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Introduction

Making decisions concerning complex systems (e.g., the management of organizational operations,
industrial processes, or investment portfolios; the command and control of military units; or the
control of nuclear power plants) often strains our cognitive capabilities. Even though individual
interactions among a system’s variables may be well understood, predicting how the system will
react to an external manipulation such as a policy decision is often difficult. What will be, for
example, the effect of introducing the third shift on a factory floor? One might expect that this
will increase the plant’s output by roughly 50 percent. Factors such as additional wages, machine
weardown, maintenance breaks, raw material usage, supply logistics, and future demand need also
be considered, however, as they all will impact the total financial outcome of this decision. Many
variables are involved in complex and often subtle interdependencies and predicting the total outcome
may be daunting.

There is a substantial amount of empirical evidence that human intuitive judgment and deci-
sion making can be far from optimal, and it deteriorates even further with complexity and stress.
Because in many situations the quality of decisions is important, aiding the deficiencies of human
judgment and decision making has been a major focus of science throughout history. Disciplines
such as statistics, economics, and operations research developed various methods for making rational
choices. More recently, these methods, often enhanced by a variety of techniques originating from
information science, cognitive psychology, and artificial intelligence, have been implemented in the
form of computer programs, either as stand-alone tools or as integrated computing environments for
complex decision making. Such environments are often given the common name of decision support
systems (DSSs). The concept of DSS is extremely broad, and its definitions vary, depending on the
author’s point of view. To avoid exclusion of any of the existing types of DSSs, we will define them
roughly as interactive computer-based systems that aid users in judgment and choice activities. An-
other name sometimes used as a synonym for DSS is knowledge-based systems, which refers to their
attempt to formalize domain knowledge so that it is amenable to mechanized reasoning.

Decision support systems are gaining an increased popularity in various domains, including busi-
ness, engineering, the military, and medicine. They are especially valuable in situations in which the
amount of available information is prohibitive for the intuition of an unaided human decision maker
and in which precision and optimality are of importance. Decision support systems can aid human
cognitive deficiencies by integrating various sources of information, providing intelligent access to
relevant knowledge, and aiding the process of structuring decisions. They can also support choice
among well-defined alternatives and build on formal approaches, such as the methods of engineering
economics, operations research, statistics, and decision theory. They can also employ artificial intel-
ligence methods to address heuristically problems that are intractable by formal techniques. Proper
application of decision-making tools increases productivity, efficiency, and effectiveness and gives
many businesses a comparative advantage over their competitors, allowing them to make optimal
choices for technological processes and their parameters, planning business operations, logistics, or
investments.

While it is difficult to overestimate the importance of various computer-based tools that are
relevant to decision making (e.g., databases, planning software, and spreadsheets), this article focuses
primarily on the core of a DSS, the part that directly supports modeling decision problems and
identifies best alternatives. We will briefly discuss the characteristics of decision problems and how
decision making can be supported by computer programs. We then cover various components of
DSSs and the role that they play in decision support. We will also introduce an emergent class of
normative systems (i.e., DSSs based on sound theoretical principles), and in particular, decision-
analytic DSSs. Finally, we will review issues related to user interfaces to DSSs and stress the
importance of user interfaces to the ultimate quality of decisions aided by computer programs.



Decisions and Decision Modeling

Types of Decisions

A simple view of decision making is that it is a problem of choice among several alternatives. A
somewhat more sophisticated view includes the process of constructing the alternatives (i.e., given
a problem statement, developing a list of choice options). A complete picture includes a search for
opportunities for decisions (i.e., discovering that there is a decision to be made). A manager of a
company may face a choice in which the options are clear (e.g., the choice of a supplier from among all
existing suppliers). She may also face a well-defined problem for which she designs creative decision
options (e.g., how to market a new product so that the profits are maximized). Finally, she may work
in a less reactive fashion and view decision problems as opportunities that have to be discovered by
studying the operations of her company and its surrounding environment (e.g., how can she make
the production process more efficient). There is much anecdotal and some empirical evidence that
structuring decision problems and identifying creative decision alternatives determine the ultimate
quality of decisions. Decision support systems aim mainly at this broadest type of decision making,
and in addition to supporting choice, they aid in modeling and analyzing systems (such as complex
organizations), identifying decision opportunities, and structuring decision problems.

Human Judgment and Decision Making

Theoretical studies on rational decision making, notably that in the context of probability theory and
decision theory, have been accompanied by empirical research on whether human behavior complies
with the theory. It has been rather convincingly demonstrated in numerous empirical studies that
human judgment and decision making is based on intuitive strategies as opposed to theoretically
sound reasoning rules. These intuitive strategies, referred to as judgmental heuristics in the context
of decision making, help us in reducing the cognitive load, but alas at the expense of optimal decision
making. Effectively, our unaided judgment and choice exhibit systematic violations of probability
axioms (referred to as biases). Formal discussion of the most important research results along with
experimental data can be found in an anthology edited by Kahneman, Slovic, and Tversky [16].
Dawes [2] provides an accessible introduction to what is known about people’s decision-making
performance.

One might hope that people who have achieved expertise in a domain will not be subject to
judgmental biases and will approach optimality in decision making. While empirical evidence shows
that experts indeed are more accurate than novices within their area of expertise, it also shows
that they also are liable to the same judgmental biases as novices and demonstrate apparent errors
and inconsistencies in their judgment. Professionals such as practicing physicians use essentially the
same judgmental heuristics and are prone to the same biases, although the degree of departure from
the normatively prescribed judgment seems to decrease with experience. In addition to laboratory
evidence, there are several studies of expert performance in realistic settings, showing that it is
inferior even to simple linear models (an informal review of the available evidence and pointers
to literature can be found in the book by Dawes [2]). For example, predictions of future violent
behavior of psychiatric patients made by a panel of psychiatrists who had access to patient records
and interviewed the patients were found to be inferior to a simple model that included only the
past incidence of violent behavior. Predictions of marriage counselors concerning marital happiness
were shown to be inferior to a simple model that just subtracted the rate of fighting from the rate
of sexual intercourse (again, the marriage counselors had access to all data, including interviews
with the couples). Studies yielding similar results have been conducted with bank loan officers,
physicians, university admission committees, and so on.



Modeling Decisions

The superiority of even simple linear models over human intuitive judgment suggests that one way
to improve the quality of decisions is to decompose a decision problem into simpler components that
are well defined and well understood. Studying a complex system built out of such components can
be subsequently aided by a formal, theoretically sound technique. The process of decomposing
and formalizing a problem is often called modeling. Modeling amounts to finding an abstract
representation of a real-world system that simplifies and assumes as much as possible about the
system, and while retaining the system’s essential relationships, omits unnecessary detail. Building
a model of a decision problem, as opposed to reasoning about a problem in a holistic way, allows for
applying scientific knowledge that can be transferred across problems and often across domains. It
allows for analyzing, explaining, and arguing about a decision problem.

The desire to improve human decision making provided motivation for the development of a
variety of modeling tools in disciplines of economics, operations research, decision theory, decision
analysis, and statistics. In each of these modeling tools, knowledge about a system is represented by
means of algebraic, logical, or statistical variables. Interactions among these variables are expressed
by equations or logical rules, possibly enhanced with an explicit representation of uncertainty. When
the functional form of an interaction is unknown, it is sometimes described in purely probabilistic
terms; for example, by a conditional probability distribution. Once a model has been formulated,
a variety of mathematical methods can be used to analyze it. Decision making under certainty has
been addressed by economic and operations research methods, such as cash flow analysis, break-
even analysis, scenario analysis, mathematical programming, inventory techniques, and a variety of
optimization algorithms for scheduling and logistics. Decision making under uncertainty enhances
the above methods with statistical approaches, such as reliability analysis, simulation, and statistical
decision making. Most of these methods have made it into college curricula and can be found in
management textbooks. Due to space constraints, we will not discuss their details further.

Components of Decision Models

While mathematically a model consists of variables and a specification of interactions among them,
from the point of view of decision making a model and its variables represent the following three
components: a measure of preferences over decision objectives, available decision options, and a
measure of uncertainty over variables influencing the decision and the outcomes.

Preference is widely viewed as the most important concept in decision making. Outcomes of a
decision process are not all equally attractive and it is crucial for a decision maker to examine these
outcomes in terms of their desirability. Preferences can be ordinal (e.g., more income is preferred
to less income), but it is convenient and often necessary to represent them as numerical quantities,
especially if the outcome of the decision process consists of multiple attributes that need to be
compared on a common scale. Even when they consist of just a single attribute but the choice is
made under uncertainty, expressing preferences numerically allows for trade-offs between desirability
and risk.

The second component of decision problems is available decision options. Often these options
can be enumerated (e.g., a list of possible suppliers), but sometimes they are continuous values of
specified policy variables (e.g., the amount of raw material to be kept in stock). Listing the available
decision options is an important element of model structuring.

The third element of decision models is uncertainty. Uncertainty is one of the most inherent and
most prevalent properties of knowledge, originating from incompleteness of information, imprecision,



and model approximations made for the sake of simplicity. It would not be an exaggeration to state
that real-world decisions not involving uncertainty either do not exist or belong to a truly limited
class.!

Decision making under uncertainty can be viewed as a deliberation: determining what action
should be taken that will maximize the expected gain. Due to uncertainty there is no guarantee
that the result of the action will be the one intended, and the best one can hope for is to maximize
the chance of a desirable outcome. The process rests on the assumption that a good decision is one
that results from a good decision-making process that considers all important factors and is explicit
about decision alternatives, preferences, and uncertainty.

It is important to distinguish between good decisions and good outcomes. By a stroke of good
luck a poor decision can lead to a very good outcome. Similarly, a very good decision can be
followed by a bad outcome. Supporting decisions means supporting the decision-making process so
that better decisions are made. Better decisions can be expected to lead to better outcomes.

Decision Support Systems

Decision support systems are interactive, computer-based systems that aid users in judgment and
choice activities. They provide data storage and retrieval but enhance the traditional information
access and retrieval functions with support for model building and model-based reasoning. They
support framing, modeling, and problem solving.

Typical application areas of DSSs are management and planning in business, health care, the
military, and any area in which management will encounter complex decision situations. Deci-
sion support systems are typically used for strategic and tactical decisions faced by upper-level
management—decisions with a reasonably low frequency and high potential consequences—in which
the time taken for thinking through and modeling the problem pays off generously in the long run.

There are three fundamental components of DSSs [22].

e Database management system (DBMS). A DBMS serves as a data bank for the DSS. It stores
large quantities of data that are relevant to the class of problems for which the DSS has been
designed and provides logical data structures (as opposed to the physical data structures)
with which the users interact. A DBMS separates the users from the physical aspects of the
database structure and processing. It should also be capable of informing the user of the types
of data that are available and how to gain access to them.

e Model-base management system (MBMS). The role of MBMS is analogous to that of a DBMS.
Its primary function is providing independence between specific models that are used in a DSS
from the applications that use them. The purpose of an MBMS is to transform data from the
DBMS into information that is useful in decision making. Since many problems that the user
of a DSS will cope with may be unstructured, the MBMS should also be capable of assisting
the user in model building.

e Dialog generation and management system (DGMS). The main product of an interaction with
a DSS is insight. As their users are often managers who are not computer-trained, DSSs
need to be equipped with intuitive and easy-to-use interfaces. These interfaces aid in model

L As Benjamin Franklin expressed it in 1789 in a letter to his friend M. Le Roy, “in this world nothing can said to
be certain, except death and taxes” (The Complete Works of Benjamin Franklin, John Bigelow (ed), New York and
London: G.P. Putnam’s Sons, 1887, Vol. 10, page 170).



building, but also in interaction with the model, such as gaining insight and recommendations
from it. The primary responsibility of a DGMS is to enhance the ability of the system user
to utilize and benefit from the DSS. In the remainder of this article, we will use the broader
term user interface rather than DGMS.

While a variety of DSSs exists, the above three components can be found in many DSS architectures
and play a prominent role in their structure. Interaction among them is illustrated in Fig. 1.
Essentially, the user interacts with the DSS through the DGMS. This communicates with the DBMS

MODEL BASE —1 MBMS DBMS I DATABASE

DGMS

DSS USEr

Figure 1: The architecture of a DSSs (after Sage, Ref. [22]).

and MBMS, which screen the user and the user interface from the physical details of the model base
and database implementation.

Normative Systems

Normative and Descriptive Approaches

Whether or not one trusts the quality of human intuitive reasoning strategies has a profound im-
pact on one’s view of the philosophical and technical foundations of DSSs. There are two distinct
approaches to supporting decision making. The first aims at building support procedures or systems
that imitate human experts. The most prominent member of this class of DSSs are expert systems,
computer programs based on rules elicited from human domain experts that imitate reasoning of a
human expert in a given domain. Expert systems are often capable of supporting decision making
in that domain at a level comparable to human experts. While they are flexible and often able to
address complex decision problems, they are based on intuitive human reasoning and lack soundness
and formal guarantees with respect to the theoretical reliability of their results. The danger of
the expert system approach, increasingly appreciated by DSS builders, is that along with imitating
human thinking and its efficient heuristic principles, we may also imitate its undesirable flaws [13].

The second approach is based on the assumption that the most reliable method of dealing with
complex decisions is through a small set of normatively sound principles of how decisions should be
made. While heuristic methods and ad hoc reasoning schemes that imitate human cognition may
in many domains perform well, most decision makers will be reluctant to rely on them whenever
the cost of making an error is high. To give an extreme example, few people would choose to fly
airplanes built using heuristic principles over airplanes built using the laws of aerodynamics enhanced
with probabilistic reliability analysis. Application of formal methods in DSSs makes these systems



philosophically distinct from those based on ad hoc heuristic artificial intelligence methods, such as
rule-based systems. The goal of a DSS, according to this view, is to support unaided human intuition,
just as the goal of using a calculator is to aid human’s limited capacity for mental arithmetic.

Decision-Analytic Decision Support Systems

An emergent class of DSSs known as decision-analytic DSSs applies the principles of decision theory,
probability theory, and decision analysis to their decision models. Decision theory is an axiomatic
theory of decision making that is built on a small set of axioms of rational decision making. It
expresses uncertainty in terms of probabilities and preferences in terms of utilities. These are com-
bined using the operation of mathematical expectation. The attractiveness of probability theory, as
a formalism for handling uncertainty in DSSs, lies in its soundness and its guarantees concerning
long-term performance. Probability theory is often viewed as the gold standard for rationality in
reasoning under uncertainty. Following its axioms offers protection from some elementary inconsis-
tencies. Their violation, on the other hand, can be demonstrated to lead to sure losses [23]. Decision
analysis is the art and science of applying decision theory to real-world problems. It includes a
wealth of techniques for model construction, such as methods for elicitation of model structure and
probability distributions that allow minimization of human bias, methods for checking the sensitivity
of a model to imprecision in the data, computing the value of obtaining additional information, and
presentation of results. (See, for example, Ref. [27] for a basic review of the available techniques.)
These methods have been under continuous scrutiny by psychologists working in the domain of be-
havioral decision theory and have proven to cope reasonably well with the dangers related to human
judgmental biases.

Normative systems are usually based on graphical probabilistic models, which are representations
of the joint probability distribution over a model’s variables in terms of directed graphs. Directed
graphs, such as the one in Fig. 2, are known as Bayesian networks (BNs) or causal networks [19].
Bayesian networks offer a compact representation of joint probability distributions and are capable
of practical representation of large models, consisting of tens or hundreds of variables. Bayesian
networks can be easily extended with decision and value variables for modeling decision problems.
The former denote variables that are under the decision maker’s control and can be directly ma-
nipulated, and the latter encode users’ preferences over various outcomes of the decision process.
Such amended graphs are known as influence diagrams [15]. Both the structure and the numerical
probability distributions in a BN can be elicited from a human expert and are a reflection of the
expert’s subjective view of a real-world system. If available, scientific knowledge about the system,
both in terms of the structure and frequency data, can be easily incorporated in the model. Once
a model has been created, it is optimized using formal decision-theoretic algorithms. Decision anal-
ysis is based on the empirically tested paradigm that people are able to reliably store and retrieve
their personal beliefs about uncertainty and preferences for different outcomes, but are much less
reliable in aggregating these fragments into a global inference. While human experts are excellent
in structuring a problem, determining the components that are relevant to it and providing local
estimates of probabilities and preferences, they are not reliable in combining many simple factors
into an optimal decision. The role of a decision-analytic DSS is to support them in their weaknesses
using the formal and theoretically sound principles of statistics.

The approach taken by decision analysis is compatible with that of DSSs. The goal of decision
analysis is to provide insight into a decision. This insight, consisting of the analysis of all relevant
factors, their uncertainty, and the critical nature of some assumptions, is even more important than
the actual recommendation.

Decision-analytic DSSs have been successfully applied to practical systems in medicine, business,
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Figure 2: Example of a Bayesian network modeling teaching expenditures in university operations.

and engineering.? As these systems tend to naturally evolve into three not necessarily distinct
classes, it may be interesting to compare their structure and architectural organization.

o Systems with static domain models. In this class of systems, a probabilistic domain is rep-
resented by a large network encoding the domain’s structure and its numerical parameters.
The network comprising the domain model is normally built by decision analysts and domain
experts. An example might be a medical diagnostic system covering a certain class of disor-
ders. Queries in such a system are answered by assigning values to those nodes of the network
that constitute the observations for a particular case and propagating the impact of the ob-
servation through the network in order to find the probability distribution of some selected
nodes of interest (e.g., nodes that represent diseases). Such a network can, on a case-by-case
basis, be extended with decision nodes and value nodes to support decisions. Systems with
static domain models are conceptually similar to rule-based expert systems covering an area
of expertise.

o Systems with customized decision models. The main idea behind this approach is automatic
generation of a graphical decision model on a per-case basis in an interactive effort between the
DSS and the decision maker. The DSS has domain expertise in a certain area and plays the
role of a decision analyst. During this interaction, the program creates a customized influence
diagram, which is later used for generating advice. The main motivation for this approach is
the premise that every decision is unique and needs to be looked at individually; an influence
diagram needs to be tailored to individual needs [14].

2Some examples of applications are described in a special issue of Communications of the ACM on practical
applications of decision-theoretic methods (vol. 38, no. 3, March 1995). The readers can experiment with GeNle
[7], a development system for decision-analytic DSSs developed at the Decision Systems Laboratory, University of
Pittsburgh, available at http://www2.sis.pitt.edu/~genie.



o Systems capable of learning a model from data. The third class of systems employs computer-
intensive statistical methods for learning models from data [1, 11, 12, 21, 26]. Whenever there
are sufficient data available, the systems can literally learn a graphical model from these data.
This model can be subsequently used to support decisions within the same domain.

The first two approaches are suited for slightly different applications. The customized model gener-
ation approach is an attempt to automate the most laborious part of decision making, structuring
a problem, so far done with significant assistance from trained decision analysts. A session with the
program that assists the decision maker in building an influence diagram is laborious. This makes
the customized model generation approach particularly suitable for decision problems that are infre-
quent and serious enough to be treated individually. Because in the static domain model approach
an existing domain model needs to be customized by the case data only, the decision-making cycle
is rather short. This makes it particularly suitable for those decisions that are highly repetitive and
need to be made under time constraints.

A practical system can combine the three approaches. A static domain model can be slightly
customized for a case that needs individual treatment. Once completed, a customized model can
be blended into the large static model. Learning systems can support both the static and the
customized model approach. On the other hand, the learning process can be greatly enhanced by
prior knowledge from domain experts or by a prior model.

Equation-Based and Mixed Systems

In many business and engineering problems, interactions among model variables can be described
by equations which, when solved simultaneously, can be used to predict the effect of decisions
on the system, and hence support decision making. One special type of simultaneous equation
model is known as the structural equation model (SEM), which has been a popular method of
representing systems in econometrics. An equation is structural if it describes a unique, independent
causal mechanism acting in the system. Structural equations are based on expert knowledge of
the system combined with theoretical considerations. Structural equations allow for a natural,
modular description of a system—each equation represents its individual component, a separable
and independent mechanism acting in the system—ryet, the main advantage of having a structural
model is, as explicated by Simon [24], that it includes causal information and aids predictions of the
effects of external interventions. In addition, the causal structure of a structural equation model can
be represented graphically [24], which allows for combining them with decision-analytic graphical
models in practical systems [9, 20].

Structural equation models offer significant advantages for policy making. Often a decision maker
confronted with a complex system needs to decide not only the values of policy variables but also
which variables should be manipulated. A change in the set of policy variables has a profound impact
on the structure of the problem and on how their values will propagate through the system. The
user determines which variables are policy variables and which are determined within the model. A
change in the SEMs or the set of policy variables can be reflected by a rapid restructuring of the
model and predictions involving this new structure [25].

Our long-term project, the Environment for Strategic Planning (ESP) [6], is based on a hybrid
graphical modeling tool that combines SEMs with decision-analytic principles. ESP is capable
of representing both discrete and continuous variables involved in deterministic and probabilistic
relationships. The powerful features of SEMs allow ESP to act as a graphical spreadsheet integrating
numerical and symbolic methods and allowing the independent variables to be selected at will without
having to reformulate the model each time. This provides an immense flexibility that is not afforded
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by ordinary spreadsheets in evaluating alternate policy options.

User Interfaces to Decision Support Systems

While the quality and reliability of modeling tools and the internal architectures of DSSs are impor-
tant, the most crucial aspect of DSSs is, by far, their user interface. Systems with user interfaces
that are cumbersome or unclear or that require unusual skills are rarely useful and accepted in
practice. The most important result of a session with a DSS is insight into the decision problem. In
addition, when the system is based on normative principles, it can play a tutoring role; one might
hope that users will learn the domain model and how to reason with it over time, and improve their
own thinking.

A good user interface to DSSs should support model construction and model analysis, reasoning
about the problem structure in addition to numerical calculations and both choice and optimization
of decision variables. We will discuss these in the following sections.

Support for Model Construction and Model Analysis

User interface is the vehicle for both model construction (or model choice) and for investigating the
results. Even if a system is based on a theoretically sound reasoning scheme, its recommendations
will be as good as the model they are based on. Furthermore, even if the model is a very good
approximation of reality and its recommendations are correct, they will not be followed if they are
not understood. Without understanding, the users may accept or reject a system’s advice for the
wrong reasons and the combined decision-making performance may deteriorate even below unaided
performance [17]. A good user interface should make the model on which the system’s reasoning is
based transparent to the user.

Modeling is rarely a one-shot process, and good models are usually refined and enhanced as
their users gather practical experiences with the system recommendations. It is important to strike
a careful balance between precision and modeling efforts; some parts of a model need to be very
precise while others do not. A good user interface should include tools for examining the model and
identifying its most sensitive parts, which can be subsequently elaborated on. Systems employed
in practice will need their models refined, and a good user interface should make it easy to access,
examine, and refine its models. Some pointers to work on support for building decision-analytic
systems can be found in [8, 10, 18, 28].

Support for Reasoning about the Problem Structure in Addition to Nu-
merical Calculations

While numerical calculations are important in decision support, reasoning about the problem struc-
ture is even more important. Often when the system and its model are complex it is insightful for
the decision maker to realize how the system variables are interrelated. This is helpful in designing
creative decision options but also in understanding how a policy decision will impact the objective.

Graphical models, such as those used in decision analysis or in equation-based and hybrid sys-
tems, are particularly suitable for reasoning about structure. Under certain assumptions, a directed
graphical model can be given a causal interpretation. This is especially convenient in situations
where the DSS autonomically suggests decision options; given a causal interpretation of its model,

11



it is capable of predicting effects of interventions. A causal graph facilitates building an effective
user interface. The system can refer to causal interactions during its dialogue with the user, which
is known to enhance user insight [3].

Support for Both Choice and Optimization of Decision Variables

Many DSSs have an inflexible structure in the sense that the variables that will be manipulated are
determined at the model-building stage. This is not very suitable for planning of the strategic type
when the object of the decision-making process is identifying both the objectives and the methods of
achieving them. For example, changing policy variables in a spreadsheet-based model often requires
that the entire spreadsheet be rebuilt. If there is no support for that, few users will consider it
as an option. This closes the world of possibilities for flexible reframing of a decision problem in
the exploratory process of searching for opportunities. Support for both choice and optimization of
decision variables should be an inherent part of DSSs.

Graphical Interface

Insight into a model can be increased greatly at the user interface level by a diagram representing
the interactions among its components; for example, a drawing of a graph on which a model is based,
such as in Fig. 2. This graph is a qualitative, structural explanation of how information flows from
the independent variables to the dependent variables of interest. As models may become very large,
it is convenient to structure them into submodels, groups of variables that form a subsystem of the
modeled system. Such submodels can be again shown graphically with interactions among them,
increasing simplicity and clarity of the interface. Fig. 3 shows a submodel-level view of a model
developed in our ESP project. Note that the graph in Fig. 2 is an expanded version of the Teaching
Expenditures submodel in Fig. 3. The user can navigate through the hierarchy of the entire model
in her quest for insight, opening and closing submodels on demand. Some pointers to work on user
interfaces of decision-analytic systems can be found in [4, 5, 28].

Summary

Decision support systems are powerful tools integrating scientific methods for supporting complex
decisions with techniques developed in information science, and are gaining an increased popularity
in many domains. They are especially valuable in situations in which the amount of available infor-
mation is prohibitive for the intuition of an unaided human decision maker and in which precision
and optimality are of importance. Decision support systems aid human cognitive deficiencies by
integrating various sources of information, providing intelligent access to relevant knowledge, aiding
the process of structuring, and optimizing decisions.

Normative DSSs offer a theoretically correct and appealing way of handling uncertainty and
preferences in decision problems. They are based on carefully studied empirical principles underlying
the discipline of decision analysis and they have been successfully applied in many practical systems.
We believe that they offer several attractive features that are likely to prevail in the long run as far
as the technical developments are concerned.

Because DSSs do not replace humans but rather augment their limited capacity to deal with
complex problems, their user interfaces are critical. The user interface determines whether a DSS
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Figure 3: A submodel-level view of a decision model.

will be used at all and if so, whether the ultimate quality of decisions will be higher than that of an
unaided decision maker.
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