uses link local IPV6 addresses for local communication - PAN ID maps to IPV6 prefix
 – Fragmentation of IP packets to fit 802.15.4 127 byte MTU
 – Supports link-layer mesh routing under IP topology
 – Allows IP routing over a mesh of 802.15.4 nodes
 • Pros/Cons
 – IP is the standard internetworking protocol
 – IPV6 is still not widely deployed
 – Energy effects?
802.15.3 WPANS

- **High Data Rate WPANs – Applications**
- **WiMedia Alliance**
 - Multimedia
 - Streaming audio and video
 - Interactive audio and video
 - Data
 - PDAs, PCs, printers
 - Projectors
 - USB wireless transfer
 - Digital imaging
 - Still image and video
 - Camera to kiosk

High Speed WPANs

802.15.3 (WPAN) technology for transmitting data
- Quickly
- Cost-effectively
- With low power consumption

![Graph showing data rate and range](image)

- 802.15.3
 - Short Distance
 - Fast download
 - 480Mbps @ 3m
 - 200Mbps @ 4m

- 802.15.3
 - Room-range
 - High-definition
 - Quality of service, streaming
 - 110Mbps @ 10m

- 802.11a/b/g/n
 - Data Networking
 - >100Mbps @ 100m

Source: Texas Instruments
Requirements

• Data rate and Range:
 22 Mbps ~100m, 55-100Mbps ~50m, 480 Mbps ~2-3m
• QoS capable
• Security
• Quick join/unjoin
• Basic security/authentication
• Low power, cost, size, complexity
• Piconet, not network connectivity
• Connect up to 256 devices in a Piconet

Qualities of the 802.15.3 MAC

• PAN Coordinator (PNC) – Device (DEV) topology
 – PNC assigns time for connections
 – Commands go to and come from the PNC.
• Communication is peer-to-peer
• Quality of Service
 – TDMA architecture with guaranteed time slots (GTSs)
• Security and Authentication
 – No Security Mode
 – Security Mode – uses AES with 128 bit key
 – Security Key for encryption key distribution
 – Authentication Key for Challenge/Response auth.
Basic structure is the superframe

3 parts to the superframe
- Beacon
- Contention Access Period (CAP)
- Contention Free Period (CFP)
 - CFP has GTSs and MTSs

Access methods
- Beacon
 - TDMA, only sent by the PNC
- CAP (Contention Access Period)
 - CSMA/CA, types of data and commands can be restricted by PNC
 - PNC can replace the CAP with management time slots (MTSs) using slotted-aloha access.
- CFP (Contention Free Period)
 - TDMA, assigned by the PNC
 - GTSs are unidirectional
PNC selection/handover

- Alternate coordinators (ACs) broadcast capabilities
- Based on criteria, “best” AC is chosen and becomes the PNC
- PNC begins to issue beacon
- PNC hands over task if more “capable” AC joins the piconet
 - Exception only if security policy is verified

Features

- Commands supported:
 - PNC selection and handover
 - Association and disassociation
 - Information request commands
 - Repeater service
 - Power management commands
 - Device information
 - Retransmission
 - Request and modify GTS allocations

- MAC Support
 - Peer Discovery
 - Multi-rate support
 - Repeater service
 - Dynamic channel selection
 - Power management
 - Transmit power control
Physical Layer Characteristics

- 2.4 GHz band
 - Unlicensed operation
 - 15 MHz RF bandwidth
 - 3 or 4 non-overlapping channels
 - Similar to 802.11 for coexistence
- 5 data rates
 - 11-55 Mbps with multi-bit symbols and coding
 - Use Trellis Coded Modulation (TCM) for coding

<table>
<thead>
<tr>
<th>Modulation</th>
<th>Coding</th>
<th>Data rate</th>
<th>Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>QPSK</td>
<td>8 state TCM</td>
<td>11 Mb/s</td>
<td>-82 dBm</td>
</tr>
<tr>
<td>DQPSK</td>
<td>None</td>
<td>22 Mb/s</td>
<td>-75 dBm</td>
</tr>
<tr>
<td>16-QAM</td>
<td>8 state TCM</td>
<td>33 Mb/s</td>
<td>-74 dBm</td>
</tr>
<tr>
<td>32-QAM</td>
<td>8 state TCM</td>
<td>44 Mb/s</td>
<td>-71 dBm</td>
</tr>
<tr>
<td>64-QAM</td>
<td>8 state TCM</td>
<td>55 Mb/s</td>
<td>-68 dBm</td>
</tr>
</tbody>
</table>

802.15.3 also for US Spectrum 3.1-10.6 GHz band with ultra wideband radios (UWB)
- FCC requires minimum 500 MHz use for UWB
- Spectrum divided into fourteen 528 MHz bands
- Data rate 100-480 Mbps with OFDM
- OFDM with 128 subcarriers in a band similar to 802.11a/g
- Current radios use a group three frequencies as a multiband channel – that is Multi-Band OFDM is used
WPANs

- WPANS
- Growing number applications and type/range of devices

- IEEE 802.15 standardization of several different scenarios/applications
 - 802.15.1 Bluetooth
 - 802.15.4 sensors (Zigbee, 6loWPAN)
 - 802.15.3 higher data rate WPANs including UWB

- Cost, power, support for application development current issues