

Terminology	
 Networking tends to use notation <i>G(N,L)</i> instead of <i>G(V, E</i> for a graph where <i>N</i> is set of nodes and <i>L</i> is set of links A graph is <i>simple</i> if it has no loops or parallel edges. <i>Loop</i> Link where both endpoints are the same node. Also called a self-loop. <i>Parallel edges</i> A collection of two or more links having identical ends. Also called a multi-edge Focus on simple graphs <i>Degree</i> of a node (vertex): <i>d_i</i> Number of links/edges out of a node (assuming same number of and out links) Adjacent nodes/vertices: Two nodes are adjacent if there is a link that has them as endpoints <i>→</i> node degree <i>d_i</i> = number of neighbor nodes of node <i>i</i> 	ge.
Telcom 2110	4

Graph Analysis

- Basic graph theory analysis to study/compare network topologies
- Some Typical Metrics
 - Maximum Node degree
 - Average node degree
 - Minimum node degree
 - Average path length between a node pair
 - Average shortest path length network wide
 - Network Diameter
 - length of longest shortest path in the network
 - Number of critical points in graph
 Link/node whose loss partitions graph
 - K –connectivity
 - G is k connected in removal of any combination of k-1 nodes doesn't partition the graph
 - Etc..

Telcom 2110

Network Topologies

- Most networks a mix of trees, rings, mesh depending on network type, cost/traffic/reliability
- · Need to know how to determine good topologies for
 - Tree, Ring and Mesh
 - Use graph theory derived algorithms for Tree and Rings

Prim's Algorithm
 Algorithm given a weighted graph <i>G(N,L,W)</i> starts by selecting a node adding the "least expensive link" iterates until tree is built U = set of nodes in MST V' = set of nodes that are NOT in MST but are adjacent to nodes in U Place any node in U and update V' Find the link with smallest weight that connects a node in V' to a node in U Add that edge to the tree and update U & V'.
4. Repeat 2 & 3 until all nodes are included U = N Telcom 2110 22

Algorithm Example								۲				
					1						1	
Iteratio	on T	d_min	(A) Path	d_min(B) Path	d_n	nin(C) Path	d_mii	n(E) Path	d_min	(F) Path	d_r	min(G) Path
1	{D}	2	(D,A)	∞ _	2	(D,C)	4	(D,E)	3	(D,F)	~	-
2	{D,C}	2	(D,A)	4 (B,C),(C,D)	2	(D,C)	4	(D,E)	3	(D,F)	4	(G,C),(C,D)
3	{D,C,A}	2	(D,A)	3 (B,A),(A,D)	2	(D,C)	4	(D,E)	3	(D,F)	4	(G,C),(C,D)
4 {C),C,A,F}	2	(D,A)	3 (B,A),(A,D)	2	(D,C)	4	(D,E)	3	(D,F)	4	(G,C),(C,D)
5 {D	,C,A,F,B}	2	(D,A)	3 (B,A),(A,D)	2	(D,C)	4	(D,E)	3	(D,F)	4	(G,C),(C,D)
6 {D,0	C,A,F,B,E}	2	(D,A)	3 (B,A),(A,D)	2	(D,C)	4	(D,E)	3	(D,F)	4	(G,C),(C,D)
7{D,C	,A,F,B,E,G}	2	(D,A)	3 (B,A),(A,D)	2	(D,C)	4	(D,E)	3	(D,F)	4	(G,C),(C,D)
$\frac{2}{2} = 2 = 0 = 3 = 1$ $\frac{2}{2} = 2 = 0 = 3 = 1$ $\frac{2}{2} = 2 = 0 = 3 = 1$ $\frac{2}{2} = 2 = 0 = 3$ $\frac{2}{2} = 0 = 3$ $\frac{2}{2} = 0 = 1$												
Telcom	2110		2							2		4

Rings and Reliability							
 Comparing the reliability of Trees vs Rings 							
	р	Tree	Ring				
	.1	.3439	.0815				
	.01	.0394	9.8 x 10 ⁻⁴				
	.001	.004	9.98x 10 ⁻⁶				
	.0001	3.9994 x 10 ⁻⁴	9.998x 10 ⁻⁸				
	.00001	3.9994 x 10 ⁻⁵	9.9998x 10 ⁻¹⁰				
	.000001	4 x 10 ⁻⁶	1 x 10 ⁻¹¹				
		1	<u> </u>				
	• How can one	find a good ring	g topology?				
Telcom 2110				45			

Nearest-neighbor Algorithm	
 Observation: Good (?): We are trying to produce a short tour, we will always move to the best possible next location. Bad (?): When we look at the figure produced, we can see the lines may cross frequently. Several improved version of nearest-neighbor in the literature - will look at optimization based approaches later Simple improvement is grow ring/tour from both ends That is when finding best node to move to look at option from both ends of current partial tour 	
Telcom 2110	56

Given uniform traffic a	any Ring of N no	des has $\frac{1}{hops}$	$= \frac{N+1}{2}$
if n is odd and $\frac{N^2}{4(N-1)}$	if n is even.		4
Comparison of ave	rage number of	hops for MST a	nd TSP:
Number of nodes	hops _{MST}	hops _{TSP}	
5	1.8	1.5	
10	3.1778	2.777	
20	4.4158	5.263	
50	8.5159	12.755	
100	13.9479	25.252	

Summary	
 Basic Graph theory terminology and techniques Analysis useful to compare/evaluate designs Trees and Rings are often used in access networks Trees MST (Prim, Kruskal algorithms) SPT Prim-Dikiistra Trees 	
 Rings Better reliability than trees Nearest neighbor, Improved nearest neighbor Multi-Ring 	72