Evaluating Technical Goals
Project Costing

David Tipper
Associate Professor
Graduate Telecommunications and Networking Program
University of Pittsburgh
Slides 3
http://www.sis.pitt.edu/~dtipper/2110.html

Top Down Network Design

- Top Down Network Design
 - Conceptual Model
 - Objectives
 - Business Goals, Technical Goals
 - Requirements
 - Business (e.g., support XYZ application), Technical (availability, delay, bandwidth, security, etc.,)
 - Constraints
 - Business (organizational, budget, etc.,) and Technical (vendor, technology, sites to connect, etc.)
 - Logical Model
 - Technology, network graph, node location, link size, etc. (where algorithms are used to minimize cost)
 - Physical Model
 - Specific hardware/software implementations
 - (e.g., wiring diagram, repeater locations, etc.)
Technical Requirements & Constraints

- From surveys/questionnaires, meetings etc. application data determine technical requirements and constraints
- Technical goal is to build a network that meets user’s requirements + some they may not know they need.
- Technical Goals
 - Scalability
 - Availability/reliability
 - Network Performance
 - Utilization, Throughput, Delay, Delay Jitter, packet loss rate, call/connection blocking rate
 - Traffic Estimation may be needed
 - Security
 - Manageability/Interoperability
 - Affordability $$
- Need to determine reasonable goal for each category and the importance of each.

Technical Requirements

- Traffic estimation is need to determine many network performance goals and requirements
- Start by meeting with customer and develop a list of current/potential applications and evolve an application map
- Goal is to quantify application behavior/network traffic and construct a traffic demand matrix

<table>
<thead>
<tr>
<th>Application</th>
<th>Type</th>
<th>New?</th>
<th>Criticality</th>
<th>Availability Goal</th>
<th>MTTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Email</td>
<td>Terminal - host</td>
<td>No</td>
<td>High</td>
<td>99.9%</td>
<td>1 hour</td>
</tr>
</tbody>
</table>
Application Modeling

- Can roughly classify applications into categories
 - Terminal/Host
 - Distributed Client Server
 - Peer-to-Peer Model
 - Server/server
 - Distributed Computing

- Classifications used to define
 - application flows directions and characteristics
 - Unidirectional or bidirectional
 - Symmetric or asymmetric
 - low, medium, or high bit rate
 - flow boundaries
 - e.g., LAN-WAN traffic, intra-campus flow etc.

Application Types

- Terminal/Host
 - Tend to be produce asymmetric traffic – larger in downstream direction
 - Hierarchical organization
 - Examples:
 - Telnet, email, etc.
Application Types

• Distributed Client Server
 - Tend to be produce asymmetric traffic – larger in downstream direction
 - Hierarchical organization
 - Examples:
 • Web applications
 • Sales Tracking etc.

• Server to Server
 - Tend to be produce bi-directional traffic at the server layer/larger in downstream direction to client
 - Managed correlated distributed servers
 - Variation of client server
 - Examples:
 • Collaborative Document Processing
 • Inventory Control/management
 • Mirrored databases/web sites
Application Types

• Peer-to-Peer Model
 – No obvious hierarchy or asymmetry to traffic
 – Examples:
 • IP based Video/audio conferencing

• Distributed Computing
 – Tend to be produce symmetric traffic
 – Managed correlated computers
 – Examples:
 • Computer Aid Manufacturing
 • Computer Aided Design
Applications Map

- List Applications supported at various sites and between sites
- Example - company with offices in Dallas and Vienna, VA,
- Factory in Denver - consider WAN applications only
- Appl A: Sales/inventory control
- Appl B: CAM
- Appl C: CAD
- Appl D: video conference
- Appl E: Intranet Voice over IP

Applications Map

- From Applications Map – get rough idea of traffic flows between network nodes
- Get the beginnings of a traffic demand matrix across the network
 - For example – applications across the WAN table below

<table>
<thead>
<tr>
<th>Sources</th>
<th>Dallas</th>
<th>Denver</th>
<th>Vienna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dallas</td>
<td>—</td>
<td>1A</td>
<td>1D+1A</td>
</tr>
<tr>
<td>Denver</td>
<td>3A</td>
<td>—</td>
<td>3A+1C</td>
</tr>
<tr>
<td>Vienna</td>
<td>5A+1D</td>
<td>5A+2C</td>
<td>—</td>
</tr>
</tbody>
</table>
Characterizing Application/ Network Traffic

• Traffic Characterization
 – What kind of traffic is generated?
 • Client-server, peer-to-peer, etc.
 – When is Busy Period?
 • For applications, network components, etc.
 – What is the relative impact on the network?
 • Peak rate, mean sustained rate, min rate
 • Burst size, burst duration
 • Degree of multi-casting
 – How much overhead in operation of network?
 • For example IP RIP, BGP, ICMP traffic
 – If greenfield design need to guess estimate the traffic load from collect data and number of users

Application Assumptions

• If greenfield design or unable to benchmark traffic
• Use data gathered from user surveys or assume characteristics from similar applications or other benchmark studies - make overly conservative assumptions:
 – number of application users = # simultaneous users
 – all applications are used all the time
 – each user opens session and the session lasts all day
 – Typical values of applications data given in textbook
 • Web page with graphics - 50 Kbytes
 • Spreadsheet - 100 Kbytes
 • Word processing document - 200 Kbytes

<table>
<thead>
<tr>
<th>Application or Network</th>
<th>Type of Application</th>
<th>New App? Freq of use</th>
<th>Criticality</th>
<th>Data Rate/Goal</th>
<th>Delay Goal/Variation Goal</th>
<th>Acceptable MTBF/MTTR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales Tracking</td>
<td>Distributed client/server</td>
<td>No/hourly</td>
<td>Very</td>
<td>Bursty/Max .5Mbps ~ mean ~100Kbps</td>
<td>< 1 sec/NA</td>
<td>6 months/2 hours</td>
</tr>
</tbody>
</table>
• If incremental network design can possibly characterize data network traffic on existing network – two options
 – Application Monitoring
 • What are applications and how much bandwidth needed
 – Network Monitoring
 • What is network traffic pattern and bandwidth usage (often by protocol)
 – List of Tools for Application and Network Monitoring on class web page (link to useful info)

Characterizing Application Traffic

• Application Monitoring
 – If current applications – benchmark the traffic
 – Software tools can be used to determine application performance statistics
 – Uses “agents” to collect data and send information to a “management” station
 – Agents run on the different OS where the applications are installed
 – Standalone software or integrated into network management package software (e.g., Openview)
 – Normally, the profiling software transforms raw application data captured from the network into an application profile (passive monitoring)
 – Active stress test tools for performance tuning also possible
Application Usage Patterns

- Application Monitoring allow one to develop *Profiles* of each *Application*
 - Number of users,
 - Number of sessions per user-day
 - Average duration of session
 - Average number of simultaneous sessions
 - Peak data rate, Burst Duration, Busy period
 - Mean data rate, min data rate, multi-cast, etc.

- Translate Application monitor and profile data into traffic demand matrix

Network Monitoring

- Identify Traffic Flows
 - Establish traffic flow boundaries
 - Host to server
 - Floor – to – floor
 - LAN to WAN
 - Management traffic
 - Multi-cast
 - Etc.
 - Capture the appropriate traffic for each flow
 - Use a network capturing and analysis tool
 - Sniffer, Network Management software, etc.
 - Identify each flow in the capture
 - Can separate flow by protocol type, destination, etc.
Network Monitoring

• Method for Characterizing a Traffic Flow
 – Determine statistics for traffic flows
 • Individual flow, composite flow, backbone flow
 – Busy period, peak data rate, burst duration, mean data rate, mean response time, etc.
 – Create source–destination traffic matrix – typically are PEAK data rate requirements
 – May include path info in matrix

<table>
<thead>
<tr>
<th>Source</th>
<th>Destination 1</th>
<th>Destination 2</th>
<th>Destination 3</th>
<th>Destination 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>LAN Segment 1</td>
<td>3 Mbps</td>
<td>500 Kbps/Path A-B-C</td>
<td>100 Kbps</td>
<td>50 Kbps</td>
</tr>
</tbody>
</table>

Example

• Example- company with offices in Dallas and Vienna, VA,
• Factory in Denver
• Appl A: Sales/inventory control
• Appl B: CAM
• Appl C: CAD
• Appl D: video conference
• Appl E: Intranet Voice over IP
Applications Map

• From Applications Map – get rough idea of traffic flows between network nodes
• Get the beginnings of a traffic demand matrix across the Wide Area Network
• If use Applications Monitoring Approach – gather data on each application
 • A: Mean rate = .1 Mbps, Peak = .15 Mbps
 • C: Mean rate = .5 Mbps, Peak = .75 Mbps
 • D: Mean rate = 2 Mbps, Peak = 2.5 Mbps

Traffic Demand Matrices

• From the application map and associated matrix and the application monitoring data we have the mean traffic demand matrix and peak traffic demand matrix as below
• Note, if the network monitoring approach is used get traffic demand directly.
Traffic Forecasting

• For service providers will integrate data from multiple sources to determine traffic flows & characteristics:
 – Business Service Demand forecasts
 – Coarse-grained traffic demand from SLAs
 – Fine-grained Traffic Profiling (direct measurements)
• In greenfield case must rely on business, consumer demand forecasts

<table>
<thead>
<tr>
<th>Auck</th>
<th>Gisb</th>
<th>Palm</th>
<th>Well</th>
<th>Ricc</th>
<th>Chch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auck</td>
<td>0</td>
<td>x1</td>
<td>x2</td>
<td>x3</td>
<td>x4</td>
</tr>
<tr>
<td>Gisb</td>
<td>x5</td>
<td>0</td>
<td>x6</td>
<td>x7</td>
<td>x8</td>
</tr>
<tr>
<td>Palm</td>
<td>x9</td>
<td>x10</td>
<td>0</td>
<td>x12</td>
<td>x14</td>
</tr>
<tr>
<td>Well</td>
<td>x15</td>
<td>x16</td>
<td>x18</td>
<td>0</td>
<td>x20</td>
</tr>
<tr>
<td>Ricc</td>
<td>x21</td>
<td>x22</td>
<td>x24</td>
<td>0</td>
<td>x26</td>
</tr>
<tr>
<td>Chch</td>
<td>x27</td>
<td>x28</td>
<td>x30</td>
<td>x32</td>
<td>0</td>
</tr>
</tbody>
</table>

Technical Requirements & Constraints

• From surveys/questionnaires, meetings etc. application data determine technical requirements and constraints
• Technical goal is to build a network that meets user’s requirements + some they may not know they need.
• Technical Goals
 – Scalability
 – Availability/reliability
 – Network Performance
 • Utilization, Throughput, Delay, Delay Jitter, packet loss rate, call/connection blocking rate
 • Traffic Estimation crucial
 – Security
 – Manageability/Interoperability
 – Affordability $$
• Need to be able to determine cost of a project
Project Costing

- Review of Economics
- Value of money changes with time
 - Inflation causes future dollars to be worth less than today’s dollars
 - Investment risk devalues future dollars proportionately to the risk

- Elements
 - Future value \((F) \)
 - Present value \((P) \)
 - Rate \((i) \)
 - Annuity \((A) \) - A sequence of uniform payments
 - Net Present Value NPV sum of all cash flows moved to the present

Formulation

- If an amount of money \((P) \) were invested such that it grew at precisely the rate of inflation \((i) \) for one time period, then
 \[F = P + Pi = P(1 + i) \]
 - That is, \(F \) has the equivalent future value of \(P \)

- For 2 time periods,
 \[F = P(1+i) + P(1+i)i = P(1+i)(1+i) \]

- Generalizing, for \(n \) time periods
 \[F = P(1+i)^n \]
 - This is referred to as the future worth of a present amount
Cash Flow Diagrams

\[
F = P (1 + i)^N
\]

\[
P = F (i\%, N)
\]

Example: $1000 today if invested in CD with 3% annual compound interest is worth in 5 years

\[
F = 1000(1+.03)^5 = $1159
\]

Can also find Present value of a Future Payment

\[
P = F \left(\frac{1}{1 + i} \right)^N
\]

\[
P = F \left(i\%, N \right)
\]

Cash Flow Series

- Annuity - payments of A made at regular intervals
- Compute future value

\[
F = A \left[1 + (1 + i) + (1 + i)^2 + \ldots + (1 + i)^N \right]
\]

\[
= A \left[\frac{(1 + i)^N - 1}{i} \right]
\]

Example: A company leases a PBX for $1000 a quarter for 3 years. What is the value of the contract at the end if inflation is 2% quarterly

\[
F = 1000(1+.02)^{12}-1)/0.02) = $13,412
\]
Cash Flow of Series

- Computing present value P of annuity A

\[F = A \left(\frac{(1 + i)^N - 1}{i} \right) \]

and

\[F = P \left(1 + i \right)^N \]

\[\therefore P = A \left(\frac{(1 + i)^N - 1}{i} \right) \left(\frac{1}{1 + i} \right)^N = A \left(\frac{(1 + i)^N - 1}{i(1 + i)^N} \right) \]

\[i = \% \]

P dollars deposited	F dollars in future
Example Present value of PBX lease	P = 1000 \([((1+.02)^{12} -1)/(0.02(1+.02)^{12})]\]
P = $10,575	

Cost Example

- Move project cost either to net present value NPV or to Future Present Value to compare alternatives
- Example buying PBX vs. leasing PBX for 10 year project ($i = 5\%$)

<table>
<thead>
<tr>
<th>Buy PBX</th>
<th>Lease PBX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purchase value = $27,000</td>
<td>$4000 yearly fee</td>
</tr>
<tr>
<td>Maintenance = $1000 year</td>
<td>NPV = [4000 \left[\left(1+0.05\right)^{10} - 1 \right]/\left(0.05(1+0.05)^{10}\right)]</td>
</tr>
<tr>
<td>Salvage value = $2000</td>
<td>$30,887</td>
</tr>
<tr>
<td>NPV = $27000 + [1000\left(\left(1+0.05\right)^{10} -1\right)/\left(0.05(1+0.05)^{10}\right)] - $2000 (1/(1+.05)^{10})</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>NPV = $27000 + $7,722 - $1,228</td>
<td></td>
</tr>
<tr>
<td>= $33,494</td>
<td></td>
</tr>
</tbody>
</table>

Outcome may be different if include taxes and if depreciation applicable to taxes!
Depreciation

- Definitions of Depreciation
 - A System of Accounting which Aims to Distribute Cost or Other Basic Value of Tangible Capital Assets, Less Salvage Value, Over the Estimated Useful Life of a Unit in a Systematic and Rational Manner for the Purpose of Allocation (Paraphrased from ACPA)
 - Loss in Service Value Not Restored by Maintenance
 - Due to Normal Wear and Tear, Exposure and Decay, Technological Obsolescence, etc.
- Depreciation Does Not Involve Actual Cash Outlays

Computing Depreciation Expense

- Original Cost of Equipment
- Estimated Service Life of Equipment
 - Data equipment 3-7 years lifetime
 - Telecom equipment 5-20 years lifetime
- Estimated Net Salvage Value of the Equipment
 - Remaining Value at the End of the Service Life
 - Can Include the Cost of Removal
- Depreciation Method
 - Retirement/Replacement
 - Not widely used because carry cost until retirement
 - Age-Life
Age-Life Methods

• Designed to Provide More Consistent Expense Accounts from Year to Year
• Straight-Line Depreciation
 – Depreciation Charge is Computed for Each Retirement Period
 – Draw a Straight Line Between Original Cost and estimated Salvage Value, and Allocate the Difference over Service Life

\[
\text{Depreciation Charge} = \frac{\text{Original Cost} - \text{Salvage Value}}{\text{Service Life}}
\]

Deprecation Concepts
Age-Life Methods

- Accelerated depreciation allows higher depreciation early in the equipment life than straight line method
- Sum-of-the-Year’s-digits

\[
\text{Depreciation Expense} = \frac{\# \text{Years Remaining at Beginning of Year}}{\text{Total of the Digits of the Year’s Life}} \times (\text{Original Cost} - \text{Salvage Value})
\]

- Subtract from current value (un-depreciated value)
- Repeat next year

- Double declining balance
 - Double the depreciation rate of straight line
 - Subtract from current value
 - Depreciate remaining balance by straight line

Comparison of Depreciation Approaches

- Straight-Line
- Sum of the Year’s Digits
- Double Declining Balance

<table>
<thead>
<tr>
<th>Cost ($)</th>
<th>Original Cost = $2M</th>
<th>$2M - $100K = $1.9M</th>
<th>$1.8M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salvage Value = $500,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Service Life</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time (Years)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comments

- Size of depreciation charge depends on
 - Service Life
 - Salvage value
- Estimating both parameters in advance is difficult
 - Service life must take technological and usage factors into account
 - Actual salvage value depends on costs and prices at the time of decommissioning
- Summarizing
 - Using GAAP the value of an asset is
 - Current Value = Purchase Value – Depreciation
- Can be factored into network design cost depends on organization whether it is or not

Network Design Cost

- Design cost can be determined in various ways depending on situation/application
- Consider cash flows – receipts and disbursements over a given period
Network Design Cost

- **CAPEX vs. OPEX**
 - **CAPEX** – Capital Expenses
 - Land, Building Space, Equipment, Network Deployment cost, Software, spectrum license, etc. (one time cost)
 - Can be depreciated if value at the end of project
 - Networks typically have a high CAPEX Cost
 - **OPEX** – Operating Expenses
 - Power Consumption, operations, maintenance and administration (OA&M) cost, software upgrade, bandwidth, etc. (recurring cost)

- **Service Provider vs. Enterprise**
 - Service Provider - Net Income from project, ARPU (Average Revenue Per User) – Average Cost Per User (ARCU)
 - Enterprise – Direct Cost (CAPEX + OPEX) + Indirect Cost (benefit to business units, improved efficiency, etc)

Project Cash flows

- Cash Flows for a specific project
Network Design Cost

- EBITDA: Earnings before income taxes, depreciation and amortization
- EBIT: Earnings before interests and income taxes

Different Metrics can be used to evaluate Cost
- Payback Time
 - Time need to recoup initial investment
 - Indicates risk: shorter payback time ➔ smaller risk
- ROI - Return on Investment
 - Average future annual cash flow/(initial investment)
- IRR – Internal Rate of Return
 - Rate for which
 present value of expenses = present value of returns (NPV = 0)
- NPV – Net Present Value
 - Present value of all cash flows in the project (CAPEX, OPEX, Revenue, Taxes, etc) - usually EBITDA or EBIT

Most enterprise/service providers use NPV
NPV

- Comparison of NPV for two projects

Network Design Cost

- Network Cost
 - Project cost usually determined as Net Present Value (NPV) of all cash flows in the project
 - In WANs and metro access networks in addition to equipment cost, link BANDWIDTH is a significant cost
 - Leased Bandwidth is a reoccurring cost (treat like an annuity) – maybe defined in a service level agreement (SLA) – may include tariffs

<table>
<thead>
<tr>
<th>Item</th>
<th>Example Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terminal router</td>
<td>$2000 purchase price</td>
</tr>
<tr>
<td>Transit router</td>
<td>$3700 purchase price</td>
</tr>
<tr>
<td>WAN adapter</td>
<td>$500 purchase price</td>
</tr>
<tr>
<td>T1 1.544Mbps link</td>
<td>$1000 to hook up + $400/month</td>
</tr>
</tbody>
</table>
Bandwidth Cost/Tariffs

- A Tariff is a published rate used to pay for telecommunications services and facilities cost.
- USA carriers file tariffs with FCC and state regulators (PA PUC)
- See link on class web page for PA

- Types of Links
 - Usage-sensitive
 (fixed cost + variable cost charged per minute or per X bytes)
 - Usage insensitive (leased line)
 (fixed cost + monthly fee)

Usage Sensitive Tariffs

- Typical Usage Sensitive Tariff factors
 1. Access fees (the cost of maintaining a physical network connection) – standing/fixed cost
 2. Setup fees.
 3. Teardown fees.
 4. Usage fees, which depend on
 - channel capacity
 - usage (# phone calls, mean bit rate, peak bit rate, etc.)
 - distance (local, long distance, international)
 - time of day
 - national and administrative borders
 - usually in minutes or bytes
Some data services are based on usage sensitive pricing
 - For example Frame Relay Service
 - Get peak rate and committed information rate (CIR), charged usage fee per mean kbps above CIR
 - London – Manchester, UK,
 - Cable and Wireless 256K link, CIR = 64Kbps
 • Connection $16,393,
 • Rental (yearly) $17,591,
 • Bandwidth charge $ 974 x 1kbps/month
 - Some wireless data services have similar pricing

Leased Line Cost of Link Bandwidth depends on variety of factors
 - Tariffs
 - Service Provider
 - Capacity of link
 • fractional T1, T1, multiple T1, OC1, OC3, etc..
 - Length
 - Technology (Fiber, 3G wireless, etc.)
 - Location
 • NYC-DC cheaper than Asheville, NC – Memphis, TN
 - QoS/Availability/survivability requirements
Leased Line Data Rates

- **U.S. leased line rates**
 - ISDN 56 Kbps; fractional T1, e.g. 128 Kbps, 256 Kbps, 512 Kbps, full T1. and rest of synchronous digital hierarchy (SDH) in Table

- **Europe leased line rates**
 - multiples of 64 Kbps, including half E1 = 1024 Kbps, multiple E1, E3 etc.

- Note with leased line – get *symmetrical* bandwidth allocations
- If go with data service (ATM, Frame Relay, IP/MPLS) can get asymmetrical bandwidth allocations as part of a Service Level Agreement (SLA)

<table>
<thead>
<tr>
<th>Signal name</th>
<th>Bit Rate (Mbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DS0 (voice circuit)</td>
<td>0.64</td>
</tr>
<tr>
<td>T1 (DS-1)</td>
<td>1.54</td>
</tr>
<tr>
<td>E1</td>
<td>2.04</td>
</tr>
<tr>
<td>T3 (DS-3)</td>
<td>45.00</td>
</tr>
<tr>
<td>E3</td>
<td>34.36</td>
</tr>
<tr>
<td>STS-1</td>
<td>51.84</td>
</tr>
<tr>
<td>OC-3/STS-3</td>
<td>155.52</td>
</tr>
<tr>
<td>OC-12/STS-12</td>
<td>622.08</td>
</tr>
<tr>
<td>OC-24/STS-24</td>
<td>2,488.32</td>
</tr>
<tr>
<td>OC-48/STS-48</td>
<td>9,953.28</td>
</tr>
</tbody>
</table>

Leased Line Tariffs

- **U.S. leased line rates**
- Tariff rate very in U.S. with amount of competition – rough approximation fixed cost + linear distance cost, in reality more complicated
- In Europe tariffs are largely regulated and consistent within a country
 - Usage-insensitive data tariff for British Telcom in U.K. in table below
- Software tools exist that incorporate detailed tariff data (e.g., Pricer at http://www.tarifica.com) for analysis

<table>
<thead>
<tr>
<th>Service</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>UK D64 fixed cost</td>
<td>$274.00/month</td>
</tr>
<tr>
<td>UK D64 cost/km</td>
<td>$0.90/month</td>
</tr>
<tr>
<td>UK E128 fixed cost</td>
<td>$757.00/month</td>
</tr>
<tr>
<td>UK E128 cost/km</td>
<td>$2.40/month</td>
</tr>
<tr>
<td>UK F256 fixed cost</td>
<td>$821.00/month</td>
</tr>
<tr>
<td>UK F256 cost/km</td>
<td>$4.80/month</td>
</tr>
</tbody>
</table>
Linear Distance Based Tariffs

- As noted bandwidth costs are function of a variety of factors.
- In practice use simple linear distance based model to represent cost of service
 - Cost = Fixed cost + distance cost x distance
 - For example, for a 128 Kbps link in the U.K. we can use the approximation of $757.09 + $2.40/km
- If detailed tariff data available can develop linear model by using regression analysis on the tariff table data
- Such an approach often results in a piecewise linear model

Distance Coordinate Systems

- Need to determine distance between sites to estimate cost – two coordinate system approaches
 - Vertical and Horizontal (V&H)
 - a grid of lines defined by AT&T in 1950’s for North America
 - allows for a simplified computation of distances
 - Widely used in Telco industry
 - Latitude and Longitude (L&L)
 - defined for all locations on the surface of the earth.
 - The distance calculation is essentially an exercise in spherical geometry.

C code and formula in book
V&H Coordinate System

Given two cities coordinates \((v_1, h_1), (v_2, h_2)\) find distance \(d\) apart

\[
d = \text{ceil} \left(\sqrt{\left((v_1 - v_2)^2 + 9 \right) / 10 + \left((h_1 - h_2)^2 + 9 \right) / 10} \right)
\]

Can approximate by

\[
d = \text{ceil} \left(\sqrt{(v_1 - v_2)^2 / 10 + (h_1 - h_2)^2 / 10} \right)
\]

For example for simple network discussed earlier,

- DC (5622, 1583) – Denver (7501,5899)
 \(=> d = \text{ceil}(\sqrt{353064.1 + 1862785})\)
 \(d = 1489\) miles

- Denver – Dallas \(=> d = 660\) miles
- Dallas – DC \(=> d = 1180\) miles

<table>
<thead>
<tr>
<th>City name</th>
<th>V coordinate</th>
<th>H coordinate</th>
</tr>
</thead>
<tbody>
<tr>
<td>New York</td>
<td>4997</td>
<td>1406</td>
</tr>
<tr>
<td>Los Angeles</td>
<td>9213</td>
<td>7878</td>
</tr>
<tr>
<td>Chicago</td>
<td>5986</td>
<td>3427</td>
</tr>
<tr>
<td>Dallas</td>
<td>8436</td>
<td>4034</td>
</tr>
<tr>
<td>Pittsburgh</td>
<td>5621</td>
<td>2185</td>
</tr>
<tr>
<td>DC</td>
<td>5622</td>
<td>1583</td>
</tr>
<tr>
<td>Seattle</td>
<td>6336</td>
<td>8896</td>
</tr>
<tr>
<td>Miami</td>
<td>8351</td>
<td>0527</td>
</tr>
<tr>
<td>Atlanta</td>
<td>7260</td>
<td>2083</td>
</tr>
<tr>
<td>Boston</td>
<td>4422</td>
<td>1249</td>
</tr>
<tr>
<td>Denver</td>
<td>7501</td>
<td>5899</td>
</tr>
</tbody>
</table>

Latitude and Longitude Coordinate

- Distance \(D\) in degrees between two points X and Y on a sphere with latitude and longitude values \((\text{Lat}_X, \text{Long}_X), (\text{Lat}_Y, \text{Long}_Y)\) found from

\[
\cos(D) = \sin(\text{Lat}_X) \sin(\text{Lat}_Y) + \cos(\text{Long}_X) \cos(\text{Long}_Y) \cos(|\text{Long}_Y - \text{Long}_X|)
\]

- Find \(D\) in degrees by \(D = \cos^{-1}(\cos(D))\)

- Convert to kilometers multiply by 111.23 km/degree

- Example: Paris, France \((48.87^\circ\text{N}, 2.33^\circ\text{E})\),
 Austin, Tx \((30.27^\circ\text{N}, 97.74^\circ\text{W})\)

 \[
 \cos D = [\sin(48.87) \times \sin(30.27)] + [\cos(48.87) \times \cos(30.27) \times \cos(|-97.74 - 2.33|)] = 0.281
 \]

 Distance = \(111.23 \times \cos^{-1}(0.281) = 8,195.44\) km
Simple Network Design Example

- Example - company with offices in Dallas and Vienna, VA,
- Factory in Denver
- Appl A: Sales/inventory control
- Appl B: CAM
- Appl C: CAD
- Appl D: video conference
- Appl E: Intranet Voice

Applications Map

- From Applications Map – get rough idea of traffic flows between network nodes
- Get the beginnings of a traffic demand matrix across the Wide Area Network
- If use Applications Monitoring Approach – gather data on each application
 - A: Mean rate = .1 Mbps, Peak = .15 Mbps
 - C: Mean rate = .5 Mbps, Peak = .75 Mbps
 - D: Mean rate = 2 Mbps, Peak = 2.5 Mbps
Traffic Demand Matrices

- From the application map and associated matrix and the application monitoring data we have the mean traffic demand matrix and peak traffic demand matrix as below.
- Note, if the network monitoring approach is used get traffic demand directly.

<table>
<thead>
<tr>
<th>Mean data rate demands</th>
<th>Dallas</th>
<th>Denver</th>
<th>Vienna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dallas</td>
<td>.1 Mb</td>
<td>.45 Mb</td>
<td>3.25 Mb</td>
</tr>
<tr>
<td>Denver</td>
<td>.3 Mb</td>
<td>.8 Mb</td>
<td>2.25 Mb</td>
</tr>
<tr>
<td>Vienna</td>
<td>2.5 Mb</td>
<td>1.5 Mb</td>
<td>.3 Mb</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Peak data rate demands</th>
<th>Dallas</th>
<th>Denver</th>
<th>Vienna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dallas</td>
<td>.15 Mb</td>
<td>.45 Mb</td>
<td>3.25 Mb</td>
</tr>
<tr>
<td>Denver</td>
<td>.8 Mb</td>
<td>1.2 Mb</td>
<td>.3 Mb</td>
</tr>
<tr>
<td>Vienna</td>
<td>2.25 Mb</td>
<td>1.5 Mb</td>
<td>2.5 Mb</td>
</tr>
</tbody>
</table>

Example Network Design

- Consider simple network design based on mean data rates.
- Objective: average link utilization 50% or less at each link.
- Link capacity is purchased in T1 or multiple T1 sizes.
- A logical layer network design solution is a minimum spanning tree (discussed later).
- The demands for each direction per link are given next to the directional arrow.
- In order to size link:
 - pick max demand in either direction
 - double max demand to meet 50% utilization objective
 - Modularize into T1 multiples
- For example Dallas –Vienna Link:
 - Max = 2.8 Mb, double to 5.6 Mb => 4 T1 lines each 1.54 Mbps
 - Similarly Denver –Vienna link is 3 T1 lines
 - Need 7 Total T1 lines
 - Check shows peak demands can be carried.
Example Network Design

- Note many alternate network designs possible
 - A solution is a minimum spanning tree
 - If we root tree and Denver
 - Again to size link
 - pick max demand in either direction
 - double max demand to meet 50% utilization objective
 - Modularize into T1 multiples
 - For example Denver – Vienna Link
 - Max = 4 Mb, double to 8 Mb => \textbf{6 T1} lines each 1.54 Mbps
 - Similarly Denver – Dallas link is \textbf{4 T1 lines}
 - \textbf{Need 10 total T1 lines}
 - Checking shows peak demands can be carried

Example Network Design

- If spanning tree is rooted at Dallas
- The demands for each direction per link are given next to the directional arrow
- Again to size link
 - pick max demand in either direction
 - double max demand to meet 50% utilization objective
 - Modularize into T1 multiples
- For example Dallas – Vienna Link
 - Max = 4 Mb, double to 8 Mb => \textbf{6 T1} lines each 1.54 Mbps
 - Similarly Dallas – Denver link is \textbf{3 T1 lines}
 - \textbf{Need 9 T1 lines Total}
 - Note peak demands can be carried
Example Network Design

- Consider simple network design again – three options
- Assume cost of T1 = $2406.00 + $0.49/mile per month
- Dallas – Vienna Link
 - 4 T1 lines = 4 x(2406 + .49 x 1180) = $11,937
- Similarly Denver – Vienna link is 3 T1 lines
 - Cost = 3*(2406 + .49 x 1489) = $9407
- Total Bandwidth Cost = $21,344 per month
- Similarly Cost of Other Designs
- Denver Root Cost = $29,731
- Dallas Root Cost = $26,093

Summary

- Traffic estimation
 - Important to determine network performance and capacity assignment in design
 - Use of applications maps and surveys to estimate traffic

- Project Costing
 - Need to evaluate design and tradeoffs
 - Net Present Value typically used
 - Tariffs and bandwidth cost an important component
 - Simple Example Design