Penalized and weighted K-means for clustering with noise and prior information incorporation

George C. Tseng
Department of Biostatistics
Department of Human Genetics
University of Pittsburgh
Outline

- Intro of cluster analysis
 - Model-based clustering
 - Heuristic methods
 - Hierarchical clustering
 - K-means & K-memoids
 -
- A motivating example (yeast cell cycle microarray data)
- Penalized weighted K-means
 - Penalty term and weights
 - Some properties
 - Estimate parameters (k and λ)
- Applications
 - Simulation
 - Yeast cell cycle microarray data
 - CID fragmentation patterns in MS/MS
- Discussion
Cluster analysis:
Data $X=\{x_i, i=1, \ldots, n\}$, each object $x_i \in \mathbb{R}^p$.

Given a dissimilarity measure $d(x_i, x_j)$, assign the n objects into k disjoint clusters; i.e. $C=\{C_1, \ldots, C_k\}$

$$X = \bigcup_{j=1}^{k} C_j$$
Intro. of cluster analysis

Cluster analysis:

1. Estimate the number of clusters k.

2. Decide which clustering method to use.

3. Evaluation and re-validation of clustering results.

Long history in statistics, computer science and applied math literature.
Intro. of cluster analysis

Model-based clustering:

1. Mixture maximum likelihood (ML):

\[
L(\pi, \mu, \Sigma) = \log \left\{ \prod_{i=1}^{n} \sum_{j=1}^{k} \pi_j f(x_i; \mu_j, \Sigma_j) \right\}
\]

2. Classification maximum likelihood (CML):

\[
L(C, \mu, \Sigma) = \log \left\{ \prod_{j=1}^{k} \prod_{x_i \in C_j} f(x_i; \mu_j, \Sigma_j) \right\}
\]

\[C = \{C_1, \ldots, C_k\}, \quad X = \bigcup_{j=1}^{k} C_k\]
Intro. of cluster analysis

Model selection of model-based clustering:
Bayesian Information criterion (BIC) to determine k and Σ_j

$$2 \log p(x \mid M) + \text{const.} \approx 2 \cdot l_M(x, \hat{\theta}) - m_M \log(n) \equiv BIC$$

$p(x|M)$ is the (integrated) likelihood of the data for the model M

$l_M(x, \theta)$ is the maximized mixture loglikelihood for the model

m_M is the number of independent parameters to be estimated in the model
Intro. of cluster analysis

Hierarchical clustering:
Intro. of cluster analysis

Hierarchical clustering:

Iteratively agglomerate nearest nodes to form bottom-up tree.

Single Linkage: shortest distance between points in the two nodes.
Complete Linkage: largest distance between points in the two nodes.

Note: Clusters can be obtained by cutting the hierarchical tree.
Intro. of cluster analysis

K-means criterion:
Minimize the within-group sum-squared dispersion to obtain C:

$$W_{K\text{-}means}(C; k) = \sum_{j=1}^{k} \sum_{x_i \in C_j} \left\| x_i - \overline{x}^{(j)} \right\|^2$$

$\overline{x}^{(j)}$ is the center of cluster j.

K-memoids criterion:

$$W_{K\text{-}memoids}(C; k) = \sum_{j=1}^{k} \sum_{x_i \in C_j} d(x_i, x^{(j)})$$

$x^{(j)} \in X$ is the median point in cluster j.
Intro. of cluster analysis

Proposition: K-means is a special case of CML under Gaussian model of identical spherical clusters.

K-means:

\[W_{K-\text{means}}(C; k) = \sum_{j=1}^{k} \sum_{x_i \in C_j} \left\| x_i - \bar{x}^{(j)} \right\|^2 \]

\[\bar{x}^{(j)} \] is the center of cluster \(j \).

CML:

\[C_1(C, \theta) = f(x|C, \theta) = \sum_{j=1}^{k} \sum_{x_i \in C_j} \log f(x_i|\mu_j, \Sigma_j) \]

\[f(x_i|\mu_j, \Sigma_j) = \frac{\exp\{-\frac{1}{2}(x_i - \mu_j)^T \Sigma_j^{-1}(x_i - \mu_j)\}}{(2\pi)^{d/2}|\Sigma_j|^{1/2}} \]

\[\Sigma_j = \sigma^2 I \ (j = 1, \ldots, k) \]
Clusters contain many false positives because the algorithm has to assign all genes into clusters.

Many genes are noise (scattered) genes!!
A motivating example
Yeast cell cycle microarray data

Traditional:
- Assign all genes into clusters.

Question:
- Can we allow a set of scattered (noise) genes?
A motivating example
Yeast cell cycle microarray data
A motivating example

Yeast cell cycle microarray data

Prior information:

Six groups of validated cell cycle genes:

M/G1 Boundary:	AGA1	ASH1	CDC46	CDC47	CDC6	CHS1	CLN3	CTS1	EGT2	FUS1	MFA2	PCL2	PCL9	RME1	SIC1	SST2	STE2	SWI4	TEC1																							
Late G1, SCB regulated:	CLN1	CLN2	CSD2	CHS3	FKS1	CWH53	GAS1	HO	KAR4	KRE6	MNN1	PCL1	PSA1	SWE1	TIP1	VAN2	GOG5																									
Late G1, MCB regulated:	ASF1	ASF2	CDC21	CDC45	CDC8	CDC9	CLB5	CLB6	DBF4	DPB2	DPB3	GIC2	MCD1	MSPH2	NIK1	HSL1	PDS1	PMS1	POL1	POL12	POL2	POL3	CDC2	POL30	PRI1	PRI2	RAD17	RAD27	RAD51	RAD54	RFA1	RFA2	RFA3	RNR1	RNR3	SPC110	NUF1	SPC42	SPK1	SRS2	HPR5	UNG1
S-phase:	HHT1	HHT2	HHF1	HHF2	HTA1	HTA2	HTB1	HTB2																																		
S/G2-phase:	CDC14	CIK1	CLB3	CLB4	CWP1	CWP2	KAR3	NUM1	TIR1																																	
G2/M-phase:	ACE2	ASE1	CDC20	CDC5	CLB1	CLB2	DBF2	FAR1	KIN3	MOB1	YRO2	(MST1)	MRH1	(MST2)	SED1	SPO12	SWI5																									
Goal 1:
- Allow a set of scattered genes without being clustered.

Goal 2:
- Incorporation of prior information in cluster formation.

A motivating example
Yeast cell cycle microarray data
PW-Kmeans

Formulation:
Assign n objects into k clusters and a possible noise set.
i.e. $C=\{C_1, \ldots, C_k, S\}$, \[X = (\bigcup_{j=1}^{k} C_j) \cup S \]
Extend K-means criterion to:

$$W(C; k, \lambda) = \sum_{j=1}^{k} \sum_{x_i \in C_j} w(x_i; P) \cdot d(x_i, C_j) + \lambda |S|$$

$d(x_i, C_j)$: dispersion of point x_i in C_j.
$|S|$: # of objects in noise set S.
$w(x_i; P)$: weight function to incorporate prior info P.
λ: a tuning parameter
PW-Kmeans

\[W(C; k, \lambda) = \sum_{j=1}^{k} \sum_{x_i \in C_j} w(x_i; P) \cdot d(x_i, C_j) + \lambda |S| \]

How does it work?

Penalty term \(\lambda \): assign outlying objects of a cluster to the noise set \(S \).

Weighting term \(w \): utilize prior knowledge of preferred or prohibited patterns \(P \).
Proposition:
Denote $C^* (k, \lambda) = \{C_1^* (k, \lambda), ..., C_k^* (k, \lambda), S^* (k, \lambda)\}$ the minimizer given k and λ.

1. If $k_1 > k_2$, $W(C^* (k_1, \lambda); k_1, \lambda) < W(C^* (k_2, \lambda); k_2, \lambda)$.

2. If $\lambda_1 > \lambda_2$, $|S^* (k, \lambda_1)| \leq |S^* (k, \lambda_2)|$.

3. If $\lambda_1 > \lambda_2$, $W(C^* (k, \lambda_1); k, \lambda_1) > W(C^* (k, \lambda_2); k, \lambda_2)$.

$$W(C; k, \lambda) = \sum_{j=1}^{k} \sum_{x_i \in C_j} w(x_i; P) \cdot d(x_i, C_j) + \lambda |S|$$
K-means and K-memoids are two special cases of the new generalized form of PW-Kmeans. (i.e. \(w(\cdot,\cdot)=1, \lambda=\infty \))

\[
W_{K\text{-means}}(C; k) = \sum_{j=1}^{k} \sum_{x_i \in C_j} \|x_i - \bar{x}^{(j)}\|^2
\]

\[
W_{K\text{-memoids}}(C; k) = \sum_{j=1}^{k} \sum_{x_i \in C_j} d\left(x_i, x^{(j)}\right)
\]
PW-Kmeans

Relation to classification likelihood

K-means loss function:

\[W_{\text{Kmeans}}(C; k) = \sum_{j=1}^{k} \sum_{x_i \in C_j} \| x_i - \bar{x}(j) \|^2. \]

Classification likelihood: (Gaussian model)

\[C_1(C, \theta) = f(x|C, \theta) = \sum_{j=1}^{k} \sum_{i \in C_k} \log f(x_i|\mu_j, \Sigma_j) \]

\[f(x_i|\mu_j, \Sigma_j) = \frac{\exp\{-\frac{1}{2}(x_i-\mu_j)^T \Sigma_j^{-1}(x_i-\mu_j)\}}{(2\pi)^{p/2} |\Sigma_j|^{1/2}} \quad \Sigma_j = \sigma^2 I. \]
PW-Kmeans

Relation to classification likelihood

Penalized K-means loss function:

\[
W_p(C; k, \lambda_0) = \sum_{j=1}^{k} \sum_{i \in C_j} \|x_i - \bar{x}^{(j)}\|^2 + \left(\frac{H}{\sqrt{k}}\right)^2 \cdot \lambda_0 |S|
\]

Classification likelihood: (Gaussian model)

\[
f(x|C, \theta) = \prod_{j=1}^{k} \prod_{i \in C_j} f(x_i|\mu_j, \Sigma_j) \prod_{i \in S} \frac{1}{|V|}
\]

\[
f(x_i|\mu_j, \Sigma_j) = \frac{\exp\{-\frac{1}{2}(x_i-\mu_j)^T \Sigma_j^{-1}(x_i-\mu_j)\}}{(2\pi)^{p/2} |\Sigma_j|^{1/2}} \quad \Sigma_j = \sigma_0^2 I
\]

\[
\lambda_0 = 2\sigma_0^2 \cdot (\sqrt{k} / H)^2 \cdot \log |V|
\]

\(V\) is the space where noise set is uniformly distributed.
PW-Kmeans

Estimate k and λ

Tibshirani et al. 2001
PW-Kmeans

Estimate k and λ

$C(X_{tr},k) =$ clustering operation when cluster X_{tr} into k clusters.

$D[C(X_{tr},k),X_{tr}]$ an $n \times n$ matrix denoting "co-memberships".

$D[C(X_{tr},k),X_{tr}]_{ii'} = 1$ if i and i' are in the same cluster.

$X_{tr} = (A_1^T, \ldots A_k^T)^T$ be the k cluster sets; $n_k = |A_k|$.

$ps(k) = \min_{1 \leq j \leq k} \frac{1}{n_j(n_j - 1)} \sum_{i \neq i' \in A_j} I(D[C(X_{tr},k),X_{te}]_{ii'} = 1)$

For each test cluster, we compute the proportion of observation pairs in that cluster that are also assigned to the same cluster by the training set centroids.
Simulation

Penalized K-means (no weight term)

\(\lambda \) is inversely related to the number of noise genes \(|S|\).
Simulation

Estimate k and λ
Applications

I: Yeast cell cycle microarray data

Prior information

Six groups of validated cell cycle genes:

<table>
<thead>
<tr>
<th>M/G1 Boundary:</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGA1 ASH1 CDC46 CDC47 CDC6 CHS1 CLN3 CTS1 EGT2 FUS1 MFA2</td>
</tr>
<tr>
<td>PCL2 PCL9 RME1 SIC1 SST2 STE2 SWI4 TEC1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Late G1, SCB regulated:</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLN1 CLN2 CSD2 CHS3 FKS1 CWH53 GAS1 HO KAR4 KRE6 MNN1</td>
</tr>
<tr>
<td>PCL1 PSA1 SWE1 TIP1 VAN2 GOG5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Late G1, MCB regulated:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASF1 ASF2 CDC21 CDC45 CDC8 CDC9 CLB5 CLB6 DBF4 DPB2 DPB3</td>
</tr>
<tr>
<td>GIC2 MCD1 MSH2 MSH6 NIK1 HSL1 PDS1 PMS1 POL1 POL12 POL2</td>
</tr>
<tr>
<td>POL3 CDC2 POL30 PRI1 PRI2 RAD17 RAD27 RAD51 RAD54 RFA1</td>
</tr>
<tr>
<td>RFA2 RFA3 RNB1 RNB3 SPC110 NUF1 SPC42 SPK1 SBS2 HPR5 UNG1</td>
</tr>
</tbody>
</table>

S-phase:

| HHT1 HHT2 HHF1 HHF2 HTA1 HTA2 HTB1 HTB2 |

S/G2-phase:

| CDC14 CIK1 CLB3 CLB4 CWP1 CWP2 KAR3 NUM1 TIR1 |

G2/M-phase:

| ACE2 ASE1 CDC20 CDC5 CLB1 CLB2 DBF2 FAR1 KIN3 MOB1 YRO2 |
| (MST1) MRH1 (MST2) SED1 SPO12 SWI5 |
Applications
I: Yeast cell cycle microarray data

Prior information
Six groups of validated cell cycle genes:

- $F_{1:M/G1}$
- $F_{2:\text{late G1}}$
- SCB regulated
- $F_{3:\text{late G1}}$
- MCB regulated
- $F_{4:S}$
- $F_{5:S/G2}$
- $F_{6:G2/M}$

8 histone genes tightly coregulated in S phase
Applications
I: Yeast cell cycle microarray data

Penalized K-means

The 8 histone genes are left in noise set S without being clustered.
Applications

I: Yeast cell cycle microarray data

Penalized weighted K-means

\[W_{pw}(C; k, \lambda_0) = \sum_{j=1}^{k} \sum_{i \in C_j} w_{pw}(x_i; \mathcal{P}) \|x_i - \bar{x}^{(j)}\|^2 + \left(\frac{H}{\sqrt{k}} \right)^2 \cdot \lambda_0 |S| \]

\[\mathcal{P} = \left((\mathcal{P}_1^{(1)}, \ldots, \mathcal{P}_{n_1}^{(1)}), \ldots, (\mathcal{P}_1^{(p)}, \ldots, \mathcal{P}_{n_p}^{(p)}) \right) \quad \text{Prior knowledge of } p \text{ pathways} \]

The weight is designed as a transformation of logistic function:

\[w_{pw}(x; \mathcal{P}) = \alpha + (1 - \alpha) \cdot \frac{1 - e^{-\tau h(x_i; \mathcal{P})}}{1 + e^{-\tau h(x_i; \mathcal{P})}} \]

\[h(x_i; \mathcal{P}) = \min_{l} \left(\frac{1}{n_l}\right) \sum_{m} ||x_i - \mathcal{P}_m^{(l)}|| \]
Applications
I: Yeast cell cycle microarray data

Design of weight function

\[w_{pw}(x; p) = \alpha + (1 - \alpha) \cdot \frac{1 - e^{-\tau h(x; p)}}{1 + e^{-\tau h(x; p)}} \]
Applications
I: Yeast cell cycle microarray data

Take three randomly selected histone genes as prior information, P. Then perform penalized weighted K-means.

The 8 histone genes are now in cluster 3.
Applications

I: Yeast cell cycle microarray data

Annotation prediction from clusters

<table>
<thead>
<tr>
<th></th>
<th>F₁</th>
<th>F₂</th>
<th>F₃</th>
<th>F₄</th>
<th>F₅</th>
<th>F₆</th>
<th>F₇</th>
</tr>
</thead>
<tbody>
<tr>
<td>C₁</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>58</td>
</tr>
<tr>
<td>C₂</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>10</td>
<td>31</td>
</tr>
<tr>
<td>C₃</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>101</td>
</tr>
<tr>
<td>C₄</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>39</td>
</tr>
<tr>
<td>C₅</td>
<td>0</td>
<td>4</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>71</td>
</tr>
<tr>
<td>S</td>
<td>16</td>
<td>8</td>
<td>5</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>1276</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>(F₁): M/G1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(F₂): late G1 SCB regulated</td>
</tr>
<tr>
<td></td>
<td>(F₃): late G1 MCB regulated</td>
</tr>
<tr>
<td></td>
<td>(F₄): S-phase</td>
</tr>
<tr>
<td></td>
<td>(F₅): S/G2-phase</td>
</tr>
<tr>
<td></td>
<td>(F₆): G2/M-phase</td>
</tr>
<tr>
<td></td>
<td>(F₇): unannotated genes</td>
</tr>
</tbody>
</table>

p-value calculation (null is hypergeometric distribution):

\[
P \left(G, D(F), n(C), d(F) \right) = 1 - \sum_{i=1}^{d(F)-1} \frac{\binom{D(F)}{i} \binom{G-D(F)}{n(C)-i}}{\binom{G}{n(C)}}
\]

\(G\): total of 1663 genes
\(D(F)\): # of genes in the functional category (23+5=28)
\(n(C)\): # of genes in the cluster (4+23+71=98)
\(d(F)\): # of genes in the cluster and the functional category (23)
Given a p-value threshold $\delta (\delta=0.01)$, we can compute:

Predictions made: $42+98+98=238$

Accuracy: $(10+4+23)/(42+98+98) = 15.55\%$

Varying δ gives varying “Predictions made” and “Accuracy”
Applications

I: Yeast cell cycle microarray data

Evaluation of annotation prediction

$\delta = 10^{-4}, \ldots 10^{-20}$

Accuracy of random guess
Applications

I: Yeast cell cycle microarray data

Conclusion: Evaluation of annotation prediction

- P-kmeans generally better than Kmeans.
- P-kmeans makes fewer predictions than Kmeans but produce much higher accuracy.
- Smaller λ result in smaller clusters and # of prediction made but with better accuracy.
Applications
II: CID fragmentation pattern in MS/MS

Enzyme → HPLC → MS → MS/MS

Protein #1: SIYDGK, FWSEFR
Protein #2: TLLHPYK

Peptide Sequencing Algorithm

Applications II: CID fragmentation pattern in MS/MS
Collision-Induced Dissociation (CID)

The abundance of such cleavages are recorded as intensities.

Applications
II: CID fragmentation pattern in MS/MS

The abundance of such cleavages are recorded as intensities.
Applications

II: CID fragmentation pattern in MS/MS

One single peptide: AAAMDAQAEAK

<table>
<thead>
<tr>
<th>A</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>P</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1st</th>
<th>2nd</th>
<th>count</th>
<th>intensities</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>2</td>
<td>0 0.381</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>D</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>E</td>
<td>1</td>
<td>0.031</td>
</tr>
<tr>
<td>A</td>
<td>F</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>G</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>H</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>I</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>K</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>L</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>M</td>
<td>1</td>
<td>0.514</td>
</tr>
<tr>
<td>A</td>
<td>N</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>P</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Q</td>
<td>1</td>
<td>0.096</td>
</tr>
<tr>
<td>A</td>
<td>R</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>S</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>T</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>V</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>W</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Y</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>A</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Assume intensities measure the probability of dissociation.

All intensities normalized to [0,1]
Applications

II: CID fragmentation pattern in MS/MS

For a specific set of peptides (720 peptides):

<table>
<thead>
<tr>
<th>A</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>K</th>
<th>L</th>
<th>M</th>
<th>N</th>
<th>P</th>
<th>Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1st</th>
<th>2nd</th>
<th>count</th>
<th>intensities</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>188</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>1</td>
<td>0.105</td>
</tr>
<tr>
<td>A</td>
<td>D</td>
<td>91</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>A</td>
<td>E</td>
<td>94</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>A</td>
<td>F</td>
<td>41</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0.008 0.008 0.01</td>
</tr>
<tr>
<td>A</td>
<td>G</td>
<td>129</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>A</td>
<td>H</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>I</td>
<td>69</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0.019</td>
</tr>
<tr>
<td>A</td>
<td>K</td>
<td>5</td>
<td>0 0.01 0.013 0.122 0.139</td>
</tr>
<tr>
<td>A</td>
<td>L</td>
<td>137</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>A</td>
<td>M</td>
<td>28</td>
<td>0.004 0.02 0.023 0.034 0.034 0.06 0.062 0.068 0.093 0.101 0.122</td>
</tr>
<tr>
<td>A</td>
<td>N</td>
<td>52</td>
<td>0 0 0 0 0 0.006 0.022 0.025 0.025 0.033 0.039 0.046</td>
</tr>
<tr>
<td>A</td>
<td>P</td>
<td>152</td>
<td>0 0 0 0 0.012 0.029 0.041 0.042 0.049 0.059 0.068</td>
</tr>
<tr>
<td>A</td>
<td>Q</td>
<td>58</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>A</td>
<td>R</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>S</td>
<td>59</td>
<td>0 0 0 0 0 0.01 0.021 0.031 0.038 0.04 0.049</td>
</tr>
<tr>
<td>A</td>
<td>T</td>
<td>78</td>
<td>0 0 0 0 0 0 0 0 0 0 0.013 0.018</td>
</tr>
<tr>
<td>A</td>
<td>V</td>
<td>88</td>
<td>0 0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>A</td>
<td>W</td>
<td>11</td>
<td>0 0 0 0 0.029 0.149 0.205 0.321 0.428 0.454 1</td>
</tr>
<tr>
<td>A</td>
<td>Y</td>
<td>26</td>
<td>0 0 0 0 0.008 0.011 0.047 0.063 0.065 0.078 0.079</td>
</tr>
<tr>
<td>C</td>
<td>A</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

$20 \times 20 = 400$ independent distributions

Each with 0 or multiple (up to hundreds) observations
Applications

II: CID fragmentation pattern in MS/MS

Protein #1:
- SIYDGK
- FWSEFR
- TLLHPYK

Protein #2:

Peptide Sequence

Peptide Sequencing Algorithm

Enzyme → HPLC → MS → Abundance

m/z

(CID)
Current protein identification algorithms assume completely random dissociation probability pattern.

This is, however, found not true and the dissociation pattern depends on the charge state and the peptide sequence motif.
Applications

II: CID fragmentation pattern in MS/MS

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>188</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>C</td>
<td>1</td>
<td>0.105</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>D</td>
<td>91</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>E</td>
<td>94</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>F</td>
<td>41</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.008</td>
</tr>
<tr>
<td>A</td>
<td>G</td>
<td>129</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>H</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>I</td>
<td>69</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>K</td>
<td>5</td>
<td>0</td>
<td>0.01</td>
<td>0.013</td>
<td>0.122</td>
<td>0.139</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>L</td>
<td>137</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>M</td>
<td>28</td>
<td>0.004</td>
<td>0.02</td>
<td>0.023</td>
<td>0.034</td>
<td>0.034</td>
<td>0.06</td>
<td>0.062</td>
<td>0.068</td>
<td>0.093</td>
</tr>
<tr>
<td>A</td>
<td>N</td>
<td>52</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.006</td>
<td>0.022</td>
<td>0.025</td>
<td>0.025</td>
</tr>
<tr>
<td>A</td>
<td>P</td>
<td>152</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.012</td>
<td>0.029</td>
<td>0.041</td>
<td>0.042</td>
</tr>
<tr>
<td>A</td>
<td>Q</td>
<td>58</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A</td>
<td>R</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>A</td>
<td>73</td>
<td>0.018</td>
<td>0.026</td>
<td>0.032</td>
<td>0.046</td>
<td>0.046</td>
<td>0.093</td>
<td>0.108</td>
<td>0.146</td>
<td>0.155</td>
</tr>
<tr>
<td>D</td>
<td>C</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>38</td>
<td>0</td>
<td>0.012</td>
<td>0.056</td>
<td>0.097</td>
<td>0.097</td>
<td>0.118</td>
<td>0.135</td>
<td>0.142</td>
<td>0.156</td>
</tr>
<tr>
<td>D</td>
<td>E</td>
<td>53</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.021</td>
<td>0.026</td>
<td>0.035</td>
<td>0.05</td>
<td>0.073</td>
<td>0.08</td>
</tr>
<tr>
<td>D</td>
<td>F</td>
<td>38</td>
<td>0</td>
<td>0.003</td>
<td>0.044</td>
<td>0.1</td>
<td>0.119</td>
<td>0.214</td>
<td>0.232</td>
<td>0.283</td>
<td>0.41</td>
</tr>
<tr>
<td>D</td>
<td>G</td>
<td>44</td>
<td>0.024</td>
<td>0.128</td>
<td>0.128</td>
<td>0.226</td>
<td>0.239</td>
<td>0.247</td>
<td>0.383</td>
<td>0.395</td>
<td>0.491</td>
</tr>
<tr>
<td>D</td>
<td>H</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>I</td>
<td>38</td>
<td>0.029</td>
<td>0.054</td>
<td>0.063</td>
<td>0.128</td>
<td>0.15</td>
<td>0.173</td>
<td>0.229</td>
<td>0.233</td>
<td>0.257</td>
</tr>
<tr>
<td>D</td>
<td>K</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>L</td>
<td>76</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.01</td>
<td>0.057</td>
<td>0.064</td>
<td>0.113</td>
</tr>
<tr>
<td>D</td>
<td>M</td>
<td>15</td>
<td>0</td>
<td>0.147</td>
<td>0.212</td>
<td>0.376</td>
<td>0.419</td>
<td>0.709</td>
<td>0.806</td>
<td>0.841</td>
<td>0.885</td>
</tr>
<tr>
<td>D</td>
<td>N</td>
<td>18</td>
<td>0.047</td>
<td>0.108</td>
<td>0.232</td>
<td>0.442</td>
<td>0.458</td>
<td>0.506</td>
<td>0.508</td>
<td>0.575</td>
<td>0.585</td>
</tr>
<tr>
<td>D</td>
<td>P</td>
<td>63</td>
<td>0.122</td>
<td>0.444</td>
<td>0.481</td>
<td>0.61</td>
<td>0.631</td>
<td>0.675</td>
<td>0.753</td>
<td>0.882</td>
<td>0.883</td>
</tr>
<tr>
<td>D</td>
<td>Q</td>
<td>14</td>
<td>0</td>
<td>0.098</td>
<td>0.163</td>
<td>0.228</td>
<td>0.262</td>
<td>0.297</td>
<td>0.421</td>
<td>0.459</td>
<td>0.463</td>
</tr>
<tr>
<td>D</td>
<td>R</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AX: low

DX: high
Applications
II: CID fragmentation pattern in MS/MS

Visualization of a distribution:
Ten concentric donuts to represent 5%, 15%,…, 95% percentiles. Value represented by gradient color.
Applications
II: CID fragmentation pattern in MS/MS

The dissociation pattern depends on the charge state and the peptide sequence motif.
Distances cannot be defined for most pairs of peptides. (more than 95% missing values)

Distance between a peptide and a set of peptides can be defined.

K-means and PW-Kmeans are applicable while most other clustering methods fail.

\[
W(C; k, \lambda) = \sum_{j=1}^{k} \sum_{x_i \in C_j} w(x_i; P) \cdot d(x_i, C_j) + \lambda |S|
\]
Applications
II: CID fragmentation pattern in MS/MS

[...P...R]^+

Original Data
1+,P...R

Kmeans
cluster 1

P-Kmeans
cluster 1

674 peptides

1184 peptides

720 peptides

[...P...R]^2+

2+,P...R

cluster 2

cluster 2

2182 peptides

1671 peptides

1775 peptides
• Intensity data of each peptide contain >95% missing values. Most clustering methods would not work.
• Dissimilarity between two peptides cannot be defined.
• Fortunately dissimilarity between one peptide and a set of peptides can be calculated and penalized K-means can be used.
Discussion

heuristic

Hierarchical clustering
CLICK
SOM

Model-based

K-memoids
K-means
PW-Kmeans

Gaussian mixture model
Bayesian clustering

Tight clustering
(re-evaluation machine by re-sampling techniques)
Conclusion

- Penalized and weighted K-means (PW-Kmeans) provides a general and flexible way for clustering complex data.

- The penalty term allows a noise set not being clustered, avoiding information dilution by noises.

- The weights can be designed to incorporate biological prior pathway information. Similar to Bayesian approach but avoids specific modelling.

- In the situation of many missing values (MS/MS example), most methods are hard to pursue but P-Kmeans worked well.
Acknowledgement

- MS/MS data collaboration with Yingying Huang from Vicki Wysocki’s lab in University of Arizona

- Discussion and comments from Haiyan Huang, Eleanor Feingold and Wing Wong.