
1

OPNET Modeler Overview

NOTE: This material is for in-class use only.
Do not replicate or distribute.

2

Event-Driven Simulation

? An event is a request for a particular activity to occur at a certain time.

? OPNET simulations are event-driven. Time, in the simulation, advances
when an event occurs.

? A different method might be to sample at regular intervals.
Disadvantages are as follows:

Ø Accuracy of results is limited by the sampling resolution.

Ø Simulation is inefficient if nothing happens for long periods.

2

3

Time Event Type Module
0.0 Initialize src.gen
0.0 Initialize src.rte
4.3 Timer expires src.gen
4.3 Packet arrives src.rte

Head

Event List Concepts

? An OPNET simulation maintains
a single global event list.

? All objects access a shared
simulation time clock.

? Events are scheduled on the list
in time order. The first event on
the list is the head.

? An event has data associated with
it.

? When an event completes it is
removed from the list.

4

Interrupts

? An event becomes an interrupt when it reaches the head of the event
list and is delivered by the Simulation Kernel to the designated module.

? Data associated with the event can be obtained by the module when
the interrupt occurs.

? Certain modules, processes, and queues can be selected to place
initial interrupts on the event list.

3

5

The Simulation Kernel

? An entity, the Simulation Kernel (SK), manages the event list.

? The SK delivers each event, in sequence, to the appropriate module.

? The SK receives requests from modules and inserts new events on the
event list.

6

How Does the Event List Work?

New event reaches head of
event list, which causes

Simulation Kernel to deliver
an interrupt to the

appropriate module

Simulation Kernel regains
control from module

Process, within the
module gains
control and

processes interrupt

Simulation Kernel
deletes event from
event list, allowing
new event to reach

head of list

4

7

Event List Implementation

? The Simulation Kernel uses a proprietary, efficient algorithm to maintain
the event list.

? Event times are expressed as double-precision, floating point numbers
and are used to keep the event list sorted.

0.01234 56789 11111 11

0.01234 56789 11111 22

0.01234 56789 11111 33

0.01234 56789 11111 44

0.01234 56789 11111 55

0.01234 56789 11111 66

0.01234 56789 11111 77

Suppose that this interrupt triggers an event to occur
at 0.01234 56789 11111 75.

The Simulation Kernel minimizes the time required
to place this event at the correct place on the list.

8

Simultaneous Events

? What Happens When Two Events Are Scheduled for the Same Simulation Time?

? The events are actually simulated sequentially, though they appear to occur
synchronously according to the time clock.

? The Simulation Kernel uses one of two methods to determine execution order:
Ø “Natural order method”: The event that reaches the list first is executed first.

Ø “Priority factor method”:

− Modules and events are assigned priority factors.
− Events with a higher priority or originating from a higher priority

module are executed before events with a lower priority or from a
lower priority module.

5

9

Event List Concepts Reviewed

? Some events must be entered on the event list at the start of a
simulation.

Ø A generator module enters an initial event.
Ø A processor or queue module has the begsim interrupt

attribute enabled.

? An event list typically has a few events – each event spawns another
event or two that is placed on the list as the spawning event is
deleted.

? The event list is always growing and shrinking.
? An event is pending until executed. A pending event can be

cancelled.

10

Delivery of Interrupts

? When an interrupt is delivered to a module, control passes from the
Simulation Kernel to the module.

? If the module is a queue or processor, the interrupt is delivered to the
process running within the module.

6

11

Network and Node Models

12

Network Objects - Subnets
? A subnetwork abstracts network components specified

within it into a single object.
? Subnetworks represent identical constructs in an actual

network. Subnetwork

7

13

Network Objects - Links

? Link objects model physical layer effects between nodes, such as delays,
noise, etc.

A radio link, established during a simulation, can
be created between any radio transmitter-receiver
channel pair. Satellite and mobile nodes must use
radio links. Fixed nodes may use radio links. A
radio link is not drawn but is established if nodes
contain radio transceivers.

A bus link transfers data among many
nodes and is a shared media.

A point-to-point link transfers data between two
fixed nodes.

Radio link

14

Node Objects - Modules

? Modules are the basic building blocks of node
models. Modules include processors, queues,
transceivers, and generators.

? Processors are the primary general purpose building
blocks of node models, and are fully programmable.

? Queues offer all the functionality of processors, and
can also buffer and manage a collection of data
packets.

Processor

Queue

8

15

Object Attributes

? Attributes are parameters of an object that can configure its behavior.

? Attributes are dynamically changeable during simulation.

? Processes have access to all object attributes.
? Different attribute values allow objects of the same type to behave differently.

16

Object Attributes

Though you use the same process
model, by changing the data rate for
the channel attribute you alter the
behavior of the node.

9

17

Assigning Attribute Values

? You can assign attribute values by right-clicking on an object and
selecting or specifying the attribute value.

? Attributes are of a certain type. Commonly used types are listed.

Type Definition

Integer Whole numbers: storage capacities; transmission window size

Double Decimal numbers: processing speeds; timer values

String General text info: statistic names, object names, options

Toggle True/false condition: status flags, semaphores

Typed file User defined file: routing tables, address mappings, script file

Nested, complex data: routing table, circuit table, subqueuesCompound

18

Promoting Attribute Values

? You can “promote” an attribute. This means that you assign a value at
a higher hierarchical level.

? Passing control of a lower-level object to a higher level provides more
flexibility in how objects are used.

? You can leave an attribute unspecified at even the network level, and
assign a value at run time.

10

19

Promoting Attributes Example

? When an attribute assignment
is made, promotion stops. An
attribute value was assigned
at mktg_lan, so the
attribute does not appear in
the object corporate.

? Attribute names are used as
prefixes at each new level of
the object hierarchy.

buf

router

mktg_lan

priority has been promoted
from buf and set at mktg_lan

buf.priority: promoted

priority: promoted

router.buf.priority: high

corporate

20

Process Model

11

21

Process Model Objects - States

? The initial state is the place where execution begins in a process.

? A forced state does not allow a pause during the process.

? An unforced state allows a pause during the process.
? Later chapters will fully discuss the differences between these types of

states.

Initial state Forced state Unforced state

red redgreen

22

State Connections - Transitions

? Transitions describe the possible movement of a process from state to
state and the conditions allowing such a change.

? Exactly one condition must evaluate to true.

? If the condition statement (x == y) is true, the transition executive
(Reset_Timers;) is invoked.

Transition executiveCondition statement

12

23

Executive blocks
? Each state has two executive blocks

Ø Enter executives are invoked on entering a state.

Ø Exit executives are invoked before exiting a state.

24

? Proto-C consists of

Ø State transition diagrams

Ø The complete C programming language
Ø The library of OPNET Kernel Procedures (KPs) State variables (private

to each process)

Ø Temporary variables

What is Proto-C™ ?

13

25

Process Model

26

Process Models

? A process in the context of computer systems and communications networks can be
viewed as a series of logical operations performed on data, and the conditions that
cause these operations.

? Processes may be implemented in terms of both hardware or software components.
? OPNET process models describe the logic of real-world processes, such as:

Ø Communications protocols and algorithms

Ø Shared resource managers
Ø Queuing disciplines

Ø Specialized traffic generators

Ø Statistic collection mechanisms
Ø Operating systems

? The Process Editor provides the necessary features for specifying process models,
which consist of both graphical and textual components.

14

27

Forced States

? Forced (green) and unforced (red)
states differ significantly in execution
timing.

? In a forced state, the process:

Ø Invokes the enter executives

Ø Invokes the exit executives
Ø Evaluates all condition

statements

Ø If exactly one condition
statement evaluates to true, the
transition is traversed to the next
state.

Transition to next state

Transition to next state

Forced (green) states

Enter execs
invoked

No blocking or waiting

Exit execs
invoked

Enter execs
invoked

Exit execs
invoked

No blocking or waiting

28

Unforced States

? In an unforced state, the process

Ø Invokes the enter executives

Ø Places a marker at the middle of
the state

Ø Releases control to the
Simulation Kernel and becomes
idle

Ø Resumes at the marker and
processes the exit execs when
next invoked

Start of invocation

End of invocation

Unforced (red) states

Transition to next state

Blocking, waiting
for invocation

Exit execs processed
when invocation

occurs

Enter execs
invoked

Next
invocation
starts here

Blocking, wait for
next invocation

15

29

Transitions Between States

? After completing the exit executives, the process evaluates the
condition statements of all departing transitions from the state.

? One and only one condition statement must evaluate to true.

? The process traverses the transition associated with this condition
statement.

? A transition with condition = “default” is true if and only if no other
conditions are true.

? A transition with no condition set is termed unconditional and is
always true.

30

How a Process Handles an Interrupt

? Flow diagram showing how a process handles an interrupt

(except the initial interrupt)

Implement
exit execs

Set marker;
block and wait
for interrupt

Receive
interrupt

Evaluate
condition

statements

Red state? Yes

No

Follow
transition to

next state
Implement
enter execs

Find marker

16

31

Process Model Example

? Model with three forced states and one unforced
state

3. Transition occurs. 6. Transition occurs.

2. Exit execs invoked immediately.
Transition condition (pk_count == 0)
evaluates to true. 5. Exit execs invoked immediately.

8. Marker is placed
and process stops
here.

7. Enter execs invoked.4. Enter execs invoked.1. Initial interrupt delivered and the
enter execs invoked.

32

Simulation Termination
? Simulations terminate in one of four ways

Ø The event list is emptied.
Ø Simulation attribute duration expires.

Ø A process calls for termination, using the KP op_sim_end().

Ø A fatal error occurs.

17

33

How Does Time Advance?
? Simulation time advances only when an event with a later time is

taken from the event list.

? No simulation time occurs during an invocation of a process model.

? No time elapses during transitions between states.
Ø A process model must always end in a red state so time can

advance.

Ø Avoid endless looping between

forced (green) states.

34

Node Model

18

35

Node Editor

? The Node Editor provides the resources necessary to model the internal
functions of nodes.

? Users have access to different modules which are used to model internal
aspects of node behavior.

? Modules represent the internal capabilities of a node such as:

•Data creation
•Transmission
•Reception
•Storage
•Internal routing
•Queuing

36

Node Editor

Toolbar

Node Workspace

Create module connection
Packet stream / statistic wire / tx/rx association

Create transceivers (tx/rx)
point-to-point / bus / radio / antenna

Create processor

Create queue

19

37

Processor. A module that represents the most general building block of
node models. The behavior of a processor can be completely specified by
the user and its links can be arbitrarily connected to other modules.

Queue module. A module that provides a superset of the functionality
of processor modules. Queue modules can execute an arbitrary process
model that describes the behavior of a particular process or protocol, and
can be connected via packet streams to other modules.

Node Editor - Toolbar

38

Statistic wire. A connection between modules that conveys numeric
values between devices or processes in the same node. Statistic wires are
primarily used to allow processes to monitor changes in state and
performance of the devices that make up a node, and to create a simple
signaling mechanism between processes.

Logical association. A connection used to indicate that a relationship
exists between two modules in a node model, for example, between a
receiver and transmitter used as a pair. Logical associations do not carry
any data.

Packet stream. A connection between modules that carries data
packets from a source module to a destination module. They represent
the flow of data across the hardware and software interfaces within a
communications node

Node Editor - Toolbar

20

39

Transmitters: the outbound
interface between packet streams
inside a node and communications
links outside the node.

Receivers: the inbound interface
between communications links outside
a node and packet streams inside a
node.

Point-to-point

Bus

Radio

Point-to-point

Bus

Radio

Antenna: A module that is used to
specify the antenna properties for radio
transmitter or receiver modules.

Antenna

Node Editor - Toolbar

40

Process Model

21

41

Toolbar
1. Create state
2. Create transition
3. Set initial state
4. Edit state variable
5. Edit temporary variable
6. Edit header block
7. Edit function block
8. Edit diagnostic block
9. Edit termination block
10. Compile process model

1 2 3 4 5 6 7 8 9 10

Process Model Editor

42

Create State: Creates a new state within the process model.

Create Transition : Creates transitions between states.

Set Initial State: Sets the selected state in the process
to be the initial one.

State: One of the components of a finite state machine. The behavior
of a state is defined by its state executives, which are executed upon
entry into and exit from the state.

Transition: The path a process takes between states in a finite state
machine. Transitions contain attributes that can be used to specify
conditions that must be met before the transition takes place.

Process Editor Toolbar

22

43

State Variables Block: Defines variables that retain
their value from one process invocation to the next.

Header Block: Defines constants, macro expressions,
include files, global variables, data structures, data types,
and function declarations for the process. Also declares
whether the process model will be in C/C++

Function Block: Defines C/C++ functions that are
associated with the process.

Temporary Variables Block: Defines variables that
retain their value only during the span of a single process
invocation.

Process Editor Toolbar

44

Diagnostic Block: Defines C/C++ statements that send
diagnostic information to the standard output device.

Termination Block: Defines C/C++ statements that
execute just before a process is destroyed.

Compile Code: Generates the C/C++ source file and
object code for the process model.

Process Editor Toolbar

23

45

Creating Process Models
Follow these steps

1. Understand the questions to be answered.
2. Create a new process model or modify an existing process model.

3. Edit the node model to use the new/modified process model.

4. Modify the existing probe file.

5. Specify the simulation sequence file.
6. Determine the expected output.

7. Run simulations.

8. Analyze raw output and post-process it to answer questions.

9. Compare actual results to expected output. Explain any differences.

46

OPNET : Projects and Scenarios

? Modeler uses a Project-and-Scenario approach to modeling networks.

? A Project is a collection of related network scenarios in which each
explores a different aspect of network design. All projects contain at
least one scenario.

? A Scenario is a single instance of a network. Typically, a scenario
presents a unique configuration for the network, where configuration
can refer to aspects such as topology, protocols, applications, baseline
traffic, and simulation settings.

24

47

The Project/Scenario Workflow

? Create project
? Create baseline scenario

Ø Import or create topology

Ø Import or create traffic
Ø Choose results and reports to be collected

Ø Run simulation

Ø View results
? Duplicate scenario

Ø Make changes

Ø Re-run simulation
Ø Compare results

Iterate

