

Event List Concepts Reviewed

- ? Some events must be entered on the event list at the start of a simulation.
 - > A generator module enters an initial event.
 - > A processor or queue module has the begsim interrupt attribute enabled.
- ? An event list typically has a few events each event spawns another event or two that is placed on the list as the spawning event is deleted.
- ? The event list is always growing and shrinking.
- ? An event is pending until executed. A pending event can be cancelled.

Object Attributes

?

- ? Attributes are parameters of an object that can configure its behavior.
 - Attributes are dynamically changeable during simulation.
- ? Processes have access to all object attributes.
- ? Different attribute values allow objects of the same type to behave differently.

Assigning Attribute Values

- ? You can assign attribute values by right-clicking on an object and selecting or specifying the attribute value.
- ? Attributes are of a certain type. Commonly used types are listed.

Туре	Definition
Integer	Whole numbers: storage capacities; transmission window size
Double	Decimal numbers: processing speeds; timer values
String	General text info: statistic names, object names, options
Toggle	True/false condition: status flags, semaphores
Typed file	User defined file: routing tables, address mappings, script file
Compound	Nested, complex data: routing table, circuit table, subqueues

29

Transitions Between States

- ? After completing the exit executives, the process evaluates the condition statements of all departing transitions from the state.
- ? One and only one condition statement must evaluate to true.
- ? The process traverses the transition associated with this condition statement.
- ? A transition with condition = "default" is true if and only if no other conditions are true.
- ? A transition with no condition set is termed *unconditional* and is always true.

How Does Time Advance?

- ? Simulation time advances only when an event with a later time is taken from the event list.
- ? No simulation time occurs during an invocation of a process model.
- ? No time elapses during transitions between states.
 - A process model must always end in a red state so time can advance.
 - Avoid endless looping between forced (green) states.

e

Node Editor - Toolbar

Processor. A module that represents the most general building block of node models. The behavior of a processor can be completely specified by the user and its links can be arbitrarily connected to other modules.

Queue module. A module that provides a superset of the functionality of processor modules. Queue modules can execute an arbitrary process model that describes the behavior of a particular process or protocol, and can be connected via packet streams to other modules.

h	~
2	
-	

	Node Editor - Toolbar		O
_	Transmitters: the outbound	<u></u> }_	Point-to-point
	interface between packet streams inside a node, and communications	म्र	Bus
	links outside the node.		Radio
	Receivers : the inbound interface	F	Point-to-point
	between communications links outside a node and packet streams inside a	Ħ	Bus
	node.		Radio
	Antenna: A module that is used to specify the antenna properties for radio transmitter or receiver modules.	X	Antenna 39

43

Process Editor Toolbar

State Variables Block: Defines variables that retain their value from one process invocation to the next.

Temporary Variables Block: Defines variables that retain their value only during the span of a single process invocation.

Header Block: Defines constants, macro expressions, include files, global variables, data structures, data types, and function declarations for the process. Also declares whether the process model will be in C/C++

Function Block: Defines C/C++ functions that are associated with the process.

45

Creating Process Models

Follow these steps

- 1. Understand the questions to be answered.
- 2. Create a new process model or modify an existing process model.
- 3. Edit the node model to use the new/modified process model.
- 4. Modify the existing probe file.
- 5. Specify the simulation sequence file.
- 6. Determine the expected output.
- 7. Run simulations.
- 8. Analyze raw output and post-process it to answer questions.
- 9. Compare actual results to expected output. Explain any differences.

