The Cyclical Behavior of Equity Turnover*

David N. DeJong and Emilio Espino

First Version: May 2007; This Revision: January 2008

Abstract

We measure the extent to which the cyclical behavior of the turnover of equity shares on the NYSE can be accounted for by a single source of trade embedded in a one-sector neoclassical growth economy with dynamically complete markets. The source of trade is heterogeneity in the initial wealth holdings of agents. In the post-war U.S., turnover has been more than seven times as volatile as output, and has exhibited asynchronous cyclical characteristics: lagged turnover has co-varied positively with output; led turnover has co-varied negatively. The model, calibrated to match the mean behavior of asset returns and the distribution of wealth across U.S. households, accounts for up to 33% of the volatility of turnover observed in the data. The asynchronous relationship observed between turnover and output is puzzling.

Keywords: asset trade; dynamically complete markets; minimum consumption requirements; production economies

JEL Codes: E32; G12

*DeJong: Department of Economics; University of Pittsburgh; Pittsburgh, PA 15217; dejong@pitt.edu.
Espino: Department of Economics; Universidad Di Tella; Buenos Aires, Argentina; eespino@utdt.edu. We thank an anonymous referee, Bob King, Chris Otrok, Michael Reiter, Marla Ripoll, Eric Young, and seminar participants at the European Central Bank, the U. of Virginia, the 2007 Midwest Macroeconomics Conference (hosted by the Federal Reserve Bank of Cleveland), the 2007 Macroeconomics Workshop at the IAS, Vienna, and the 2008 Winter Meetings of the Econometric Society for helpful comments. The usual caveat applies.
1 Introduction

Substantial literatures have been devoted to theoretical and empirical characterizations of the behavior of aggregate asset prices, yet relatively little is known about the corresponding behavior of quantities traded. Indeed, as Lo and Wang (2007) note in their comprehensive survey of the literature devoted to trading volume: “...the intersection of supply and demand determines not only equilibrium prices but also equilibrium quantities, yet quantities have received far less attention, especially in the asset-pricing literature.” [p. 1]

Here we seek to add to our understanding of quantities by conducting a measurement exercise. The goal is to determine the extent to which the cyclical behavior of the turnover of equity shares on the New York Stock Exchange can be accounted for by a single source of trade embedded in a simple asset-pricing model. The model is a one-sector neoclassical growth economy with dynamically complete markets. The source of trade is heterogeneity among agents along a single dimension: the size of their initial holdings of wealth. The upshot of this heterogeneity is that productivity shocks spur disparate responses in asset demand across agent types, giving rise to trade in financial markets. The lead question we address is the following: to what extent can the cyclical behavior of turnover be attributed to the mechanism that generates trade in our model?

Our analysis relates to three literatures. The first examines empirical characteristics of trade. Notably, Gallant, Rossi and Tauchen (1992) characterized distributional properties of aggregate trading volume using daily data; Hiemstra and Jones (1994) identified a causal relationship between aggregate daily returns and volume; and Jones (2002) (using annual aggregated data) and Lo and Wang (2007) (using weekly aggregated and disaggregated data) highlighted that turnover is useful in predicting future returns. As far as we are aware, the business-cycle properties of turnover remain unexplored.

The second literature focusses on asset trade from a theoretical perspective. This work follows Judd, Kubler and Schmedders (2003), who established the inability of Lucas’ (1978) asset-pricing model to generate non-trivial asset trading under dynamically complete markets. In particular, they showed that, after some initial rebalancing in short- and long-lived assets, agents choose a fixed equilibrium portfolio that is independent of the aggregate state of economy. In so doing, equilibrium stock trading (and thus turnover) goes to zero from
period 1 onwards. This finding established as an open question the nature of extensions to Lucas’ environment necessary or sufficient for generating changes in equilibrium portfolios.

In addressing this issue, Bossaerts and Zame (2006), Espino and Hintermaier (2007), and Espino (2007) established that when the model economy features changing degrees of heterogeneity across agents, fixed-portfolio trading strategies will not be optimal in equilibrium. By studying a stationary pure exchange economy with complete markets, Judd, Kubler and Schmedders (2003) abstracted from changing heterogeneity, and showed that equilibrium trading disappears. Bossaerts and Zame (2006) overturned this result by assuming that a crucial dimension of heterogeneity changes through time. In contrast, Espino and Hintermaier (2007) and Espino (2007) extended Lucas’ (1978) model by introducing neoclassical production specifications, and established theoretically conditions under which changes in heterogeneity can arise endogenously as a function of the evolution of the capital stock. Consequently, equilibrium asset trading arises in these setting despite the absence of frictions or market imperfections.

The third literature focusses on the behavior of asset prices in production economies (for a detailed overview, see Lettau, 2003). Early work in this area (Danthine et al., 1992; Rouwenhorst, 1995) showed that relative to endowment economies featuring agents with constant relative risk aversion (CRRA) preferences over consumption, the equity premium underscored by Mehra and Prescott (1985), coupled with the risk-free rate puzzle underscored by Weil (1989), becomes all the more puzzling given the incorporation of a production sector. This result arises from the ability of agents to make adjustments in the production sector, which enhances the pursuit of consumption-smoothing objectives. However, Jermann (1998) showed that the addition of capital-adjustment costs, coupled with the specification of habit formation in consumption, is sufficient to account for return behavior given the incorporation of a production sector. Boldrin, Christiano and Fisher (2001) obtained similar results by coupling habit formation with a multi-sector production specification with limited intersectoral factor mobility. For overviews of the equity premium and risk-free rate puzzles, see Kocherlakota (1996) and Mehra and Prescott (2003).

Our structural characterization of equity turnover takes as a point of departure the sufficiency conditions for asset trade established by Espino (2007). In particular, Espino showed that when initial differences in wealth serve as the sole source of heterogeneity across
agents, two conditions are sufficient for generating trade: risk aversion that varies with fluctuations in wealth; and a lack of perfect collinearity across human and non-human wealth (defined as the discounted present value of wage and non-wage income). The structure we study satisfies both conditions, while remaining parsimonious and transparent in terms of the mechanism that serves to generate trade.

Specifically, the model features a single good produced via a neoclassical production specification. The good may either be consumed or invested. There are two assets: a bond that delivers one sure unit of consumption in the next period; and equity shares issued by a representative firm. Production is subject to a two-state shock to total factor productivity. This shock is the only source of stochastic uncertainty in the economy, thus markets are dynamically complete. The economy is populated by agents who differ only in terms of their initial wealth holdings. Following the seminal work of Stone (1950) and Geary (1954), the agents have CRRA-type preferences, modified to feature a minimum consumption requirement. Regarding the sufficiency conditions established by Espino (2007), non-zero capital depreciation is sufficient to eliminate collinearity between human and non-human wealth; and the minimum consumption requirement is sufficient to link variations in wealth with variations in risk aversion.

The model has two additional features introduced to account for the equity premium and risk-free rate puzzles: capital adjustment costs and preference shocks. The former is modelled following Jermann (1988). The latter is introduced as a means of approximating (via a reduced-form characterization) the external-habit specification of Campbell and Cochrane (1999), who studied return behavior in a consumption-based setting. In our setting, both features are needed to account jointly for the puzzles. We define as a baseline the special case under which these additional features are shut down. This is attractive because it provides the clearest understanding of the mechanism that serves to generate trade. We then generalize the model, imposing as discipline in the parameterization stage (in part) its characterization of mean return behavior. Subject to this constraint, we evaluate its characterization of turnover.¹

¹While we follow Espino (2007) in emphasizing wealth differences as a critical source of trade, the model we examine here differs from his along two dimensions. First, we have followed the asset-pricing literature in incorporating features designed to characterize return behavior (e.g., capital adjustment costs, etc.). Second,
Two factors are critical for determining the behavior of turnover in this setting. First, because agents differ in their initial wealth holdings, productivity shocks generate differential impacts on the evolution of individual wealth, and thus on changes in asset demand. Second, agents differ in their attitudes towards risk, since consumption enjoyed by wealthier agents is relatively distant from the minimum consumption requirement. Thus the impact of productivity shocks on these attitudes towards risk, and on asset demand, also differs: from the perspective of risk, relatively wealthy agents are better able to bear the brunt of productivity shocks. The interaction of these factors determines patterns of asset trade.

As this discussion suggests, differences in wealth provide a crucial channel through which turnover arises in the model. We impose discipline in characterizing these differences by working with a parameterization constrained to align steady state holdings of non-human wealth with empirical patterns observed in the U.S. (Budria-Rodriguez et al., 2002, report distributions of wealth holdings across U.S. households based on the 1998 Survey of Consumer Finances).

In our post-war quarterly measure, logged deviations of turnover from trend have been more than seven times as volatile as those exhibited by output. Moreover, turnover exhibits a distinct asynchronous relationship with output. Contemporaneously, turnover and output are virtually uncorrelated. However, lagged turnover co-varies positively with output (e.g., at the four-quarter horizon, the correlation between detrended turnover and output is 0.33); while led turnover co-varies negatively with output (-0.2 at the four-quarter horizon).

The baseline model, parameterized subject to the constraint that its steady state characterization of equity returns match the sample mean of its empirical counterpart, accounts for up to 33% of the volatility of turnover observed in the data. The extended model, parameterized to match both the sample means of returns to equity and debt, accounts for up to 29% of this volatility. Thus regarding our lead question, we measure initial differences in wealth holdings across households as accounting for approximately 1/3 of the volatility of turnover observed in the data. Additional factors from which we abstract in this setting, we have extended his simple asset-market structure (which included only Arrow-Debreu securities) in order to focus on patterns of equity trade in aggregate financial markets. Thus while Espino (2007) provides a point of departure for the empirical analysis we conduct, the model we consider is a significant extension of his framework intended to achieve empirical coherence.
such as differences in human capital, lifecycle considerations, informational asymmetries, noise trading, market imperfections, etc., account for the remainder.

Finally, each version of the model characterizes turnover as being closely correlated with output contemporaneously, and positively correlated at both leads and lags. Thus in the context of our framework, the asynchronous relationship observed in the data represents a puzzle.

2 Data Description

A full description of the data is provided in the Data Appendix. Briefly, the data consist of annualized real returns to equity (accruing to shares in the S&P 500 index, measured using a 12-month investment horizon) and government debt (three-month Treasury bills); the turnover of shares on the New York Stock Exchange (NYSE); and real per capita consumption, investment, and output. Turnover is defined as trade volume (the number of total shares traded) measured as a percentage of shares outstanding. Consumption is personal consumption expenditures on non-durables and services. Investment is gross private domestic investment. Output is consumption plus investment. The series are measured on a quarterly basis and span 1950:I through 2004:II.

Our use of turnover as a measure of trade activity follows Lo and Wang (2007), who argued that when focusing on “... the relation between volume and equilibrium models of asset markets ... turnover yields the sharpest empirical implications and is the most natural measure.” [p. 7] As detailed in the Appendix, differences between trading volume and turnover amount to differences in trend behavior. Specifically, aggregate shares outstanding closely adhere to a log-linear trajectory (see Figure A.1), and their temporal deviations from trend add little to the deviations from trend exhibited by turnover (see Figure A.2).

The series are depicted in Figure 1 (along with NBER-dated business cycle peaks and troughs, indicated with vertical lines). Returns are represented in levels; the remaining series are represented in logs, and are depicted along with their corresponding Hodrick-Prescott trends (calculated using \(\lambda = 1,600 \)). While our primary interest is in the cyclical characteristics of these series, we begin with a brief discussion of their growth behavior. Returns exhibit no tendency towards long-term growth. Consumption and output grow at
annual rates of roughly 1.9%; investment grows at the somewhat faster rate of 2.5%; and turnover grows at roughly double the rate of output: 3.9%.

Returns exhibit the familiar patterns underscored by Mehra and Prescott (1985) and Weil (1989) as puzzling. The mean (standard deviation) return to equity is 7.15% (15.24%), while the mean return to debt is 1.16% (2.79%); the mean equity premium is 5.995% (15.05%); and the contemporaneous correlation of movements in these returns is 0.16.

![Figure 1. Time Series Observations](image)

Returns also exhibit patterns of conditional predictability that have been documented extensively (for textbook references, see Campbell, Lo and MacKinlay, 1997; and Cochrane, 2001; and for recent surveys, see Campbell, 2000, 2002). Focusing on serial correlation patterns, the first-order serial correlation between time-\(t\) and time-\((t + 5)\) equity returns is 0.13 (the five-quarter spread ensures that returns are non-overlapping). For debt returns, the correlation between time-\(t\) and time-\((t + 2)\) returns (again eliminating overlap) is 0.6 (and 0.47 between time-\(t\) and time-\((t + 5)\)). Comparable figures are reported, e.g., by Campbell, 2002, Table 1.

Business-cycle characteristics of turnover are summarized in Figures 2-4. Figure 2 illustrates time-series observations of turnover and output for HP-filtered data. To aid the comparison, each series is reported in standard deviation units. As the figure illustrates, the
relationship between turnover and output is systematic but unsynchronized. In particular, depending upon perspective, peaks in turnover tend to precede peaks in output; or peaks in output tend to precede troughs in turnover.

![Figure 2. Interactions Between Turnover and Output, HP-Filtered Data](image)

Regarding standard deviations, turnover is highly volatile relative to output: its standard deviation is 7.6 times that of output in the HP-filtered series. The comparable figure for investment is 4.2; the volatility of returns is as reported above; and the volatility of consumption is approximately half that of output.

Figure 3 provides a graphical characterization of the systematic but asynchronous relationship noted above by illustrating cross-correlations between output and turnover for up to five leads and lags. Note that turnover is positively correlated with output when lagged (0.33 at the four-quarter horizon); uncorrelated contemporaneously; and negatively correlated when led (-0.20 at the four-quarter horizon).

![Figure 3. Correlations Between Output$_t$ and Turnover$_{t-j}$](image)
Further information regarding the asynchronous relationship observed between turnover and output is provided in Figure 4, which illustrates impulse response functions calculated using a VAR specified for HP-filtered turnover and output. The responses were constructed using a Cholesky decomposition of the associated innovation variance-covariance matrix, for the case in which output was ordered first (reversing the ordering yields similar response patterns). The left-hand panel illustrates responses of both output and turnover to output innovations; the right-hand panel to turnover innovations. Responses are reported in own innovation standard deviation units. 95% confidence intervals are reported for responses of variable j to innovations to variable i (intervals for own responses are suppressed to reduce clutter).

Figure 4. Impulse Response Functions, Turnover and Output

Given a positive innovation to output, turnover lies above trend in the initial period (i.e., innovations to output and turnover are positively correlated). Turnover then responds negatively over the next four quarters, bottoming out at roughly -20% of its own innovation standard deviation. It then overshoots its steady state in climbing between the four- and twelve-quarter horizons; and follows dampening oscillations around its steady state thereafter. In turn, given a positive innovation to turnover, output responds by climbing steadily over the following four quarters, peaking at roughly 30%. It then overshoots its steady state in falling between the four- and twelve-quarter horizons; and follows dampening oscillations around its steady state thereafter. Note that peaks in both responses are significantly different from zero.
Impulse responses between turnover and the remaining series (not depicted) appear as follows. Response patterns observed between turnover and output are qualitatively similar to those obtained by replacing output with consumption and investment. Given the strong procyclicality of consumption and investment, this similarity is unsurprising. In particular, turnover falls over a four- to five-quarter horizon in response to innovations to each series; while each series climbs over a four- to seven-quarter horizon in response to an innovation in turnover. The response of turnover is most distinct given an innovation to consumption (-20% at the four-quarter horizon, compared with roughly -15% for investment). In turn, the response of investment is most distinct given an innovation to turnover (peaking at roughly 38%, compared with roughly 20% for consumption).

For the relationship between turnover and returns to equity, the general pattern illustrated above is roughly reversed. In this case, given an innovation to returns, turnover is initially below trend (with a response of nearly -20%), and then rises over the next four quarters, peaking at roughly 30%. In turn, returns fall over a four-quarter horizon following an innovation to turnover, bottoming out at roughly -30%. Finally, the relationship between turnover and returns to debt is weak. In particular, cross-responses of each variable are weak, lying in roughly a ±15% band.

In sum, the behavior of turnover has several notable aspects. (1) The annualized growth rate of turnover is roughly double that of output: 3.9% versus 1.9%. (2) Measured as logged deviations from trend, the volatility of turnover is roughly 7.6 times that of output. (3) Lagged observations of turnover co-vary positively with output; lead observations negatively. (3) Positive innovations to output correspond with negative responses in turnover over roughly a one-year horizon; positive innovations to turnover correspond with positive responses in output over roughly a one-year horizon. (4) Of the components of output, innovations to consumption correspond with relatively strong responses in turnover; and innovations to turnover correspond with relatively strong responses in investment. (5) The relationship between turnover and returns to equity is roughly reverse that observed between turnover and output; while the relationship between turnover and returns to debt is non-distinct.
3 The Economy

The economy is populated by H (types of) infinitely-lived agents, where $h \in \mathcal{H} = \{1, \ldots, H\}$. Time is discrete and denoted by $t = 0, 1, 2, \ldots$. Agents are endowed with one unit of time per period, which they supply inelastically in the production sector; aggregate labor supply is thus H. Production yields a single good that can either be consumed or invested to produce new capital.

There is aggregate uncertainty in the form of shocks to total factor productivity (TFP), denoted as s_t; $\{s_t\}$ follows a first-order stationary Markov process with transition probabilities $\pi(s_t, s_{t+1}) > 0$, where $s_t \in S_t = \{\underline{s}, \bar{s}\}$ for all t. Let $s^t = (s_0, \ldots, s_t) \in S^t = \times_{k=0}^t S_k$ represent the partial history of aggregate shocks realized through date t, and $X(s^t)$ denote the value of X chosen at node s^t. These histories are observed by all agents.

There is an aggregate production technology that takes as inputs the capital good K and the labor input H. This technology features labor-improving technological progress with growth rate g. Aggregate output is given by

$$Y_t = F(s_t, K, (1 + g)^t H).$$

For all s, $F(s, \ldots)$ is homogeneous of degree 1 (HD1), strictly increasing, strictly concave, and satisfies Inada conditions. In our empirical implementation, $F()$ will be specified as Cobb-Douglas.

Let $\Psi(K, I)$ be the total cost of investment I; $\Psi()$ is HD1, convex and increasing in I. Following Jermann (1988), we assume

$$\frac{\Psi(K, I)}{K} = \left(\frac{b_0}{1 - \kappa} \left(\frac{I}{K} \right)^{1 - \kappa} + b_1 \right),$$

with $b_i \geq 0$, $\kappa \geq 0$. Note that for $(b_0, b_1, \kappa) = (1, 0, 0)$, $\Psi(K, I) = I$.

The law of motion of capital at s^t is given by

$$K(s^t) = (1 - \delta)K_j(s^{t-1}) + I(s^t),$$

where $\delta \in (0, 1)$ is the depreciation rate. $K^0 > 0$ is the initial capital stock.
Agent-type h’s preferences are represented by expected, time-separable, discounted utility, where for $C \in C_h$,

$$U_h(C) = \sum_{t=0}^{\infty} \sum_{s^t \in S^t} \beta^t \pi(s^t) \xi(s_t) \frac{(C_h(s^t) - (1 + g)^t \gamma)^{1-\sigma}}{1-\sigma},$$

(4)

where $\beta \in (0, 1)$, $\sigma > 0$, and $\gamma(1 + g)^t$ is a minimum consumption requirement. The growth component $(1 + g)^t$ is included so that the model is consistent with balanced growth. The requirement induces wealth-varying attitudes towards risk, which provide a critical source of equity turnover in this environment (see Section 3.5).

$\xi(s^t)$ is an aggregate preference shock that obeys

$$\xi(s_t) = (s_t)^{-\mu},$$

(5)

where $\mu \geq 0$. Note that for $\mu = 0$, $\xi(s_t) = 1 \forall t$. The inclusion of $\xi(s_t)$ in (4) provides a reduced-form characterization of the external habit specification employed, e.g., by Campbell and Cochrane (1999) as a means of accounting for the equity premium and risk-free rate puzzles. Coupled with the capital-adjustement-cost specification (2), the inclusion of this preference shock suffices to account for these puzzles in this setting. As noted, we consider two cases below: a baseline under which the capital-adjustement-cost and preference-shock mechanisms are shut down; and a generalized calibration disciplined by the return puzzles. We emphasize that the point of the exercise is not to explain the puzzles, but to measure turnover subject to the empirical discipline they impose.

Since the technologies $\{F, \Psi\}$ are both HD1 and preferences are represented by (4), this framework enables growth detrending. Hereafter we normalize to eliminate trend components: the detrended component of any $X(s^t)$ at s^t is denoted as $x(s^t) = X(s^t)/(1 + g)^t$.

Written in terms of detrended variables, (4) can be expressed as

$$U_h(c) = \sum_{t} \sum_{s^t} \rho^t \pi(s^t) \xi(s_t) \frac{(c_h(s^t) - \gamma)^{1-\sigma}}{1-\sigma},$$

(6)

where $\rho = \beta(1 + g)^{1-\sigma} \in (0, 1)$. Corresponding feasibility constraints are given by

$$c(s^t) + \Psi(k(s^{t-1}), i(s^t)) = F(s_t, k(s^{t-1}), H),$$

$$k(s^t)(1 + g) = (1 - \delta)k(s^{t-1}) + i(s^t),$$

s_0 and $k_0 = K^0$ are given.
To calculate stock trading, we must compute equilibrium portfolios explicitly. To do so, we first characterize the set of Pareto Optimal (PO) allocations in order to implement the recursive version of Negishi’s (1960) computational approach. We then identify the unique PO allocation that can be decentralized as a RCE. Finally, we construct equilibrium prices and portfolios to obtain our measure of stock trading, the turnover rate. Details follow.

3.1 PO Allocations and the Planner’s Problem

The set of PO allocations can be parametrized by welfare weights $\alpha \in \mathbb{R}_+^I$, where α_h denotes the welfare weight assigned to agent-type h. Since only the allocation of consumption across individuals is affected by α, first the planner solves (PPRN) and then distributes consumption across agent types following the allocation rule (9) given below. Specifically, the planner’s problem solves

$$v(s, k) = \max_{(c, i, k') \geq 0} \left\{ \xi(s) \left(\frac{c - \gamma_A}{1 - \sigma} + \rho \sum_{s'} \pi(s, s') v(s', k') \right) \right\}, \quad \text{(PPRN)}$$

subject to

$$\sum_h c_h + \Psi(k, i) = F(s, k, H), \quad \text{(7)}$$

$$k'(1 + g) = (1 - \delta)k + i, \quad k' \in X, \quad \text{(8)}$$

where $\gamma_A = \gamma H$ is the aggregate minimum consumption requirement.

Denoting the set of continuous policy functions solving (PPRN) as $(c(s, k), k'(s, k), i(s, k))$, individual consumption is allocated according to

$$c_h(s, k, \alpha) - \gamma = \omega_h \left(c(s, k) - \gamma_A \right), \quad \text{(9)}$$

$$\omega_h = \frac{(\alpha_h)^{1/\sigma}}{\sum_j (\alpha_j)^{1/\sigma}} \quad \forall h.$$

3.2 Competitive Equilibrium

Every period, agents meet to trade the consumption good and two assets. There is a risk-free bond held in zero net supply that pays one unit of consumption next period. Let a'_h denote the holdings of this asset chosen by agent-type h; the initial endowment $a_h(s_{-1}) = 0$.

12
∀ h. Agents can also trade equity shares. Let θ'_h denote the number of shares chosen by agent-type h, where θ' = \sum_h θ'_h is the total number of shares outstanding issued at the current period by the representative firm. Agents are endowed with θ_h^0 shares at time 0, where \sum_h θ_h^0 = 1.

The Markovian structure of this economy allows us to study Recursive Competitive Equilibria (RCE) directly. Consider the set of state variables. At the consumer level, the state is described by individual financial wealth, denoted by \phi_h and defined below. At the firm level, the state is described by the firm’s stock of capital \kappa. Finally, let \Phi, k and \theta describe the distribution of financial wealth, aggregate capital and outstanding shares. At the aggregate level the state is (s, \theta, \Phi, k) where \Phi' = J(s, \theta, \Phi, k) and k' = H(s, \theta, \Phi, k) denote laws of motion for the distribution of financial wealth and aggregate capital, respectively. Additionally, all agents (including the firm) take the financial policy \theta' = G(s, \theta, \Phi, k) as given. Note that the aggregate preference shock \xi is uniquely determined by s through (5). The price system is given by (p, q^RF, w) : S \times \mathbb{R}_+ \times \mathbb{R}_+^I \times \mathbb{R}_+^J \rightarrow \mathbb{R}_++ representing the ex-dividend price of equity, the price of the risk-free bond and wages, respectively.

Observe that markets are dynamically complete with this asset-market structure, since s' \in \{s, \bar{s}\}. By no-arbitrage, this implies that at each (s, \Phi, K) there is a unique state price vector, denoted by (q(s, \Phi, K)(s'))_{s'\in\{s, \bar{s}\}}.

Firm’s Production Plans and Financial Policy

Production decisions are made by a representative firm, who maximizes its value

\begin{equation}
 v_F(\kappa, s, \Phi, k) = \max_{(\kappa', i, l)} \left\{ d(\kappa, s, \Phi, k) + \sum_{s'} q(s, \Phi, k)(s')v_F(k, s, \Phi, k) \right\},
\end{equation}

\begin{align*}
 d(\kappa, s, \Phi, k) &= F(s, \kappa, l) - H(\kappa, i) - w(s, \Phi, k)l, \\
 \kappa(1 + g) &= (1 - \delta)\kappa + i, \\
 l_h &\geq 0, \forall h.
\end{align*}

The Modigliani-Miller Theorem states that the firm’s financial policies do not affect equilibrium real allocations, hence it is typically assumed that there is one outstanding share every period. However, changes in financial policies do affect the amount of assets traded in
equilibrium, and thus the extent of equity trade. Since volume is of particular interest here, we assume the firm adheres to the following financial policy: given that \((\theta' - \theta)\) new shares are issued at the current period, dividends per share \(d_f\) are defined according to the firm’s budget constraint:

\[
\theta' d_f(\pi, s, \Phi, K) = d(\pi, s, \Phi, k) + p(s, \Phi, k)(\theta' - \theta). \tag{11}
\]

Thus an agent holding \(\theta_h\) shares will receive the dividend payment \(\theta_h d_f(\pi, s, \Phi, k)\) at the beginning of the period. Any \((\theta', \theta)\) satisfying (11) is a financial policy.

Given a price system \((p, q^{RF}, w_h)\) and laws of motion \((G, J, H)\), agent-type \(h\)'s problem is

\[
v_h(\phi_h, s, \theta, \Phi, k) = \sup_{(c_h, a_h', \theta_h')} \left\{ \xi(s) \left(\frac{c_h - \gamma}{1 - \sigma} \right) + \beta \sum_{s'} \pi(s, s') v_h(\phi_h', s', \theta', \Phi', k') \right\},
\]

subject to

\[
c_h + p(s, \theta, \Phi, k) \theta_h' + q^{RF}(s, \theta, \Phi, k) a_h' = \phi_h + w_h(s, \theta, \Phi, k)
\]

\[
\phi_h' = [p(s', \theta', \Phi', k') + d(s', \theta', \Phi', k')] \theta_h' + a_h',
\]

\[
c_h \geq \gamma,
\]

where \(\theta' = G(s, \theta, \Phi, k), \Phi' = J(s, \theta, \Phi, k)\) and \(k' = H(s, \theta, \Phi, k)\).

The definition of a RCE is standard and omitted here. For notational convenience, the consistency condition (that aggregate levels be consistent with individual behavior) is imposed to avoid the need to express optimal decision rules as functions of individual state variables. Also, since financial policies affect neither equilibrium allocations nor equilibrium state prices \((q(s'))\), these will not include \(\theta\) as an argument. For instance, we directly write \(c(s, \Phi, k)\).

Given the near-constant-growth trajectory for shares outstanding observed in the data, we assume that the firm follows the financial policy

\[
\theta' = G(s, \theta, \Phi, k) = (1 + g_s)\theta \quad \forall (s, \theta, \Phi, k). \tag{12}
\]

The growth rate of issued shares \(g_s\) is an important parameter in the computational experiment since it affects trading volume. The following equilibrium property allows us to simplify the analysis.
Proposition 1 Suppose \((c_h, a'_h, \theta'_h)_{h \in \mathcal{H}}, (k', i, l, (p, q^{RF}, w))\) constitute a RCE and \(G\) obeys (12). Consider an alternative financial policy where \(\tilde{\theta}' = \tilde{\theta} = 1\).

Then \(\left((c_h, a'_h, \tilde{\theta}'_h)_{h \in \mathcal{H}}, (k', i, l, (\tilde{p}, q^{RF}, w))\right)\) constitute a RCE, where

\[
\tilde{\theta}'_h(s, 1, \Phi, k) = \frac{\theta'_h(s, \theta, \Phi, k)}{(1 + g_s) \theta'},
\]

\[
\tilde{p}(s, 1, \Phi, k) = \theta(1 + g_s)p(s, \theta, \Phi, k).
\]

Proof. See Technical Appendix. ■

Measuring Trading Volume: The Turnover Rate

To see why Proposition 1 simplifies the analysis, recall that we follow Lo and Wang (2007) in quantifying stock trading volume as the turnover rate. This is defined as

\[
\tau(s, \theta, \Phi, k) = \frac{1}{2} \sum_h |\theta'_h(s, \theta, \Phi, k) - \theta_h|, \tag{13}
\]

where \(\sum_h \theta'_h = \theta'\) in equilibrium. Proposition 1 implies that we can compute (13) using

\[
\tau(s, \Phi, k) = \frac{1}{2} \sum_h |\theta'_h(s, 1, \Phi, k) - \theta_h/(1 + g_s)|, \tag{14}
\]

where \(\sum_h \theta_h = 1\). That is, we can solve the model for the economy defined with \(\theta = 1\), and then compute turnover using (14) given \(g_s\).

3.3 Computing the RCE: Negishi’s Approach

Given the policy functions \((c(s, k), k'(s, k), i(s, k))\), the RCE is constructed as follows. State prices are given by the stochastic discount factor

\[
q(s, k)(s') = \rho \pi(s, s') \left(\frac{s'}{s}\right)^{-\mu} \frac{(c(s', k'(s, k)) - \gamma_A)^{-\sigma}}{(c(s, k) - \gamma_A)^{-\sigma}}. \tag{15}
\]

Regarding equity, let \(v_F(s, k)\) denote the value of the representative firm given by the unique solution to

\[
v_F(s, k) = d(s, k) + \sum_{s'} q(s, k)(s')v_F(s', k'(s, k)), \tag{RFP}
\]

15
where
\[d(s, k) = F(s, k, H) - \Psi(k, i(s, k)) - w(s, k)H, \]
\[k'(s, k)(1 + g) = (1 - \delta)k + i(s, k), \quad k'(s, k) \geq 0, \]
where \(w(s, k) = F_i(s, k, H) \) denotes the implicit wage. With outstanding equity shares normalized to one, the ex-dividend price of equity \(p(s, k) \) is given
\[p(s, k) = v_F(s, k) - d(s, k). \]

Hereafter, \(v_F(s, k) \) is interpreted as the aggregate value of non-human wealth. Similarly, the value \(v_M(s, k) \) of the minimum consumption requirement \(\gamma \) is given uniquely by
\[v_M(s, k) = \gamma + \sum_{s'} q(s, k)(s')v_M(s', k'(s, k)). \]

To compute the remaining ingredients needed to construct a RCE, consider any allocation parametrized by \(\alpha \) such that \(\sum_h (\alpha_h)^{1/\sigma} = 1 \). Let \(v_C^h(s, k; \alpha) \) denote the associated value of agent-type \(h \)'s share of aggregate consumption \(c_h(s, k, \alpha) \), as determined in (9); this value is given uniquely by
\[v_C^h(s, k; \alpha) = (\alpha_h)^{1/\sigma} c(s, k) + \left(\gamma - (\alpha_h)^{1/\sigma} \gamma_A \right) + \sum_{s'} q(s, k)(s')v_C^h(s', k'(s, k), \alpha). \]

Individual consumption is financed from two sources. The first is wages which provides an associated income stream valued uniquely as
\[v_W(s, k) = w(s, k) + \sum_{s'} q(s, k)(s')v_W(s', k'(s, k)). \]

Hereafter, we describe \(v_W(s, k) \) as representing \textit{individual human wealth}. The second source of financing is \textit{individual non-human wealth}, which is given by
\[\phi_h(s, k; \alpha) = v_C^h(s, k; \alpha) - v_W(s, k). \]

Given uniqueness, it follows from feasibility that
\[v_C^h(s, k; \alpha) = (\alpha_h)^{1/\sigma} (v_F(s, k) + v_W(s, k)H) + \left(1 - (\alpha_h)^{1/\sigma} H \right) v_M(s, k), \]
and consequently
\[
\phi_h(s, k, \alpha) = (\alpha_h)^{1/\sigma} (v_F(s, k) + v_W(s, k)H) \\
+ \left(1 - (\alpha_h)^{1/\sigma} H\right) v_M(s, k) - v_W(s, k).
\] (18)

Finally, given \((k, \alpha)\) let \([\left(a_h(k, \alpha), \theta_h(k, \alpha)\right)]\) solve the \(2 \times 2\) system
\[
\phi_h(s, k, \alpha) = a_h(k, \alpha) + [p(s, k) + d(s, k)]\theta_h(k, \alpha), \quad \text{for all } s \in \{\underline{s}, \overline{s}\}. \tag{19}
\]
This system (generically) has a unique solution for each \(h\). Below we show how to use it to construct equilibrium portfolios.

The following proposition characterizes the unique PO allocation that can be decentralized as a RCE with zero initial transfers. Once this specific welfare vector has been identified, corresponding equilibrium prices and portfolios are constructed using the objects defined in (15)-(19).

Proposition 2 Given \((s_0, k_0)\), there exists a unique welfare weight \(\alpha^0\) given by
\[
(\alpha_h^0)^{1/\sigma} = \frac{\theta_h^0 v_F(s_0, k_0) + v_W(s_0, k_0) - v_M(s_0, k_0)}{v_F(s_0, k_0) + (v_W(s_0, k_0) - v_M(s_0, k_0))H}, \tag{20}
\]
such that the corresponding PO allocation can be decentralized as a RCE.

Equilibrium prices are given by
\[
w(s, \Phi, k) = F_l(s, k, H), \\
p(s, \Phi, k) = p(s, k), \\
q^{RF}(s, \Phi, k) = \sum_{s'} q(s, k)(s').
\]

Equilibrium portfolios for each \(h\) are determined by (19) such that
\[
a'_h(s, \Phi, k) = a_h(k'(s, k), \alpha^0), \tag{21}
\]
\[
\theta'_h(s, \Phi, k) = \theta_h(k'(s, k), \alpha^0),
\]
where \(\Phi = \phi(s, k, \alpha^0)\) represents the aggregate distribution of wealth determined by (18) at \(\alpha^0\).

Proof. See Espino (2007).

An important feature of this framework is that the financial endogenous state variable \(\Phi\) is determined uniquely by (19). This implies that equilibrium portfolios depend upon \((s, k)\) only through \(k'(s, k)\), the law of motion of the endogenous physical state variable.
3.4 Quantifying Asset Returns and Turnover

To facilitate quantitative analysis, returns and turnover are defined to correspond with their empirical counterparts. For returns, three considerations affect alignment: a period corresponds to a quarter; returns are annualized; and while model variables are in detrended form, returns are calculated using trending data. Thus for each \((s, k)\) and \(s'\), let

\[
Q(s, K)(s') = \frac{1}{(1 + g)^{q(s, k)(s')}},
\]

and define the price of the risk-free bond as

\[
Q^{rf}(s, K) = \sum_{s'} Q(s, K)(s').
\]

Then the annualized risk-free rate is given by

\[
R^{rf}(s, K) = 400 \cdot \left(\frac{1}{Q^{rf}(s, K)} - 1 \right),
\]

and annualized equity returns are given by

\[
R^e(s, K) = 100 \cdot \ln \left(\frac{P(s, K)_{t+4} + \sum_{q=1}^{4} D(s, K)_{t+q}}{P(s, K)_t} \right)
= 100 \cdot \ln \left(\frac{(1 + g)^{t+4} p(s, k)_{t+4} + \sum_{q=1}^{4} (1 + g)^q d(s, k)_{t+q}}{p(s, k)_t} \right).
\]

Regarding turnover, let \(\alpha^0\) be given by (20) and define

\[
\phi_h(k, \alpha^0) = \begin{bmatrix}
\phi_h(\underline{s}, k, \alpha^0) \\
\phi_h(\overline{s}, k, \alpha^0)
\end{bmatrix},
\]

where \(\phi_h(s, k, \alpha)\) is given by (19). Likewise, let

\[
p(k) = \begin{bmatrix}
p(\underline{s}, k) \\
p(\overline{s}, k)
\end{bmatrix}, \quad d(k) = \begin{bmatrix}
d(\underline{s}, k) \\
d(\overline{s}, k)
\end{bmatrix},
\]

where \(d(s, k)\) and \(p(s, k)\) are as defined in (16) and (17).
Then equilibrium portfolios can be constructed using

\[
\begin{bmatrix}
 a_h(k'(s, k), \alpha^0) \\
 \theta_h(k'(s, k), \alpha^0)
\end{bmatrix} = [1 \quad (p + d) (k'(s, k))]^{-1} \phi_h(k'(s, k), \alpha^0),
\]

where \([1 \quad (p + d) (k'(s, k))]^{-1}\) is the 2 \times 2 matrix evaluated at \(k'(s, k)\). In turn, given Proposition 1 turnover is given by

\[
\tau(s, k) = \frac{1}{2} \sum_h \left| \theta_h(k'(s, k), \alpha^0) - \theta_h(k, \alpha^0)/(1 + g_s) \right|.
\]

3.5 Intuition Regarding Turnover

We conclude this section by providing intuition regarding the behavior of turnover, particularly in response to innovations in \(s\). To begin, note that (22) can be used to express agent-type \(h\)'s demand for equity holdings, which is given by

\[
\theta'_h(s, \Phi, k) = \theta_h(k'(s, k), \alpha^0) = \frac{\phi_h(\pi, (k'(s, k), \alpha^0) - \phi_h(\xi, (k'(s, k), \alpha^0))}{v_F(\pi, (k'(s, k))) - v_F(\xi, (k'(s, k)))}.
\]

Thus the impact of an innovation in \(s\) on equity demand is given by the ratio of this impact on the dispersion of agent \(h\)'s wealth next period (the numerator) relative to the impact on the dispersion of aggregate wealth next period (the denominator).

In general, the impact on this ratio can be non-monotonic in wealth. But under the calibrated structure we consider, the wealthier the agent the larger the impact. Specifically, it follows from (18) that

\[
\frac{\phi_h(\pi, k'(s, k), \alpha^0) - \phi_h(\xi, k'(s, k), \alpha^0)}{v_F(\pi, k'(s, k)) - v_F(\xi, k'(s, k))} = (\alpha_h^0)^{1/\sigma} + H \left((\alpha_h^0)^{1/\sigma} - \frac{1}{H} \right) R(k'(s, k)),
\]

where

\[
R(k'(s, k)) = \frac{[v_W(\pi, k'(s, k)) - v_M(\pi, k'(s, k))] - [v_W(\xi, k'(s, k)) - v_M(\xi, k'(s, k))]}{v_F(\pi, k'(s, k)) - v_F(\xi, k'(s, k))}.
\]

Thus for a given response of \(R(k'(s, k))\) to an innovation in \(s\), the response of equity demand is larger the larger is the welfare weight \((\alpha_h^0)^{1/\sigma}\), and thus the larger is wealth.

Regarding \(R(k'(s, k))\), this is positive and increasing in \(s\). To see why \(R(k'(s, k))\) is positive, observe for the numerator that since the difference between wages and the minimum
consumption requirement is increasing in s, so too is the difference in their values. For the denominator, dividends are increasing in s, thus so too is the value of the firm.

To see why $R(k'(s, k))$ is increasing in s, k' is increasing in s due to standard consumption-smoothing arguments. Further, the difference between wages and the minimum consumption requirement is increasing in k due to the technological complementarity between capital and labor, thus so too is the difference in their values. So the numerator is increasing in k. The denominator is also increasing in k since dividends are increasing in k, but not by as much as the numerator. This appears to be the case because the firm increases investment when k increases, thus smoothing its value. As a result, $R(k'(s, k))$ is both positive and increasing in k', and thus also in s.

Given this behavior for $R(k'(s, k))$, the equity demand of relatively wealthy agents (those with welfare weights $(\alpha_h^0)^{1/\sigma} > \frac{1}{H}$) is increasing in s. Through a similar derivation, the demand for risk-free bonds can be shown to be decreasing in s for the same agents. So following a positive productivity shock, equity flows from poor to rich agents, while bonds flow from rich to poor agents.

Following Espino (2007), note two factors that are critical in determining the responsiveness of $R(k'(s, k))$, and thus ultimately turnover, to innovations in s. The first is the correlation between v_W and v_F induced by innovations in s: the closer the correspondence, the less responsive will be turnover. Indeed, absent the minimum consumption requirement, if v_W and v_F were perfectly correlated, turnover would be zero. All else equal, the greater the wedge between v_W and v_F, the greater the volatility of turnover.

The second factor is the presence of the minimum consumption requirement: for a given correspondence between v_W and v_F, a non-zero minimum consumption requirement amplifies the response of $R(k'(s, k))$ to an innovation in s. To see why, note from the specification of instantaneous utility that agent-type h's measure of relative risk aversion is given by

$$
\frac{-c_h(s, k; \alpha^0)u''(c_h(s, k, \alpha^0))}{u'(c_h(s, k))} = \sigma \left(1 + \frac{\gamma}{(\alpha_h^0)^{1/\sigma} (c(s, k) - \gamma_A)} \right).
$$

(27)

Absent the minimum consumption requirement, (relative) risk aversion is equal across agent types; but the positive requirement renders relative risk aversion as wealth dependent. In particular, poorer agents are relatively risk averse, or equivalently, have a stronger consumption-smoothing incentive. Moreover, for a given innovation in s, the subsequent response of risk
aversion will be greater the poorer is the agent. Differential responses of risk aversion to innovations (i.e., differences in \((a_h^0)^{1/\sigma}\)) translate into differential portfolio rebalancing responses (see equation (26)). Thus the minimum consumption requirement, along with \(\sigma\), both serve as potential sources of amplification in this environment.

So with relatively poor agents featuring a relatively strong consumption-smoothing incentive that moreover is particularly responsive to innovations in \(s\), why then is equity demand increasing in \(s\) for rich agents, and decreasing for poor agents? The reason is the dominance of a substitution over an income effect for poor agents. Regarding the latter, a positive innovation to \(s\) enriches all agents, thus decreasing their risk aversion and increasing their demand for equity. As noted, this effect is more intense the poorer is the agent. However, there is also a substitution effect: the decrease in risk aversion drives up the price of equity relative to debt. For rich agents, the income effect dominates, thus their demand for equity is increasing in \(s\). For poor agents, the substitution effect dominates, thus their demand for equity is decreasing in \(s\). (Recall that within a period, the supply of equity shares is fixed.) Again, rich agents are defined as having welfare weights \((a_h^0)^{1/\sigma} > \frac{1}{H}\), as seen in (25).

We conclude this discussion with a note regarding the mapping of equity demand to turnover. We do so by abstracting from the trend component of turnover, which as illustrated below carries additional implications. With this abstraction, substituting for \(\theta_h\) in (23) using (24) - (26), turnover may be expressed as

\[
\tau(s, k) = \frac{1}{2} \sum_h \left| \theta_h(k'(s, k), \alpha^0) - \theta_h(k, \alpha^0) \right| \\
= \frac{H}{2} \left| R(k'(s, k)) - R(k) \right| \sum_h \left| (a_h^0)^{1/\sigma} - 1/H \right| .
\]

Thus turnover dichotomizes into three components. The first is the trend growth of shares, from which we have extracted. The second, \(|R(k'(s, k)) - R(k)|\), is dependent solely upon the structural specification of the model. Given an innovation \(s\), the larger the response in \(R\) to movements in aggregate capital, the larger the technological component of turnover.

The third, \(\sum_h \left| (a_h^0)^{1/\sigma} - 1/H \right|\), is purely distributional, and independent of the aggregate state \((s, k)\). This component reflects the impact of wealth dispersion on risk aversion and, thus, on turnover. Thus through this mechanism, all else equal, a given innovation in \(s\) will have an amplified impact on turnover the greater is the wedge between degrees of risk
aversion observed across agent types, parametrized by the dispersion of \((\alpha_h^{0})^{1/\alpha} \)

\(h \in \mathcal{H} \).

4 Empirical Implementation

4.1 Calibration

We specify five individual types \((I = 5)\), and a two-state Markov process for \(s \) parameterized to mimic a first-order autoregressive representation of \(s \) of the form

\[
s_t = (1 - \lambda) + \lambda s_{t-1} + \varepsilon_t.
\]

In turn, \(\lambda \) and the standard deviation of \(\varepsilon_t \) \((\sigma_{\varepsilon})\) were chosen so that the parameterized model matched the observed first-order serial correlation and standard deviation of output. Given values chosen for the additional parameters, the corresponding specification of \((\lambda, \sigma_{\varepsilon})\) turned out to be \((0.7743, 0.00929)\) for the baseline model, and \((0.6715, 0.0091)\) for the extended model. The difference in \(\lambda \) indicates that the extended model has a relatively strong internal propagation mechanism. Table 1 presents parameterizations for both models.

For both models, capital’s share \(\alpha \) was set at 0.33; the discount factor \(\beta \) at 0.99 (implying an annualized discount rate of approximately 4%); the depreciation rate \(\delta \) at 0.025 (implying an annual depreciation rate of 10%); \(g \) at 0.00475 (matching the observed 1.9% annualized growth rate of output); and \(g_s \) at 0.0235 (matching the observed 9.4% annualized growth rate of shares outstanding). We take these specifications as standard, and do not present results obtained using alternative specifications along these dimensions.

The welfare weights \(\alpha_h \) were chosen so that the corresponding steady state distribution of non-human wealth across individual types matched the distribution of wealth holdings across U.S. households reported by Budria-Rodriguez et al. (2002). Specifically, their Table 7 reports shares of total wealth across household quintiles constructed using the 1998 Survey of Consumer Finances. Note from our Table 1 that the match is close but not perfect: it reflects the minimized sum of squared differences across quintiles obtained using a numerical optimization routine. Reported as a fraction of the weight assigned to upper-quintile types, the fitted welfare weights we employ are \(\alpha_h = (0.2, 0.22, 0.24, 0.29, 1.00) \), \(h = 1, \ldots, 5 \). The
steady states in both models are aligned with each other to aid in cross-model comparisons, thus so too are fitted welfare weights.

The remaining parameters to be assigned for the baseline model are the minimum consumption value γ and the curvature parameter σ specified for the instantaneous utility function. (The additional parameters associated with the extended model are discussed below.) As a benchmark, we set γ to 5% of the steady state level of consumption, and experiment with alternative specifications in the range of 0% to 8%. The latter value is an upper bound imposed by the condition (implicit in (20) of Proposition 2) that the combined value of human and non-human wealth must exceed the value of the minimum consumption requirement for all individual types. Finally, σ was calibrated so that the steady state return to equity implied by the model matched the sample average observed in the data. (As noted, it is not possible to jointly match the returns to both equity and the risk-free asset in the baseline model.) The resulting value turned out to be 1.732.

Table 1 also reports the mapping of α_h into the consumption weights

$$w_h = \frac{(\alpha_h)^{1/\sigma}}{\sum_j (\alpha_j)^{1/\sigma}},$$

along with implied distributions of steady state consumption values and measures of relative risk aversion. Note that although steady state wealth holdings are highly uneven across quintiles (ranging from approximately 1% to 82%), the steady state distribution of consumption is relatively even: quintile values are (1.66, 1.72, 1.78, 1.94, 3.41). Coupled with the specification $\sigma = 1.732$, corresponding measures of relative risk aversion across quintiles are (2.53, 2.49, 2.45, 2.38, 2.05).

For the extended model, the parameters determining capital-adjustment costs and the behavior of the preference shock were set as follows. Regarding the former, κ was set following Jermann (1998) at $1/0.23$, where 0.23 represents the elasticity of the investment-capital ratio with respect to Tobin’s q; and (b_0, b_1) were set to equate steady state values of all variables across the baseline and extended models. The preference-shock parameter μ was set to match the sample mean of returns to the risk-free asset. The required value turns out to be 25.17, which yields a steady state equity premium of 5.939 (compared with 5.995 in the data).

The results to which we now turn are based on simulated data generated using non-linear model approximations. These are based on policy functions $c(s, k)$, $p(s, k)$, etc. represented
as Chebyshev polynomials. Polynomial approximations were constructed using the projection method outlined, e.g., in Judd (1988) and DeJong with Dave (2007). Sample statistics calculated from simulated data are based on artificial sample sizes of 10,000, obtained after discarding 1,000 burn-in observations (to eliminate the influence of initial conditions).

4.2 Results

Figure 5 illustrates impulse responses of turnover and output resulting from a one-standard-deviation innovation to s_t. The responses were obtained using the baseline model; those associated with the extended model are comparable. Table 2 and Figure 6 present comparisons of theoretical and empirical moments for both models.

Consider first the baseline model. Regarding performance along familiar dimensions, on the positive side, note that the model provides a close characterization of the procyclical nature of consumption and investment, and also closely captures their volatilities relative to output. On the negative side, note first that the risk-free-rate and equity premium puzzles are evident in this case: the steady state return to the risk-free asset is 7.382 (compared with 1.156 in the data), which corresponds with a steady state equity ‘premium’ of -0.229 (compared with 5.995 in the data). Also, the standard deviations of returns fall far short of their empirical counterparts. These shortcomings are expected, in light of Danthine et al. (1992) and Rouwenhorst (1995).

Turning to the behavior of turnover, the ratio of standard deviations of turnover and output is 1.747 in the model, compared with 7.575 for the data. That is, the wealth-
discrepancy channel that serves to generate equity trade in the model accounts for roughly 23% of observed fluctuations in turnover. However, note from Figure 6 that the model fails to capture the asynchronous relationship between turnover and output evident in the data. (This failure is insensitive to model parameterization; its source is discussed below.) At the 5-quarter horizon, the correlation with output in the model is 0.37, compared with 0.29 in the data. However, the contemporaneous correlation between turnover and output is 0.91 in the model, but only –0.01 in the data. And while leads of turnover remain positively correlated with output in the model, they are negatively correlated in the data; e.g., 0.26 compared with -0.2 at the four-quarter horizon.

Consider now the sensitivity of this measure to changes in γ and σ, as reported in Table 3. Regarding γ, its main impact is on the volatility of turnover relative to output. Specifically, turnover volatility is monotonically increasing in γ, because as γ rises, differences in risk aversion are amplified across types. Setting $\gamma = 0$, differences in risk aversion are eliminated, and the volatility of turnover drops from the baseline measure of 1.745 to 0.98. Setting $\gamma = 0.08c^*$, steady state measures of risk aversion range from 5.4 to 2.1 in moving from lower- to upper-quintile types; in turn, turnover volatility increases to 2.5. Steady state returns and correlation patterns between turnover and output are unaffected by changes in γ; and the additional moments reported in Table 2 change only slightly. Thus the turnover volatility measure of 2.5, or 33% of that measured in the data, provides a plausible upper-bound estimate under the baseline model.
Regarding σ, note that the model’s characterization of equity returns is sensitive to changes in this curvature parameter. For example, with $\sigma = 2$, equity returns increase from 7.152 to 7.64. So unlike γ, σ is tightly identified, thus we discount deviations from the baseline parameterization along this dimension.

Consider now the extended model. Beginning again with performance along familiar dimensions, on the positive side, the model once again does well in characterizing the relative volatilities of consumption and investment relative to output. Also, the model is calibrated to exactly match the risk-free return, and does so while also nearly matching the equity premium. This is as expected, in light of Jermann (1998) and Campbell and Cochrane (1999). On the negative side, note that returns in this case are excessively volatile relative to their empirical counterparts. This is also as expected, following Jermann (1998), Campbell and Cochrane (1999), and Boldrin et al. (2001).

As in the baseline model, turnover and output are closely synchronized over the business cycle in the extended model (the contemporaneous correlation between turnover and output is 0.90 in this case, compared with 0.91 in the baseline model). The volatility of turnover is lower than in the baseline case: 1.302, relative to 1.747. That is, the extended model accounts for roughly 17% of observed fluctuations in turnover.

Regarding sensitivity to γ, at the upper bound of $\gamma = 0.08c^*$, Table 3 indicates that turnover volatility increases to 2.23; at the lower bound of zero, volatility falls to 1.24. As in the baseline case, note that the extended model’s characterization of returns is relatively insensitive to changes in γ; e.g., at $\gamma = 0.08c^*$, risk-free returns change by only 0.008, to 1.164. Thus the turnover volatility measurement of 2.23, or 30% of that measured in the data, provides a plausible upper bound.

Regarding σ, note once again that this parameter is tightly identified. So too is the preference-shock parameter μ: decreases in μ generate substantial increases in the steady state risk-free rate, and corresponding reductions in the equity premium, leaving the measure of turnover volatility relatively unaffected. Thus we discount deviations from the baseline parameterization along the dimensions of σ and μ.

We close with a heuristic description of the strong positive contemporaneous correlation between output and turnover generated by the model. Consider for simplicity a two-agent specification wherein agent 1 has a relatively large welfare weight, so that her equity holdings
\(\theta_1 \) exceed 1 in the steady state, and are increasing in \(s \). Since \(\theta_2 = 1 - \theta_1 \), agent 2’s equity holdings are negative in the steady state, and are decreasing in \(s \). (Agent 1 corresponds with the wealthiest agent in the calibrated models discussed above; and agent 2 with the poorest agents.)

The contribution of agent \(h \) to aggregate turnover is given by

\[
 t_h = |\theta'_h - \frac{\theta_h}{1 + g_s}|,
\]

where \(\theta'_h \) denotes agent \(h \)'s equity holdings in period \(t + 1 \). The v-shaped \(t_h \)'s are depicted in Figure 7 for the example described above. Note that in the steady state, \(\theta'_h = \theta_h \), and thus turnover is positive (since \(g_s > 0 \)): \(t_h^t > 0 \), \(h = 1, 2 \). In order for the agents to maintain their relative equity positions in the steady state, newly issued shares flow to agent 1.

![Figure 7. Heuristic Characterization of Turnover](image)

Now consider the impact of an increase in \(s \). In the figure, this moves equity holdings to \(\theta'_h = \theta_h^A \), causing turnover to rise: relative to steady state, there is a greater flow of shares from agent 2 to agent 1. Of course, output also rises due to the increase in \(s \), thus output and turnover co-vary positively. A decrease in \(s \) simply reverses the responses of both variables.

In both versions of the fully calibrated models upon which our results are based, it turns out that the wealthiest agent always maintains equity holdings on the right arm of \(t_h \), and
the poorest agents always maintain equity holdings on the left arm. This accounts for the strong positive correlation between output and aggregate turnover generated by the models. In the context of these models, the low contemporaneous correlation observed in the data is puzzling.

5 Conclusion

We have portrayed the cyclical behavior of the turnover of equity shares on the New York Stock Exchange, and have offered a theoretical characterization of this behavior. The theoretical characterization emphasizes differences in wealth holdings across agents as giving rise to differential fluctuations in asset demand in response to productivity shocks; equity trade occurs as a result. We measure this mechanism as capable of accounting for up to roughly 1/3 of the volatility of turnover observed in the data. A feature of the data this model fails to capture is the asynchronous relationship observed between turnover and output over the business cycle; progress along this dimension will be the focus of future research.
References

6 Technical Appendix

Proof of Proposition 1. Let \(p(s, 1, \Phi, k) \) denote the ex-dividend price of the firm, which uniquely solves the operator

\[
p(s, 1, \Phi, k) = \sum_{s'} q(s, \Phi, k)(s')[p(s', 1, \Phi', k') + d(s', 1, \Phi', k')].
\]

Since there is one outstanding share, this is also the ex-dividend price of the share. The stochastic return is given as usual by

\[
\frac{p(s', 1, \Phi', k') + d(s', 1, \Phi', k')}{p(s, 1, \Phi, k)}.
\]
(29)

Consider now the economy with financial policy (12). Let \(p(s, \theta, \Phi, k) \) be the ex-dividend price of one share when there are \(\theta \) outstanding shares at the beginning of the period. This price solves

\[
p(s, \theta, \Phi, k) = \sum_{s'} q(s, \Phi, k)(s')[p(s', \theta', \Phi', k') + d_f(s', \theta', \Phi', k')]
\]

\[
= \sum_{s'} q(s, \Phi, k)(s')p(s', \theta', \Phi', k')
\]

\[
+ \frac{d(s', \theta', \Phi', k') + p(s', \theta', \Phi', k')(\theta'(1 + g_s) - \theta')}{\theta'}
\]

\[
= \sum_{s'} q(s, \Phi, k)(s')[p(s', \theta', \Phi', k')(1 + g_s) + \frac{d(s', \theta', \Phi', k')}{\theta'}].
\]

Additionally, observe that

\[
\theta' p(s, \theta, \Phi, k) = \theta(1 + g_s)p(s, \theta, \Phi, k)
\]

\[
= \sum_{s'} q(s, \Phi, k)(s')[p(s', \theta', \Phi', k')\theta'(1 + g_s) + d(s', \theta', \Phi', k')].
\]

Consequently, it follows by uniqueness that

\[
p(s, 1, \Phi, k) = \theta(1 + g_s)p(s, \theta, \Phi, k),
\]
(30)

for all \(\theta \) (i.e., the ex-dividend price of the firm equals the value of the end-of-period shares outstanding). Using (30), it follows from (29) that equilibrium returns are unaffected by the firm’s financial policy. Thus, returns can be computed directly using (29).
Finally, we check that the alternative policy function is the agent’s optimal choice. Market clearing is satisfied by definition. It also follows by (11) and (30) that this alternative policy satisfies the budget constraint evaluated at the equilibrium allocation. To see this, note that

$$\theta'_h(s, \theta, \Phi, k)p(s, \theta, \Phi, k) = \frac{\theta'_h(s, \theta, \Phi, k)}{(1 + g_s)} \theta(1 + g_s)p(s, \theta, \Phi, k)$$

$$= \tilde{\theta}'_h(s, 1, \Phi, K)p(s, 1, \Phi, K),$$

and also

$$[p(s, \theta, \Phi, k) + d_f(s, \theta, \Phi, k)] \theta_h = \left[p(s, \theta, \Phi, k) + \frac{d(s, \theta, \Phi, k) + p(s, \theta, \Phi, k)(\theta(1 + g_s) - \theta)}{\theta} \right] \theta_h$$

$$= [p(s, 1, \Phi, k) + d(s, \theta, \Phi, k)] \tilde{\theta}_h,$$

where \(\sum_h (\theta_h/\theta) = 1\). Note that \(d(s, \theta, \Phi, k) = d(s, \Phi, k)\) for all \(\theta\) since production plans are unaffected by the firm’s financial policy. ■

7 Data Appendix

7.1 Definitions and Sources

Turnover is volume (total shares traded) as a percentage of shares outstanding on the NYSE. Volume data are from Yahoo (finance.yahoo.com); shares outstanding are from the NYSE factbook (www.nysedata.com/factbook).

Volume is reported as daily averages observed over the month; they are converted to a quarterly measure by averaging the (deseasonalized) monthly measures. Shares outstanding are reported as yearly averages; dividing by the number of trading days during the year (from the NYSE factbook) yields conversion to daily averages. Annual data are converted to a quarterly measure via log-linear interpolation. Letting \(g(\tau)\) denote the growth in shares outstanding observed between years \(\tau\) and \(\tau + 1\), and \(so_\tau\) shares outstanding reported in year \(\tau\), the quarterly measures \(so_{\tau,i}, i = (I, II, III, IV)\) are constructed as

$$so_{\tau,i} = so_{\tau}e^{0.25g(\tau)(i-1)},$$

33
Returns to equity r^e are annualized real returns accruing to the stocks included in the S&P 500 index. Both nominal and real S&P prices p and dividends d are reported on a monthly basis by Robert Shiller. Prices are monthly averages of daily closing prices; dividends are twelve-month moving totals of dividends per share, adjusted to index. The real data are converted into monthly observations of annualized returns via geometric averaging:

$$r^e_t = \ln \left(\frac{p_{t+12} + d_t}{p_t} \right).$$

Quarterly returns are constructed by averaging over annualized monthly returns.

Price and dividend data are from www.econ.yale.edu/~shiller/data.htm. Conversion from nominal to real measures (as with the remaining nominal series described herein) is accomplished using the CPI-U (consumer price index, all urban consumers). This is available on a monthly basis from the Federal Reserve Bank of St. Louis’ FRED database (research.stlouisfed.org/fred2/). CPI-U is referenced under FRED as series CPI-AUCSL.

Risk-free returns r^f are annualized real returns to three-month Treasury bills. Nominal returns are available on a monthly basis from the FRED database as series TB3MS. Quarterly returns are constructed by averaging over real monthly returns.

Consumption c is real personal consumption expenditures on non-durables (FRED series PCNDGC96) and services (FRED series PCESVC96). Investment i is real gross private domestic investment (FRED series GDPIC1). Output y is the sum of consumption and investment. The series are quarterly and in per capita terms, with population measured as the civilian non-institutional population (FRED series CNP16OV).

The longest time span over which all series are available is 1950:I through 2004:II. The series are available for downloading at www.pitt.edu/~dejong/wp.htm.

7.2 Comparing Volume and Turnover

Differences between volume and turnover amount to differences in trend behavior. Recall that turnover is defined as volume measured as a percentage of shares outstanding. The behavior of shares outstanding is depicted in Figure A1. Note that the series conforms closely to its estimated log-linear trajectory, which grows at an annual average rate of 9.4% (the standard deviation of logged departures from trend is 0.093).
To illustrate the impact of normalizing volume by shares outstanding, Figure A2 depicts logged trajectories of both turnover and volume in the upper diagrams, and their logged departures from estimated Hodrick-Prescott-filtered trends in the bottom diagram. The average growth rate of turnover over the sample period is 3.9%, compared with 13.3% for volume. Their logged departures from trend are virtually indiscernible: the correlation between measures is 0.992, and the standard deviations of these measures are 0.143 (turnover) and 0.144 (volume).
Table 1. Model Parameterizations

<table>
<thead>
<tr>
<th></th>
<th>α</th>
<th>β</th>
<th>δ</th>
<th>σ</th>
<th>g</th>
<th>ρ</th>
<th>λ</th>
<th>σ_ε</th>
<th>γ</th>
<th>g_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline:</td>
<td>0.33</td>
<td>0.99</td>
<td>0.025</td>
<td>1.732</td>
<td>0.00475</td>
<td>0.987</td>
<td>0.7743</td>
<td>0.00929</td>
<td>0.05c*</td>
<td>0.0235</td>
</tr>
<tr>
<td>Extended:</td>
<td>0.33</td>
<td>0.99</td>
<td>0.025</td>
<td>1.732</td>
<td>0.00475</td>
<td>0.987</td>
<td>0.6715</td>
<td>0.00910</td>
<td>0.05c*</td>
<td>0.0235</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>b_0</th>
<th>b_1</th>
<th>κ</th>
<th>μ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extended:</td>
<td>2.31E-07</td>
<td>0.03864</td>
<td>4.3478</td>
<td>25.17</td>
</tr>
</tbody>
</table>

Non-Human Wealth Shares

<table>
<thead>
<tr>
<th>Quintile:</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Targeted:</td>
<td>-0.30%</td>
<td>1.30%</td>
<td>5.00%</td>
<td>12.20%</td>
<td>81.70%</td>
</tr>
<tr>
<td>Fitted:</td>
<td>-0.83%</td>
<td>1.85%</td>
<td>5.03%</td>
<td>12.23%</td>
<td>81.73%</td>
</tr>
</tbody>
</table>

Distributional Characteristics of Consumption

<table>
<thead>
<tr>
<th>Quintile (i):</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>α_i/α_5</td>
<td>0.20</td>
<td>0.22</td>
<td>0.24</td>
<td>0.29</td>
<td>1.00</td>
</tr>
<tr>
<td>w_i</td>
<td>0.14</td>
<td>0.15</td>
<td>0.16</td>
<td>0.18</td>
<td>0.37</td>
</tr>
<tr>
<td>c*_i</td>
<td>1.66</td>
<td>1.72</td>
<td>1.78</td>
<td>1.94</td>
<td>3.41</td>
</tr>
<tr>
<td>RRA_i</td>
<td>2.53</td>
<td>2.49</td>
<td>2.45</td>
<td>2.38</td>
<td>2.05</td>
</tr>
</tbody>
</table>

Notes:
- c* denotes the steady state value of aggregate consumption;
- \(\rho = \beta(1+g)^{1/\sigma} \);
- \(\alpha_i/\alpha_5 \) is the weight the Social Planner assigns to the ith relative to the 5th quintile;
- \(w_i = \frac{\alpha_i^{1/\sigma}}{\sum (\alpha_j^{1/\sigma})} \);
- \(c_i^* \) denotes the steady state consumption of individuals in quintile i;
- and \(RRA_i^* \) is the steady state measure of relative risk aversion of individuals in quintile i.
The targeted distribution of non-human wealth is from Budria-Rodriguez et al. (2002), Table 7. Wealth shares and distributional characteristics are common across models.
Table 2. Model and Data Comparisons

<table>
<thead>
<tr>
<th></th>
<th>E(Re)</th>
<th>Std(Re)</th>
<th>E(Rf)</th>
<th>Std(Rf)</th>
<th>E(Re - Rf)</th>
<th>Std(Re - Rf)</th>
<th>Corr(Re,Rf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>7.152</td>
<td>15.244</td>
<td>1.156</td>
<td>1.156</td>
<td>5.995</td>
<td>15.050</td>
<td>0.161</td>
</tr>
<tr>
<td>Baseline</td>
<td>7.152</td>
<td>0.290</td>
<td>7.382</td>
<td>0.221</td>
<td>-0.229</td>
<td>0.272</td>
<td>0.460</td>
</tr>
<tr>
<td>Extended</td>
<td>7.095</td>
<td>35.692</td>
<td>1.156</td>
<td>40.539</td>
<td>5.939</td>
<td>31.552</td>
<td>0.664</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>std(x)/std(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x:</td>
</tr>
<tr>
<td></td>
<td>Con.</td>
</tr>
<tr>
<td>Data</td>
<td>0.460</td>
</tr>
<tr>
<td>Baseline</td>
<td>0.515</td>
</tr>
<tr>
<td>Extended</td>
<td>0.436</td>
</tr>
</tbody>
</table>

Note: For the data (D), Re and Rf are in levels; all other variables are H-P filtered.

For model variables (B: baseline; E: extended), Re and Rf are in levels; all other variables are logged deviations from steady state.
Table 3. Sensitivity Analysis

<table>
<thead>
<tr>
<th>γ</th>
<th>σ((t)/σ(y))</th>
<th>E(Re)</th>
<th>E(Re-Rf)</th>
<th>σ((t)/σ(y))</th>
<th>E(Rf)</th>
<th>E(Re-Rf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00c*</td>
<td>0.980</td>
<td>7.152</td>
<td>-0.229</td>
<td>1.240</td>
<td>1.144</td>
<td>5.951</td>
</tr>
<tr>
<td>0.05c*</td>
<td>1.750</td>
<td>7.152</td>
<td>-0.229</td>
<td>1.300</td>
<td>1.156</td>
<td>5.939</td>
</tr>
<tr>
<td>0.08c*</td>
<td>2.500</td>
<td>7.152</td>
<td>-0.229</td>
<td>2.230</td>
<td>1.164</td>
<td>5.932</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>γ</th>
<th>σ((t)/σ(y))</th>
<th>E(Re)</th>
<th>E(Re-Rf)</th>
<th>σ((t)/σ(y))</th>
<th>E(Rf)</th>
<th>E(Re-Rf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.043</td>
<td>5.822</td>
<td>-0.145</td>
<td>1.410</td>
<td>-0.250</td>
<td>6.011</td>
</tr>
<tr>
<td>1.732</td>
<td>1.750</td>
<td>7.152</td>
<td>-0.229</td>
<td>1.300</td>
<td>1.156</td>
<td>5.939</td>
</tr>
<tr>
<td>2</td>
<td>3.400</td>
<td>7.640</td>
<td>-0.264</td>
<td>1.270</td>
<td>1.646</td>
<td>5.934</td>
</tr>
<tr>
<td>3</td>
<td>14.01</td>
<td>9.433</td>
<td>-0.414</td>
<td>1.190</td>
<td>3.437</td>
<td>5.929</td>
</tr>
</tbody>
</table>

σ=1.732, γ=0.05c*

<table>
<thead>
<tr>
<th>μ</th>
<th>σ((t)/σ(y))</th>
<th>E(Re)</th>
<th>E(Re-Rf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>1.150</td>
<td>3.510</td>
<td>3.620</td>
</tr>
<tr>
<td>25.17</td>
<td>1.300</td>
<td>1.156</td>
<td>5.751</td>
</tr>
<tr>
<td>30</td>
<td>1.430</td>
<td>-1.500</td>
<td>8.550</td>
</tr>
</tbody>
</table>