Telcom 2110 Network Design

David Tipper
Associate Professor
Graduate Telecommunications and Networking Program
University of Pittsburgh

tipper@tele.pitt.edu
http://www.sis.pitt.edu/~dtipper/tipper.html

Slides 14
http://www.sis.pitt.edu/~dtipper/2110.html

Top Down Network Design Approach

- Regardless of network design problem type, can follow a top down network design approach.
 A top down network design project should follow the four steps below:
 - Conceptual Model
 - Objectives, Requirements, Constraints
 - Logical Model
 - Technology, network graph, node location, link size, etc. (where algorithms are used to minimize cost)
 - Physical Model
 - Specific hardware/software implementations
 - (e.g., wiring diagram, repeater locations, etc.)
 - Implementation, Testing, Tuning and Documentation
Request for Proposals (RFPs)

- Many organizations develop a Request for Proposal (RFP) before making large network purchases or services
- RFP intended to create a competitive environment for providing network equipment and/or services
- Once vendors/consultants have submitted network proposals, the organization evaluates them against specific criteria and selects the winner(s)
- No fixed format for RFPs across all industries/organizations – many templates available for specific scenarios on the web
- May need to write/develop an RFP or a response to an RFP

RFP Components

- If writing an RFP some standard components
 - **Background Information**
 - Organizational profile;
 - Overview of current network/system and services;
 - Goals of the network design
 - **Network Requirements**
 - Choice sets of possible network designs (hardware, software);
 - Mandatory, desirable, and wish list items
 - Security and control requirements
 - Throughput, Response time, loss and availability requirements (i.e., performance and reliability guarantees)
 - Vendor constraints
 - Guidelines for proposing network designs
 - Intent is to scope out the design requirements to the best of your knowledge
RFP Components

• **Service Requirements**
 – Continuity of services
 – Implementation timeline plan
 – Support service needs
 • For example, spare parts on site, on-call service support, training on use and management
 – Workforce requirements

• **Bidding Process**
 – Time schedule for the bidding process;
 – Ground rules and bid evaluation criteria;
 – Availability of additional information and mechanism to ask and respond to questions

• **Information Required from Proposer**
 – Corporate profile;
 – Experience with similar projects; Reference list

• **Formatting requirements.**
 – Page limit or fixed format structure to RFP
 – Who will evaluate responses and how much time is allocated for it?

Responding to an RFP

• If RFP has strict format be sure to follow the exact format that the RFP specifies.

• If no fixed format, write a sales design document
 – Describe your customer’s requirements and how your design meets those requirements
 • Presenting the design with focus on:
 – Organizational needs
 – Business objectives
 – Best practices
 – Document the budget for the project
 – Explain plans for implementing the design

• **Goal is to Sell the proposal to reviewers**
Typical RFP Response Topics

- A network topology for the new design
- Information on the protocols, technologies, and products that form the design
- An implementation plan
- A training plan
- Support and service information
- Prices and payment options
- Qualifications of the responding company
- Recommendations from other customers
- Legal contractual terms and conditions

Typical RFP Response Format

- Executive summary
- Project goal
- Project scope and services
- Design requirements
- New logical and physical design
- Implementation plan including testing
- Project budget
- Appendices with various details
Design Requirements

• Following Top Down Network Design method – partition into business and technical
• Business goals/requirements explain the role the network design will play in helping the organization succeed
 – Be creative – this is a sales pitch
 – What services can be offered in addition to the requirements in RFP
• Technical goals:
 – How does network meet goals in RFP and some not mentioned
 – scalability, performance, security, manageability, usability, adaptability, and affordability

Logical and Physical Design

• Logical design
 – Topology
 – Models for addressing and naming
 – Switching and routing protocols
 – Security strategies
 – Network management strategies, including possible staffing needs
• Physical design
 – Actual technologies and devices including vendor and software
Implementation Plan

- Recommendations for deploying the network design
- Project schedule
 - Including any dates and times for service provider installations
- Any plans for outsourcing
- Training
- Risks Management strategy
 - A fallback plan if the implementation should fail
 - A plan for evolving the design as new requirements arise

Possible Appendixes

- Detailed topology maps
- Device configurations
- Addressing and naming details
- Network design testing results (e.g., simulations)
- Pricing and payment options
- More information about the company that is presenting the design
 - Annual reports, product catalogs, press releases
- Legal contractual terms and conditions
Course Review

• Introduction
 – Network design categories
 – Top-down design method

• Requirements and Planning
 – Technical Goals and Constraints
 • Availability calculations, performance models
 – Traffic Demand Estimations
 – Project Costing

• Network Design Modeling and Algorithms
 – Relevant Results from Graph Theory
 • Basic graph analysis
 • Tree Design (MST, SPT, Prim-Dijkstra Trees)
 • Ring Design (nearest neighbor, multi-ring)

• Network Design Modeling and Algorithms
 – Relevant Results from Optimization Theory
 • Linear Programming
 – Formulation, Solution, Simplex Method, Software Tools
 • Integer Linear Programming
 – Branch and Bound Method
 • Network Design Models
 – Arc flow formulation, path formulation

• Access Network Design
 – Topology algorithms
 • One speed one center design (CMST – EW or Sharma algorithms)
 • Multi-speed one center (Cahn’s MSLA)
 • Multi-center Design (NNEW, MCEW)
 – Wireless access network design

Telcom 2110
Review

- Metro Network Design
 - Mentor, Mentour Algorithms, optimization based approaches

- Wide Area Network Design
 - Design Algorithms (IP/MPLS/WDM)
 - Capacity Assignment for packet services
 - Min Delay, Min Max Delay, etc.
 - Virtual network design in MPLS
 - Network Survivability
 - Rings, Link protection, path protection, p-cycles
 - WDM network Design
 - RWA, Survivability, Traffic Grooming

Summary

- Network Design is not a precise science.
 - Many different types of problems
 - e.g., greenfield vs. incremental, wired vs. wireless
 - There can be several good answers (many more bad ones!) - usually no one best solution.
 - It involves trade-offs among cost vs. performance, technical vs. non-technical issues

- Top Down Design approach useful as a framework

- In many network designs (WAN, Metro) use mathematics/algorithms to help designers identify good solutions
 - Use computer models to solve mathematical formulations when possible