3G: HSPA, cdma 2000

David Tipper
Associate Professor
Graduate Telecommunications and Networking Program
University of Pittsburgh
2700 Slides 12

Third Generation Standards

- ITU approved suite of four 3G standards
- EDGE (Enhanced Data rates for Global Evolution)
 - TDMA standard with advanced modulation and combined timeslots
 - Provides unification of NA-TDMA and GSM
 - Only meets some of the 3G requirements (2.75G?)
- UMTS (Universal Mobile Telephone Service) also called WCDMA (wideband CDMA)
 - Dominant standard outside of US and leading standard for 3G worldwide
 - Viewed as 3G migration path for GSM/GPRS/EDGE systems
- CDMA 2000
 - Also called (3G and cdma three): competes directly with W-CDMA up to 2 Mb/s
 - Evolutionary path for IS-95 which is the dominant standard in the US
- TD-SCDMA: Stand alone standard developed in China

Evolution Path to 3G

![Evolution Path to 3G Diagram](image)
HIGH SPEED DOWLINK PACKET ACCESS (HSDPA)

- HSDPA = 3.5G system upgrade of UMTS
- Standardised in 3GPP Release 5
- Objective is to support delay-tolerant services in low mobility scenarios with enhanced resource efficiency and service quality
 - support for background, interactive and (to some extent) streaming services
 - low mobility
 - enable downlink peak rates of 8-10 Mbits/s >> 3G requirements
 - lower resource consumption per transferred delay-tolerant bit

HIGH SPEED DOWLINK PACKET ACCESS

- HSDPA upgrade of UMTS similar to EDGE upgrade of GPRS
 - completely backwards compatible
 - no new spectrum needed
 - reuse existing infrastructure and 5MHz channels
 - primarily software and minor hardware upgrades
 - coexistence of HSDPA- and non-HSDPA-enabled terminals
 - coexistence of HSDPA- and non-HSDPA-enabled NODE-Bs
 - data flows on HS-DSCH moving from non-HSDPA-cell to HSDPA-cell are automatically switched to a supported transport channel, e.g. DCH
 - gradual hot-spot-based network upgrades possible
 - cost-effective

HSDPA Architecture

- Upgrade UMTS downlink channels to a HS version:
 - higher-order modulation: QPSK and 16-QAM
 - fast link adaptation: adaptive modulation and coding
 - fast channel-aware scheduling: centered at the node
 - fast hybrid ARQ: combines FEC and selective ARQ
 - reduced TTI of 2 ms: to facilitate better tracking of channel variations
 - HS channels typically transmit at relatively fixed power
NEW PHYSICAL CHANNELS

- **PHYSICAL CHANNELS**
 - HS-PDSCH downlink SF 16 data only (up to 15 streams to a user)
 - HS-SCCH(s) downlink MAC-hs signalling, H-ARQ, etc.
 - HS-DPCCH uplink SF 256 CQI, (N)ACK

PHYSICAL LAYER PROCESSING

- **Physical Layer Processing**

 - Turbo encoding
 - Rate matching
 - Interleaving
 - Modulation (series \rightarrow parallel)
 - Mapping on code tree
 - CRC
 - Information bit sequence

ADAPTIVE MODULATION AND CODING

- **LINK ADAPTATION**: channel-dependent AMC
 - Typically more efficient for services that tolerate short-term data rate variations
 - With only power-controlled channels, it is difficult to exploit all resources
 - AMC can exploit resources better at the cost of transfer rate jitter

<table>
<thead>
<tr>
<th>MODULATION</th>
<th>SPREADING FACTOR</th>
<th>TURBO CODE RATE</th>
<th>BITS/ BLOCK/ CODE</th>
<th>DATA RATE (15 CODES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QPSK</td>
<td>16</td>
<td>1/4</td>
<td>240</td>
<td>1.8 Mbps</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>1/2</td>
<td>470</td>
<td>3.6 Mbps</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>3/4</td>
<td>711</td>
<td>5.3 Mbps</td>
</tr>
<tr>
<td>16-QAM</td>
<td>16</td>
<td>1/2</td>
<td>550</td>
<td>7.2 Mbps</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>3/4</td>
<td>1440</td>
<td>10.8 Mbps</td>
</tr>
</tbody>
</table>
HSDPA Upgrades

- **Infrastructure**
 - **NODE-B**
 - A new MAC sublayer (MAC-hs) is standardised and needs to be implemented in the NODE-B capabilities. This update may be done via remote software downloads or may possibly require hardware upgrades as well.
 - RNC largely maintains the UMTS Release '99 functionality. A software-only upgrade is required, e.g., to enable assignment of data flows to the HS-DSCH channel switching.
 - No substantial impact on the CORE network is expected.
 - **New Mobile Terminals**
 - HSDPA deployments began in 2006 in Europe, Canada, etc. Over 100 deployments.

HSUPA

- **High Speed Uplink Packet Access**
- Similar to HSDPA – advanced coding and modulation techniques with hybrid ARQ to improve data rate on uplink channel in UMTS.
- Now called Enhanced Uplink (EUL) (3GPP).
- Data rates from 73Mbps – 5.76Mbps, 11.5Mbps being tested.
- Uses new Enhanced versions of Signaling and physical channels.
- Focus of UMTS now on IP in the backhaul.

3GPP IP Reference Architecture

The 3GPP IP reference architecture – all traffic IP – with QoS Classes.
UMTS

- UMTS is most popular 3G technology
 - Upgrade path from GPRS/EDGE – primarily in air interface to WCDMA standard
 - Now called 3GSM
 - WCDMA – variable power/spreading cdma
 - Provides standard benefits of cdma technology (frequency reuse factor 1, soft handoff, etc.)
 - Deployed throughout the world
 - Upgrade path to HSPDA and HSUPA and all IP in the core defined - over 62.5 million HSPA users

cdma2000

- cdma2000
 - Goal: provide 2.5G and 3G services over TIA/EIA-41 systems which include IS-95a, b, cdmaone systems
 - Evolutionary path
 - cdma2000-1xRTT uses multiple codes on same 1.25 MHz carrier of IS-95 and slight change to the modulation to provide packet data – up to 78 Kbps (basically 2.5G standard)
 - cdma2000-1xEVDO – a 1.25 MHz radio carrier is dedicated to data only (DO) more Walsh codes per carrier (256) – high data rates – 840 kbps
 - cdma 2000 1x-EV-DO – carriers supports both data and packetized voice voice, all IP backhaul network
 - CDMA 2000 3x RTT called multi-carrier mode CDMA
 - Extension of IS-95 – uses multiple x 1.25Mhz IS-95 channels
 - On hold until market demands it.
 - IS-1 or GSM MAP signalling in core

CDMA2000 1x Network

- BTS - Base Transceiver Station
- BSC - Base Station Controller
- MS - Mobile Station
- MSC - Mobile Switching Center
- HLR - Home Location Registry
- SMS-SC - Short Message Service - Serving Center
- PSTN
- IP over Ethernet/AAL5
- AAA – Authentication, Authorization, and Accounting
- Home Agent – Mobile IP Home Agent
- I11 – Interface between SGSN (GGSN) and PDSN for packet data
- I11 – Signaling interface between GGSN (S-GW) and PDSN for packet data
- IP Over Ethernet/AAL5
- Proprietary Interface
- Private Data Network
2G System IS-95 (cdmaone)

- Cdmaone
- 2G system
- Voice 14 Kbps or variable rate 9.6 Kbps
- Data 14.4 Kbps
- 1.25 MHz carrier
- 64 Walsh codes per carrier

Cdma2000 – 1X RTT

Packet Data Serving Node (PDSN)

- PDSN – similar to SGSN in GPRS
- Establish, maintain, and terminate PPP sessions with mobile station
- Support simple and mobile IP services
 - Act as mobile IP Foreign Agent for visiting mobile station
- Handle authentication, authorization, and accounting (AAA) for mobile station
 - uses RADIUS protocol
- Route packets between mobile stations and external packet data networks
- Collect usage data and forward to AAA server
AAA Server and Home Agent

- **AAA server**
 - Authentication: PPP and mobile IP connections
 - Authorization: service profile and security key distribution and management
 - Accounting: usage data for billing
- **Mobile IP Home Agent**
 - Track location of mobile IP subscribers when they move from one network to another
 - Receive packets on behalf of the mobile node when node is attached to a foreign network and deliver packets to mobile's current point of attachment

1xEVDO -- Data Only on some carriers

1XEVDV -- IP Data and Voice
Multicarrier CDMA (CDMA2000 – 3x)

- Deployed in the same frequency spectrum as IS-95
- 144 Kbps – 384 Kbps high-mobility access
- 2048 Kbps limited coverage
- Uplink: Single wideband carrier with chip rate 3.6864 Mcps
- Downlink: Multiple (up to 12) narrow band carriers (1.2288 Mcps)
- Same architecture as cdma2000 1XEVDV – requires base station and MS equipment changes

CDMA2000 Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel bandwidth</td>
<td>1.25, (N \times 1.25 \text{ MHz}), UL = 3.75 MHz</td>
</tr>
<tr>
<td>Channel structure</td>
<td>Direct spread spectrum or multicarrier spread spectrum</td>
</tr>
<tr>
<td>Chip rate</td>
<td>3.6864 Mcps for direct spread, (n \times 1.2288 \text{ Mcps}) ((n = 1, 3, 6, 9, 12)) for multicarrier</td>
</tr>
<tr>
<td>Frame length</td>
<td>20 ms for data and control, 5 ms for control information on the fundamental and dedicated control channel</td>
</tr>
<tr>
<td>Handover</td>
<td>Soft handover and interfrequency handover</td>
</tr>
</tbody>
</table>

3GPP2 IP Architecture Model

The 3GPP2 IP architecture model supporting mobile IP.

Wireless Access Provider Network
Systems Comparison

<table>
<thead>
<tr>
<th>Physical Channel</th>
<th>CDMA 2000</th>
<th>UMTS</th>
<th>GSM</th>
<th>IS-95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channels</td>
<td>1 to N x 1.25 MHz channels</td>
<td>DL, UL 3.75 MHz</td>
<td>5 MHz</td>
<td>200 kHz, 1.23 MHz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulation</th>
<th>OQPSK</th>
<th>QPSK</th>
<th>GMSK</th>
<th>OQPSK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel rate</td>
<td>N x 1.288 Mcps in downlink, 3.84 Mcps uplink</td>
<td>1.84 Mcps</td>
<td>270.833 kbps, 1.228.8 kbps</td>
<td></td>
</tr>
</tbody>
</table>

| Modulation Efficiency (b/s/Hz) | 1.268 | 1.40 | 1.00 |

Power Control

<table>
<thead>
<tr>
<th>Power Control</th>
<th>CDMA 2000</th>
<th>WCDMA</th>
<th>GSM</th>
<th>IS-95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Base Station Sync</td>
<td>800 Hz up and down link</td>
<td>1.18 MHz up and down link</td>
<td>2 MHz</td>
<td>600 Hz uplink</td>
</tr>
</tbody>
</table>

Base Station Sync

<table>
<thead>
<tr>
<th>Base Station Sync</th>
<th>CDMA 2000</th>
<th>WCDMA</th>
<th>GSM</th>
<th>IS-95</th>
</tr>
</thead>
<tbody>
<tr>
<td>No</td>
<td>Yes using GPS</td>
<td>No</td>
<td>No</td>
<td>Yes using GPS</td>
</tr>
</tbody>
</table>

Load Based Scheduling

<table>
<thead>
<tr>
<th>Load Based Scheduling</th>
<th>CDMA 2000</th>
<th>WCDMA</th>
<th>GSM</th>
<th>IS-95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voice only</td>
<td>Voice only</td>
<td>Voice only</td>
<td>Voice only</td>
<td>Voice only</td>
</tr>
</tbody>
</table>

System Standard

<table>
<thead>
<tr>
<th>System Standard</th>
<th>CDMA 2000</th>
<th>WCDMA</th>
<th>GSM</th>
<th>IS-95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voice only</td>
<td>Complete System</td>
<td>Complete System</td>
<td>Complete System</td>
<td>Complete System</td>
</tr>
</tbody>
</table>

Security

<table>
<thead>
<tr>
<th>Security</th>
<th>CDMA 2000</th>
<th>WCDMA</th>
<th>GSM</th>
<th>IS-95</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectrum + AAA, IP (eventually)</td>
<td>3GPP2 + AAA, 3GPP2, IP, 3GPP2</td>
</tr>
</tbody>
</table>

Pros and Cons

- **CDMA2000**
 - Pros: Better migration story from 2G to 3G
 - cdmaOne operators don’t need additional spectrum
 - 3x promises higher data rates than UMTS, i.e. W-CDMA
 - Cons: CDMA2000 core network less mature
 - cdmaOne interfaces were vendor-specific
 - hopefully CDMA2000 vendors will comply w/ 3GPP2
- **UMTS/GSM**
 - Pros: Largest market share
 - First to market with new equipment/phones
 - All the advantages of CDMA
 - Higher data rates with HSPA
 - Cons: Need new/more spectrum (5MHz channels)
 - Expensive to implement