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Abstract— Human behaviors are often prohibited, or permit-
ted by social norms. Therefore, if autonomous agents interact
with humans, they also need to reason about various legal
rules, social and ethical social norms, so they would be trusted
and accepted by humans. Inverse Reinforcement Learning
(IRL) can be used for the autonomous agents to learn social
norm-compliant behavior via expert demonstrations. However,
norms are context-sensitive, i.e. different norms get activated in
different contexts. For example, the privacy norm is activated
for a domestic robot entering a bathroom where a person may
be present, whereas it is not activated for the robot entering
the kitchen. Representing various contexts in the state space of
the robot, as well as getting expert demonstrations under all
possible tasks and contexts is extremely challenging. Inspired
by recent work on Modularized Normative MDP (MNMDP)
and early work on context-sensitive RL, we propose a new
IRL framework, Context-Sensitive Norm IRL (CNIRL). CNIRL
treats states and contexts separately, and assumes that the
expert determines the priority of every possible norm in the
environment, where each norm is associated with a distinct
reward function. The agent chooses the action to maximize its
cumulative rewards. We present the CNIRL model and show
that its computational complexity is scalable in the number
of norms. We also show via two experimental scenarios that
CNIRL can handle problems with changing context spaces.

I. INTRODUCTION

Autonomous agents are increasingly assuming roles that
involve interaction with humans, including domestic robots
such as Roomba, assistive robots in hospitals or office
environments, and self-driving cars. In order to let those
agents interact with people in a natural way, it is vital for
them to not only perform their domain tasks, but also to
reason about various moral values, legal rules, and social
conventions to gain human acceptability. Social norms [1],
which denote guidelines of behaviors that are socially agreed
upon, have formalized the prohibitions, permissions, and
obligations of the agents when they are engaged in social
activities.

Normative Markov Decision Process (NMDP) [2] is a
framework that incorporates the social norms into reinforce-
ment learning (RL), and solves the limitations of rule-based
approaches by actively learning social rules without pre-
defining them in advance [3], [4], [5]. The Modular Norma-
tive Markov Decision Process (MNMDP) in [6] addresses
the scalability issue of reasoning over all combinations of
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norms by considering only activated norms which invoke
an associated reward function and the corresponding pre-
computed optimal policy.

However, all the above approaches require manually
designing the reward function that could induce norm-
compliant behaviors. The developers need to have knowledge
on how the reward function captures the desired values
reflected in human beliefs when the agent acts socially, and
also have to hand-tune the function parameters. As men-
tioned in [7], [8], one of the general challenges of using RL
to develop norm-aware agents is the need to manually design
appropriate reward functions, which requires the developers
to specify the exact reward values that the agent should
receive for norm-compliant or norm violation behaviors for
all possible norms. To ensure that RL agents learn about
the norms in addition to their domain task, developers need
to craft appropriate reward functions for each norm’s com-
pliance. Inverse Reinforcement Learning (IRL) avoids hand-
crafting rewards by learning from expert demonstrations, and
thus could ameliorate the dilemma of designing appropriate
reward function for normative behavior. The agent ideally
learns from what a norm-compliant expert demonstrates,
just like a child learning what is socially appropriate from
well-behaved adults. Therefore, we claim that IRL is a
powerful tool with infinite potential to learn from social
norms, recover what experts value, and finally build a norm-
compliant autonomous agent.

Additionally, norms are highly sensitive to environmental
contexts [9], [10], which refer to factors that are independent
from the domain task but affect which norms are active and
prioritized, e.g. weather conditions, accidents, road blocks
etc. for a self-driving car. We further assume that the context
is independent of the domain task in this paper. One might
argue that even though utilizing context as an indicator to
guide the norm design and selection might be intuitive and
promising, naively adding contexts into the state space could
also ensure agents are norm-compliant, but this unfortunately
is highly likely to result in an explosion of the state space,
making such an approach infeasible for environments with
large number of contexts.

To address the above issues, we propose a new IRL
framework called Context-Sensitive Norm IRL (CNIRL) that
extends the work on Modularized Normative MDP [6],
and early work on context-sensitive RL in the cognitive
science literature [11]. CNIRL treats states (related to the
domain task) and contexts (related to the social conventions)
separately, and assumes that the expert constantly determines
the priority of every possible norm in the environment, where



each context-sensitive norm is associated with a different
reward function over the domain state and the agent chooses
the action to maximize cumulative rewards. The trained
model recovers a set of reward parameters for each social
norm in the environment, and also an activation function
that can estimate the relevant importance for each social
norm under different states and contexts, which serves as
the priority of norms implicitly. By exploiting the fact that
social norms are context-sensitive, our model scales well to
the number of social norms and their context complexity that
may be relevant to the given environment.

The paper is organized as follows: Section 2 discusses
related work; Section 3 provides a brief background on
IRL and Modularized Normative MDP; Section 4 presents
our Context-Sensitive Norm Inverse Reinforcement Learning
framework as well as the maximum likelihood estimation for
optimizing the model parameters; Section 5 describes our
simulation results; Section 6 concludes and provides possible
directions for future work.

II. RELATED WORK

Utilizing IRL to study norms has been recently discussed
in the social norm community [12], but to our knowledge
none of the work touches the context-sensitive nature of
norms. Prior works have shown that norm activation is
context-sensitive [9]. Authors in [13] and [14] use Dempster-
Shafer Theory [15] to compute how context relates to norms.
Context sensitive reinforcement learning work is sparse with
some exceptions in the 2005s [11] [16], in which the authors
propose Context-sensitive MDP that maps a context to an
MDP that shares the same state space of tasks and action
space with other MDPs but has a distinct reward function
and transition function. However, that work considers neither
social norms nor IRL. Inspired by the separation of the ob-
servable and context information of prior work, we propose a
scalable model, called Context-sensitive Norm IRL (CNIRL)
that considers both social norms and IRL and uses the
separation of context and task related information in the state
space. In this model, we can cluster expert demonstration
trajectories that contain norms that are conditioned on the
similar context, and develop the norm activation and reward
function for each cluster.

A variety of work has dealt with clustering multiple
intents. [17] first designs the Maximum Likelihood Inverse
Reinforcement Learning (MLIRL) to handle the problem. It
is then improved by [18] and [19] to generalize to the non-
parametric case where the number of intents is not given.
[20] first considers the locally consistent reward functions,
where a single trajectory might contain multiple intents,
and [21] works on both the non-parametric and locally
consistent cases. Our work is especially inspired by the
locally consistent reward functions, since this captures the
intuition that the norm(s) that should be activated might
change on one single trajectory due to changing contexts,
and result in switching to other reward functions. Even
though we have a complete different model that includes
context, we share similar intuitions with the above works.

However, as [8] points out, the requirement of collecting a
large amount of human data as demonstrations, as well as
the expensive computation for realistic tasks is a big concern
for IRL. This is because demonstrations need to cover all
the possible varied contextual factors, which might lead to
combinatorial problems, by which CNIRL is not hindered as
it only considers relevant context for the activated norms.

In addition, as mentioned in [6], the computation cost
is intractable if we want to compute the optimal policy
in the full Normative MDP system [2] that considers all
the potential norms. [6] proposes a modularized approach,
in which it only calls the reduced MDP with the current
activated norms. More related works on modular MDP could
be found in [22], [23], [24], [25]. Our method of Context-
Sensitive Norm IRL is also a modular process: at each
time step the agent only considers the norm(s) that may
get activated given the observation of current context and
the state, so that even though a number of corresponding
MDPs conditioned on the norm selection have to be solved,
each of them has a smaller size than the full NMDP with
context. Those smaller MDPs are only different in terms of
the parameters to calculate the reward functions, and thus
would not make the storage explode but might be even
faster in parallel computing. Hence, our innovation lies in the
extension on incorporating a modified IRL algorithm as well
as the consideration of context influence into the framework
based on the MNMDP, in order to study social norms better.

III. BACKGROUND

A. Inverse Reinforcement Learning

Markov Decision Process (MDP) is a discrete-time de-
cision making mathematical framework where the agent
behaves by taking an action each time and getting feedback
from the environment. Inverse Reinforcement Learning (IRL)
relies on this paradigm to find out the implicit reward
function for the agent given expert demonstrations.

Definition 1 (Markov Decision Process). A Markov Decision
Process (MDP) is a tuple (S,A,R, T , γ), where S is a set
of states, A is a set of actions, R : S 7→ R is the reward
function, T (s, a, s′) = p(s′|s, a) is the transition function,
and γ ∈ [0, 1] is the discount factor.

A policy, π(s, a) = p(a|s), specifies the probability of
performing action a at state s. The Q-function Qπ(s, a) is
defined by the expected total discounted reward obtained
starting from state s and performing action a:

Qπ(s, a) =
∑
s′∈S
T (s, a, s′)[R(s′) + γ max

a′∈A
Qπ(s′, a′)] (1)

Traditional RL finds the optimal policy π∗, the policy
that maximizes the discounted cumulative reward received
for any state. IRL instead considers the case of having an
unknown reward function, and uses the expert demonstra-
tions to recover it. The reward function R is assumed to be
parameterized as a linear combination of predefined state
features φ(s), with weights θ as the reward parameters.
Hence, the reward of state s, R(s), is θ · φ(s). With K



different reward functions, Rk(s) = θk · φ(s) for k =
1, 2...K, which gives the reward of state s under the kth
reward function. Finding θ = {θ1, ..., θK} solves the IRL
problem. Furthermore, although a typical IRL uses the linear
combination of state features to construct the reward map,
it could be generalized to a non-linear one if needed [26],
[27].

B. Normative Markov Decision Process

The Normative Markov Decision Process (NMDP) [2] is
an extension of MDP, which models the decision process for
the agents that are norm-aware.

Definition 2 (Normative Markov Decision Process). A
Normative Markov Decision Process (NMDP) is a tuple
(S,A,R, T , γ,N ), where S, A, T , and γ are the same
as Definition 1, but R is the reward for the domain
task. N is the set of social norms, which is a tuple
(ν,Σ, φn, φa, φd, σ, δ, ρ), where ν ∈ {O, P, F} denotes the
deontic modality, Σ is the set of norm applicable states, φn
is the set of states in Σ where ν applies, φa, φd denote the
activation and deactivation functions, σ is the sanction, δ
represents the authority, and ρ ∈ Z+ represents priority.

The recent work [6] proposes a scalable framework called
Modular Normative Markov Decision Processs (MNMDP)
that integrates the domain goal and norm reasoning by
modulazring the full NMDP into smaller MDPs with a subset
of norms. Instead of considering all the norms, MNMDP
only updates the set of norms that get activated when the
agent takes each action. It then follows the activated norms to
decide the optimal policy at each time step. It further assumes
that each norm is associated with a specific reward function,
which is different from the domain task, to represent the
sanction. For example, if the norm “avoid collision” is active,
then in the corresponding reward function, all the states that
the agent collides with others would have a low reward to
address this prohibition. The priority is implicitly inferred
based on the activation as well, by giving activated norms a
higher rank, and non-activated norms a lower rank according
to the activation function.

In this paper, combined with IRL and contextual insights,
we further extend the MNMDP model with the focus on
recovering sanctions, i.e. a set of reward functions {Rk},
parameterized by {θ1, . . . , θK}, and the activation functions
for the K context-sensitive norms. Note that we do not aim
to learn every component in NMDP presented above.

IV. PROPOSED METHODS

A. Context-Sensitive Norm IRL

Our work focuses on how to construct and learn when
one or more norms would get activated, as well as learn the
optimal policy π∗(a|s, c), when we are given norm-compliant
expert demonstrations, which is a set D = {τ1, ..., τn},
where n is the number of demonstrations and τi is the
ith trajectory. A trajectory τi consists of Tτ state-context-
action pairs {(s1, c1, a1), ..., (sTτ , cTτ , aTτ )}. Here ct is the
contextual information in the environment at time t, which

denotes the environmental factors that affect the norm, but
are independent of the domain task and are not under the
control of the agent. Context space C denotes the set of all
possible values of ct.

The new framework we propose is called Context-
Sensitive Norm Inverse Reinforcement Learning (CNIRL),
which is an extension based on MNMDP that has the
reduction in computation complexity from normative MDP.
We are inspired by the model of Context-sensitive MDP
[11], [16] that utilizes the context information, so that we
incorporate the norm and context information to form a
new model Context-Sensitive MNMDP, and create efficient
IRL methods to learn the appropriate construction of norms
given expert demonstrations. It could further be viewed as a
decomposition of the whole state space into the norm-related
modules. We specifically focus on calculating the reward
parameters θk and the norm activation φa(s, c), which maps
from current state and context to an activation score, for each
of the norms. The illustration of how a Context-Sensitive
MNMDP makes decisions is depicted in Fig. 1.

Fig. 1: Illustration of Context-Sensitive Modular Normative
Markov Decision Process. At each time step t, (a) the agent
first perceives the current state st and environmental context
ct; (b) the agent estimates each norm’s activation score using
the norm-activation function φa(st, ct); (c) the agent finds
the reward function Rt according to the active norm(s), and
(d) based on its optimal policy, it picks the action at.

Definition 3 (Context-Sensitive MNMDP).
A Context-Sensitive MNMDP is a tuple
(C,S,A, T , φa, {Rk}k=0,..,K , γ). Notice that S, A, T ,
γ and R0 are the same as in definition 1, i.e. R0 for the
domain task, while {Rk}k=1,..,K corresponds to the kth
norm in N in definition 2. C is the context space and
φa(s, c) maps a tuple of state and context pair (s, c) to a
vector of activation scores for each of the K norms. i.e.
φa(s, c) � 0K+1 and

∑K
k=0 φa(s, c)k = 1. Under s and c,

the agent acts with the optimal policy calculated by either
the weighted reward function

∑K
k=0 φa(s, c)kRk, or the

most potential reward function Rargmaxk φa(s,c)k , specified
by the scenario. After each a ∈ A is performed, s and c are
again updated according to the environment.

We assume that the expert demonstrations we learn from
are compliant with the norms, and our goal is to learn
the reward functions R and the activation function φa,
which we represent as functions parameterized by θ and α,
respectively. Whenever the θ and α are calculated, we use
the traditional Boltzmann distribution to compute the optimal



policy [28]. Therefore, the probability of choosing an action
is proportional to its exponential weighted optimal Q values,
i.e. p(a|s, c) ∼ exp(βQ̄(s, a|c)) where β is a parameter of
the exponential distribution.

How do we achieve reduction of computational com-
plexity? Indeed, we have eliminated the extra information
of “context transition”. Recall that if we want to take the
contextual information into consideration, the dimension of
state is augmented to include both the domain task and the
context. Then the transition function has to consider how
context would transit if an action is taken as well as how the
domain state transits. However, this augmentation has no real
performance improvement in the scenarios that the context
is independent from the domain task, but simply increases
the computation complexity due to the exponential growth
of contextual information changes.

More formally, assume state has n dimensions, with each
can take u values, action can take v values, and the context is
a vector of m dimensions, with each can take w values. Then
the sizes of the state space, action space, and context space
are |S| = un, |A| = v, |C| = wm. If we augment the context
into the state space, then the “augmented” state space would
have size |S||C| = un ·wm. Recall the Bellman iteration [29]
in MLIRL which approximates the gradient of the reward
parameters through fixed-point iterations. For each iteration
the computation cost would be O((|S||C|)2|A|) = O(u2n ·
w2m ·v). Now our crucial assumption is that there are |N | <
|C|2 norms in the environment, each associated with a reward
function over the domain state only, and can be invoked by
the state and context information. In this model we need to
perform the Bellman iteration for all norms, but with lower
cost for each, which gives O(|N ||S|2|A|) = O(|N | · u2n ·
v) < O(u2n · w2m · v). The computation complexity is thus
linear to the number of norms, and we avoid the exponential
growth of the context in the transition function.

Hence, since we treat the context as what we observe in-
stead of what we predict, and make the decision conditioned
on the context-sensitive norm, context can be effectively
utilized as the indicator for selecting norms, and we can
ensure computational reduction. This preserves the same
spirit as in [6] to reduce computation, with one more step to
tell which norm(s) is active depending on the state and the
context, as well as how we could reasonably construct the
norm from expert demonstrations.

B. Maximum Likelihood Estimation

We assume the reward R is a linear combination of θ, and
the activation function φa could be captured by a network
parameterized by α, and estimate both of them via MLE and
gradient descent. Note that the math derivation for α does
not limit φa to be any specific network. Further assuming
the trajectories are generated independently, we can write
the likelihood of the set of demonstrations D:

L(D;α, θ) =
∏
τ∈D

pα,θ(τ)

=
∏
τ∈D

Tτ∏
t=1

p(st|st−1, at−1)p(ct)pα,θ(at|st, ct)

(2)
The log-likelihood of D is thus given by:

logL(D;α, θ) =
∑
τ∈D

log p(s1) +
∑
τ∈D

Tτ∑
t=1

log p(ct)

+
∑
τ∈D

Tτ∑
t=2

log p(st|st−1, at−1)

+
∑
τ∈D

Tτ∑
t=1

log pα,θ(at|st, ct)

(3)

We assume the MDP has a static initial state distribution, a
static stochastic transition function, and the context variables
are stationary and unaffected by agent actions (i.e., norms
become active or inactive regardless of agent actions). There-
fore, the first three terms are unaffected by the parameters
defining reward function and activation function. Thus, when
taking the gradient, we only need to consider the last term
in Equation 3 which is parameterized by θ and α. For the
reward parameter θk, expanding out the last term with the
Boltzmann distribution yields

∇θk log pα,θ(at|st, ct) = βφa(st, ct)k(∇θkQ∗θk(st, at)

−
∑
a′t∈A

pα,θ(a
′
t|st, ct)∇θkQ∗θk(st, a

′
t))

(4)

where ∇θkQ∗θk(s, a) for each k = 0, . . . ,K can be
estimated by a set of fixed-point equations similar to the
Bellman-optimality equations [29] which is commonly used
in Maximum Likelihood-based IRL methods:

∇θkQ∗θk(s, a) = ∇θkRk(s)

+γ
∑
s′∈S
T (s′|s, a)

∑
a′∈A

π∗θk(s′, a′)∇θkQ∗θk(s′, a′)

(5)
Calculating the gradient with respect to α, we have:

∇α logpα,θ(at|st, ct) = β
∑
k∈K

(Q∗θk(st, at)

−
∑
a′t∈A

pα,θ(a
′
t|st, ct)Q∗θk(st, a

′
t))∇αφa(st, ct)k

(6)

Notice that (Q∗θk(st, at)−
∑
a′t
pα,θ(a

′
t|st, ct)Q∗θk(st, a

′
t))

in equation (6) is exactly the conditional advantage under
context ct corresponding to the kth reward function. It
measures how much better the action given by the policy is
compared to the average result weighted by all the possible
actions, and thus alpha is optimized to amplify the advantage
of the observed expert’s actions.



V. EXPERIMENTS

A. Scenario 1: Serve for a Cocktail Party

We first extend the scenario “Grab a Milk” in [8] to a
dynamic setting which makes it more challenging. In this
scenario, the agent serves as a waiter/waitress to navigate
to the kitchen as its domain task, while at the same time,
it carries sufficient drinks or snacks, and navigates to the
guests when they want any, or avoids disturbing those
guests that currently do not need any service on its way,
as its pre-specified norms. [8] claims it challenging for IRL
methods to solve similar tasks due to the exponentially
growing state space of context information, and the number
of expert demonstrations required. We show that our CNIRL
is able to solve this extended scenario successfully, and make
comparison to other benchmark algorithms.

More specifically, in a 15 by 15 map, the agent starts from
(4, 0) with the domain task to go to the goal position (14,
14) (the upper right corner) of kitchen (see Figure 2). There
are a number of guests and they may want drink or snacks
at random time steps. The agent is supposed to navigate to
the guests whenever they are in need. For each time step, the
domain state is the agent’s location, and the context is each
guest’s status. If no guest is in need, the agent is supposed
to go to the goal position and try to avoid all the guests;
otherwise the agent is expected to always go serve the nearest
guest in need. In this setting, the size of context space is
exponential in the number of guests and their needs that
change over time, but the number of reward functions grows
linearly as the number of guests grows.

Fig. 2: (a) and (b) are example expert behaviors. States
with lighter colors have relatively high rewards and states
with darker colors have lower ones. The red line shows the
trajectory of the agent and red dot is its current position. (c)
is a simulation for illustration.

0The implementation code: https://github.com/sophieyueguo/cnirl

Each reward function takes the form Rk(s) = θTk φ(s),
and we pre-determine φ(s) to be a binary vector consisting
of whether the agent is at a guest position and the goal
position, so the dimension of φ(s) is one plus the number of
guests. We have multiple guests who begin to want snacks
or drinks at time step t ∼ uniform(0, 40). 500 expert
trajectories with maximum 40 time steps are generated. We
set the architecture of φa to be 16-20-10 (number of units
in different layers) with L2 regularity factor of 10−5 on the
weight matrices, where the input to the network consists of
each status of a guest and the Euclidean distance to the agent.

B. Scenario 2: Support a Marathon Runner

We have also developed a more challenging scenario called
“Support a Marathon Runner”, where the agent serves as a
supply car that moves relatively slowly behind a marathon
runner towards the goal location of the marathon. The runner
would either take a break at the supply locations if she or
he is tired, or pass by if otherwise. While the runner takes a
break and stays in a supply location for a few seconds, the
supply car is supposed to go to this location, but otherwise
the supply car is expected to avoid this location to reduce
the interruption since the runner does not need a break.

This scenario has the same “help” and “avoid” contextual
information as in the previous scenario, but it is extended
in terms of mobility of the humans that our agent want
to help with. The supply car will only be considered as
successfully helping the runner when it reaches the runner’s
location within the time that the runner stays there. However,
the runner will only briefly stay, and move on towards the
goal location no matter whether the supply car comes or not.
On the other hand, “avoid” succeeds if the agent can tell the
runner would only pass through the supply location, and does
not go there.

As shown in Figure 3, in a world of 3 marathon tracks
with 40 units of length, the runner starts from the middle
lane at unit 2 and the car agent starts from the middle lane
at unit 0. The domain task is to go to the goal location at
unit 40 in any of the lanes. The runner has a fixed speed
that is faster than the agent, and chooses the lane randomly
when not considering passing by or staying in the supply
locations. The duration of the runner to stay in the supply
locations is 4 time steps. Whether the runner wants a “help”
or “avoid” is the contextual information, and the number of
all possible context values is exponential in the number of
supply locations, but the number of reward functions grows
linearly with respect to it.

The state s is the location of the agent, and the state feature
φ(s) is a vector that denotes whether the state is near the
supply location and if it is a goal location. We set 1 if it
is the exact supply location, 0.5 if within visible range of
8 by 2 units, and 0 otherwise, resulting in its dimension
being the number of supply locations plus one. 500 expert
trajectories are generated with β = 15, and we set β = 5
when computing the parameters θ and α. The architecture
of φa is the same as in scenario A.



(a) (b) (c) (d)

Fig. 3: An example of the expert’s demonstrations in “Sup-
port a Marathon Runner”. States with light colors, such as
yellow, have relatively high rewards, and those with dark
colors, such as blue and purple, have lower ones. The blue
dot is the current location of the runner, and the blue line is
her or his trajectory. The white dot and line are for the supply
car agent. When the runner is not in the supply locations,
the agent only goes towards the domain goal as it moves
towards the end of the track as shown in (a), while in (b)
and (c) it goes towards or roundabout the supply locations.
The supply locations are located in the cells marked with
black stars, and they are only shown in (a) for simplicity.
(d) gives a 3D simulation on supporting a marathon runner.

C. Comparison with Expert Behaviors

In both static and moving scenarios, we first evaluate
the learned optimal behavior calculated from the recovered
reward function by comparing it with the norm-compliant
expert’s behavior. For the scenario of serving a guest, we
calculate the average number of times the agent navigates
to guests in need or not during one task. For every 10
iterations of training, we sample 500 trajectories using the
trained parameters and test on the performance. The results
are compared with those of the expert in Fig.4 (a).

Figure 4 (a) shows that the average number of helping
steadily increases during training. Although at first the agent
doesn’t pay attention to avoid guests that are not in need,
possibly because the agent tries to approach all guests to
learn helping better, this is taken into account after a number
of iterations. The agent’s behavior is ultimately aligned
with the expert’s, which justifies our method’s capability of
learning norm-compliant behaviors under changing contexts.

In the scenario of supporting a marathon runner, for every
10 episodes of training, we sample 500 trajectories and test
the same runner context for the expert and the trained agent.
We calculate the number of times that the runner actually
needs or does not need help, as well as whether the agent
has come to the supply location or not. The ratio yields the
success rates of helping (Figure 4 (b)) and failure rates of
avoiding interruption (Figure 4 (c)).

It is clear from Figure 4 (b) that the agent is finally able to
achieve the same success rate with the expert, with steadily
increasing performance and occasional drawbacks. Figure 4
(c) shows that the failure rate starts from 0 at the beginning
of the training when the agent has no knowledge of whether
to help or avoid the runner. The agent gradually learns how
to approach the runner, but is still uncertain in distinguishing
between “help” and “avoid”. Whenever it mistakes the need
of avoiding for the need of helping, the failure occurs. It
takes a few hundred episodes to converge to a relatively low
rate of failure, where the agent can avoid going to the supply
location when the runner has no need of being supplied. The
success and failure rate results demonstrate that CNIRL is
able to handle the harder case where there are two moving
objects (the supply car agent and the runner) along with
dynamically changing context.

D. Comparison with Other Benchmark IRL Algorithms

We implement three benchmark IRL algorithms, Bayesian
IRL (BIRL) [30], Maximum Entropy IRL (MaxentIRL) [31],
and Maximum Likelihood IRL (MLIRL) [32] for both the
cases of serving for a cocktail party and supporting a
marathon runner, and make comparisons with our CNIRL.
First we show the performances of all algorithms on the
cases where only one object is present, and then we show
the run-time of them with respect to the varied number of
objects. Finally we compare the performances of multiple
objects solved by the algorithms being able to handle the
resulting context complexity.

Figure 5 gives the performances by recording the probabil-
ity of successfully helping a guest or the runner when needed
and the probability of failing to avoid when not needed over
the training process. The tasks for two scenarios only contain
one guest or one supply location, and thus also serve as a
sanity check for the three benchmark IRL algorithms since
the context complexity is relatively small. According to the
plots in (a) and (b), all algorithms can achieve the perfect
100% successful rate to help the guest or the runner when
they are in need. For the cases where the agent is expected
to avoid the guest or the runner as they do not want the agent
to approach them, it is easier to learn serving for the party
than supporting the runner. In (c), all the four algorithms are
able to decrease the failure rate, with MaxentIRL performs
relatively worse, while in (d), the failure rate to avoid the
runner does not decrease for MLIRL or MaxentIRL due to
their inability to differentiate avoiding from helping (they
are still far lower than the successfully help rate), while the
activation function makes CNIRL perfectly do so, and thus
keeps a zero failure rate throughout the training. The trend of
BIRL in Figure 5 (c) is similar to the CNIRL one in Figure 4
(c) and has the same reason. Additionally, the 200 test cases
for both of the scenarios remain the same over the training
for all algorithms, and thus we claim that CNIRL, along with
other benchmark IRL algorithms, is able to solve these two
tasks with simple context complexity.

Next, we show the run-time and the log value of run-
time of each iteration performed on our computer (Intel(R)



Fig. 4: (a) Average number of times the agent helps guests over training time, compared with the expert. (b) The success
rates of offering help when the runner needs in the supply locations. (c) The failure rates of avoiding the supply locations
and interrupting the runner when the runner does not need a break in the supply locations. Notice that the expert has a
constant 0.0 failure rate that might be hard to view.

(a) (b)

(c) (d)

Fig. 5: Performances of the four IRL algorithms for the
case where there is one object. (a) and (c) are for serving
a cocktail party, while (b) and (d) are for supporting a
marathon runner. (a) and (b) are probabilities of successfully
helping the guest or the runner in need over training, while
(c) and (d) are those of failing to avoid them when not.

Xeon(R) CPU E5-2660 v3 @ 2.60GHz with 128 GB RAM)
for the four algorithms in Figure 6. According to the results,
BIRL, MaxentIRL, and MLIRL all show exponential growth
of run-time with respect to the increasing number of objects
for both scenarios. Among them, BIRL has the shortest run-
time per iteration because it utilizes policy iteration and
avoids the expensive value iteration, but the exponential
growth of run-time is still unavoidable. However, CNIRL
clearly demonstrates a linear growth in run-time, and even it
uses value iteration, the growth of run-time is not exponential
as in MaxentIRL or MLIRL. Moreover, even though CNIRL
is slower than BIRL, the trend shows it is expected to catch
up with it with more guests or supply locations.

Due to the high cost of run-time shown in Figure 6 for
MLIRL and MaxentIRL, we only compare the performances
of CNIRL and BIRL with 5 guests or supply locations. As
demonstrated in Figure 7, (a) and (c) indicates the ability of
both BIRL and CNIRL to solve the task of serving 5 guests

(a) (b)

(c) (d)

Fig. 6: Run-time per iteration and the log value of run-time
per iteration of four IRL algorithms with respect to varied
number of objects. (a) and (c) are for serving a cocktail party,
while (b) and (d) are for supporting a marathon runner. (a)
and (b) are seconds used per iteration, while (c) and (d) are
the log values of them respectively.

in the cocktail party, both with 200 training trajectories and
the same testing conditions. (b) and (d) shows CNIRL is able
to learn to help the runner in need while at the same time
maintains a relatively low probability to interrupt when the
runner is not in need, however, this is difficult for BIRL to
learn. With the same 500 training trajectories, BIRL performs
worse when learning to help, and has not reached the point
that it increases the probability of failing to avoid to learn,
i.e., it never catches up with the runner to learn differentiating
the help or avoid, resulting in a constant failure rate in (d).
We also compare the performances with only 100 training
trajectories, and we could witness the improvement with
respect to more training trajectories, but BIRL is still inferior
than CNIRL on this task.

VI. CONCLUSION AND FUTURE WORK

We propose CNIRL, a scalable framework for develop-
ing norm-compliant agents through learning from norm-
compliant expert demonstrations with changing contexts.
In the future, we are interested in incorporating ownership



(a) (b)

(c) (d)

Fig. 7: Performances of BIRL and CNIRL for the case where
there are five objects. (a) and (c) are for serving a cocktail
party that has 5 guests, while (b) and (d) are for supporting a
marathon runner that has 5 supply locations. (a) and (b) are
probabilities of successfully helping the guests or the runner
in need over training, while (c) and (d) are those of failing
to avoid the guests or the runner when not in need.
of norms into context[33], differentiating bad examples for
more structured prohibition norms, and thus further lowering
the difficulty of getting trajectories to train the agent.
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[21] A. Šošić, A. M. Zoubir, and H. Koeppl, “Inverse reinforcement
learning via nonparametric subgoal modeling,” in 2018 AAAI Spring
Symposium Series, 2018.

[22] E. Uchibe, M. Asada, and K. Hosoda, “Behavior coordination for a
mobile robot using modular reinforcement learning,” in Proceedings of
IEEE/RSJ International Conference on Intelligent Robots and Systems.
IROS’96, vol. 3. IEEE, 1996, pp. 1329–1336.

[23] N. Sprague and D. Ballard, “Multiple-goal reinforcement learning with
modular sarsa (0),” 2003.

[24] S. J. Russell and A. Zimdars, “Q-decomposition for reinforcement
learning agents,” in Proceedings of the 20th International Conference
on Machine Learning (ICML-03), 2003, pp. 656–663.

[25] C. A. Rothkopf and D. Ballard, “Credit assignment in multiple goal
embodied visuomotor behavior,” frontiers in Psychology, vol. 1, p.
173, 2010.

[26] S. Levine, Z. Popovic, and V. Koltun, “Nonlinear inverse reinforcement
learning with gaussian processes,” in Advances in Neural Information
Processing Systems, 2011, pp. 19–27.

[27] M. Wulfmeier, P. Ondruska, and I. Posner, “Maximum entropy deep
inverse reinforcement learning,” arXiv preprint arXiv:1507.04888,
2015.

[28] G. H. John, “When the best move isn’t optimal: Q-learning with
exploration,” in AAAI. Citeseer, 1994, p. 1464.
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