Graph Theory and Topology Design

David Tipper
Associate Professor
Graduate Telecommunications and Networking Program
University of Pittsburgh
tipper@tele.pitt.edu
Slides 4
http://www.sis.pitt.edu/~dtipper/2110.html

Top Down Network Design Approach

- Top down network design project approach should follow three phases:
- Conceptual Model
- Objectives, Requirements, Constraints
- Logical Model
- Technology, network graph, node location, link size, etc. (where algorithms are used to minimize cost)
- Physical Model
- Specific hardware/software implementations
- (e.g., wiring diagram, repeater locations, etc.)
- Focus on Algorithms for Logical Model Design
- Graph Theory
- Optimization

Graphs

- Telecommunication and computer networks are naturally represented by graphs
- A graph $G=(V, E)$ is a mathematical structure consisting of two sets V and E
- Elements of V are called vertices (or nodes)
-For example, switches, routers, crossconnects
- Elements of E are called edges
-Communication links are edges (wired or wireless)
-Each edge has two endpoints $\left(v_{1}, v_{2}\right) \in V$

```
V={A,B,C,D,E,F,G}
E={(A,B),(A,C),(A,D),(B,C),\ldots., (F,G)}
```


Terminology

- Networking tends to use notation $G(N, L)$ instead of $G(V, E)$ for a graph where N is set of nodes and L is set of links
- A graph is simple if it has no loops or parallel edges.
- Loop
- Link where both endpoints are the same node. Also called a self-loop.
- Parallel edges
- A collection of two or more links having identical ends. Also called a multi-edge.
- Focus on simple graphs
- Degree of a node (vertex): d_{i}
- Number of links/edges out of a node (assuming same number of in and out links)
- Adjacent nodes/vertices:
- Two nodes are adjacent if there is a link that has them as endpoints node degree $d_{i}=$ number of neighbor nodes of node i

Terminology Cont.

Example network: simple graph
Degree of Node A $d_{A}=3$, Degree of Node E $d_{E}=2$
A and B are adjacent, A and E not
Size of graph characterized by number of nodes $|\mathrm{N}|$ and number of links |니

Example network: $|\mathrm{N}|=7,|\mathrm{~L}|=10$

- Can represent graph by Adjacency matrix A which is $|N| x|N|$ matrix where
$a_{i j}=1$ if link exist between nodes i and j

	A	B	C	D	E	F	G
A	-	1	1	1	0	0	0
B	0	-	1	0	0	0	0
C	1	1	-	1	0	0	1
D	1	0	1	-	1	1	0
E	0	0	0	1	-	0	1
F	0	0	0	1	0	-	1
G	0	0	1	0	1	1	-

Paths and Cycles

- Path from node A to node Z:

An alternating sequence of nodes and links, representing a continuous traversal from vertex A to vertex Z.

- Trail: a path with no repeated edges.
- Cycle: a path starting and ending on the same node
- Connected graph:

A graph in which every pair of distinct nodes has a path between them.

- Weighted Graph:
- A graph $G(N, L)$ is weighted if there is a value $w_{i j}$
associated with each link $I_{i j} \varepsilon L$
- For example, link speed, cost, etc.
- We often denote this graph (G, W) or $G(N, L, W)$.

Terminology Cont.

Example: Path from A to G is given by (A,D), (D,E), (E,G) Cycle at A is given by $(A, C),(C, B),(B, A)$
Example is a connected Graph

Graph Types

Complete Graph: every node is connected to every other node - also called a Full Mesh
N node network - every node has degree ($N-1$)

- Mesh Graph
- Each node having degree 2 or more and forming a connect graph in which every pair of distinct nodes has a path between them.

Graph Types

Grid Graph: Nodes have a regular grid pattern:
Occurs in parallel computing, sensor networks, etc.

- Tree: a connected, simple graph without cycles.
- Any tree with N nodes has $N-1$ links
- Trees often used in access networks

Graph Types

- A tree is a STAR if only 1 node has degree >1

Graph Types

- A CHAIN is a tree with no nodes of degree >2

-Trees are usually the cheapest network design
-However have poor reliability

Graph Types

- In graph theory, a tour refers to a possible solution of the traveling salesman problem (TSP). Given a set of Nodes N $=\left\{n_{1}, n_{2}, \ldots n_{N}\right\}$ a tour is a set of N links $I \in L$ such that each node N has degree 2 and the graph is connected in networking this is a ring topology
- Rings are used when reliability is important

Graph Analysis

- Basic graph theory analysis to study/compare network topologies
- Some Typical Metrics
- Maximum Node degree
- Average node degree
- Minimum node degree
- Average path length between a node pair
- Average shortest path length network wide
- Network Diameter
- length of longest shortest path in the network
- Number of critical points in graph
- Link/node whose loss partitions graph
- K -connectivity
- G is k - connected in removal of any combination of $\mathrm{k}-1$ nodes doesn't partition the graph
- Etc.

Telcom 2110 -

15

Small World Graphs/Networks

- A property of some networks is "small world" or scale free behavior
- Small number of hops to reach most people
- Clustering into Neighborhoods
- Used to model social networks

- Scale-Free Networks

Distribution of node degree has a power law behavior $\sim \mathrm{k}^{-\mathrm{r}}$ where $\mathrm{k}=$ \# links; $r>1$, typically $2<r<3$

Simple test for scale free is to plot a histogram of node degree - test power law behavior

Network Topologies

- Most networks a mix of trees, rings, mesh - depending on network type, cost/traffic/reliability
- Need to know how to determine good topologies for
- Tree, Ring and Mesh
- Use graph theory derived algorithms for Tree and Rings

Telcom 2110

Design of Trees

- Many algorithms for design and types of trees
- Minimum Spanning Trees, Shortest Path Trees, etc.
- Spanning Trees and Subgraphs
- Subgraph of graph G obtained by selecting number of links and nodes from G
- For each link, the two nodes incident on that link must be selected
- Give graph $G(N, L)$, graph $G^{\prime}\left(N^{\prime}, L^{\prime}\right)$ is a subgraph of G iff $N^{\prime} \subseteq N$ and $L^{\prime} \subseteq L$ and
$\exists l^{\prime} \in L^{\prime}$, if l^{\prime} incident on e^{\prime} and w^{\prime} then $e^{\prime}, w^{\prime} \in N^{\prime}$
- A spanning subgraph includes all the nodes of G
- A tree T is a spanning tree of G if T is a spanning subgraph of G
- Not usually unique \rightarrow typically many spanning trees

Finding the MST

- The Minimal Spanning Tree (MST)
- A spanning tree of G whose total weight is a minimum \rightarrow minimum cost spanning tree
- Can have many MSTs - all with same cost
- MSTs are used in for network designs when have just few nodes and cost is dominant factor (Access networks)
- Two algorithms Kruskal and Prim

Prim's Algorithm

- Algorithm
- given a weighted graph $G(N, L, W)$ starts by selecting a node
- adding the "least expensive link"
- iterates until tree is built
- $\mathrm{U}=$ set of nodes in MST
- V' = set of nodes that are NOT in MST but are adjacent to nodes in U

1. Place any node in U and update V '
2. Find the link with smallest weight that connects a node in V' to a node in U
3. Add that edge to the tree and update $\mathrm{U} \& \mathrm{~V}^{\prime}$.
4. Repeat $2 \& 3$ until all nodes are included $|U|=|N|$

Algorithm Example

Apply Prim algorithm to the graph below

Prim's Algorithm Example

Prim's Algorithm Example

$\begin{array}{ccc}\text { Iteration } & \mathbf{U} & \mathbf{V} \\ \mathbf{0} & \mathbf{D} & \mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{E}, \mathbf{F}, \mathbf{G} \\ \mathbf{1} & \mathbf{D}, \mathbf{A} & \mathbf{B}, \mathbf{C}, \mathbf{E}, \mathbf{F}, \mathbf{G} \\ \mathbf{2} & \mathbf{D}, \mathbf{A}, \mathbf{B} & \mathbf{C}, \mathbf{E}, \mathbf{F}, \mathbf{G} \\ \mathbf{3} & \mathbf{D}, \mathbf{A}, \mathbf{B}, \mathbf{C} & \mathbf{E}, \mathbf{F}, \mathbf{G}\end{array} \quad==$ arbitrarily pick (D, C) link rather than (B, C)

Prim's Algorithm Example

Iteration	U	V
0	D	A, B, C, E, F, G
1	D,A	B,C,E,F,G
2	D,A,B	C,E,F,G
3	D, A, B, C	E, F, G
4	D, A, B, C, G	E, F
5	D,A,B,C,G,E	F

Prim's Algorithm Example

```
Iteration U U
    0 D A,B,C,E,F,G
    D,A B,C,E,F,G
    D,A,B C,E,F,G
    D,A,B,C E,F,G
    D,A,B,C,G E,F
    D,A,B,C,G,E F
    D,A,B,C,G,E,F <= arbitrarily pick (G,F) link rather than (D,F) link
```

MST is complete weight is 11

Kruskal's Algorithm

- Kruskal achieves the MST by starting with a graph and picking out edges based on cost
- 1. Check that the graph G is connected. If it is not connected stop
- 2. Sort the edges of the graph G in ascending order of weight.
- 3. Mark each node as a separate component.
- 4. Examine each of the sorted edges:
if the edge connects two separate components, add it ; otherwise, discard and go to step1

Algorithm Example

Apply Kruskal's algorithm to the graph below
Pick one of the edges with minimum weight
Arbitrarily pick (A,B) rather than (E,G)

Algorithm Example

Iteration 2 pick (E, G) as it has minimum weight

Algorithm Example

Iteration 3
Arbitrarily pick (B,C) out of possible choices (B,C), (A,D), (C,D),(C,G)

Algorithm Example

Iteration 4
Arbitrarily pick (C,D) out of possible choices (A,D), (C,D),(C,G)

Algorithm Example

Iteration 5 pick (C, G) as (A, D) is not a valid choice (A and D are in same component)

Algorithm Example

Iteration 6 pick (G,F) from possible choices (D,F), (G,F)
MST is complete weight is 11

MST's Drawbacks

MSTs don't scale well when traffic is internal - note graph above is beginning to have a leggy look, which means that some traffic is taking a circuitous route between its source and destination.

Shortest-Path Trees (SPT)

- Shortest Path

Given a weighted graph (G, W) and nodes n_{1} and n_{2}, the shortest path from n_{1} to n_{2} is a path P such that the sum of link weights along the path $\sum_{e \in P} w(e) \quad$ is a minimum.

- Shortest Path Tree
- Given a weighted graph (G,W) and a node n_{1}, a shortest - path tree rooted at n_{1} is a tree T such that, for any other node $n_{2} \in G$, the path from n_{1} to n_{2} in the tree T is a shortest path between the nodes.
- SPT vs. MST
- SPT cost more, but will have lower link utilization and lower delay, smaller average hop count

Finding a Shortest Path Tree

- Given a connected graph G and a node selected to be a root
- Dijkstra's algorithm can be used to find a shortest path tree
- The algorithm is similar to Prim's in that one iteratively builds a tree
- Let $N=$ set of Nodes
$-S$ = source node
- $U=$ set of nodes incorporated so far
- $W()$ is the link cost, specifically $w(i, j)$ is the cost from node ito node $j, w(i, j)=\infty$ if the two vertices are not directly connected
$-d_{-}$min is the currently known minimum cost path from node s to node k

Finding a Shortest Path Tree

- Dijkstra's Algorithm
- 1. Initialization: Mark every node as unscanned and $U=\{s\}, d _\min (k)=w(s, k)$ for $k \neq s$
- 2. Loop until you have scanned all the nodes.
A. Find the node x not in tree T with the minimum cost path from s, add x to T
B. Update the minimum cost paths

$$
d _\min (k)=\min \left\{d _m i n(k), d_{-} \min (x)+w(x, k)\right\}
$$

- Terminate when all nodes added to T
- Requires $|\mathrm{N}|$ iterations

Algorithm Example

Apply Dijkstra's algorithm to find a SPT rooted at D

Iteration	T	d_min(A)	Path	d_min(B) Path	d_min(C)	Path	d_min(E)	Path	d_min(F) Path	d_min(G) Path
1	\{D\}	2	(D,A)	$\infty \quad-$		(D,C)	4	(D,E)	3 (D,F)	$\infty \quad-$
2	\{D,C \}	2	(D,A)	4 (B,C),(C,D)	2	(D,C)	4	(D,E)	3 (D,F)	4 (G,C),(C,D)

Algorithm Example											
Iteration T	d_min (A)	Path	d_min(B) Path	d_min(C)	Path	d_min(E)	Path	d_min	Path		min(G) Path
1 \{D\}	2	(D,A)	$\infty \quad-$	2	(D,C)	4	(D,E)	3	(D,F)	∞	-
$2 \quad\{\mathrm{D}, \mathrm{C}\}$	2	(D,A)	4 (B,C),(C,D)	2	(D,C)	4	(D,E)	3	(D,F)	4	(G,C),(C,D)
3 \{D,C,A\}	2	(D,A)	3 (B,A), (A, D)	2	(D,C)	4	(D,E)	3	(D,F)	4	(G,C),(C,D)
4 \{D,C,A,F\}	2	(D,A)	3 (B,A), (A, D)	2	(D,C)	4	(D,E)	3	(D,F)	4	(G,C),(C,D)
5 \{D,C,A,F,B\}	2	(D,A)	3 (B,A), (A, D)	2	(D,C)	4	(D,E)	3	(D,F)	4	(G,C),(C,D)
$6\{\mathrm{D}, \mathrm{C}, \mathrm{A}, \mathrm{F}, \mathrm{B}, \mathrm{E}\}$	2	(D,A)	3 (B,A), (A, D)	2	(D,C)	4	(D,E)	3	(D,F)	4	(G,C),(C,D)
7\{D,C,A,F,B,E,G\}	2	(D,A)	3 (B,A), (A, D)	2	(D,C)	4	(D,E)	3	(D,F)	4	(G,C),(C,D)
SPT is a Star topology											
Telcom 2110											42

Prim - Dijkstra Trees

- MSTs have high delay - but are cheap
- SPTs have lower delay and utilization but more expensive
- Prim-Dijkstra algorithm - interpolates between MST and SPT (comprise)
- Algorithms :

1) Prim's: $\min _{\text {neighbors }} \operatorname{dist}$ (node, neighbor)
2) Dijkstra's:
$\min _{\text {neighbors }}($ dist(root, neighbor) + dist(neighbor, node))
3) Prim-Dijkstra's: $\quad 0 \leq \alpha \leq 1$
$\min _{\text {neighbors }}(\alpha \times \operatorname{dist}($ root, neighbor $)+\operatorname{dist}($ neighbor, node $))$

Rings

- A tree maybe too unreliable to be a good network design as they are subject to single point of failure
- Consider the reliability of Tree vs. Ring

Let $p=$ probability of a link failure

- Five Node Tree

$P($ No Failure $)=(1-p)^{4}$
$P($ Failure $)=1-(1-p)^{4}=1-\left(1-4 p+6 p^{2}-4 p^{3}+p^{4}\right)$ $=4 p-6 p^{2}+4 p^{3}-p^{4}$

Five Node Ring

$P($ Failure $)=1-(1-p)^{5}-5 p(1-p)^{4}$
$\begin{aligned} P(\text { Failure })= & 10 p^{2}(1-p)^{3}+10 p^{3}(1-p)^{2}+ \\ & 5 p^{4}(1-p)+p^{5}\end{aligned}$

Rings and Reliability

- Comparing the reliability of Trees vs Rings

p	Tree	Ring
.1	.3439	.0815
.01	.0394	9.8×10^{-4}
.001	.004	9.98×10^{-6}
.0001	3.9994×10^{-4}	9.998×10^{-8}
.00001	3.9994×10^{-5}	9.9998×10^{-10}
.000001	4×10^{-6}	1×10^{-11}

- How can one find a good ring topology?
- Number of tours is in a set of N nodes is $(N-1)!/ 2$
- Finding a tour/ring is equivalent to the Traveling Salesman Problem (TSP)
- Given a set of nodes ($n_{1}, n_{2}, \ldots, n_{N}$) and a distance/cost function $d: N \times N \rightarrow \Re^{+}$, the traveling salesman problem is to find the tour such that

$$
\sum_{i=1}^{N} d\left(n_{i}, n_{i+1}\right) \text { is a minimum. }
$$

- TSP is a tough problem (NP Hard)
- Solve using use heuristic algorithms.

1. Start at a node we call root and set current_node = root.
2. Loop until we have all the nodes in the tour.

- Find the node closest (i.e., min cost or distance) to the current_node that is not in the tour. We call this best_node.
- Create an edge between current_node and best_node.
- Reset the current_node to the best_node.

3. Finally create an edge between the last node and the root to complete the tour.

Nearest Neighbor Example

- Example: Start at node A

Table 6.1 Example Network Link Costs
Node

Nearest Neighbor Example

Nearest Neighbor Example

Total Cost $=50$

Nearest-neighbor Algorithm

- Observation:

Good (?):
We are trying to produce a short tour, we will always move to the best possible next location.
Bad (?):
When we look at the figure produced, we can see the lines may cross frequently.

- Several improved version of nearest-neighbor in the literature - will look at optimization based approaches later
- Simple improvement is grow ring/tour from both ends
- That is when finding best node to move to look at option from both ends of current partial tour
- Example: Start at node A

Table 6.1 Example Network Link Costs
Node

	B	C	D	E	F	G
Node						
A	5	6	9	10	11	15
B		9	8	8	8	17
C			7	9	7	12
D			10	5	11	
E				14	9	
F					8	

Nearest Neighbor Example

(E)

(Rings) Do Not Scale

Given uniform traffic any Ring of N nodes has $\overline{\text { hops }}=\frac{N+1}{4}$
if n is odd and $\frac{N^{2}}{4(N-1)}$ if n is even.

- Comparison of average number of hops for MST and TSP:

Number of nodes	$\overline{h o p s}_{\text {MST }}$	$\overline{\text { hops }}_{\text {TSP }}$
5	1.8	1.5
10	3.1778	2.777
20	4.4158	5.263
50	8.5159	12.755
100	13.9479	25.252

Improving Ring Topologies

- Can reduce hop count by adopting a multi-ring topology.
- Topology is a set of interconnected rings
- Example, a TSP tour on 20 nodes. The average number of hops is 5.263 . We want to reduce the average hop count but keep the 2-connectivity.

Divide and Conquer

- Use a Divide and Conquer approach
- Divide nodes into disjoint subset, construct ring for each subset, then join rings
- Example
- Divide the 20 nodes into 2 "compact" clusters of 10 nodes each. Call these clusters C1 and C2.
(We might divide the 20 nodes by ranges of their coordinates, for example, to create the 2 clusters.)
- Use the nearest-neighbor algorithm to design 2 TSP tours on each cluster.
- Select $\mathrm{v} 1 \in \mathrm{C} 1$ and $\mathrm{v} 2 \in \mathrm{C} 2$ to be the 2 nodes such that the distance is the minimum.
- Now select $\mathrm{v} 3 \in \mathrm{C} 1-\mathrm{v} 1$ and $\mathrm{v} 4 \in \mathrm{C} 2-\mathrm{v} 2$ to be the 2 nodes such that the distance is the minimum.
- Add the edges $(\mathrm{v} 1, \mathrm{v} 2),(\mathrm{v} 3, \mathrm{v} 4)$ to the design.

Divide and Conquer

- Grouping into 2 groups of 10 nodes. Then running the nearest neighbor algorithm gives two rings as below. Note that the average hop count is reduced

- Grouping into 2 groups of 10 nodes. Then running the nearest neighbor algorithm gives two rings as below. Joining the two rings at their closet points results in

Typical Network Design

Summary

- Basic Graph theory terminology and techniques

- Analysis useful to compare/evaluate designs
- Trees and Rings are often used in access networks
- Trees
- MST (Prim, Kruskal algorithrms)
- SPT
- Prim-Dikjistra Trees
- Rings
- Better reliability than trees
- Nearest neighbor, Improved nearest neighbor
- Multi-Ring

