Location Based Services and Technology

David Tipper
Associate Professor
Graduate Telecommunications and Networking Program
University of Pittsburgh
Slides 14

Location Aware Services

- Location services marketplace generated over $40 billion in revenues worldwide in 2006

- Location Based Applications (LBA)
 - Applications capable of finding the geographical location of an object and providing services based on the location information
 - Not only in mobile systems (911)
 - Examples for mobile systems
 - Traffic updates
 - Next bus
 - Friend finder
 - Direction to nearest X (X – is hospital, store, bar, etc.)
Location Aware Services

- Technology originally driven by E-911 mandate in U.S. – goal was to develop systems to locate emergency cell phone calls
- Now many applications envisioned
 - Emergency Services
 - Navigation
 - Directions
 - Traffic management
 - Information
 - Entertainment, shopping info, advertisements
 - Tracking
 - Vehicle tracking, people tracking
 - Billing
 - Location sensitive billing
- Systems currently in use – in USA largely restricted to service provider offerings – outside of US more 3rd party applications
 - AT&T Live Contacts buddy finder – identifies contacts in neighboring cells
 - Verizon Chaperone – allows one to track child’s phone location
 - 3 proximity dating service – alerts user when someone with profile match is at same location (e.g., party, club)
 - Windows – Livesearch mobile for Blackberry with Windows mobile

Taxonomy of Location

- Absolute and Relative Location
 - Absolute uses a reference grid (Longitude, Latitude)
 - Relative depends on its own frame of reference
 - Nearest hospital to car accident
- Physical and Symbolic Location
 - Physical Location
 - Uniquely identifies a point on 2D or 3D map of the earth
 - Symbolic location
 - Coarsely identifies a physical location
 - School, work, home, etc.
Location Accuracy

- Accuracy needed depends on application

<table>
<thead>
<tr>
<th>Service</th>
<th>Example</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency</td>
<td>911 call</td>
<td>Medium-high</td>
</tr>
<tr>
<td>Navigation</td>
<td>directions</td>
<td>High</td>
</tr>
<tr>
<td>Information</td>
<td>Mobile Yellow Pages, Advertisement</td>
<td>Medium</td>
</tr>
<tr>
<td>Tracking</td>
<td>Vehicle Tracking</td>
<td>Low</td>
</tr>
<tr>
<td>Billing</td>
<td>Location based billing</td>
<td>Low to medium</td>
</tr>
</tbody>
</table>
Enhanced 911

- Location data accompanied with 911 call, expedites emergency response time – can save lives
- FCC mandate (94-102) driving demand for location capability
 - Phase I
 - Wireless carriers to supply cell site, sector, and call-back number for 911 calls.
 - Phase II - By December 31, 2004,
 - Undertake reasonable efforts to achieve 100% penetration of Assisted Location Information (ALI) -capable handsets in its total subscriber base.
- Requires public safety answering point (PSAP) capable of displaying position data

FCC 94-102 Phase II
Location Accuracy Requirements

- FCC Requirements for Location Accuracy
- For network-based solutions
 - 100 meters for 67% of 911 calls, and
 - 300 meters for 95% of 911 calls
- For handset-based solutions
 - 50 meters for 67% of 911 calls, and
 - 150 meters for 95% of 911 calls
- Both approaches require the use of wireless location technology
 - Equipment and algorithms added to network to find user position
 - Location technology options are similar regardless of wireless technology
 (GSM, IS-95, cdma2000, UMTS, WLAN, etc.)
Triangulation of Position

- Basis of most techniques for location position is triangulating position from known reference points called anchor points.
- \((x_i, y_i)\) : coordinates of anchor point \(i\), \(r_i\) distance to anchor \(i\)
- \((x_u, y_u)\) : unknown coordinates of node

From geometry have

\[
(x_i - x_u)^2 + (y_i - y_u)^2 = r_i^2 \quad \text{for } i = 1, \ldots, 3
\]

Example: \((x_1, y_1) = (2,1), (x_2, y_2) = (5,4), (x_3, y_3) = (8,2), r_1 = 3.1623, r_2 = 2, r_3 = 3\)

Which results in \((x_u, y_u) = (5,2)\)
Location Technology

Network-Based Approaches
- add equipment to network to locate mobile
 - Time Difference of Arrival (TDOA)
 - Angle of Arrival (AOA)
 - Multipath Analysis (MPA)

Handset-Based Approaches
- Handset determines location and reports it to the network
 - Global Positioning System (GPS)
 - Advanced Forward Link Trilateration

Hybrid (Network+ user assisted approach)
- Combine handset and network based techniques
 - Assisted GPS (A-GPS)
 - Enhanced Observed Time Difference (EOTD)

Network: Time Difference of Arrival (O-TDOA)

- Use existing cell towers and infrastructure to triangulate user’s location
- Determine the difference in time in which uplink radio signal from user reaches different cell sites.
 \[d_i = c \times t_i \]
 where \(c \) is speed of light and \(t_i \) = time between transmission and reception

- Difference in time is resolved to determine position, velocity, and heading.
- Can use the same idea with received signal strength (RSSI) but not accurate enough due to obstructions, multipath, etc.
- Need synchronization of cell sites.
Network: Angle of Arrival

- Requires specialized listening receivers to be placed at the base station
- Requires construction of directional uplink antenna array onto existing cell towers (similar to spot beams)
- Measures the direction of signal received at multiple towers with respect to antennas of known position to determine mobile position
- Requires 2 or more basestations or sectors to receive the signal
- Sometimes called triangulation

Network: Multipath or Scene Analysis

- Constructed a database of the received uplink multipath signal on a location grid for a specific service area
- Uses existing cell towers and infrastructure, may require additional specialized receivers to placed at the base station to improve accuracy
- Uses the multipath database to match the transmitter’s signal characteristics to determine a point on the location grid
- Also called fingerprinting of locations
- Can be very accurate – time consuming
Handset: Global Positioning System

- Requires GPS receiver and GPS antenna to be imbedded into the mobile phone
- Requires traffic or control channel resources for handset to transmit location data
- Employs signal timing techniques from three or more satellites from a constellation of 24 to determine position
- Can require a significant time to acquire signal and compute position.
- GPS signal hard to pick up indoors or dense urban environment

Handset: Advanced Forward Link Trilateration

- Time Difference of Arrival technique using the handset’s receiver and the downlink radio signal
- MS needs to receive 3 or more BS signals at sufficient signal strength to triangulate it’s position
- Requires phones with precise timing.
- Needs systemwide Base Station Synchronization
- Requires traffic/control channel resources to transmit location data from handset
Hybrid: Assisted Global Positioning System (A-GPS)

- Requires GPS receiver and GPS antenna to be imbedded into the mobile phone.
- Requires special GPS servers to be placed throughout the area of coverage to assist mobile receivers with acquiring GPS signals or reradiating GPS signal to indoor/shadowed areas.
- Mobile GPS receivers communicate with stationary GPS servers to assist in position determination – helps speed up calculation and indoor acquisition.
- Requires traffic/control channel resources to transmit assistance and location data.

Hybrid: Enhanced Observed Time Difference of Arrival (E-OTDA)

- Time Difference of Arrival technique using the handset’s receiver and specialized reference receivers to triangulate position.
- Use Forward and Reverse Link measurement.
- Requires phones with precise timing.
- Requires addition of new uplink receivers throughout the network.
- Requires traffic/control channel resources to transmit assistance messages and location data.
Accuracy

<table>
<thead>
<tr>
<th>Technique</th>
<th>Handset Impact</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>TDOA</td>
<td>NO</td>
<td>300-500m</td>
</tr>
<tr>
<td>AOA</td>
<td>NO</td>
<td>300-500m</td>
</tr>
<tr>
<td>MPA</td>
<td>NO</td>
<td>1-5M (depends on grid size)</td>
</tr>
<tr>
<td>GPS</td>
<td>Yes</td>
<td>3-5 M</td>
</tr>
<tr>
<td>AFLT</td>
<td>Yes</td>
<td>50-200M</td>
</tr>
<tr>
<td>EOTD</td>
<td>Yes</td>
<td>50-200M</td>
</tr>
<tr>
<td>AGPS</td>
<td>Yes</td>
<td>3-30M</td>
</tr>
</tbody>
</table>

Basic Cellular Architecture for IS95/CDMA 2000

- Basic architecture common to all approaches
- Requires network to overlay/retrofit new equipment

Abbreviations
- PDE - Position Determining Entity
- MPC - Mobile Positioning Center
- ESRK - Emergency Service Routing Key
- ALI DB - Automatic Location Identification Data Base
Evolving Standards for Location Tracking

- **CTIA**
 - TR 45.5
 - geolocation network support for AMPS, NA-TDMA, IS-95
 - E-OTDA, A-GPS options for each technology
- **3GPP**
 - GSM, GPRS, EDGE, UMTS
 - E-OTDA, A-GPS options for each technology
- **3GPP2**
 - cdma 2000 (UWC-136B) network assisted A-GPS
- **USA Service Provider Techniques Adopted**
 - Verizon, Sprint: A-GPS,
 - AT&T, T-Mobile: E-OTDA
- **Open Mobile Alliance**

OMA Location Architecture

- **Open Mobile Alliance (OMA)**
 - http://www.openmobilealliance.org
 - Location working group - absorbed earlier work by Location Interoperability Forum (LIF)
- **LoCation Services (LCS) Architecture**
 - Leverages normal infrastructure for transport and resource management - independent of wireless location technology used
- **LCS Architecture Components**
 - **UE (User Entity)**
 - may assist in position calculation
 - **LMU (Location Measurement Unit)**
 - Maybe required or not depending on location technology approach adopted – if used is distributed among the cells
 - **SMLC (Serving Mobile Location Center)**
 - Coordinates measurements to determine location
 - **GMLC (Gateway Mobile Location Center)**
 - Location server for outside queries
OMA LCS Architecture

- Two Key Components in backhaul
- Gateway Mobile Location Center
 - Application interface for location services
 - Application Authentication
 - Privacy checking
 - Interrogates HLR to find visited MSC/SGSN
 - Roaming user can be located
 - Called Mobile Positioning Center (MPC) in IS-95/3GPP2
 - Standalone equipment or integrated into GMSC
- Serving Mobile Location Center
 - Determines the location
 - Talks to access network and user device
 - Standalone equipment or integrated into BSC/RNC or MSC/3GMSC
 - Called Position Determining Entity (PDE) in IS-95/3GPP2

OMA Location Architecture for UMTS/GSM
Location Requests

- **MLP – Mobile Location Protocol**
 - from Location Interopability Forum (LIF) -> now part of Open Mobile Alliance
 - based on HTTP/SSL/XML
 - allows Internet clients to request location services
 - Response includes *quality* of the location estimate
 - GMLC is the Location Server
 - UE can be idle, but not off!
 - Immediate or deferred result, can request periodic updates

MLP Services

- **Standard Location Immediate Service (SLIS)**
 - Provide location of mobile user to an LCS client based on LCS client's request
- **Standard Location Reporting Service (SLRS)**
 - Provide location of mobile user to an LCS client based on user's request
- **Triggered Location Reporting Service (SLRS)**
 - Provide location of mobile user to an LCS client based on preset events (e.g., time of day)
- **Emergency Location Immediate Service (ELIS)**
 - Provide location of mobile user to an LCS client based on emergency LCS client's request (e.g., police)
- **Emergency Location Reporting Service (SLRS)**
 - Provide location of mobile user to an LCS client when an emergency call is placed (e.g., 911)
Location Based/Aware Services

- Originally developed for E-911 calls
 - 296,000 E-911 calls in US per DAY in July, 2008 (CTIA.org)

- Handset and Network Based Technology Options

- Standards forming

- Growing demand and new applications possible

- Privacy and openness a big issue for service providers