Consider the following relationship between two variables Y and X:

$$Y = AX^b, \quad A > 0. \quad (1)$$

1. With Y on the vertical axis and X on the horizontal axis, produce a graph of Y versus X for $b < 0$. In doing so, calculate the intercept and slope analytically.

2. With Y on the vertical axis and X on the horizontal axis, produce a graph of Y versus X for $0 < b < 1$. In doing so, calculate the intercept and slope analytically.

3. With Y on the vertical axis and X on the horizontal axis, produce a graph of Y versus X for $b > 1$. In doing so, calculate the intercept and slope analytically.

4. Repeat the exercise in (1), with Y on the horizontal axis and X on the vertical axis.

5. Repeat the exercise in (2), with Y on the horizontal axis and X on the vertical axis.

6. Repeat the exercise in (3), with Y on the horizontal axis and X on the vertical axis.

7. Consider the following characterization of a variable X_t as a function of time t:

$$X_t = X_0e^{gt}, \quad X_0 > 0, \ g > 0. \quad (2)$$

Construct a time-series graph of X_t; i.e., construct a graph depicting X_t on the vertical axis, and time t on the horizontal axis. Calculate the intercept and slope analytically.

8. Again with X_t behaving as specified in (2), construct a time-series graph depicting $x_t = \ln(X_t)$ against time t. Calculate the intercept and slope analytically.

9. Again with X_t behaving as specified in (2), calculate the growth rate of Y_t, for Y_t given as

$$Y_t = AX_t, \quad A > 0. \quad (3)$$

10. Again with X_t behaving as specified in (2), calculate the growth rate of Y_t, for Y_t given as

$$Y_t = AX_t^b, \quad A > 0, \ b > 0. \quad (4)$$