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Abstract

The ability to make inferences about other’s mental states is
referred to as having a Theory of Mind (ToM). Such abil-
ity is fundamental for human social activities such as em-
pathy, teamwork, and communication. As intelligent agents
being involved in diverse human-agent teams, they are also
expected to be socially intelligent to become effective team-
mates. In this paper, we propose a computational ToM model
which observes team behaviors and infer their mental states in
a simulated search and rescue task. The model structure con-
sists of a transformer-based language module and an RNN-
based sequential mental state module in order to capture both
team communication and behaviors for the ToM inference. To
provide a feasible baseline for our ToM model, we present the
same inference task to human observers recruited from Ama-
zon MTurk. Results show that our proposed computational
model achieves a comparable performance with human ob-
servers in the ToM inference task.

Introduction
The famous Sally–Anne test has been widely used in de-
velopmental psychology to test if children are able to dis-
tinguish their own mental states and others. This ability
to make inferences about another’s mental state is referred
to as having a Theory of Mind (ToM). While reasoning
about false beliefs is the capability most commonly asso-
ciated with ToM, other inferences such as preference order-
ings (Baker, Saxe, and Tenenbaum 2011), or affect and em-
pathy (Baron-Cohen, Leslie, and Frith 1985) have also been
linked with ToM along with other explanatory concepts in-
volving mental states such as desires and intentions (Brat-
man 1987) which have been referred to inclusively as Folk
Psychology (Stich and Ravenscroft 1992).

In this paper, we propose a sequential Theory of Mind
model that reasons about human dynamic beliefs in 3-people
urban-search-and-rescue (USAR) teams. The USAR rescuer
teams have to navigate through an environment and clear
obstacles to locate and triage victims. Multimodal observa-
tions, including both team communications and individual
actions, are used to infer hidden beliefs of rescuers regard-
ing the meaning of different markers. A team communi-
cation module is implemented based on a pre-trained lan-
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guage model to identify marker-related utterances in res-
cuers’ verbal communication. Then those detected times-
tamps are used as potential transition points of human be-
liefs about marker meanings. The dynamic belief module is
based on recurrent neural networks and capable of mapping
observable action sequences to belief sequences. The over-
all framework of marker ToM inference model is shown in
Fig. 1. Each component of the framework is explained in
subsequent sections of this paper.

Human ToM inference
The Belief-Desire-Intention model (Bratman 1987), holds
that agents form intentions to act in order to bring about
desired states, with beliefs describing the allowable states
and transitions. Because these mental entities of one human
are not known to other humans, an observer must infer them
on the basis of very little evidence. Humans do this read-
ily (Wimmer and Perner 1983) albeit often in error (Samson
and Apperly 2010; Birch 2005).

In this paper, we introduce a computational inference
model capable of employing ToM reasoning. Because ToM
is defined through its role in folk psychology and human
commonsense reasoning, the appropriate baseline for guid-
ing development and evaluating a computational ToM model
would be a human observer. However, the human observer’s
accuracy in ToM inference is not necessarily expected to be
high. Despite mastery of ToM reasoning in everyday life,
people often fail to employ it, in taking directions (Sam-
son and Apperly 2010), for example, or fail in reasoning
about content of others’ minds due to biases toward their
own perspectives and knowledge (Birch 2005). Nonetheless,
it would still be useful to assign the same ToM inference
tasks to human observers to provide a performance baseline
for our proposed model.

Computational ToM Models
Several authors have proposed a computational framework
to model human goal inference as a Bayesian inverse plan-
ning process, i.e. the Bayesian Theory of Mind (BToM)
framework (Baker, Saxe, and Tenenbaum 2009). BToM
models have enjoyed success in explaining human ToM in-
ference in goals, desires (Liu et al. 2017), and (false) be-
liefs (Baker et al. 2017). However, most of the Bayesian-
based methods are applied in simple environments with



small state space (e.g. grid world) and yet to be tested with
real human data in complex task scenarios. Computational
ToM models based on neural networks have been shown
to successfully reason about both machine agents inter-
nals (Rabinowitz et al. 2018) and human mental states (Jain
et al. 2020; Oguntola, Hughes, and Sycara 2021; Guo et al.
2021). In this paper, we continue to explore the possibili-
ties of incorporating ToM models with state-of-the-art deep
learning techniques.

In the literature, little attention has been paid to modeling
human mental states in team settings. When multiple hu-
mans form teams, the complexity of their joint mental model
increases tremendously. Team members have to intensively
communicate about task information to maintain a shared
situational awareness. Thus humans in a team have even
more dynamic desires, beliefs, and intentions that change
over time when compared with humans operating in isola-
tion(DeChurch and Mesmer-Magnus 2010). In this paper,
we take a first step in this direction by investigating human
beliefs in 3-person urban-search-and-rescue (USAR) teams.

Decision Points

In our work, we analyze three types of human data: ver-
bal communications between team rescuers, rescuer actions,
and action prediction, that were collected from human ob-
servers to assess our ToM model. ToM inferences involve at
least two entities; one team player presumed to have men-
tal states which may on occasion lead to observable actions
or communications and an observer who attributes mental
states and transitions between them to be the cause of ob-
served actions by the first party. Because human observers
are well practiced at making such inferences and making
them on the basis of incomplete evidence, human inferences
are likely to vary in confidence and accuracy with the ambi-
guity of observations. The accuracy of our proposed model
should vary in a similar way with ambiguity in observations,
which makes the comparisons with human ‘experts’ a good
test of inference capabilities.

Because a ToM model is expected to evolve over time but
only reveals itself intermittently through observed actions,
it needs to be maintained and updated in order to converge
to a more accurate model. To choose the decision points for
making these updates, it is necessary to consider whether
an action is taken or not when an opportunity occurs, for
example encountering a door marked by others that could
be entered. Those trigger events and consequential behav-
iors are recorded and fed into a recurrent neural network
(RNN) to infer rescuer’s beliefs. The other kind of deci-
sion points are when team members explicitly communi-
cate about their mental state, for example reporting change
of marker meanings. Based on our observation from human
teams, we assume that all team belief transitions happened
when related communication occurred between team mem-
bers and use a transformer-based language model to process
the communication content. These decision points provide
stopping points during a USAR mission, where our ToM
computational model can be updated, and inference tasks
can be posed to the model and human observers.

Figure 1: Overall Framework for sequential ToM Inference.

Simulated Search and Rescue Task
Task scenario
(Fiore et al. 2020) describe a Minecraft environment de-
signed to reproduce the uncertainties and hazards of a col-
lapsed building for use in the study of urban search and res-
cue teams. Using data shared with us by Arizona State Uni-
versity from this task and environment, we built our ToM
inference model and collected action predictions at decision
points made by Mechanical Turk workers. The search and
rescue map developed for this task is shown in Figure 2.
The scenario portrays a structurally damaged office build-
ing after an unspecified incident. It contains 54 rooms and
multiple connecting corridors. The building layout and con-
nectivity may be changed by perturbations such as rubble.
The 3-person team needs to search the building and rescue
as many victims as possible within 15 minutes. Their per-
formance is measured by points earned from saving victims.
There are 55 injured victims inside the building. Out of the
55 injured, five are critical victims with severe injures and
others are regular victims. Critical victims are worth more
points but can not be rescued until all team members are
present at the victim’s location. This encourages communi-
cation, for example about a critical victim’s location, and co-
ordination between teammates. The three rescuers in a team
are named Red, Blue, Green for easy identification.

Team roles
Rescuers can choose from three interdependent roles, each
of which have different capabilities and limitations. Teams
can choose to have any team composition they would like
(e.g., one of each role, all three at the same role). Each role’s
tools have limited uses before they need to be replenished.
Rescuers can change their roles or replenish their tools at
any time by returning to the base.

• Heavy Equipment Specialist (a.k.a, engineer): Can re-
move rubble with a hammer, and move at a slow speed.



Figure 2: Human participants serving as rescuers see the
first-person view on the right and client map and marker
block legend on the left.

• Medical Specialist (a.k.a., medic): Can rescue victims and
travel at a medium speed.

• Searching Specialist (a.k.a, searcher): Can move regular
victims to a different location, making it easier for the
medic to rescue multiple victims at one spot, and move
at a fast speed, allowing for scouting.

Information Asymmetry
To provide heterogeneous mental models associated with
task knowledge, the participants receive different informa-
tion when the mission starts. On the client map interface,
each rescuer is provided with unique information about a
certain map regions. The information includes the room
name and locations of rubble and victims divided by regions.
Each participant receive a map that provides details in two
regions and no information in four regions. In addition, three
rescuers each has a set of marker blocks (numbered 1, 2, and
3) that they can put on the ground to indicate the state of a
room. Each marker block also indicates the identity of its
author (Red, Green, or Blue). In the mission, one rescuer
will receive a legend to the meanings of numbered blocks
that conflicts with the legend given to the other two rescuers.
Two possible semantics are given in Table 1. As such, a res-
cuer with the marker semantic A would most likely place a
marker 1 in front of a room that she believes to contain no
victim.

Semantics Marker 1 Marker 2 Marker 3
A No victim Regular v. Critical v.
B Regular victim No v. Critical v.

Table 1: Marker semantics

An example of asymmetrical information received by res-
cuers is shown in Fig. 3. Note that those rescuers are not
aware of this manipulation among team members and will
need to communicate to share information.

In the present study, we develop a ToM model to predict
the marker semantic belief of each rescuer. Note that this
belief is inherently dynamic i.e. it can change over time. For
example, a rescuer might be initially assigned marker se-
mantic A but later switch to semantic B after the team real-

Figure 3: Asymmetrical information on client map and
marker block legend received by each rescuer in the team.

ize, and communicate about the information asymmetry, and
agree to all switch to semantic B.

Data set
19 groups, each of 3 participants, took a series of training
sessions and surveys before entering the actual search and
rescue task. Each team completed two consecutive 15-min
missions on two different map configurations. Game state
was recorded for in-game events (e.g. rescue victims, switch
roles, and place marker blocks) at 30Hz. Rescuer screen
recordings and verbal communication audio were saved for
post processing.

Team communication model
Given the experimental setting, rescuers in the team need
to intensively communicate about task information to main-
tain a shared situational awareness among members. Espe-
cially for the manipulated marker legends, such information
asymmetry can lead rescuers to have different mental mod-
els about the meaning of maker blocks, then form false be-
liefs when seeing makers placed by other rescuers. If such
team mental state misalignment is not resolved by commu-
nication early in the mission, team performance is harmed
severely. Therefore, we propose a natural language process-
ing method to identify team communication entries related
to marker blocks. The model takes in a single communica-
tion transcription and outputs a binary decision: whether this
communication is related to marker blocks or not.

Model structure
Our proposed model is based on general language models
pre-trained on a large corpus and fine-tuned on our data set.
An illustration of the model structure is shown in Fig. 4.
Communication transcripts are prepossessed and tokenized
then fed into a pre-trained Bidirectional Encoder Repre-
sentations from Transformers (BERT) (Devlin et al. 2018).
BERT embeddings with a 0.3 dropout rate go through a neu-
ral network with two fully connected layers with 64 and 1
hidden neurons each. The ReLU activation function is used
between two FC layers. The single output value from neural
network is used to determine the binary prediction result.

Training details
The human data set is divided into two parts, where the train-
ing data set consists of 2725 entries from 10 teams and the



Figure 4: Communication model structure.

test dataset consists of 3434 entries from 9 teams. All tran-
scriptions are manually coded by experimenters to serve as
ground truth labels of each communication entry. There are
in total 67 positive cases out of 2725 entries in the training
data. To overcome imbalanced data labels, we oversample
positive entries by 20 times to create an augmented train-
ing data set. We use binary cross-entropy with logit loss as
the loss function and Adam optimizer to regulate the train-
ing (Kingma and Ba 2014). Training batch size is 16 and
learning rate is set to 1e-05. The whole model including both
BERT and FC modules are fine-tuned together for 1 epoch.

Experimental results
Cross-validation is used on training set to explore different
model structures and hyper-parameters. Specifically, train-
ing data from 1 team is held out for validation, and the
other 8 teams are used for training. This process repeats 9
times and the average validation result is used to evaluate
model performance. In addition, since the aim of this model
is to identify potential mental state transition points, we care
more about how relevant returned results are instead of how
complete they are. Therefore, precision is used as the perfor-
mance metric in model evaluation. The average precision of
cross-validation on training set is 98.6% and the test preci-
sion is 81.0%, indicating a good model performance and a
reasonable generalization between teams.

Experimental results show that our proposed model is ca-
pable of identifying marker-related entries from team com-
munication transcriptions. Those communication points will
be used in dynamic belief modeling and human observation
experiment as key decision points where rescuers’ mental
state are highly likely to change.

Dynamic belief model
The goal of our ToM model is to infer human’s dynamic be-
liefs based on observable behaviors. Here we again concen-
trate on inferring what marker block meanings each rescuer
was using during the mission. Because one rescuer in the
team was initially assigned with a different marker legend
than other team members and the team may realize and re-
solve this manipulation at any time during the mission, this
ToM model is trying to infer dynamic beliefs of humans that
may change over time. By observing an individual rescuer’s
behaviors for a certain time interval, the model should be

able to estimate the most likely marker legend that the res-
cuer is using. Since we have identified time points where
the team communicates about marker blocks, we can assume
that the mental state of rescuers remains the same during in-
tervals between those communication points. We make such
an assumption based on the observation that it is unlikely
for a certain rescuer to suddenly change her marker block
meaning without informing other team members. For exam-
ple, when one rescuer realizes the difference in team marker
legends, her first choice is usually confirming with others by
asking ’Do we have marker number 1 for regular victims?’.
Then the team will further discuss and finalize a common
legend for the team to use, e.g. ’Let’s use 1 for victims, 2 for
rubble and 3 for empty room.’. Those communication ut-
terances can be detected by the communication model pro-
posed earlier and served as potential belief transition points
for the belief model.

Data processing

In total, 16 trials of game data from 9 teams are used in
model training and evaluation. We first slice the game log
of each trial by marker-related communication points gen-
erated by the BERT communication model, then calculate
each individual rescuer’s actions within those N intervals.
Specifically, we count the number of action sequences that
potentially reveal the rescuer’s belief about marker blocks,
in each interval. For example, if a rescuer sees a regular vic-
tim and then immediately places a number 2 marker block,
it is more likely for her to hold semantics A (the complete
action list is shown in Table 2). With a 12-dimension ac-
tion vector, each time a listed action is observed within a
certain time interval following its prerequisite, the count of
corresponding dimension adds one. Some actions share the
same dimension as they refer to the same semantic meanings
in different forms, e.g. perception (marker in FOV – rescue
victim) and intention (victim in FOV – place marker). By
counting those actions in each observation window, we have
an input observation sequence with the shape of (N, 12) per
trial per rescuer.

Prerequisite Action Dimension
Other Place marker 1/2/3 1,2,3

Marker 1/2/3 in FOV Other 1,2,3
Regular v. in FOV Place marker 1/2/3 4,5,6

Marker 1/2/3 in FOV Rescue regular v. 4,5,6
Critical v. in FOV Place marker 1/2/3 7,8,9

Marker 1/2/3 in FOV Rescue critical v. 7,8,9
Marker 1/2/3 in FOV Clean rubble 10,11,12

Table 2: Action sequences list.

In addition, the actual marker semantics rescuers were us-
ing during the mission are manually coded by experimenters
into three categories: semantics A, semantics B, and other.
These label sequences are used as the supervised ground
truth for model training and evaluation.



Model structure and Experimental results
Fig. 5 shows the structure of our dynamic belief model.
It uses Gated recurrent units (GRUs) to process input ob-
servation sequence and transit hidden state through times-
tamps (Cho et al. 2014). At each timestamp, a fully con-
nected neural network takes in the hidden state and out-
puts prediction results. Both the GRU and FC module share
weights along the timeline. Hyper-parameters used in train-
ing is as follows: dropout rate = 0.3, learning rate = 0.001,
batch size = 1, loss function = cross entropy loss, optimizer
= Adam.

Values of hyper-parameters are determined by experi-
menting on small validation set. The model is trained on 12
trials of data and tested on 4 held-out data. We run 20 epochs
of training 10 times to balance the influence of random ini-
tialization. The average prediction accuracy on test data set
is 70.5%.

Figure 5: Belief model structure.

Human observation experiments
Because the initial goal of our computational ToM model is
to replicate human performance at ToM tasks, we have col-
lected predictions from human observers to provide a base-
line with which to compare the model performance. Note
that our human observer experiment goes beyond just in-
ferring the marker block semantics to include other aspects
such as team scores and map. Thus, this data can be used in
future studies for other ToM tasks.

We devise a team-focused and an individual-focused ex-
periment. In the team-focused experiment, the observer is
asked to predict the final team performance and make infer-
ences about the team mental model such as which rescuer
was assigned with different marker semantics than other
team members. In the individual-focused experiment, the
observer is asked to predict individual rescuer’s next action
based on potential false belief about marker block semantics.

Materials
For human experiment materials, we use the same 4 team tri-
als as in the test data set for belief model evaluation. Based
on the collected team trajectories, we generated the follow-
ing materials: game screen video recordings and dynamic
mini-map videos. Human observers can watch the first per-
son screen recordings to understand what the rescuers were

doing, and refer to the dynamic maps to locate the res-
cuers’ current location and navigation path. The individual-
focused experiment has a similar setup to the team-focused
one except the observer can have access to only the field
of view of one player and the minimap does not include
the locations of other players (unless their locations are
within the field of view). Unlike the fully-observable per-
spective in team-focused experiment, human observers in
the individual-focused experiment have the same amount of
information that one individual rescuer has during the mis-
sion. Video materials were segmented by ‘decision points’
at which behaviors occur such as spotting a victim or plac-
ing a marker block. The specific types of the decision points
are explained below.

Figure 6: Game state video presented to human observers

Table 3 gives the “decision points” for each experiment.
For the team Performance prediction task, the video is
paused at regular intervals, i.e. 4, 9, 14 minutes, and ob-
servers are asked to predict the final team score when mis-
sion ends. Other decision points in the team-focused exper-
iment are triggered by communication between team mem-
bers in the video. For example, Map and Marker prediction
question is triggered whenever a rescuer mentions the map
or markers in verbal communication, respectively. At those
points, observers are required to conduct ToM inference via
predicting the initial map/marker semantics assignment of
each rescuer. For the purpose of detecting communication
about objects of interest (blocks, maps, ect...), we used the
team communication model introduced earlier.

For the individual-focused decision points, we concen-
trate on predicting individual behaviors based on their (false)
beliefs. Specifically, the video is paused when a rescuer
places or sees a marker block to ask observers to 1) in-
fer rescuer’s interpretation about this marker, and 2) predict
rescuer’s next action upon seeing this marker. Those Reac-
tion predictions require observers to form an accurate men-
tal model about the rescuer to infer her beliefs and actions
correctly.

Video segments were presented in chronological order so
that prior segments can inform judgments. The actual ac-
tion taken by the rescuer in the video segments was then
presented at the start of the following sequence providing
knowledge of results. The total number of decision points in
one trajectory is around 300, which is too demanding for hu-
man observers to annotate. Thus we sampled a subset of de-



Experiment Prediction tasks Decision points Ground Truth
Team Team performance Fixed intervals Final team performance
Team Map information Map-related comm. Initial map assignment
Team Marker semantics Marker-related comm./ Place markers Initial semantics assignment

Individual Reaction to markers Markers in FOV Actual next action

Table 3: Decision points list.

cision points for each type and generated 15 video segments
with corresponding prediction questions for each trajectory.

Procedure
102 human observers were recruited from Amazon Mechan-
ical Turk in which 42 participated in the team-focused exper-
iment and 60 participated in the individual focused experi-
ment. Participants accessed the online survey on their own
computer. Detailed instructions were given to the observers
about the search and rescue environment and the prediction
tasks they were to complete. Then the observers were re-
quired to pass a quiz about basic knowledge of the experi-
ment in order to proceed to the experimental task. Each ob-
server was assigned with one trajectory from a rescue team.
Therefore, each trial of team trajectories were annotated by
at least 5 independent observers. In each of the decision
points from the trajectory, human observers were presented
a video clip and the corresponding prediction questions. The
length of this human observation experiment was around 45
minutes.

Results
To ensure quality control, we removed data with missing an-
swer entries or extreme completion times (i.e. it took too
long for the observers to answer). For team performance
prediction, observer’s prediction is compared with the dis-
crete actual team performance, thus the average RMSE of
observers is calculated as the metric. For other categorical
predictions, the majority result of observers is used. For ex-
ample, if 3 out of 5 observers predict the player will enter the
room, this is the result that is compared with ground truth
(e.g. actual team performance, initial assignments, and in-
game actions). Table 4 show the prediction accuracy of hu-
man observers. In addition to the majority voting results, we
also calculated the 90th percentile of individual observers
indicating the performance of proficient humans in ToM in-
ference tasks.

Prediction Majority voting 90th percentile
Performance 125.2 48.6

Map 20.29% 44.44%
Marker 58.52% 77.78%

Reaction 32.65% 55.56%

Table 4: Human observation accuracy.

Discussion
In this paper, we propose a sequential Theory of Mind model
that reasons about human dynamic beliefs in a team task.

Specifically, the model observes team communication and
individual actions to infer marker meanings each rescuer
used during the search and rescue mission. A team com-
munication module is implemented based on a pre-trained
language model to identify marker-related utterances in res-
cuers’ verbal communication. Then those detected times-
tamps are used as potential transition points of human be-
liefs about marker meanings. The dynamic belief module is
based on recurrent neural networks and capable of mapping
observable action sequences (e.g. see a regular victim then
place a marker 2) with belief sequences (e.g. hold semantics
A). The overall framework of marker ToM inference model
is shown in Fig. 1. Both communication and belief mod-
els are trained and tested on data previously collected from
human teams. Test set results show that the communica-
tion model achieves 81.0% precision in identifying marker-
related utterances, and the belief model achieves 70.5% ac-
curacy in inferring rescuer’s marker semantics. To provide a
feasible baseline to evaluate our model performance, we as-
sign the same test materials and ToM inference tasks to hu-
man observers recruited from Amazon MTurk. Results show
that majority populations only achieve 58.52% in inferring
marker semantics and even worse in other ToM inference
tasks. Even for the more competent human observers, i.e. the
90th percentile, the inference accuracy is only 77.78%. This
aligns with previous findings in the literature that inferring
other humans’ mental states in complicated task scenarios
is challenging for human observers (Li et al. 2021). We can
tell from the above comparison that our proposed compu-
tational ToM model achieves a human-level performance in
inferring dynamic beliefs in human teams.

This research bears its own limitations that we would like
to improve in future steps. First, the current model struc-
ture deals with the mental state of each individual in the
team separately. Although the communication model con-
siders information shared among all team members, the dy-
namic belief model only takes in action sequence from one
rescuer when inferring her mental state. However, in such
a team task, the mental states of three members are depen-
dent on each other and conditioned on team roles, which
might lead to more complicated belief structure such as
nested second-order beliefs (rescuer Red thinks that rescuer
Blue has marker semantic A). A more reasonable method to
model team ToM is to incorporate action sequences of all
individuals in the team and infer the joint team mental state.
In addition, the current model is trained and tested on a rela-
tively small dataset and limited to a narrow belief regarding
marker meanings. Further experiments on larger dataset and
more general mental beliefs are needed to test the model ef-
fectiveness and robustness.
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