

Basic WAN Network Design
Minimize total cost
Subject to Constraints for example
 Link capacity must exceed some min, and be less than some max
 Average Packet Delay must be < maximum
 Reliability requirements
 Throughput, etc.
General goals
 Short path between all sources and destinations.
 Well-utilized components with high speed lines to achieve economy of scale.
 These are somewhat contradictory goals
• Some Examples of real WAN network topology
Level 3
TELCOM 2110 4

	Routing/Flows								
	Link	PPS	F _i	C _i	D _i				
	1	3.15	3150	6546	.294				
	2	3.55	3550	7155	.277				
	3	.13	130	820	1.45				
	4	3.64	3640	7291	.274				
те	TELCOM 2110 3								

	Routing/Flows								
	Link	PPS	F _i	C _i	D _i				
	5	.82	820	2553	.577				
	6	3.88	3880	7649	.265				
	7	9.95	9950	15986	.116				
	Total/Avg	25.12	25120	48000	.249				
те	TELCOM 2110								

Repeat Example Using Min-Max							
	Link	C_i	D _i				
	1	6418.6	.306				
	2	6418.6	.306				
	3	3398.6	.306				
	4	6908.6	.306				
	5	4088.6	.306				
	6	7148.6	.306				
	7	13218.6	.306				
те	TELCOM 2110 4						

	Example					
					_	
	Link	KPkt/s	F _i (Mbps)	d _i (\$/bps)		
	1	40	40.96	.02		
	2	40	40.96	.06		
	3	2	2.048	.06		
	θ2					
$c_1 \longrightarrow c_3$						
TE	LCOM 2110				44	

	Minimum Delay Example					
	Link	C _i (Mbps)	D _i	Cost _i (\$M)		
			(msec)	$d_iC_i + a_i$		
	1	50.53	.107	1.01		
	2	46.49	.185	2.79		
	3	3.28	.828	.20		
	Total	100.3	Mean = .163	4.00		
$C_{i} = F_{i} + \frac{J_{a}}{d_{i}} \left(\frac{\sqrt{d_{i}F_{i}}}{\sum_{i=1}^{M} \sqrt{d_{i}F_{i}}} \right)$						
TE	ELCOM 2110			θ_{3} 45		

Example							
 Total network cost of network capacity assignment 							
Link	Ci (Mbps)	Distance (miles)	d_i (\$ / bps)	Cost (\$)			
A-B	3.571	75	7.5x10 ⁻⁴	3226.50			
A-C	3.571	55	5.5x10 ⁻⁴	2499.43			
B-C	4.071	85	8.5x10 ⁻⁴	4058.30			
B-D	2.071	120	1.2x10 ⁻³	2839.10			
C-D	1.571	90	9.0x10 ⁻⁴	1730.13			
C-E	6.071	200	2.0x10 ⁻³	13220.48			
D-E	1.571	60	6.0x10 ⁻⁴	1320.08			
Total	22.5			\$28,894.02			
Total Cost $J = \sum C_i d_i + a_i$ $d_i = \text{distance [miles]*0.00001 [$/bps/miles], } a_i = 500.00 $\Rightarrow J = $28,894.02$							

	Exa	mple	٢	dan se			
• Minimum delay capacity assignment with cost constraint • Total budget = \$80,000 $C_i = F_i + \frac{J_a}{d_i} \left(\frac{\sqrt{d_i F_i}}{\sum_{i=1}^{M} \sqrt{d_i F_i}} \right) \qquad J_a = 80000 - \sum_{i=1}^{7} (d_i F_i + 500)$							
Link	Fi (Mbps)	Ci (Mbps)	Delay _i (µ s)				
A-B	3	13.160	0.098				
A-C	3	14.864	0.084				
B-C	3.5	13.808	0.097				
B-D	1.5	7.180	0.176				
C-D	1	6.355	0.187				
C-E	5.5	13.924	0.119				
D-E	1	7.558	0.152				
Total	18.5	76.849	2.143				
Average Network De This average delay is improved since each TELCOM 2110	elay $T = \frac{1}{\gamma} \sum_{i=1}^{7} \frac{Fi}{(Ci - Fi)}$ s smaller than 1.9817 µs in p link has much greater bandw	= 0.1429 μ s revious design. The delay vidth.	performance is significantly	50			

Example				
 Following the heuristic algorithm – generate a random demand order 	Demand Pair	Numeric Label		
• 17 9 2 12 11 3 10 8 7 4 16 6 18 5 14 19 1 13 15 20	(AB)	1		
	(AC)	2		
Route each demand pair for an initial topology	(AD)	3		
 For example demand 17 is the demand from E to A with bit rate 1 Mbps 	(AE)	4		
 The possible routes with fewer than 3 hops are 	(BA)	5		
given below with cost of route	(BC)	6		
- EA (\$2750) - EC-CA (\$2500+1050 = \$3550)	(BD)	7		
 ED-DA, (\$1100 + \$1900= \$3000) 	(BE)	8		
– EB-BA, ((CA)	9		
– EB-BD-DA	(CB)	10		
 One can see that in this case the minimum cost route for this domand is EA, subacquent 	(CD)	11		
demands routed over link EA – subsequent	(CE)	12		
additional \$500 fixed cost of setting up the link)	(DA)	13		
 After routing each demand have feasible topology. 	(DB)	14		
 Iterate by picking a new random ordering 	(DC)	15		
and repeating	(DE)	16		
5	(EA)	17		
	(EB)	18		
	(EC)	19		
	(ED)	20		

