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Abstract: In this chapter, we consider recent models for neuronal activity. We review the sorts
of oscillatory behavior which may arise from the models and then discuss how geometric singular
perturbation methods have been used to analyze these rhythms. We begin by discussing models
for single cells which display bursting oscillations. There are, in fact, several different classes
of bursting solutions; these have been classified by the geometric properties of how solutions
evolve in phase space. We describe several of the bursting classes and then review related
rigorous mathematical analysis. We then discuss the dynamics of small networks of neurons.
We are primarily interested in whether excitatory or inhibitory synaptic coupling leads to either
synchronous or desynchronous rhythms. We demonstrate that all four combinations are possible,
depending on the details of the intrinsic and synaptic properties of the cells. Finally, we discuss
larger networks of neuronal oscillators involving two distinct cell populations. In particular, we
demonstrate how dynamical systems methods can be used to analyze recent models for sleep
rhythms and other oscillations generated in the thalamus. The analysis helps to explain the
generation of the different thalamic rhythms and the transitions between them, in both of which

inhibition plays a crucial role.
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1 Introduction

Oscillations arise throughout the central nervous system [47], [38], [79], [89], [9]. These oscil-
lations have been implicated in the generation of sleep rhythms, epilepsy, parkinsonian tremors,
sensory processing, and learning [30], [39], [76], [79], [40]. Oscillatory behavior also arises in such
activities as respiration, movement, and secretion [13], [10].

Models for the relevant neuronal networks often exhibit a rich structure of dynamic behavior.
The behavior of even a single cell can be quite complicated [11], [13], [82], [83], [31]; an individual
cell may, for example, fire repetitive action potentials or bursts of action potentials that are
followed by a silent phase of near quiescent behavior [57], [58], [96]. The bursting behavior may
wax and wane on a slower time scale [18], [3], [19]. Examples of population rhythms include
synchronous behavior, in which every cell in the network fires at the same time, and clustering
[27], [28], [44], in which the entire population of cells breaks up into subpopulations or blocks;
every cell within a single block fires synchronously and different blocks are desynchronized from
each other. Of course, much more complicated population rhythms are also possible [89], [86],
[44]. The activity can also propagate through the network in a wave-like manner [41], [19], [88],
[29], [61].

In this article, we review numerous recent results in which geometric singular perturbation
methods have been used to analyze the dynamics of neuronal networks. Much of the analysis pre-
sented is done in the singular limit. Nonetheless, the results are extremely useful for elucidating
the roles of network parameters and components in generating various activity patterns.

We begin in Section 2 by considering models for single cells which exhibit bursting oscil-
lations. There are, in fact, several different types of bursting oscillations, and there has been
considerable effort in trying to classify the underlying mathematical mechanisms responsible for
these oscillations [58], [4], [37]. Models for bursting oscillations contain multiple time scales and
this often leads to very interesting issues related to the theory of singular perturbations [46].
Even the simplest bursting models may exhibit exotic behavior, including chaotic dynamics, for
certain parameter ranges [11], [83].

In Section 3, we consider models for a pair of mutually coupled cells. The results in this
section are complementary to related work in [42]. Each cell will be modeled as a relaxation
oscillator; one can view this as a simple depiction of a bursting neuron in which the active
phase corresponds to the envelope of a burst’s rapid spikes. We only consider a form of coupling

between cells that represents chemical synapses, since this is the primary means by which neurons



in the central nervous system communicate with each other. There are, however, many forms of
synaptic coupling [40]. It may be excitatory or inhibitory and it may exhibit either fast or slow
dynamics. We will be primarily interested in whether excitatory or inhibitory coupling leads to
either synchronous or desynchronous rhythms. We will demonstrate that all four combinations
are possible, depending on the details of the intrinsic and synaptic properties of the cells.

In Section 4, we consider a larger network of relaxation oscillators with inhibitory and exci-
tatory synaptic coupling, referred to as a globally inhibitory network [65], [63]. This network may
exhibit both synchronous and clustered solutions and we give sufficient conditions for when each
of these rhythms arises. These results help to clarify how the intrinsic properties of individual
cells interact with the synaptic properties to produce the emergent population rhythm. Inhibi-
tion, for example, may play multiple roles in producing different rhythms. Which rhythms arise
depends on how inhibition interacts with intrinsic properties of the neurons; the nature of these
interactions depends on the underlying architecture of the network.

Finally, in Section 5, we consider a detailed model for certain sleep rhythms produced in
the thalamus. Many of the results in this paper, as well as the particular form of the globally
inhibitory network, are motivated by experimental, modeling, and computational studies of these
rhythms (see [28] and [22], which provides a review of related works). After describing the
rhythms, we discuss in some detail how one models these networks. The model for each cell is
based on the Hodgkin-Huxley formalism [33]. We then discuss how the geometric analysis helps

to explain the generation of different thalamic rhythms and the transitions between them.

2 Bursting Oscillations

2.1 Introduction

Certain neurons and other excitable cells exhibit bursting oscillations; this behavior is char-
acterized by a silent phase of near steady state resting behavior alternating with an active phase
of rapid, spike-like oscillations, as shown in Figure 1. Examples of biological systems which
display bursting oscillations include the Aplysia R-15 neuron, insulin secreting pancreatic beta
cells, and neurons in the hippocampus, cortex and thalamus. For reviews, see [96], [67], [37].

Figure 1 shows several different types of bursting oscillations. Figure 1A displays an example
of square-wave bursting. This is characterized by abrupt periodic switching between the quies-
cent, or silent, phase and the active phase of repetitive firing. Note that the frequency of spikes
decreases at the end of the active phase. Figure 1B illustrates elliptic bursting. Small amplitude

oscillations occur during the silent phase and the amplitude of spikes gradually waxes and wanes.



Finally, Figure 1C displays parabolic bursting. The spike rate first increases and then decreases
in a parabolic manner.

The mathematical mechanisms responsible for each class of bursting oscillation are described
in terms of geometric properties of the corresponding phase space dynamics. The model for each
involves multiple time scales and can be written as

= flzy)

!

(2.1)

y = eg(z,y)

Here, z € R™ represents fast variables, while y € R™ represents slow variables; € is a small singular
perturbation parameter. We refer to the first equation in (2.1), with y considered as constant, as
the fast subsystem (FS). The silent phase of the bursting solution corresponds to the passage of
a trajectory of (2.1) near a manifold of fixed points of (FS). The active phase of repetitive spikes
corresponds to the passage of the trajectory near a manifold of periodic solutions of (FS). It is
the slow processes which modulate the fast dynamics between these two phases. Different classes
of bursting oscillations are distinguished by the mechanisms by which the bursting trajectories
switch between the silent and active phases. This is closely related to the global bifurcation
structure of the fast subsystem with the slow variables treated as parameters.

We note that models for bursting oscillations may exhibit other types of periodic solutions,
as well as more exotic behavior including chaotic dynamics [11], [82], [83]. The models contain
multiple time scales and this often leads to very interesting issues related to the theory of singular
perturbations. For example, homoclinic orbits usually play an important role in the generation
of these rhythms; the active phase of rapid oscillations may either begin or end (or both) as the
bursting trajectory crosses a homoclinic point. At these points, standard singular perturbation
methods may break down, so more delicate analysis is required. Moreover, the homoclinic orbits
are often directly responsible for the generation of chaotic dynamics [82], [83].

In the next section, we describe the mathematical mechanisms responsible for the three classes
of bursting oscillations shown in Figure 1. The description is quite heuristic; however, the formal
constructions are extremely useful in understanding what geometric ingredients are needed to
generate a particular class of bursters and how the dynamics changes with respect to parameters.

Rigorous results related to square-wave bursting are presented in Section 2.3. These results
demonstrate that even the simplest models for bursting oscillations lead to very interesting prob-
lems associated with the geometric theory of singular perturbations. It need not be true, for
example, that the bursting solution is uniquely determined for all € sufficiently small. Moreover,

there are multiple ways in which chaotic dynamics may arise as parameters in the model are



varied.

2.2 Bursting Mechanisms

We now describe the mathematical mechanisms responsible for the three classes of bursting
oscillations shown in Figure 1. This description follows closely the pioneering work of Rinzel [58].
We only consider the simplest, lowest dimensional models which generate these solutions. As we
shall see, square-wave and elliptic bursting can arise in three-dimensional systems, while parabolic
bursting requires at least four dimensions. In each case, we consider a system of the form (2.1)
and make geometric assumptions concerning the set of fixed points and periodic solutions of
(FS). Some assumptions are then needed on the equations governing the slow variables. These

assumptions can usually be verified for a specific system by using numerical software.

2.2.1 Square-Wave Bursting

Consider a three-dimensional version of (2.1) of the form

(22) w = g(anay)
Yy = eh(v,w,y,\)

A concrete system which exhibits square-wave bursting is given in Remark 2.6. The fast sub-
system (FS) now consists of the first two equations in (2.2) with the slow variable y considered
as constant. In the third equation, A represents a fixed parameter. Later, we discuss complex
bifurcations that arise when A is varied.

The primary assumptions on (2.2) concern the bifurcation structure of the fast subsystem with
y treated as a parameter. This structure appears in Figure 2, which also shows the projection of
the square-wave bursting solution onto the corresponding bifurcation diagram. The set of fixed
points of (FS) is assumed to be a Z-shaped curve in the (v,w,y) phase space. We denote this
curve by §; only a portion of this Z-shaped curve is shown in Figure 2. The fixed points along
the lower branch of S are stable solutions of (FS), while the fixed points on the middle branch
of S are saddles. Fixed points along the upper branch of S may be stable or unstable. We also
assume that there exists a one-parameter family of periodic solutions of (FS), denoted by P.
These limit cycles originate at a (subcritical) Hopf bifurcation along the upper branch of S and
terminate along a solution of (F'S) that is homoclinic to one of the fixed points on the middle

branch of S.



Assumptions are also needed about the slow dynamics. We assume that the y-nullsurface
{h = 0} defines a two-dimensional manifold that intersects S at a single point. This point lies
on the middle branch of S between the homoclinic point and the left knee of S. Finally, h > 0
above {h = 0} and h < 0 below {h = 0}.

We now give a heuristic explanation for why this system generates a square-wave bursting so-
lution. Suppose that € > 0 is small and consider a solution that begins close to the lower branch.
Because this branch consists of stable fixed points of (FS), the trajectory quickly approaches a
small neighborhood of the lower branch. The trajectory tracks leftward along the lower branch
according to the slow dynamics, until it passes the left knee. This portion of the solution cor-
responds to the silent phase. Once past the left knee, the trajectory is attracted to near P,
the branch of periodic solutions of (F'S). This generates the fast repetitive spikes of the bursting
solutions. The trajectory passes near P, with increasing vy, until it reaches a neighborhood of the
homoclinic orbit of (FS). Once it passes the homoclinic orbit, the fast dynamics eventually forces
the trajectory back to near the lower branch of S and this completes one cycle of the bursting
solution.

This description is formal. It is not at all clear that if the system (2.2) satisfies the above
assumptions, then, for all e sufficiently small, there exists a unique periodic solution corresponding
to a bursting oscillation. In Section 2.3, we show, in fact, that such a result cannot be true,
in general. We describe a result, proved in [46], that the bursting solution will be uniquely

determined for all e sufficiently small, except for those e that lie in a certain very small set.

Remark 2.1. A crucial ingredient for square-wave bursting is bistability. This allows for a
hysteresis loop between a lower branch of stable fixed points and an upper branch of stable limit
cycles. It is also very important that the slow nullsurface {h = 0} lies between these two branches.
If this last condition is not satisfied, then the system may exhibit other types of solutions. For
example, suppose that {h = 0} intersects the lower branch of S. This point of intersection will
then be a globally stable fixed point of (2.2). If, on the other hand, {h = 0} intersects S along its
middle branch above the homoclinic point, then (2.2) may give rise to a stable limit cycle which
always remains in the active phase near P. This type of solution is referred to as continuous
spiking. Rigorous results concerning the existence of continuous spiking are presented in [82],

[83].

Remark 2.2. Square-wave bursting arises in models for electrical activity in pancreatic G-cells.

It is believed that this activity plays an important role in the release of insulin from the cells. The



first mathematical model for this bursting was due to Chay and Keizer [10]. There have been
numerous related models, based on experimental data, since then. A review of these models,
along with a detailed description of the more biological issues, is given in [67]. Square wave
bursting also arises in recent models for respiratory CPG neurons [7] and models for pattern

generation based on synaptic depression [81].

Remark 2.3. Tt is still not clear what underlying biological mechanisms cause bursting oscilla-
tions in pancreatic [-cells [15]. In fact, it is possible that bursting may not be generated by the
intrinsic properties of a single cell; rather, the bursting may be a network property generated by
the coupling between cells. Computational studies in [69] have demonstrated that a population
of cells with electrical, or gap-junction, coupling can exhibit bursting oscillations although the
parameters of each cell are set so that the cells do not oscillate without any coupling. Detailed

analysis of two mutually coupled square-wave bursters is given in [66].

Remark 2.4. Very complicated (global) bifurcations can take place as the parameters € or A
are varied in (2.2). The singular perturbation parameter € controls the rate at which a bursting
trajectory passes through the silent and active phases. In particular, the number of spikes per
burst is O(1/¢) and becomes unbounded as € — 0. It is demonstrated in [82] that Smale horseshoe
chaotic dynamics can arise during the transition of adding a spike. For example, the solution
shown in Figure 3B exhibits a somewhat random variation between 3 and 4 spikes per burst. In
Section 2.3, we describe how spikes are added to the bursting solution as e decreases.

Perhaps even more interesting is the bifurcation structure of (2.2) as A is varied. In the
(-cell models, A is related to the glucose concentration. As the glucose level gradually increases,
the cells exhibit resting behavior, then bursting oscillations, and then continuous spiking. This
is consistent with behavior exhibited by the model. As A increases, the y-nullsurface {h = 0}
intersects the lower branch of S, then the middle branch of S below the homoclinic point, and
then the middle branch of S above the homoclinic point. Numerical studies [11] and rigorous
analysis [83] have shown that as A varies between the bursting and continuous spiking regimes,
the bifurcation structure of solutions must be very complicated. A Poincaré return map defined
by the flow from a section transverse to the homoclinic orbit of (F'S) will exhibit Smale-horseshoe
dynamics for a robust range of parameter values. This leads to solutions in which the number of

spikes per burst varies considerably, as shown in Figure 3A.

Remark 2.5. Some phenomenological, polynomial models for square-wave bursting have been

proposed. See, for example, [32], [54], [16]. Analysis of models with two slow variables which



exhibit square-wave bursting is given in [70].

Remark 2.6. A system of equations which give rise to square-wave bursting is [59]:

v = —(geaMoo(v) (v — Vea) + grw(v — vk) + gi(v — vi) + Gkeaz(y) (v — vg)) + 1
w = 20¢(wee(v) —w)/7(v)
yl = 206(_Ngcamoo('v) (U - Uca) - y)

where, geq = 4., gr = 8.0, g1 = 2.0, v = —84, v; = —60, veq = 120.0, I =45, ggeq = 25, ¢ =
.23, € = .005, and p = .02. The nonlinear functions are given by me(v) = .5(1. + tanh((v +
1.2)/18)), weo(v) = .5(1.4+tanh((v—12)/17.4)), 2(y) = y/(1+y) and 7(v) = cosh((v—12.)/34.8).

2.2.2 Elliptic Bursting

Elliptic bursting can also arise in a system of the form (2.2) in which there are two fast
variables and one slow variable. The bifurcation diagram of (FS) for an elliptic bursting scenario,
with the slow variable treated as a parameter, is shown in Figure 4, which includes the projection
of the elliptic bursting solution.

Bistability is crucially important for the generation of elliptic bursting, just as it is for square-
wave bursting. An important difference, however, is that for elliptic bursting, the curve S of fixed
points of (FS) need not be Z-shaped; there may be only one fixed point of (FS) for each value
of y. The branch of periodic solutions P now originates at a subcritical Hopf bifurcation along
S. To obtain bursting, we hypothesize that the slow variable decreases along S; that is, h < 0
near S. During the silent phase, the bursting solution evolves near the stable portion of S until
it passes the Hopf point, beyond which the fixed points of S are no longer stable. Note, however,
that the trajectory does not jump up to the active phase immediately after crossing the Hopf
point. The slow variable y may traverse a distance that is O(1) with respect to € past the Hopf
point before jumping up. This type of delayed behavior or slow-passage past a Hopf point has
been studied extensively in the singular perturbation literature [53], [2].

We must also hypothesize that there is a net increase in the slow variable as the bursting
trajectory passes near P. More precisely, let (vy(t), wy(t)) denote the periodic solutions along
the outer branch of P and suppose that their periods are T'(y). Let

- 1

T(y)
O ol AR CTONTM ORI

T(y
denote the average of h along these limit cycles. We assume that h(y) > 0 for each y. Thus
during the active phase, y increases until the bursting solution passes the turning point, or knee,

of P. The fast dynamics then forces the trajectory back towards S and a new silent phase begins.
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Remark 2.7. Both square-wave and elliptic bursting depend on bistability and hysteresis. An
important difference between these two classes of bursting is how the active phase terminates.
Square-wave bursting ends at a homoclinic bifurcation; the period of oscillation, therefore, in-
creases at the end of each burst. For elliptic bursting, the active phase ends at a saddle node of

periodic orbits. There is no pattern for the spike frequencies in general.

Remark 2.8. Elliptic bursting arises in models for thalamic neurons [21], rodent trigeminal

neurons [52], and 40-Hz oscillations [48], [92]

Remark 2.9. Here we assumed that the branch of periodic orbits of (FS) originate at a sub-
critical Hopf bifurcation. Hoppensteadt and Izhikevich [34] show that elliptic bursting is also

possible even if the Hopf bifurcation is supercritical.

Remark 2.10. A system of equations which give rise to elliptic bursting is [59]:

v = —(GeaMoo (V) (v — Vea) + grw(v — vg) + g1(v — v1) + Greaz(y) (v —vg)) + 1
w = P(woeo(v) —w)/T(v)
yl = 6(_//'9011777'00 (v)('U - 'Uca) - y)

where, gea = 4.4, g, = 8.0, g, = 2.0, vy = —84, v; = —60, vea = 120.0, T = 120, grea = .75, ¢ =
1.2, e = .04, and p = .016667. The nonlinear functions are given by mq,(v) = .5(1. + tanh((v +
1.2)/18)), weo(v) = .5(1. + tanh((v —2.)/30.)), 2z(y) =y/(1+y) and 7(v) = cosh((v — 2.)/60.).

2.2.3 Parabolic Bursting

Both square-wave and elliptic bursting can be achieved in a system with only one slow
variable. Moreover, both depend on bistability of the fast dynamics. Parabolic bursting, on the
other hand, requires at least two slow variables and does not arise from a hysteresis phenomenon.
A geometric model for parabolic bursting is the following. Consider a system of the form (2.1)
where x € R? and y = (y1,y2) € R%. There are now two slow variables, namely y; and y2. We
first describe the bifurcation structure of the fast subsystem with both slow variables considered
as parameters. This is illustrated in Figure 5, where we plot one component of the fast variable,
corresponding to the membrane potential, along with both slow variables. We also show the
projection of a parabolic bursting solution onto this figure.

We hypothesize that the set of fixed points of (FS) forms a Z-shaped surface. The fixed points
along the lower branch of this surface are assumed to be stable fixed points of (FS). There is a

curve along the upper branch of fixed points where Hopf bifurcations occur. Periodic solutions

11



arise at these Hopf points and terminate along orbits homoclinic to the fixed points along the
lower fold of the fixed point surface. In Figure 5, we show the maximum and minimum values of
the fast variable along each of these periodic solutions.

The existence of a parabolic bursting solution also requires hypotheses on the slow dynamics.
To write reduced equations which determine the evolution of the slow variables in the silent
phase, denote the lower branch of fixed points by z = ®(y). The silent phase evolution of the

slow variables is then given by the reduced equations

(2.3) y=9(2(y),y)

where differentiation is now with respect to 7 = et.

One obtains reduced equations for the evolution of the slow variables in the active phase using
averaging. Suppose that y = (y1,y2) lies in the region where there exists a stable limit cycle of
(FS). Let y(t) be the corresponding periodic solution of (FS) with period T'(y) and consider the

averaged quantity

T(y)
3y) = ﬁ | gt 0.

The active phase evolution of the slow variables is then given by the averaged equations

(2.4) y=3(y)

Parabolic bursting corresponds to the existence of a closed curve in the slow (y1,y2) phase plane
which passes through both the region of stable fixed points of (FS), where it satisfies (2.3), and
the region of stable limit cycles of (FS), where it satisfies (2.4). This is illustrated in Figure 6.
Note that the active phase of the bursting solution both begins and ends along a curve of
homoclinic bifurcations. Since the periods of the limit cycles tend to infinity at the homoclinic
bifurcations, the interspike interval is longer at both the beginning and end of each burst. This

accounts for the parabolic nature of the period of fast oscillations.

Remark 2.11. Parabolic bursting is found in the Aplysia R-15 neuron [1]. Rinzel and Lee [60]
considered a model due to Plant [56] and were the first to give a detailed analysis of parabolic

bursting by dissecting the equations into fast and slow subsystems as described here.

Remark 2.12. Rigorous results related to parabolic bursting are given in [43], [73], and [34].

12



Remark 2.13. A system of equations which give rise to parabolic bursting is [59]:

Vo= —(ica(v) +ik(v) +i1(0) +ikea(v, €) +icas(v,8)) +1
w' = P(woo(v) — w)/Tw(v)

d = €e(—pgeammoo(v)(v — vea) =€)

s’ = €(500(v) = 8)/7s

where, ica(v) = geaMoo(v)(v — vea), wk(v) = grw(v — vk), u(v) = Gv — ), thealv,c) =
9kca?(C) (v — vg), and ices(v,S) = geasS(v — vVeq)- The constants are given by geq = 4., gx =
8.0, gt = 2.0, vp, = —84, v; = —60, v = 120.0, I = 65, ggeq = 1., ¢ = 1333, € =
.002, p =.025, 7, = .05, and geqs = 1.. The nonlinear functions are given by my(v) = .5(1. +
tanh((v + 1.2)/18)), weo(v) = .5(1. + tanh((v — 12.)/17.)), 7y(v) = cosh((v — 12.)/34.), z(c)
¢/(1+4c¢), and soo = .5(1 + tanh((v — 12/24)).

2.3 Rigorous Results for Square-Wave Bursting Solutions

Here we present a theorem that addresses the issue of when, and in what sense, the heuristic
description of a square-wave bursting trajectory given in Subsection 2.2.1 can be rigorously
justified. The theorem implies that there may exist a small range of values of e for which the
bursting trajectory is not uniquely determined; moreover, for exactly these values, the bursting
solution does not closely follow the heuristically defined orbit. The reason why such values of e
exist is related to the mechanism by which spikes are added as € decreases, as we describe here.
A more complete discussion is given in [46].

For the following theorem, we consider (2.2) and assume that the geometric assumptions
described in Subsection 2.2.1 are satisfied. We also need some technical assumptions concern-
ing the bounded solutions of the fast subsystem (FS). We assume that each of the stable fixed
points along the lower branch of S is hyperbolic, the manifold P of periodic solutions is normally
hyperbolic, the right knee of S is nondegenerate, and the homoclinic orbit arises from the trans-
verse intersection of stable and unstable manifolds. Finally, we assume that S, P, and orbits

heteroclinic to S and P represent all the bounded solutions of (FS).

Theorem 2.1. The periodic bursting solution is uniquely determined and asymptotically stable
for all values of € > 0 sufficiently small except for those in a set of the form U2, (e; —6;, €;+6;).

The €; and 6; can be chosen so that lim;_o ¢ = 0. Moreover,
€ —€ir1 > C’le% and 6; < Coe k/ei
for some positive constants C1,Cs and k.

13



The proof of Theorem 2.1 is given in [46]. An important step in the proof is to explain how
the bursting solution adds spikes as € varies. It is during these transitions that the heuristic
construction is not justified. Here we give a geometric description of how these transitions take
place.

The number of spikes is determined by how many times the bursting trajectory spirals around
in phase space near P. The active phase terminates when the bursting trajectory passes near the
homoclinic orbit of (FS) and jumps down to the lower branch of S. The key to understanding
how spikes are added, therefore, is to understand what determines when the trajectory jumps
down to the silent phase. As we describe below, this crucially depends on the center-unstable
and center-stable manifolds of the fixed points along the middle branch of S. The center-stable
manifolds serve to separate those trajectories which continue to spiral in the active phase and
those which jump down to the silent phase.

Note that, when ¢ = 0, there are two trajectories in the unstable manifold of each of the
fixed points along the middle branch of S. The union of these trajectories forms the center-
unstable manifold of the middle branch. One of these trajectories evolves towards the active
phase, looping around the upper branch. Suppose that the homoclinic orbit of (FS) is at y = yp.
If y < yp, then this trajectory approaches one of the periodic solutions along P, while if y > vy,
then it ultimately approaches a stable fixed point along the lower branch. The other unstable
trajectory evolves directly towards the silent phase and approaches the stable fixed point along
the lower branch. Now the stable manifolds to the fixed points along the middle branch separate
the two branches of unstable trajectories. Hence, if a trajectory lies close to the middle branch,
it will either give rise to a spike or jump down to the silent phase depending on which side of the
appropriate stable manifold it lies on.

What we have described so far holds for € = 0; however, this all carries over for small € > 0.
To make this more precise, let W§ and W§* be the union of all the stable and unstable manifolds
to the fixed points along the middle branch when € = 0. (We exclude small neighborhoods of
the left and right knees.) These are both smooth, two-dimensional, invariant manifolds. For
€ > 0, these manifolds perturb to manifolds Wg and W (see [23]), which are also both smooth,
two-dimensional, invariant, and lie a C'—distance O(e) close to W and W near the middle
branch. If we let W& = WSNW!, then W¢ W¢, and W are the center, center-stable, and
center-unstable manifolds corresponding to the middle branch, respectively. As discussed before,
W¢ divides W into two pieces; one piece ‘points’ towards the active phase, while the other piece

‘points’ towards the silent phase.
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We now can see the significance of this separation to bursting solutions. We begin a bursting
solution in the active phase near the branch of periodic orbits P. The orbit gives rise to spikes
as it tracks near P moving slowly to the right. As the orbit approaches the homoclinic orbit, it
passes close to the middle branch. As long as the orbit lies on the ‘jump-up’ side of W¢, it will
keep spiking. Once it crosses over to the other side of W/, it will jump down to the silent phase.

It is possible, however, that the orbit lies precisely on W7, and it is important to understand
the fate of the trajectory in this case. If the orbit lies on W/, then it must track close to the
middle branch (actually W), slowly moving to the right. The orbit eventually jumps down near
the right knee. Note that if we start (exponentially) close to W2, then the trajectory will track
close to the middle branch for some finite distance before it either jumps up or jumps down. If
the bursting solution behaves in this way, then it will not lie close to the heuristically defined
bursting orbit. It is precisely this mechanism (lying close to W£) that can destroy the uniqueness
and stability of the bursting solution.

Now consider the transition of adding a spike as € decreases. Suppose, for concreteness, that
when € = €9, (2.2) exhibits a solution with 2 spikes per burst and when € = €3, there are 3 spikes
per burst. When € = €3, the bursting solution winds around P two times. After the second cycle,
it lies on the jump-down side of W¢ so it falls down to the silent phase. When e = €3, however,
the bursting solution winds around P three times before jumping down. After two cycles, the
solution still lies on the jump-up side of W}, and thus it returns to the active phase. There must
exist, therefore, some €¢* € (e3, €2) for which a bursting-like solution lies precisely in W¢. It is for

values of € very close to ¢* that the singular construction breaks down.

3 Two Mutually Coupled Cells

3.1 Introduction

In this section, we consider a network consisting simply of two mutually coupled cells. By
considering such a simple system, we are relatively easily able to describe how we model net-
works of oscillators, the types of behavior that can arise in such systems and the mathematical
techniques we use for the analysis of the behavior. For this discussion, we assume that each cell,
without any coupling, is modeled as the relaxation oscillator

v = f(v,w)

/!

(3.1)
w = eg(v,w)

Here € is assumed to be small; that is, w represents a slowly evolving quantity. We assume

that the v—nullcline, f(v,w) = 0, defines a cubic-shaped curve and the w—nullcline, g = 0, is a
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monotone decreasing curve which intersects f = 0 at a unique point pg, as shown in Figure 7. We
also assume that f > 0 (f < 0) below (above) the v—nullcline and g > 0 (< 0) below (above) the
w—nullcline. If pg lies on the middle branch of f = 0, then (3.1) gives rise to a periodic solution
for all € sufficiently small and we say that the system is oscillatory. In the limit € — 0, one can
construct a singular solution as shown in Figure 7. If pg lies on the left branch of f = 0, then
the system is said to be excitable; pg is a stable fixed point and there are no periodic solutions
for all € small.

System (3.1) can be viewed as a simple model for a bursting neuron in which the active phase
corresponds to the envelope of a burst’s rapid spikes. (See also [42].) Of course, a two-dimensional
model for a single cell cannot exhibit the more exotic dynamics described in the previous section
for a bursting cell. However, by considering a simple relaxation-type oscillator for each cell,
we will be able to discuss how network properties contribute to the emergent behavior of a
population of cells. It is, of course, a very interesting issue to understand how this population
behavior changes when one considers more detailed models for each cell. Some results for more
detailed models are given in [63].

Networks of two coupled cells may display a variety of different rhythms. By a synchronous
solution, we mean a rhythm in which both cells exhibit exactly the same behavior, oscillating
in phase with each other. An antiphase solution is shown in Figure 8A. This is the simplest
example of what we will call a clustered solution. In a larger population of cells, the network
is said to exhibit clustering if the population breaks up into distinct subgroups such that all of
the cells within each subgroup are synchronized with each other, but cells belonging to different
subgroups are desynchronized. Figure 8B shows a suppressed solution. One of the cells oscillates
periodically between the silent and active phases, while the other cell always remains in the silent
phase. A more exotic solution is shown in Figure 8C. During each period of oscillation, one of
the cells fires two action potentials, while the other cell fires just one.

In the next section, we describe how we model the two mutually coupled cells. The form
of coupling used is referred to as synaptic coupling and is meant to correspond to a simple
model for chemical synapses, the primary means by which neurons in the central nervous system
communicate with each other. As we shall see, there are many different forms of synaptic
coupling. For example, it may be excitatory or inhibitory and it may exhibit either fast or slow
dynamics. We are particularly interested in how the nature of the synaptic coupling affects the
emergent population rhythm. A natural question is whether excitatory or inhibitory coupling

leads to either synchronous or desynchronous rhythms. There are four possible combinations and
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we will demonstrate that all four may be stably realized, depending on the details of the intrinsic
and synaptic properties of the cells. Many of the results given here are complementary to those

in [42] who use the fast-slow structure in a somewhat different way.
3.2 Synaptic Coupling

We model a pair of mutually coupled neurons by the following system of differential equations

vy = flv,wr) — 32gsyn(vl - Usyn)
(3.2) wy = eg(vi,wr)

vy = f(vg,wz) — Slgsyn(v2 - 'Usyn)

wy = €eg(v2,ws)

Here (v1,w;) and (v2,w2) correspond to the two cells. The coupling term s;gsyn (v; — vsyn) can be
viewed as an additional current which may change a cell’s membrane potential v;. The parameter
gsyn corresponds to the maximal conductance of the synapse and is positive, while the reversal
potential v,y, determines whether the synapse is excitatory or inhibitory. If v < vy, along each
bounded singular solution, then the synapse is excitatory, while if v > v, along each bounded
singular solution, then the synapse is inhibitory.

The terms s;, 4 = 1,2, in (3.2) encode how the postsynaptic conductance depends on the
presynaptic potentials wv;. There are several possible choices for the s;. The simplest choice
is to assume that s; = H(v; — O4yn), where H is the Heaviside step function and 0y, is a
threshold above which one cell can influence the other. Note, for example, that if v; < 0y, then
s1 = H(vi —Ogyn) = 0, so cell 1 has no influence on cell 2. If, on the other hand, v; > 05y, then
s1 =1 and cell 2 is affected by cell 1.

Another choice for the s; is to assume that they satisfy a first order equation of the form
(3.3) si = a(l—s)H(vi —Osyn) — Bs;

where o and 8 are positive constants and H and 6, are as before. Note that « and 3 are related
to the rates at which the synapses turn on or turn off. For fast synapses, we assume that both
of these constants are O(1) with respect to e. For a slow synapse, we assume that o = O(1) and
B = O(e); hence, a slow synapse activates on the fast time scale but turns off on the slow time
scale.

The synapses considered so far are referred to as direct synapses since they are activated
as soon as a membrane potential crosses the threshold 8,,,. To more fully represent the range

of synapse dynamics observed biologically, it is also necessary to consider more complicated
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connections. These are referred to as indirect synapses, and they are modeled by introducing

new dependent variables z1 and zo. Each (z;, s;) satisfies the equations

r; = eag(l—z;)H(v; — 0y) — €fpzi

3.4
(34) st = ol —s;)H(z; — 0;) — Bs;

The constants a, and G, are assumed to be independent of €. The effect of the indirect synapses
is to introduce a delay from the time one oscillator jumps up until the time the other oscillator
feels the synaptic input. For example, if the first oscillator jumps up, a secondary process is
turned on when vy crosses the threshold 6,. The synapse s; does not turn on until x; crosses
0,; this takes a finite amount of (slow) time since z; evolves on the slow time scale, like the w;.
Note that indirect synapses may be fast or slow. For fast, indirect synapses, the turn off of s;,

after the z;-induced delay, occurs on the fast time scale.

3.3 Geometric Approach

ATl of the networks in this paper are analyzed by treating e as a small, singular perturbation
parameter. As in the previous section, the first step in the analysis is to identify the fast and slow
variables. We then dissect the full system of equations into fast and slow subsystems. The fast
subsystem is obtained by simply setting ¢ = 0 in the original equations. This leads to a reduced
set of equations for the fast variables with each of the slow variables held constant. The slow
subsystems are obtained by first introducing the slow time scale 7 = et and then setting e = 0 in
the resulting equations. This leads to a reduced system of equations for just the slow variables,
after solving for each fast variable in terms of the slow ones. The slow subsystems determine the
evolution of the slow variables while the cells are in either the active or the silent phase. During
this time, each cell lies on either the left or the right branch of some “cubic” nullcline determined
by the total synaptic input which the cell receives. This continues until one of the cells reaches
the left or right “knee” of its corresponding cubic. Upon reaching a knee, the cell may either
jump up from the silent to the active phase or jump down from the active to the silent phase.
The jumping up or down process is governed by the fast equations.

For a concrete example, consider two mutually coupled cells with fast, direct synapses. The

dependent variables (v;, w;, 8;), © = 1,2, then satisfy (3.2) and (3.3). The slow equations are

0 = f(via wi) - Sjgsyn(vi - Usyn)
(3.5) w; = g(vi, w;)
0 = a(l —s)H(vi —Osyn) — Bsi
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where differentiation is with respect to 7 and 7 # j. The first equation in (3.5) states that (v;, w;)
lies on a curve determined by s;. The third equation states that if cell ¢ is silent (v; < Ogyp),
then s; = 0, while if cell 7 is active, then s; = aaTﬁ = s4. We demonstrate that it is possible to
reduce (3.5) to a single equation for each of the slow variables w;. Before doing this, it will be
convenient to introduce some notation.

Let ®(v,w, s) = f(v,w) —gsynS(V—"Vgyn). If gsyn is not too large, then each Cs = {®(v, w, s) =
0} defines a cubic-shaped curve. We express the left and right branches of Cs by {v = @1 (w, s)}
and {v = ®r(w, s)}, respectively. Finally, let

Gr(w,s) = g(®r(w,s),w) and Gr(w,s) = g(Pr(w,s),w)

Now the first equation in (3.5) can be written as 0 = ®(v;, w;,s;) with s; fixed. Hence,
v; = ®q(vi,s;) where @ = L if cell 4 is silent and o = R if cell ¢ is active. It then follows that

each slow variable w; satisfies the single equation
(3.6) w; = Golwi,sj)

By dissecting the full system into fast and slow subsystems, we are able to construct singular
solutions of (3.2),(3.3). In particular, this leads to sufficient conditions for when there exists a
singular synchronous solution and when this solution is (formally) asymptotically stable. The
second step in the analysis is to rigorously prove that the formal analysis, in which ¢ = 0, is
justified for small € > 0. This raises some very subtle issues in the geometric theory of singular
perturbations, some of which have not been completely addressed in the literature. For most of
the results presented here, we only consider singular solutions.

We note that the geometric approach used here is somewhat different from that used in many
dynamical systems studies (see, for example, [59]). All of the networks considered here consist of
many differential equations, especially for larger networks. Traditionally, one would interpret the
solution of this system as a single trajectory evolving in a very large dimensional phase space.
We consider several trajectories, one corresponding to a single cell, moving around in a much
lower dimensional phase space (see also [87], [86], [71], [85], [63]). After reducing the full system
to a system for just the slow variables, the dimension of the lower dimensional phase space equals
the number of slow intrinsic variables and slow synaptic variables corresponding to each cell. In
the worst case considered here, there is only one slow intrinsic variable for each cell and one slow
synaptic variable; hence, we never have to consider phase spaces with dimension more than two.
Of course, the particular phase space we need to consider may change, depending on whether

the cells are active or silent and also depending on the synaptic input that a cell receives.
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3.4 Synchrony With Excitatory Synapses

Consider two mutually coupled cells with excitatory synapses. Our goal here is to give
sufficient conditions for the existence of a synchronous solution and its stability. Note that if the
synapses are excitatory, then the curve Cy = Cs, lies ‘above’ Cy = {f = 0} as shown in Figure
9. This is because for an excitatory synapse, v < w4y, along the synchronous solution. Hence,
on Cy, f(v,w) = geynsa(v —vVeyn) < 0, and we are assuming that f < 0 above Cy. If gy, is not
too large, then both Cy and C4 will be cubic shaped. We assume that the threshold 60,,, lies
between the two knees of Cj. In the statement of the following result, we denote the left knee of

Co by (vpk, wrK)-

Theorem 3.1. Assume that each cell, without any coupling, is oscillatory. Moreover, assume
the synapses are fast, direct and excitatory. Then there erists a synchronous periodic solution
of (3.2), (3.3). This solution is asymptotically stable if one of the following two conditions is
satisfied.

(H1) % <0, % >0, and g—g) < 0 mnear the singular synchronous solution.

(H2) |g(vik,wrk)| is sufficiently small.

Remark 3.1. We note that the synchronous solution cannot exist if the cells are excitable and
the other hypotheses, concerning the synapses, are satisfied. This is because along a synchronous
solution, each (v;,w;) lies on the left branch of Cy during the silent phase. If the cells are
excitable, then each (v;, w;) will approach the point where the w-nullcline {g = 0} intersects the

left branch of Cy. The cells, therefore, will not be able to jump up to the active phase.

Remark 3.2. The assumptions concerning the partial derivatives of f and g in (H1) are not
very restrictive since we are already assuming that f > 0(< 0) below (above) the v-nullcline and

g > 0(< 0) below (above) the w-nullcline.

Remark 3.3. A useful way to interpret (H2) is that the silent phases of the cells are much
longer than their active phases. This is because g(vrk,wrk) gives the rate at which the slow
variables w; evolve near the end of the silent phase. Note that g(v.x,wrx) will be small if the

left knee of Cj is very close to the w-nullcline.

Proof: We first consider the existence of the synchronous solution. This is straightforward

because along a synchronous solution (vi,wi,s1) = (ve,ws,s2) = (v, w, s) satisfy the reduced
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system
vl = f(v,w) — sgsyn(v — Vsyn)

w = eg(v,w)

s = a(l—s)H(v—=0sy,) — Bs
The singular solution consists of four pieces. During the silent phase, s = 0 and (v, w) lies on the
left branch of Cp. During the active phase s = s4 and (v, w) lies on the right branch of C4. The
jumps between these two phases occur at the left and right knees of the corresponding cubics.

We next consider the stability of the synchronous solution to small perturbations. We begin
with both cells close to each other in the silent phase on the left branch of Cy, with cell 1 at
the left knee ready to jump up. We follow the cells around in phase space by constructing the
singular solution until one of the cells returns to the left knee of Cy. As before, the singular
solution consists of four pieces. We need to show that the cells are closer to each other after this
complete cycle than they were initially.

The first piece of the singular solution begins when cell 1 jumps up. When v1(t) crosses Oy,
s1(t) — sa. This raises the cubic corresponding to cell 2 from Cy to C4. If |w;(0) — wa(0)] is
sufficiently small, corresponding to a sufficiently small perturbation, then cell 2 lies below the left
knee of C'4. The fast equations then force cell 2 to also jump up to the active phase, as shown in
Figure 9. Note that this piece takes place on the fast time scale. Hence, on the slow time scale,
both cells jump up at precisely the same time.

During the second piece of the singular solution, both oscillators lie in the active phase on
the right branch of C'4. Note that the ordering in which the oscillators track along the left and
right branches has been reversed. While in the silent phase, cell 1 was ahead of cell 2. In the
active phase, cell 2 leads the way. The oscillators remain on the right branch of C'4 until cell 2
reaches the right knee.

The oscillators then jump down to the silent phase. Cell 2 is the first to jump down. When
v (t) crosses Oy, so switches from s to 0 on the fast time scale. This lowers the cubic corre-
sponding to cell 1 from C4 to Cy. If, at this time, cell 1 lies above the right knee of C'4, then
cell 1 must jump down to the silent phase. This will certainly be the case if the cells are initially
close enough to each other.

During the final piece of the singular solution, both oscillators move down the left branch of
Cp until cell 1 reaches the left knee. This completes one full cycle.

To prove that the synchronous solution is stable, we must show that the cells are closer to

each other after this cycle; that is, there is compression in the distance between the cells. There
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are actually several ways to demonstrate this compression; these correspond to two different ways
to define what is meant by the ‘distance’ between the cells. Here we consider a Euclidean metric,
which is defined as follows: Suppose that both cells lie on the same branch of the same cubic
and the coordinates of cell ¢ are (v;, w;). Then the distance between the cells is defined as simply
|wy —ws|. Note that during the jump up and the jump down, this metric remains invariant. This
is because the jumps are horizontal so the values of w; do not change. If there is compression,
therefore, it must take place as the cells evolve in the silent and active phases. We now show
that this is indeed the case if (H1) is satisfied.

Suppose that when 7 = 0, both cells lie in the silent phase on Cy. We assume, for convenience,
that w2(0) > wi(0). We need to prove that wo(7) — wi(7) decreases as long as the cells remain

in the silent phase. Now each w; satisfies (3.6) with o = L and s; = 0. Hence,

w(r) = w0 + [ Gulwi(e).0)de
and, using the Mean Value Theorem,
w2 (1) —wi(r) = w2(0) —wi(0) + [§ Gr(wa(€),0) — Gr(wi(§),0) d§
= wy(0) —wi(0) + J§ Gk (w,0)(wa(€) —wi(€)) dE

%L = g,8" (w) + gy. We assume in (H1)

(3.7)

for some w*. Now Gr(w,s) = g(®r(w),w). Hence,
that g, > 0 and g,, < 0 near the synchronous solution. Moreover, &/ (w) < 0 because v = @, (w)
defines the left branch of the cubic Cy which has negative slope. It follows that ‘93% < 0, and
therefore, from (3.7), wo(7) — w1(7) < wa(0) — w1(0). This gives the desired compression; a
similar computation applies in the active phase. We note that if there exists v > 0 such that
aa% < — along the left branch, then Gronwall’s inequality shows that ws(7) —wi(7) decreases
at an exponential rate.

We next consider (H2) and demonstrate why this leads to compression of trajectories. Sup-
pose, for the moment, that g(vrx, wrx) = 0; that is, the left knee of Cj touches the w-nullcline
at some fixed point. Then both cells will approach this fixed point as they evolve along the left
branch of Cy in the silent phase. There will then be an infinite amount of compression, since
both cells approach the same fixed point. It follows that we can assume that the compression
is as large as we please by making g(vrk,wrk) sufficiently small. If the compression is suffi-
ciently large, then it will easily dominate any possible expansion over the remainder of the cells’

trajectories. This will, in turn, lead to stability of the synchronous solution.

Remark 3.4. The mechanism by which one cell fires, and thereby raises the cubic of the other

cell such that it also fires, was referred to as Fast Threshold Modulation (FTM) in [71]. There,
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a time metric was introduced to establish the compression of trajectories of excitatorily coupled
cells, which implies the stability of the synchronous solution. A detailed discussion of the time

metric can be found in [42]; see also [49].

Remark 3.5. While the synchronous solution has been shown to be stable, it need not be
globally stable. In [45], it is shown that this network may exhibit stable antiphase solutions if

certain assumptions on the parameters and nonlinear functions are satisfied.

We have so far considered a completely homogeneous network with just two cells. The
analysis generalizes to larger inhomogeneous networks in a straightforward manner, if the degree
of heterogeneity between the cells is not too large. The major difference in the analysis is that,
with heterogeneity, the cells may lie on different branches of different cubics during the silent and
active phases. The resulting solution cannot be perfectly synchronous; however, as demonstrated
in [87], one can often expect synchrony in the jump-up, but not in the jump-down. Related work
on heterogeneous networks include [72], [55], [8].

One may also consider, for example, an arbitrarily large network of identical oscillators with
nearest neighbor coupling. We do not assume that the strength of coupling is homogeneous.
Suppose that we begin the network with each cell in the silent phase. If the cells are identical,
then they must all lie on the left branch of Cy. Now if one cell jumps up it will excite its
neighbors and raise their corresponding cubics. If the cells begin sufficiently close to each other,
then these neighbors will jump up due to FTM. In a similar manner, the neighbor’s neighbors
will also jump due to FTM and so on until every cell jumps up. In this way, every cell jumps
up at the same (slow) time. While in the active phase, the cells may receive different input
and, therefore, lie on the right branches of different cubics. Once one of the cells jumps down,
there is no guarantee that other cells will also jump down at this (slow) time, because the cells
to which it is coupled may still receive input from other active cells. Hence, one cannot expect
synchrony in the jumping down process. Eventually every cell must jump down. Note that there
may be considerable expansion in the distance between the cells in the jumping down process. If
lg(vpi, wrpK)| is sufficiently small, however, as in the previous result, then there will be enough
compression in the silent phase so that the cells will still jump up together. Here we assumed
that the cells are identical; however, the analysis easily follows if the heterogeneities among the

cells are not too large.
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3.5 Desynchrony With Inhibitory Synapses

We now consider two mutually coupled cells with inhibitory synapses. Under this coupling,
the curve C'4 now lies below Cj. As before, we assume that g,y is not too large, such that both
Cy and C4 are cubic shaped. We also assume that the right knee of C4 lies above the left knee of
Co as shown in Figure 10. Some assumptions on the threshold 6, are also required. For now,
we assume that 0y, lies between the left knee of Cp and right knee of C4.

We will assume throughout this section that the synapses are fast, direct and inhibitory. The
main results state that if a synchronous solution exists then it must be unstable. The network
will typically exhibit either out-of-phase oscillations or a completely quiescent state and we give
sufficient conditions for when either of these arises. We note that the network may exhibit
bistability; both the out-of-phase and completely quiescent solutions may exist and be stable for
the same parameter values. These results are all for singular solutions. Some rigorous results for
e > 0 are given in [86].

The first result concerns the existence and stability of the synchronous solution.

Theorem 3.2. Assume that the synapses are fast, direct and inhibitory. If each cell, without
any coupling, is oscillatory and Osyy, is sufficiently large, then there exists a singular synchronous
solution. This solution is unstable. If each cell, without any coupling, is excitable, then there

does not exist a singular synchronous solution.

Proof: The existence of a singular synchronous solution for oscillatory cells follows precisely as
in the previous section. During the silent phase, the trajectory lies on the left branch of Cj, while
in the active phase it lies on the right branch of C'4. Note that we require that the right knee
of Cy4 lies above the left knee of Cy. Moreover, when the synchronous solution jumps up and
crosses the threshold v = 6y, it should lie to the right of the middle branch of C4; otherwise,
it would fall down to the silent phase. This is why we assume that 0y, is sufficiently large.

This solution is unstable for the following reason. Suppose both cells are initially very close
to each other on Cy. The cells then evolve on Cj until one of the cells, say cell 1, reaches the left
knee of Cy. Cell 1 then jumps up to the active phase. When v, crosses the threshold 6,y,, s1
switches from 0 to s4 and cell 2 jumps from Cj to C4, as shown in Figure 10. This demonstrates
that the cells are uniformly separated for arbitrarily close initial data. The synchronous solution
must, therefore, be unstable.

The synchronous solution cannot exist if the cells are excitable for precisely the same reason

discussed in the previous section. If such a solution did exist then each cell would lie on Cj
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during its silent phase. Each cell would then approach the stable fixed point on this branch and

would never be able to jump up to the active phase.

We next consider out-of-phase oscillatory behavior. One interesting feature of mutually cou-
pled networks is that such oscillations can arise even if each cell is excitable for fixed levels of
synaptic input. The following theorem gives sufficient conditions for when this occurs. We will
require that the active phase of the oscillation is sufficiently long. To give precise conditions, we
introduce the following notation.

Assume that the left and right knees of Cy are at (vpk,wrk) and (vrk, WrK ), respectively.
If the w-nullcline intersects the left branch of C4, then we denote this point by (v4,wa) = pa.
We assume that w4 < wpg, as shown in Figure 10. Let 7, be the (slow) time it takes for the
solution of (3.6) with @« = L and s = s4 to go from w = wrg to w = wrk, and let 7 be the
time it takes for the solution of (3.6) with @« = R and s = 0 to go from w = wrk to w = wrk.
Note that 77, is related to the time a solution spends in the silent phase, while 75 is related to

the time a solution spends in the active phase.

Theorem 3.3. Assume that the cells are excitable for each fixed level of synaptic input and the
synapses are fast, direct, and inhibitory. Moreover, assume that wa < wrpix and 7, < Tr. Then

the network exhibits stable out-of-phase oscillatory behavior.

Remark 3.6. We do not claim that the out-of-phase solution is uniquely determined or that it
corresponds to antiphase behavior. These results may hold; however, their proofs require more

analysis than that given here.

Remark 3.7. The rest state with each cell at the fixed point on C| also exists and is stable.

Hence, if the hypotheses of Theorem 3.3 are satisfied, then the network exhibits bistability.

Proof: Suppose that we begin with cell 1 at the right knee of Cy and cell 2 on the left branch of
Cx with wa < w2(0) < wrkx. Then cell 1 jumps down and, when v; crosses the threshold 6y,
cell 2’s cubic switches from C4 to Cy. Since wy(0) < wrk, cell 2 lies below the left knee of Cj,
so it must jump up to the active phase. After these jumps, cell 1 lies on the left branch of Cy,
while cell 2 lies on the right branch of Cjy.

Cell 2 then moves up the right branch of Cy while cell 1 moves down the left branch of Cy,
approaching p4. This continues until cell 2 reaches the right knee of Cy and jumps down. We
claim that at this time, cell 1 lies below the left knee of Cy, so it must jump up. We can then

keep repeating this argument to obtain the sustained out-of-phase oscillations.
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The reason why cell 1 lies below the left knee of Cj when cell 2 jumps down is because it
spends a sufficiently long amount of time in the silent phase. To estimate this time, note that
because cell 2 was initially below the left knee of Cj, the time it spends in the active phase before
jumping down is greater than 7p. Hence, the time cell 1 spends in the silent phase from the time
it jumps down is greater than 7p > 77. From the definitions, since cell 1 was initially at the
right knee of Cy, it follows that cell 1 must be below the left knee of Cy when cell 2 jumps down,

which is what we wished to show.

Remark 3.8. To obtain sustained oscillations, it is not really necessary to assume that each cell
is excitable for all levels of synaptic input. Suppose, for example, that the w-nullcline intersects
C\ along its middle branch, but it intersects C'4 along its left branch. Then each cell, without any
coupling, is oscillatory. The hypothesis 7, < 7g is no longer necessary for sustained out-of-phase
oscillations. If 77, > 7g, then it is possible that both cells will lie in the silent phase on the left
branch of Cy at the same time. If there is no fixed point of this branch then the leading cell
will be able to jump up. At this time, the trailing cell will approach the left branch of C'4 and
remain there until the leading cell jumps down. The trailing cell may then either jump up, if it
lies below the left knee of Cj, or it may jump back to the left branch of Cy. In this latter case,

it will eventually jump up when it reaches the left knee of Cy.

Remark 3.9. Wang and Rinzel [95] distinguish between “escape” and “release” in producing
out-of-phase oscillations. In the proof of the preceding theorem, the silent cell can only jump up
to the active phase once the active cell jumps down and releases the silent cell from inhibition.
This is referred to as the release mechanism and is often referred to as postinhibitory rebound
[24]. To describe the escape mechanism, suppose that each cell is oscillatory for fixed levels of
synaptic input. Moreover, one cell is active and the other is inactive. The inactive cell will then
be able to escape the silent phase from the left knee of its cubic, despite the inhibition it receives
from the active cell. Note that when the silent cell jumps up, it inhibits the active cell. This
lowers the cubic of the active cell, so it may be forced to jump down before reaching a right knee.
These issues are also discussed in [42], where there is a detailed discussion of properties of the

antiphase solutions, including the control of their frequencies.
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3.6 Synchrony With Inhibitory Synapses
3.6.1 Introduction

In the previous section, we showed that an inhibitory network cannot exhibit stable syn-
chronous oscillations if the synapses are direct and fast. Synchronous oscillations in an inhibitory
network have been observed experimentally, however [77], [79], [98]. We now show that these os-
cillations are possible with slow and indirect synapses. Recall that the synapse is slow if @« = O(1)
and § = O(e) with respect to e. We now assume that § = eK where K does not depend on e.

As before, we analyze the network by considering singular solutions. The first step in this
analysis is to derive fast and slow equations. This is done in the next subsection. We then show
that the synchronous solution may exist with either direct or indirect slow synapses and that
this solution cannot be stable if the synapses are direct. In Subsection 3.6.5, we state the main
result concerning the stability of the synchronous solution with indirect synapses. This result
is proved in [85]. We then demonstrate that mutually coupled networks with slow inhibitory
synapses may exhibit numerous other types of solutions besides the synchronous one. In fact, all

of the solutions shown in Figure 8 are generated by this class of networks.

3.6.2 Fast and Slow Equations

We derive slow subsystems valid when the cells lie in either the silent or the active phase.
There are several cases to consider and we only discuss two of these in detail. Here, we only
consider direct synapses; the derivation of the slow equations for indirect synapses is very similar.

If both cells are silent, then v; < 64y, and the first term in (3.3) is zero. Hence, after letting

T = et and setting ¢ = 0, (3.2), (3.3) become

0 = f(via wZ) — Sj9syn ('Uz' - 'Usyn)
(3.8) w; = g(vi, w;)
éz' = —KSZ'

where j # i. This system can be simplified as follows. We write the left branch of Cs as
v=>®r(w,s) and let Gr(w,s) = g(®r(w,s),s). Each (w;, s;) must then satisfy the system
w = Gp(w,s)

s = —Ks

(3.9)

These equations determine the evolution of the slow equations while in the silent phase.

If both cells are active, then s; is a fast variable. The only slow variables are the w;. Instead
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of (3.8), the slow equations are now

0 = f(viawi) - gsyn(“i - 'Usyn)
(3.10) wi = g(vi, w;)
1 = s

This can be reduced to a system for just the slow variables as before. Denote the right branch
of Cs by v = ®r(w,s) and let Gr(w,s) = g(Pr(w,s),s). Then each w; satisfies the scalar

equation
(3.11) w = Ggr(w,1)

In a similar fashion, we can derive the slow subsystem for when one cell is active and the other
is silent. For indirect synapses, there are further cases depending on whether the z;-variables

have crossed their threshold 6, or not. This is discussed in detail in [85].

3.6.3 Existence of Synchronous Oscillations

The singular synchronous solution is easily constructed; here we consider the case of direct
synapses. We begin with both cells at the right knee of the right branch of C'i. From this point,
the cells jump down to the silent phase. While in the silent phase, the slow variables evolve
according to (3.9). The cells can only leave the silent phase once they reach a left knee of one
of the left branches. If the cells are able to reach such a point, then they will jump up to the
active phase and return to the starting point. Hence, the existence of the synchronous solution
depends on whether the cells can reach one of the jump-up points while in the silent phase.

If the cells are oscillatory, then the synchronous trajectory must reach one of the jump-up
points. This is demonstrated in [85], where it is also shown that a synchronous solution can exist
even though both cells, without any coupling, are excitable. This will be the case if the rate
K of decay of inhibition is small enough and the cells are oscillatory for some fixed values of
s € (0,1); if the cells are excitable for all s € [0, 1], then the only stable solution is the quiescent
resting state. Exit from the silent phase is not possible if K is too large, since then the inhibition
decays quickly and the system behaves in the slow regime like the uncoupled excitable system
with s = 0.

The construction of the synchronous solution for the case of indirect synapses is very similar.
There are some additional complications due to the additional slow variables z;. The complete

analysis is given in [85].
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3.6.4 Instability of the Synchronous Solution for Direct Synapses

The synchronous solution is not stable when the synapses are direct for precisely the same
reasons described in Section 3.5. This holds because with direct synapses, when one cell jumps,
the other cell begins to feel inhibition as soon as the first cell’s membrane potential crosses
threshold. This instantly moves the second cell away from its threshold by an amount that
stays bounded away from zero no matter how close to the first cell the second cell starts. Thus,
infinitesimally small perturbations are magnified, at this stage of the dynamics, to finite size,

and the synchronous solution cannot be stable.

3.6.5 Statement of the Main Result

We now consider indirect synapses and show that the synchronous solution can be stable
in some parameter ranges. We shall show that there are two combinations of parameters that
govern the stability. Furthermore, only one of those two combinations controls stability in any
one parameter regime.

For this result, it is necessary to make some further assumptions on the nonlinearities and

parameters in (3.2), (3.4). It will be necessary to assume that
(3.12) fw < 0, g, > 0, and gy < 0

near the v—nullcline. For Theorem 3.4 below, we also assume that f(v,w) is given by

f(v,w) = fi(v) — gew(v — vr)

where g. > 0 and vg < wvgy, represent a maximal conductance and reversal potential, respec-
tively. This holds for the well-known Morris-Lecar equations [51]. The analytical framework we
develop, however, also applies to more general nonlinearities which satisfy (3.12). Some technical
assumptions are also required on the nonlinear function g(v, w). We need to assume that g, is

not too large near the right branches of the cubics Cs, for example.

We assume that the parameters o, and 3, are sufficiently large, and am"_‘fﬁm > 0,. This guar-
antees that each x; can cross its threshold in order to turn on the inhibition. Precise conditions
on how large «, and (3, must be are given in [85].

We also need to introduce some notation. Let a_ be defined as the minimum of —dg/d0w
over the synchronous solution in the silent phase. Note from (3.12) that a_ > 0. Let (w*,s*) =

(wr(s*),s*) be the point where the synchronous solution meets the jump-up curve, and let

A = w(s*) be the reciprocal slope of the jump-up curve at this point in (w, s)-space. Finally,
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let a; denote the value of g(v,w) evaluated on the right hand branch of Cj at the point where

the synchronous solution jumps up. The main result is then the following.

Theorem 3.4. Assume that the nonlinear functions and parameters in (3.2) and (3.4) satisfy the
assumptions stated above. If = eK with K < a_ and Ks* < ay/|)\|, then the synchronous

solution is asymptotically stable.

Remark 3.10. The first condition in Theorem 3.4 is consistent with the numerical simulations
of [95], who obtained synchronized solutions when the synapses recovered at a rate slower than

the rate at which the neurons recovered in their refractory period.

Remark 3.11. To interpret the second condition in Theorem 3.4, note that Ks* is the rate
of change of s at the point at which the synchronous solution jumps, while a; is the rate of
change of w on the right hand branch right after the jump. Since A = dwp /ds, multiplication
by |A| transforms changes in s to changes to w. Thus, the second condition is analogous to
the compression condition that produces synchrony between relaxation oscillators coupled by
fast excitation as described in Theorem 3.1 of Section 3.4. |A| may be thought of as giving a
relationship between the time constants of inhibitory decay and recovery of the individual cells;
a larger |\| (corresponding to a flatter jump-up curve) means that a fixed increment of decay
of inhibition (As) has a larger effect on the amount of recovery that a cell must undergo before

reaching its (inhibition-dependent) threshold for activation.

Remark 3.12. The two conditions given in the statement of Theorem 3.4 correspond to two
separate cases considered in the proof of Theorem 3.4. These two cases correspond to whether
the two cells preserve their orientation (Case 1) or reverse their orientation (Case 2) on the
right branch of the s = 1 cubic after one cycle. Theorem 3.4 says that, whatever case the
synchronous trajectory falls into, if both conditions hold, then the synchronous solution is stable.
Note, however, that the different cases require different conditions. Case 1 requires K < a_ and
Case 2 requires Ks* < a4 /|A|. Thus, by changing a parameter, such as gy, that switches
the system between Case 1 and Case 2, one can change which combinations of time scales and
other parameters control the stability of the synchronous solution. In particular, stability of
synchronous solutions can be lost or gained without changing any time constants. See [85] for

details.

Remark 3.13. In this section, we have considered rather simple models for each cell; in par-

ticular, each cell contains a single channel state variable w and there is only one intrinsic slow
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process. In this case, the synchronous solution can be stable only if the synaptic variable de-
cays on the slow time scale. This is true even if the cells are oscillatory [85], [64]. In fact, if
the cells are excitable, then the slow synaptic variable is required even for the existence of a
synchronous solution; it allows the cells to escape from the silent phase. In [64], [65], [63], more
complicated models for the cells are considered. It is shown that mutually coupled networks with
more complex cells can give rise to stable synchronous solutions even if the cells are excitable for
all s € [0,1] and the synapses are fast; the synapses must still be indirect, however. The main
conclusion of the analysis in [63] is that what is needed for the existence of stable synchronous
solutions is the presence of two slow variables; one of these slow variables may correspond to an
intrinsic process and the other to a synaptic process, or both slow variables may correspond to

intrinsic processes.

Remark 3.14. The models discussed here represent bursting neurons. Synchronization of spik-
ing neurons, namely neurons with very short active phases, that are connected by inhibition is
considered in [90], [25], [6], [42]. We have also assumed that cells and coupling are homogeneous.

The effect of heterogeneities on cells coupled with inhibition is analyzed in [26], [97], [12].

3.6.6 Nonsynchronous Solutions

The network of two mutually inhibitory cells can display other behaviors. We will not
give rigorous conditions for the existence and stability of these other solutions; instead, we give
simulations of the other solutions and a general description of the parameter ranges in which
they are expected. The heuristic explanations we give are based on the techniques developed in
the previous section. For all of the examples, we consider direct synapses, although the analysis
for indirect synapses is very similar.

We start with the antiphase solution. Such a solution is shown in Figure 8A. The antiphase
solution is the most well-known solution for a pair of mutually inhibitory oscillators, expected
when the inhibition decays at a rate faster than the recovery of the oscillator (K/a_ large); see,
for example, [94], [68]. Though K/a_ small favors stability of the synchronous solution and
K/a_ large favors the existence of a stable antiphase solution, there is a parameter range in
which both solutions are stable.

One can describe the evolution of the antiphase solution in phase space in a way that is
similar to the description of the synchronous solution given earlier. In Figure 11, we illustrate
the projection of an antiphase solution onto the (w, s) plane. We choose the initial (slow) time

so that both cells lie in the silent phase after cell 1 has just jumped down from the active phase.
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This implies that the inhibition s; felt by cell 2 satisfies s1(0) = 1. Both cells then evolve in
the silent phase until cell 2 reaches the jump-up curve, say at time 7 = 7. At this time, the
inhibition so felt by cell 1 jumps up to the line s = 1. Cell 2 then evolves in the active phase;
we illustrate the projection of cell 2’s trajectory during the active phase with a dotted curve in
Figure 11. Note that s1(7) still satisfies $; = —Ks1; hence, it keeps decreasing while cell 2 is
active. During this time, cell 1 lies in the silent phase with so = 1. This continues until cell 2
reaches the jump-down curve wg(s). We denote this time as 75. Cell 2 then jumps down and
this completes one-half of a complete cycle. For this to be an antiphase solution, we must have
that w1 (m2) = w2(0) and s1(72) = s2(0). Rigorous results related to the existence and stability
of antiphase solutions for systems with slow inhibitory coupling are given in [86], [62].

In the introduction to this section, we referred to another kind of nonsynchronous solution
obtained in this system as a suppressed solution; an example is shown in Figure 8B. In such
rhythms, one cell remains quiet while the other oscillates. They occur in the same parameter
range as the stable synchronous solutions, i.e. K/a_ small. The behavior of these solutions is
easy to understand: if the inhibition decays slowly enough, the leading cell can recover and burst
again before the inhibition from its previous burst wears off enough to allow the other cell to fire.
This type of solution cannot exist if the cells are excitable rather than oscillatory, since there is
no input from the quiet cell to drive the active one. On the other hand, suppressed solutions
only arise if the cells are excitable for some fixed levels of inhibition; i.e. some s € (0,1]. If this
is not the case, then the w—coordinate of the suppressed cell must keep decreasing until that cell
eventually reaches the jump-up curve and fires.

If the synaptic inhibition decays at a rate comparable to the recovery of the cell, complex
hybrid solutions can occur, in which one cell is suppressed for several cycles, while the other fires,
and then fires while the other is suppressed. An example is shown in Figure 8C. In this example,
each cell is excitable when uncoupled but is oscillatory for some intermediate levels of inhibition.
Hence, if K/a_ is sufficiently small, then a cell can fire a number of times while the other cell
is suppressed. The inhibition of the firing cell must eventually wear off, such that that cell can
no longer fire. This then allows the inhibition of the suppressed cell to wear off to the level from
which it can fire. The roles of the two cells are then reversed.

The synchronous solution exists stably in parameter regimes in which one or more of the
above nonsynchronous solutions is also stable. Thus the choice of solution depends on the initial
condition. The basin of attraction of the synchronous solution depends mainly on the delay of

the onset of the inhibition. For a trajectory to be in the domain of attraction of the synchronous
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solution, the lagging cell must be activated before the inhibition from the leading cell suppresses
it. As the onset time of inhibition decreases, the domain of stability of the synchronous state

vanishes, but the nonsynchronous solutions remain.

3.7 Desynchrony With Excitatory Synapses

We now briefly discuss results in [5] which demonstrate that excitatory coupling can lead
to almost synchronous solutions if the active phase of a single cell is much shorter than the
silent phase; that is, the cells here correspond to spiking neurons. This work is motivated by
simulations in [55] which showed that there can be a stable state close to synchrony when the
fully synchronized state is unstable.

Here we write the equations for a single oscillator as

o= f('u,w)

!

3.13
( ) w = eg(v, ’U))/Too (U)

where the function 7, (v) is given by
rol0) = { L ifu<u
e/v ifv>wy
The parameter vy is the threshold for entering the active phase and -y governs the rate of passage
through the active phase. We assume that vy lies between the two knees of the cubic f = 0,
which we again denote by Cj.

The equations for two mutually coupled oscillators in this model are

(3.14) IUZ,' - f(vi’wi) B gsynH(vj - 'Ust)(vi - 'Usyn)

w, = eg(vi, w;)/Too (Vi)

where j # i . Here g4y, is the conductance of the synaptic current and v, is the synaptic
threshold. The synaptic reversal potential vy, is chosen to be high so that the synapse is
excitatory; that is, v; — vgy, < 0 along the singular solutions. The v-nullcline is the same as that
of the uncoupled cell when v; < vg. For v; > vy, the effect of the coupling term is to raise the
nullcline and change its shape; if g,y is not too large, then the v-nullcline is still qualitatively
cubic. We denote this cubic by C. Note that there are two thresholds vg and v in the equations.
To simplify the discussion, we assume here that vy = wy.

As in previous sections, we analyze the solutions by treating € as a small, singular perturbation
parameter. We construct singular solutions after formally setting ¢ = 0. An interesting feature
of the model considered here is that the structure of the corresponding flows is quite different

depending on whether cells are silent or active.
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We first demonstrate how to construct a singular periodic orbit for a single uncoupled cell.

When € is set equal to 0 in (3.13), we obtain the equations for the fast flow

15 o = fo,w)
w = 0

if v < vp and

(316) o = f(v,w)
w = yg(v,w)

if v > vp. By introducing the rescaling 7 = et into (3.13) and then setting ¢ = 0, we obtain

equations for the slow flow in the silent phase,

(3.17) 0= Jw)
w = g(vp(w),w)
if v < vy, where v, (w) is obtained by solving 0 = f(v,w) along the left branch of the cubic Cj.

Note that the equations (3.15) and (3.17) are simply scalar equations; in (3.15), the variable w
serves as a parameter in the v’ equation. The full two-dimensional system (3.13) has been reduced
to two one-dimensional equations and solutions of these are easy to characterize. However, (3.16)
is not reduced. In other fast-slow systems of the form (3.13), typically the entire v-nullcline
consists of rest points for the fast flow. In this case, however, only the portion of Cy with v < vy
consists of rest points.

The singular periodic orbit for a single uncoupled cell is constructed as follows. We begin the
orbit with the cell at the left knee of Cy, which we denote by (vpx,wrk). The first part of the
singular orbit is a solution of (3.15) which connects (vpx,wr k) and (vg, wrx). The second part
is a solution of (3.16) which connects (vg, wrx) to (vg,wp), where wp, > wrk; this corresponds
to the active phase. The third part is a solution to (3.15) which connects (vg, wp) back to Cy
at some point (vr(wp),wp). The fourth and final part is a solution to (3.17) which connects
(vp(wp), wp) to (Vik,wWrK)-

The construction of a synchronous solution for the coupled system is done in the same manner
as that of the periodic solution for the uncoupled cell; the only difference is that the dynamics
are changed as the voltage passes across vg = vy. Thus, if each v; > vy, then (3.16) is replaced

by
(3.18) Vo= f(v,w) - gé’yn('U - 'Usyn)

!

w = yg(v,w)
The synchronous solution is not the same as the uncoupled periodic solution, since they satisfy

different equations while in the active phase.
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There is no difficulty in proving that these singular periodic solutions perturb, for ¢ > 0
small, to actual solutions of either (3.13) or (3.14). See, for example, [50]. The actual periodic
orbits for e small lie O(e) close to the singular orbits, except near the left knee of Cy, where the
distance is O(e!/?).

To construct the almost-synchronous solutions, we again work with singular solutions. There
are now more cases to consider, depending on which of the cells is silent or active. If both cells
are silent (that is, each v; < vy), then the fast flow corresponding to each cell is given by (3.15),
while the slow flow is given by (3.17). If both cells are active, then the fast flow for each cell is
(3.18); there is no slow flow. Finally, suppose that one of the cells, say cell 1, is active and cell 2
is silent. Then the fast flow for cell 1 is (3.16) and the fast flow for cell 2 is

(319) vo= f(U’w) - gsyn('U - vsyn)

w = 0

There is no slow flow for this case since all cell 1 dynamics in the active phase occurs on the fast
time scale.

We now give a heuristic argument to explain why there may exist a stable almost synchronous
solution. We describe the construction of a singular solution of (3.14) in which one of the cells,
say cell 1, begins at the left knee of Cjy and cell 2 lies on the left branch of Cy just above cell 1. We
follow the cells around in phase space until one of the cells returns to the left knee. If the other
cell returns to the initial position of cell 2, then this will correspond to an almost synchronous
solution. As in the previous constructions, the singular solution consists of several pieces.

The first piece starts as cell 1 leaves the left knee; it satisfies (3.15), moving horizontally in
(v, w)-space, until it crosses vg. Suppose that this occurs when ¢ = #;. At this time, H(v1 — vyp)
switches from 0 to 1 and cell 2 then satisfies (3.19). If cell 2 initially lies below the left knee
of C1, then it will jump up, continuing to satisfy (3.19) until vy crosses vg. Suppose that this
occurs when t = ty. For t1 < t < tg, cell 1 satisfies (3.16). Note that its trajectory is no longer
horizontal. We assume in this heuristic argument that v; > vy for t; < t < t5. When ¢t = 1o,
H (vg —vg) switches from 0 to 1 and both cells then satisfy (3.18). Assume that cell 1 is the first
cell to cross vy again and this occurs when ¢t = 7. Then cell 2 satisfies (3.16) until it crosses vy,
say when t = T5. Once a cell crosses vy, it moves horizontally to a point on the left branch of Cj.
The cells then evolve along the left branch of Cy until one of the cells returns to the left knee
and this completes the cycle. We note that it is possible for either of the cells to be the first to
reach the left knee.

The singular flow naturally gives rise to a one-dimensional map, which we denote by II. More
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precisely, if (v9,ws) is the initial position of cell 2 on the left branch of Cjy and (9,w) is the
position of the trailing cell after the other cell has returned to the left knee, then II(wy) = .
This map is well defined if wy — wpx is sufficiently small; in particular, this requires that
cell 2 initially lies below the left knee of the excited cubic C;. A fixed point of IT corresponds
to a periodic singular almost-synchronous solution. The orbit may be orientation preserving or
orientation reversing, depending on whether the first cell to reach the left knee of Cj is cell 1 or
cell 2, respectively. This periodic solution is referred to as an O(e)-synchronous solution for the
following reason. The analysis demonstrates that if w, is the fixed point of II, then this must
lie below the left knee of the excited cubic Cy. Hence, if cell 1 is the first to jump up, then cell
2 will jump up as soon as cell 1 crosses vyp. The difference between the times the cells reach
vg is therefore O(1) in t-time. Since the total period in ¢-time is O(1/¢), the normalized time
difference (Atime/period) is O(e).

We prove the existence of an asymptotically stable fixed point of II by showing that II defines
a uniform contraction on some interval. We find A; < Ag such that IT maps the interval [A;, Ag]
into itself. In particular, II(A;) > A; so expansion between cells takes place if they are initially
close to each other. This leads to instability of the synchronous solution. The reason why this
expansion takes place is because the cells satisfy different equations during their initial times in
the active phase. Cell 1 does not feel excitation from cell 2 when it first enters the active phase, so
it satisfies (3.16) there. Cell 2, on the other hand, does feel excitation from cell 1 when it enters
the active phase, so it satisfies (3.18). Note that in Section 3.4, we proved that the synchronous
solution is stable for excitatory synapses if there is slow dynamics in both the silent and active
phase. The main difference between the analysis for that system and the one considered here
arises during the jumping up process. In Section 3.4, the jump-ups are horizontal and it does
not matter that different cells satisfy different fast equations during portions of the jump-ups.
Here the jump-ups are not horizontal, so expansion of trajectories can arise.

We conclude by stating two theorems proved in [5]. We will need the following notation.
Assume that the right knee of C4 is at (vgrk,wrk) and choose (3 so that g(8, wrkx) = 0. We say
that constants §; and d2, which depend on 7, are O(vy) apart if there exist K; and Ko such that
K17y < |01 — d2| < Koy for «y small.

Theorem 3.5. Suppose that the constants vy and B satisfy one of the following conditions:
(R) Either vg> [, or vy <pf and B — vy is sufficiently small.
(P) vy <p and gsyn is sufficiently small.

Then, for v sufficiently small, there exist Ay < Ay such that 11 defines a uniform contraction

36



from the interval [A1, Ag] into itself. If wy is the resulting asymptotically stable fized point of
II, then wy and wrpg are O(y) apart. If (P) is satisfied, then I is orientation preserving on

(A1, Ag), while if (R) is satisfied, then I is orientation reversing on (A1, Asg).

Theorem 3.6. The asymptotically stable singular periodic solution given by Theorem 3.5 per-

turbs, for € > 0, to an asymptotically stable O(e€)-solution of (3.14).

4 Globally Inhibitory Networks

4.1 Introduction

We now consider the network illustrated in Figure 12. This is composed of a population of
excitatory (E-)cells and a single inhibitory (J-)cell. Each E-cell sends excitation to the J-cell,
while the J-cell sends inhibition back to every FE-cell. We assume that all of the E-cells are
identical, but they may differ from the J-cell. This network, analyzed in [63], [62] is motivated
by models for thalamic oscillations involved in sleep rhythms. In those networks, there may be a
population of J-cells with inhibitory coupling among the J-cells. This application is explored in
Section 5. This type of network was also introduced in [87], [91] as a model for scene segmentation.

We distinguish two types of rhythms in which the network may engage. In a synchronous
oscillation, the E-cells are completely synchronized. When the E-cells fire, or become active,
they excite the J-cell to fire in response. However, the J-cell is not necessarily synchronized
with the E-cells throughout the entire oscillation; this is because the J-cell need not have the
same intrinsic properties as the F-cells. Alternately, in a clustered oscillation, the E-cells form
subpopulations or clusters; the cells within a cluster fire synchronously but cells from distinct
clusters act out of synchrony from each other. The J-cell will be induced to fire with each cluster.

Two types of solutions for a network with just four E-cells are shown in Figure 13. Figure
13A shows a synchronous solution, while a 2-cluster oscillation is shown in Figure 13B. Note
that in each of these figures, the E-cells within a cluster are perfectly synchronized; moreover,
the J-cell jumps up together with each cluster. To obtain the different cluster states, as well
as a 3-cluster state (not shown), we adjusted a parameter in the equations for the J-cell; this
parameter controls the duration of the J-cell’s active phase, which, in turn, controls the amount
of inhibition sent back to the FE-cells. The analysis that follows will clarify why the level of
inhibition produced by the J-cell is an important factor in determining the network behavior of
the E-cells.

We model the globally inhibitory network as follows (see [63], [62]). Here we assume that all
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of the synapses are direct. Each FE; satisfies equations of the form
v; = f(vi,wi) — Ginns(vi — Vinn)
(4.1) w, = eg(vi,w;)

si = a(l—si)H(vi—0) — Bs;

while the J-cell satisfies the equations

U,,] = fJ('UJa wJ) - % E Sz'gewc('UJ - erc)
i
(4.2) ’wf] = ng(’UJ,'wJ)
Sf] = aJ(l—SJ)H(’l)J—gJ)—CKJSJ

Unlike the previous section, we assume f > 0 (f < 0) above (below) the v-nullcline for s; = 0
and g > 0 (g < 0) below (above) the w-nullcline. The nullclines are illustrated in Figure 14.
Note that the nullclines are “upside-down” relative to the figures in Section 3. This orientation
is motivated by the biological model in Section 5.

The variable s; denotes the inhibitory synaptic input from the J-cell, while s; denotes the
excitatory synaptic input from cell E; to the J-cell. The sum in (4.2) is taken over all N E;-
cells. Note that turn on of inhibition and excitation both occur on the fast time scale, while
the inhibitory variable s; turns off on the slow time scale. This turn off may be ‘fast’ or ‘slow’,
depending on whether K is large or small. We assume that § = O(1), representing fast turn
off of excitation, although there is no problem extending the analysis if # = O(e). Note that if
v; > 0, then s; =& s4 = ﬁ on the fast time scale.

Each synapse in (4.1), (4.2) is direct. If the inhibition is indirect, then s; satisfies system
(3.4), with the appropriate adjustment of subscripts and a new variable z; included, instead of
the equation given in (4.2). Indirect synapses will be necessary to obtain stability of synchronous
and clustered solutions to (4.1), (4.2).

As in previous section, we analyze this network by constructing singular solutions. The
trajectory for each cell lies on the left (right) branch of a cubic nullcline during the silent (active)
phase. Which cubic a cell inhabits depends on the total synaptic input that the cell receives.
Nullclines for the E; are shown in Figure 14A and those for J in Figure 14B. Note in Figure
14A that the s; = 1 nullcline lies above the s; = 0 nullcline, while in Figure 14B, the s;p; =
% > 8; = sa nullcline lies below the sz = 0 nullcline. These relations hold because the F;
receive inhibition from J while J receives excitation from the F;. We assume that each cell is
excitable for fixed levels of synaptic input.

In the next section, we give sufficient conditions, first presented in [63], for when a globally

inhibitory network exhibits a stable synchronous solution. Clustered oscillations are considered in
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Section 4.3, which follows [62]. Analyzing the stability of clustered solutions entails consideration
of two issues, namely what prevents separate clusters from firing together and what maintains
the synchrony of the cells belonging to the same cluster. Note that these issues may become
especially subtle in cases for which a clustered solution is stable but the completely synchronous

state is unstable.

4.2 Synchronous Solution

We now give sufficient conditions for the existence of a singular synchronous periodic solution
and for its stability. For existence, we assume that each synapse is direct; there is no problem
in extending the analysis to indirect synapses. Indirect synapses are needed for the stability of
this solution. To state the main result, it is necessary to introduce some notation. Let C; denote
the cubic f(v,w) — ginns(v — vinp) = 0. Since the E-cells are excitable for fixed levels of the
inhibitory input s;, there is a fixed point on the left branch of C; of the first two equations in
(4.1) with s = s; held constant. We denote this fixed point by (vp(ss),wr(ss)) and the left
knee of Cs by (vr(sy),wr(ss))-

Theorem 4.1. A singular synchronous periodic solution ezists if wr(1) > wr(0), K, is suffi-
ciently large, the active phase of the J-cell is sufficiently long, and the recovery of the J-cell in
the silent phase is sufficiently fast. If the inhibitory synapse sy is indirect and the active phase

of the J-cell is long enough, then the synchronous solution is stable.

Remark 4.1. The condition wr(1) > wr(0) simply states that the fixed point on the left branch
of C lies above the left knee of Cy. This allows the possibility of the E-cells firing upon being

released from inhibition from the J-cell.

Remark 4.2. Recall that K; corresponds to the rate of decay of the inhibition. We will see
that synchronous oscillations cannot exist if this synaptic decay rate is too slow, given the fact

that each E-cell is excitable for fixed levels of synaptic input.

Proof: We prove the existence by demonstrating how to construct the singular synchronous
solution if the hypotheses of Theorem 4.1 are satisfied. We assume throughout this construction
that the positions of the F-cells are identical. The singular trajectory is shown in Figure 14.
We begin with each cell in the active phase just after it has jumped up. These are the points
labeled Py and (g in Figure 14. Then each E; evolves down the right branch of the s; = 1

cubic, while J evolves down the right branch of the s;; = s4 cubic. We assume that the J-cell
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active phase is long, such that the E; have a shorter active phase than J; thus, each E; reaches
the right knee P; and jumps down to the point P, before J jumps down. The assumption of
a long J-cell active phase implies that at this time, J lies above the right knee of the s4: = 0
cubic; otherwise, J would jump down as soon as the E; did. J must therefore jump from the
point @1 to the point @J2 along the s¢+ = 0 cubic when the E; jump down. On the next piece of
the solution, J moves down the right branch of the s;,; = 0 cubic while the E; move up the left
branch of the s; = 1 cubic. When J reaches the right knee Q)3 it jumps down to the point Q4
on the left branch of the s;,; = 0 cubic.

Now the inhibition s; to the E; starts to turn off on the slow time scale; that is, $; = —Kjsy
for " = %, 7 = €t. Thus, the FE; do not jump immediately to another cubic. Instead, the

trajectory for the E; moves upwards, with increasing w;, until it crosses the w nullcline. Then
each w; starts to decrease. If the F; are able to reach a left knee, then they jump up to the active
phase and this completes one cycle of the synchronous solution. When the E; jump up, J also
jumps up if it lies above the left knee of the sy = s4 cubic; that is, the recovery of the J-cell in
its silent phase must be sufficiently fast.

Existence of the synchronous solution requires that the E-cells can reach the jump-up curve
and escape from the silent phase. We demonstrate that this is indeed the case if the assumptions
of Theorem 4.1 are satisfied. It will be convenient to first introduce some notation. This will
allow us to obtain simple estimates for when a synchronous oscillation exists and what the period
of the oscillation is. This notation will also be useful in the next section.

As in earlier sections, we derive equations for the evolution of the E-cells’ slow variables; these
are (wj,sy). Let v = & (w, s) denote the left branch of the cubic f(v,w) — ginns(v — vinp) = 0,

and let G (w,s) = g(®r(w,s),s). Then each (w;, ss) satisfies the slow equations

w = GL('U), SJ)
(4.3)
sy = —Kysy

Figure 15 illustrates the phase plane corresponding to this system. Recall that w = wg(sy)
denotes the jump-up curve or curve of left knees, and the second curve, which is denoted by
wp(sy), consists of the fixed points of the first two equations in (4.1) with the input s; held
constant. This corresponds to the w-nullcline of (4.3).

We need to determine when a solution (w(7),s;(7)) of (4.3), beginning with s;(0) = 1 and
w(0) < wp(1), can reach the jump-up curve wy,(s;). This is clearly impossible if wg(1) < wg,(0).
If wp(1) > wr(0) and w(0) > wy(0), with K; sufficiently large, then the solution will certainly

reach the jump-up curve; this holds because the solution will be nearly vertical, as shown in
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Figure 15. If, on the other hand, K; is too small, then the solution will never be able to reach
the jump-up curve. Instead, the solution will slowly approach the curve wr(ss) and lie very close
to this curve as sy approaches zero. This is also shown in Figure 15. We conclude that the cells
are able to escape the silent phase if the inhibitory synapses turn off sufficiently quickly and the
w-values of the cells are sufficiently large when this turn off begins. Escape is not possible for
very slowly deactivating synapses (although it would be possible with slow deactivation if the
cells were oscillatory for some levels of synaptic input).

We assume that K; is large enough so that escape is possible. Choose wes. so that the
solution of (4.3) that begins with s7(0) = 1 will be able to reach the jump-up curve if and only
if w(0) > wes.- The existence of the singular synchronous solution now depends on whether the
E; lie in the region where w; > wes. when J jumps down to the silent phase. This will be the
case if the active phase of J is sufficiently long. One can give a simple estimate on how long this
active phase must be as follows.

Let 75 (77) denote the duration of the E-cell (J-cell) active phase. Further, let w* denote
the value of w at the right knee of the s; = 1 cubic (see Figure 15). If gy, is not too large,
then w™ < wr(0). Finally, let 7es. denote the time for w; to increase from w™ to wes. under
w = Gr(w,1). Since the E; spend time 7; — 75 in the silent phase before they are released from
inhibition, the singular synchronous solution exists if 7.5, < 77 — 7E.

For the stability of the synchronous solution, we need to assume that s; corresponds to an
indirect synapse, as in Section 3.6. Suppose we slightly perturb the synchronous solution. If sy
is direct, then when one E-cell fires, it will excite the J-cell which will, in turn, inhibit the other
E-cells on the fast time scale. This will prevent the other E-cells from firing and desynchrony
will result.

The compression of trajectories if s is indirect and the J active phase is long enough follows
because all the E-cells approach exponentially close to the point wg(1) in the silent phase while
the J-cell is still active. This exponential compression easily dominates any possible expansion
over the remainder of the cells’ trajectories.

The domain of attraction of the synchronous solution depends on the ability of the E-cells
to pass through the ‘window of opportunity’ provided by the indirect synapse. The size of this
domain grows as the J-cell’s active phase increases: More powerful J-cell bursts provide increased
inhibition to the E-cells and this further compresses the E-cells near the point wg(1) in the silent
phase. We note that this source of compression in globally inhibitory networks is considerably

more powerful than any compression mechanism in mutually coupled inhibitory networks.

41



Remark 4.3. The analysis leads to simple formulas for the period of the synchronous solution.
Let 775 be, as above, the time cell J spends in the active phase and let 7¢ be the time for
the E-cells to reach the jump up curve after the J-cell jumps down. Then the period of the
synchronous solution is simply 77 + 7g. Now 7 is determined by the dynamics of the J-cell,
while 7g is primarily controlled by the rate at which the synapses turn off; this is the parameter
K in (4.3). Other parameters play a secondary role. Note, for example, that the parameter gy,

mildly influences the period by controlling the slope of the jump up curve.

Remark 4.4. The domain of attraction of the synchronous solution increases with K7, since a
large K yields rapid decay of s;. If K is too large, however, then the J-cells actually cannot
recover in time to respond to the excitation from the firing F-cells. Hence, this analysis shows

that the combination of fast J-cell recovery and a large K; promotes stable synchronization.

Remark 4.5. An important difference between mutually coupled and globally inhibitory net-
works arises in the way they use inhibition to synchronize oscillations. In mutually coupled
networks with a slow decay of inhibition, the slow decay allows the cells to escape from the silent
phase and to come together as they evolve in phase space. In globally inhibitory networks, the
J dynamics controls synchronization, and a decay of inhibition on the slow time scale is only

needed to allow J-cell recovery.

4.3 Clustered Solutions
4.3.1 Singular Orbit

Here we describe the singular trajectory corresponding to a 2-cluster solution. The number
of cells in the network may be arbitrary, but we assume for ease of notation that the clusters
have equal numbers of cells. The geometric construction will require certain assumptions on the
equations and a precise theorem is stated and proved in the following subsections. As we shall
see, the construction of a 2-cluster solution easily generalizes to an arbitrary number of clusters.

For the geometric construction of a singular 2-cluster solution, it suffices to consider only
one-half of a complete cycle. During this half-cycle, one cluster, call it Ey, fires, say at 7 = 0,
and evolves to the initial position of the other cluster; the non-firing cluster, call it Ey, evolves
in the silent phase to the initial position of £;. By symmetry, the solution then continues with
the roles of the clusters reversed.

When FE; jumps up, it forces J to jump up to the right branch of the sy = %s 4 cubic. Then

E4 moves down the right branch of the s; = 1 cubic, while J moves down the right branch of the
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Stot = %s 4 cubic and Ey moves up the left branch of the s; = 1 cubic. We assume, as before, that
the F-cells in E; have shorter active phases than the J-cell, so F; jumps down before J does.
The assumption that J has a longer active phase than E; implies that it lies above the right knee
of the s¢¢ = 0 cubic at this time, so it moves down the right branch of the sy = 0 cubic until
it reaches the right knee and then jumps down. During the time that J remains active, both E;
and Fs move up the left branch of the s; =1 cubic.

After J jumps down, s;(7) slowly decreases. If E5 is able to reach the jump-up curve, then
it fires and this completes the first half cycle of the singular solution. Suppose that 7 = 7p
when this occurs. By abuse of notation, let w; denote the w-value of all cells in cluster E;.
For the trajectories described above to represent one-half of a 2-cluster solution, we need that
wa(7r) = w1(0), wi(7r) = w2(0), and ws(rr) = wys(0). The analysis in Subsection 4.3.3 shows
that a 2-cluster solution will exist, with stability between clusters, if the active phase of J is not
too long or too short, compared with the active phase of the E;. If J’s active phase is too long,
then the network exhibits synchronous behavior as described before. If J’s active phase is too
short, then the system approaches the stable quiescent state.

To conclude that the 2-cluster state is stable, we must also consider stability within each
cluster. The stability mechanism here is similar to that for a synchronous solution; details are
given in Subsection 4.3.4. Since each cluster experiences a decay of inhibition and subsequent
re-inhibition between firings, stability within clusters does not require as long a J-cell active
phase as does stability of the synchronous solution.

The singular trajectory for an n-cluster oscillation represents a natural generalization of that
for the 2-cluster oscillation. In the singular n-cluster solution, if we start when the J-cell falls
down, then inhibition to the E-cells decays until one E-cluster fires and causes the J to fire;
while these are active, the other n — 1 E-clusters evolve in the silent phase. The active E-cluster
falls down before the J-cell, and the E-clusters then evolve in the silent phase such that each
cluster reaches the initial position of the cell ahead of it in the firing sequence at the moment
that the J-cell falls down. Precise conditions for the existence and stability of such a solution

are given in the next subsection.

4.3.2 Statement of the Main Result

In this subsection, we state our main result concerning the existence and stability of clustered
solutions. To clarify the presentation and notation, we will make some simplifying assumptions.

A more complete presentation is given in [62]. We begin by discussing the notation that is needed.
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While all cells in the network are silent, the E-cell slow variables (w;, ss) satisfy (4.3). Let
wr(sy) and wr(sy) be as in the previous section. We assume that f,, > 0 near the singular
solutions. Since sj represents inhibitory input, implicit differentiation of the first equation in
(4.1) then yields that w’ (ss) and w’(ss) are both positive.

As in the previous section, we assume that wr(1) > wr(0) and that K is sufficiently large
to guarantee that escape from the silent phase is possible. Thus, there exists wes. such that
the solution of (4.3) beginning at (wg, 1) will reach the jump-up curve if and only if wg > wese.
We denote by 7g the time it takes for this solution to reach the jump-up curve. Note that 7g
depends on the initial position wg; however, we ignore this dependence here to simplify notation.
Otherwise, we could state our results in terms of minimum and maximum times Tg,”m and 75",
Note also that wes. — wr(0) and 7¢ — 0 as Kj; — oc.

Let 7ese, T and 77 be as in the previous section. Recall that 7., is the time for w to increase
from wt to wese under w = Gp(w,1). Since K is large and 7g is thus small, it follows that
the time for w to increase from w™ to wes., with several excursions from s; = 1 of duration g,
is still approximately 7.s.; we use this below but again, a notational adjustment suffices if more
precise conditions are desired (see [62]).

Finally, we need to assume that the J cell jumps up if it receives excitation from sufficiently
many E cells. Let CZ denote the J cell cubic when the J cell receives excitation of strength
stot = S. Note that (4.2) has a fixed point on the left branch of Cy, call it w%(0). The J can
jump up upon receiving excitation of strength S if and only if it lies above the left knee of w{ (5)

when it is excited. Thus, we assume that there exists M such that if m > M, then

(4.3) wi(554) < wh(0)

Since we assume that the J cell is active for longer than each E cluster, the J cell jumps
down at the right knee of the s;,; = 0 cubic, call it w,(0). Let 7r(M) be the time for the J cell
to evolve on the left branch of the s;; = 0 cubic from w$,(0) to w{ (¥ s.4).

With these notation and assumptions, we obtain the following theorem.

Theorem 4.2. Given N, fix the parameters in (4.1), (4.2) such that the above assumptions are
satisfied and assume there exits M such that (4.3) applies for all m > M. Let n be the unique
positive integer such that both of the following hold:

1) nty—Te+ (N —1)Ts > Tese

ZZ) (’I’L - 1)TJ —TE + (n - 2)7-5 < Tesc
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If n < N/M, p(M) < 75, and K is sufficiently large, then there exists an n-cluster periodic
solution of (4.1), (4.2) such that each cluster contains at least M cells. This solution is stable,
for K sufficiently large, if |Gr(w,s5)| < |Gr(w,1)| for wi(0) < w < wr(1).

Remark 4.6. Theorem 4.2 does not rule out the existence of other stable solutions. In particular,

there may be bistability between a clustered solution and the synchronous solution.

Remark 4.7. If n = 1, then condition i) becomes 7; > 7g + Tese. This is exactly the condition
derived before for the existence of a synchronous solution. Here, condition ii) is not relevant.
For the 2-cluster case, conditions i), ii) reduce to 7; — 7 < Tese < 277 — 7Tg + 7. In the limit
of fast inhibitory decay, 7¢ — 0 and the condition becomes %(TE + Tese) < Tj < TE + Tese, which

was derived in [63].

4.3.3 Idea of the Proof

Theorem 4.2 is proved in [62]. To establish existence, one can select bounds on the distances
between clusters such that if all distances start between these bounds, then they stay within
these bounds for all time. Condition i) ensures that the leading E cluster can always reach
the jump-up curve and fire when its turn arrives, while condition ii) prevents each cluster from
catching up to the one ahead of it. As a result, the assumptions of the theorem imply that the
E clusters take turns firing, along with the J cell (since Tr(M) < 7g), in such a way that no two
clusters are ever simultaneously active. This argument yields a fixed point which is the desired
n-cluster periodic solution.

To show the stability of the type of clustered solution considered here, two issues must be
addressed. One must show that FE-cells within different clusters remain separated from each
other; in particular, they can never lie in the active phase at the same time. This actually follows
from the existence arguments in [62]. One must also prove that if the E-cells within a cluster are
perturbed slightly, then they are compressed under the subsequent flow. This requires indirect
inhibition, for the same reasons discussed in Section 3.6. Given that the inhibition is indirect
and that |Gr(w,sy)| < |Gr(w,1)|, stability within clusters follows from compression of E-cells
in the jump up after they are released from inhibition. There is no compression or expansion in
the jump down because all E-cells jump down from the right knee of the cubic C; (see Figure

14).

Remark 4.8. Note that the compression mechanisms responsible for the stability of the syn-

chronous solution and the stability of cells within a cluster for a clustered solution are very
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similar. In fact, this compression mechanism is also similar to the compression mechanism in
Fast Threshold Modulation, discussed in Section 3.4. In each of these networks, the cells jump
up (nearly) horizontally and the slow variable, w, evolves slower before the jump up than after.
This produces compression in a time metric (see [42]). What distinguishes these networks is the
release mechanism that allows them to jump up. In FTM, one cell reaches the jump-up point at
a knee, so that it can escape from the silent phase. This, in turn, raises the other cells’ cubics so
that they are forced to jump up. For the synchronous solution in globally inhibitory networks, all
the E-cells jump up after the J-cell falls down and releases them from inhibition. In a clustered
solution, the cells within one cluster must wait until another cluster jumps down. The J-cell

must then still jump down before a new cluster is released from inhibition.

5 Thalamic Sleep Rhythms

Many of the results described in this paper were motivated by models for thalamic oscilla-
tions. In particular, recent models for the spindle sleep rhythm [21], [28], [93], [22], [84] resemble
the globally inhibitory networks in Section 4. In this section, we describe some of the rhythms
generated in the thalamus and a model for them. We then discuss how geometric analysis helps

to explain the generation of these rhythms and transitions between them.

5.1 Description of the Sleep Rhythms

In an awake mammal, the thalamus plays an important role in relaying sensory inputs to
the appropriate cortical regions. In sleep, neurons in the thalamus engage in rhythms which are
believed to interfere with attentiveness to incoming stimuli [78]. During different stages of sleep,
different organized forms of thalamic activity arise. For example, drowsiness and shallow sleep are
characterized by the spindle rhythm, whereas the delta rhythm occurs in deeper sleep. Moreover,
the spindle rhythm may be transformed into spike-and-wave like epileptiform oscillations, which
we may generally classify as paroxysmal discharges [79], [9], [78].

The network that displays the thalamic spindle rhythm falls into the framework of the globally
inhibitory networks considered in the previous section. In this network, a population of thala-
mocortical relay (TC) cells serve as E-cells, sending fast excitation to a population of thalamic
reticular (RE) cells, which act as the J-cells in the network. The RE cells send fast (GABAj,)
and slow (GABApg) inhibition to the TC cells; they also inhibit other RE cells with fast inhi-
bition. The spindle rhythm corresponds to a clustered oscillation in this model. In contrast to

the discussion in the previous section, this network has multiple J-cells; however, its clustered

46



oscillations are qualitatively the same as the type of clustered oscillation discussed there, since
the TC cells form separately synchronized clusters which take turns firing while all the RE cells
synchronize and fire together in each oscillation.

In experiments, RE-TC networks have been observed to display completely synchronized
oscillations in addition to clustering. Synchrony arises, for example, when fast inhibition is
removed from the entire network (see [22] and the references therein) or from between the RE cells
only [80], [19], [17], [36]. Recent experimental results have also shown that complete synchrony
can occur if the RE population receives additional phasic excitation, from cortical input or
another source [14], [20], [76], [17]. Hence, the network can change from the clustering of the

spindle rhythm to paroxysmal synchrony without any change in thalamic inhibitory synapses.

5.2 A Model For The Spindle Sleep Rhythm

We present the model discussed in [63], which closely resembles that given in [28] (see
also [84]). Individual cells are modeled using the Hodgkin-Huxley formalism [33]. Unlike the
models in the previous section, two intrinsic slow variables appear in the equations for each
cell. As shown in [63], however, the inclusion of additional slow variables in a globally inhibitory
network has no significant effect on the synchronization and clustering mechanisms. In the case of
synchronization, the strong compression of E-cell trajectories towards a fixed point in the silent
phase, afforded by a long J-cell active phase, dominates all other effects with or without this
added variable. This contrasts dramatically with the situation for mutually coupled networks,
for which the inclusion of an additional slow intrinsic variable significantly impacts escape and
synchronization mechanisms.

The following equations include numerous parameters and nonlinearities. These are defined
in more detail in [28], [84], [63].
The equations of each TC cell are:
vj = —Ip(vi,ri) — Lsag(vi, hi) — In(v;) —Ia — I
(5.1) ri = (roo(vi) — 1)/ 7 (v5)
hi = (hoo(vi) — hi) /T (vi)
Note that the singular perturbation parameter € is absorbed in 73,7, rather than mentioned
explicitly. The terms I7,I5q9, and Iy are intrinsic currents; they are given by: Ir(v,r) =
geamZ(V)r(v — vea), Isag(v,h) = gsagh(v — vsag) and Ir(v) = gr(v —vg). Here, go and
Vo, a = Ca,sag, L, correspond to the maximal conductance and reversal potential of each

current. Moreover, my(v) and r correspond to the activation and inactivation variables of the
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current I7, while h corresponds to the activation variable of the current I,,,. We note that the
cell fires primarily due to the Iz current, corresponding to positively charged Ca®* ions flowing
into the cell through calcium channels. For these channels to be open, we need that the I7 current
be both activated and deinactivated; this means that both my, and r need to be bounded away
from zero. An interesting feature of this model is that deinactivation of the I current requires
the cell to be hyperpolarized; that is, the membrane potential v must decrease from its resting
level. This can be seen from the explicit formula for the nonlinear function r(v) given in [63].
Hence, a biological explanation for the initiation of TC cell firing is that the inhibition that
the TC cells receive from the RE cells hyperpolarizes them which, in turn, deinactivates Ir.
This current is also activated at low membrane potentials, which can be seen from the formula
for myo(v). Once the calcium channels are open, calcium ions flow into the cell and an action
potential is produced.

The terms I4 and Ip represent the fast and slow inhibitory input from the RE cells. We
model the fast inhibition I4 as in previous sections; that is, I4 = ga(v; —v A)N%m 3 sil where
ga and v4 are the maximal conductance and the reversal potential of the synaptic current. The
sum is over all RE cells which make synaptic connections with this TC cell and Nrg represents
the maximum number of RE cells which send inhibition to a single TC cell. Each synaptic
variable 311 is direct and satisfies the first order equation
(5:2) s = ar(l = sh)H(vh - 0) = Brs)
where ’U%z is the membrane potential variable of the j* RE cell. Motivated by recent experiments
[19], [22] , we model the slow inhibition Ip somewhat differently from I4. We first discuss,
however, the model for the RE cells.

The equations of each RE cell are:

v = —Irr(v, hy) — Lanp (v, mi) — Irp(vl) — Ina — In
5.3 W = (hroo(vly) — hig) /TR (V)

m;' = p[Cali(1 —m;) — pam;

[Ca)y’ = —vIrr —~[Cal;

The terms Igrr,Iamp, and Igr represent intrinsic currents. These are given by Igr(v,h) =
gR(;am%zoo(v)h(v —VRrCa), Lapp(v,m) = gagppm(v —vk) and Igp(v) = grr(v —vgy). More
details concerning the biophysical significance of each term are given in [28], [84].

In (5.3), the term Ir4 denotes the inhibitory input from other RE cells. It is modeled as

Ira = gra(vly — URA)ﬁ ZSZ;E 4 Wwhere the sum is over all RE cells which make synaptic
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connections with the " RE cell. Each synaptic variable s% 4 satisfies a first order equation
similar to (5.2). The term Ig represents excitatory (AMPA) input from the TC cells and is
expressed as Igp = gE(fuﬁlZ - 'UE)NLRT Zst where the sum is over all TC cells which make
excitatory synaptic connections with the i» RE cell. The synaptic variables SfE are fast and also
satisfy first order equations similar to (5.2).

It remains to discuss how we model the slow inhibitory current Iz. Similarly to [19], we

4
assume that Ig = 93;4%(1% —wvp) where sp;, along with the variable xp;, satisfies
bi

sy = kiH(zp — Ogp)(1 — sp;) — kospi

Ty = wa [CHE—0m)] (1— b)) — kazp;

Nrgr

(5.4)

The parameters are such that xp; can only become activated (i.e., exceed 6, ) if a sufficiently
large number of RE cells have their membrane potentials v% above the threshold 6g,. The
threshold is chosen rather large so the RE bursts must be sufficiently powerful to activate xy;.
Once xp; becomes activated it turns on the synaptic variable s;; the expression s%z- in Ig corre-
sponds to synaptic receptor dynamics ([19]) and further delays the effect of the inhibition on the

postsynaptic cell.

5.3 Insights From The Geometric Analysis

5.3.1 Removal of Fast Inhibition Promotes Synchronization

The spindle sleep rhythm corresponds to a clustered solution to (5.1)-(5.4). Biologically, RE
cells oscillate at about 7-14 Hz in this rhythm; simulations of this model in [63], for example,
yielded a frequency of about 12.5 Hz. TC cells, meanwhile, form clusters that each oscillate at
a fraction of the spindle frequency, with different TC clusters firing with each RE burst. In this
rhythm, fast inhibition from the RE cells to the TC cells and to other RE cells activates with
each cycle. Slow inhibition does not activate at all, since the RE cells do not fire powerful enough
bursts to keep vﬁz above the threshold 0g;, long enough to activate the variables ;.

Equations (5.1)-(5.4) also support a synchronous solution, in which all TC and RE cells
fire in each cycle, with the RE cells firing almost instantly in response to TC bursts and a
frequency of about half that of the clustered oscillation. Experiments and numerical studies have
demonstrated that synchrony arises, for example, when fast inhibition is removed from the entire
network or from between the RE cells only. The results in the previous section help to clarify
why removal of fast inhibition promotes synchronization.

Note that fast inhibition occurs in two places: the RE cells inhibit themselves as well as

the TC cells. Removing fast inhibition has different consequences for each of these synaptic
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connections and both of these help to synchronize the TC cells (see also [28], [22]). Removing
the RE-TC fast inhibition is clearly helpful for synchronization among the TC cells. This holds
because the fast inhibition has a very short rise time. This short rise time corresponds to a
small window of opportunity for TC firing and a small domain of attraction of the synchronous
solution. In fact, it is precisely this inhibition that is responsible for desynchronizing the TC
cells during the clustered solution.

Removing the RE-RE fast inhibition appears to be even more crucial for synchronizing the
TC cells (see also [80], [35], [19], [17], [36]). This allows the RE cells to fire longer, more powerful
bursts which, in turn, activate the slow inhibitory current /5. The analysis presented for globally
inhibitory networks demonstrates that long, powerful bursting of the RE cells is needed for the
TC cells to synchronize, unless the desynchronizing effect of inhibition is somehow removed as
discussed in [84]. Numerical simulations in [63] show, in fact, that the TC cells will synchronize
even if fast inhibition is removed from within the RE population but not from the RE-TC
connections.

Why removal of inhibition leads to stronger RE bursts can be easily understood by the
analysis of trajectories in phase space. This removal forces the RE cells to lie on the right branch
of a different cubic while in the active phase. The cubic of the disinhibited cells lies below the
cubic of the cells with inhibition. The disinhibited cells therefore jump up to larger values of
membrane potential; moreover, their jump-down point (right knee) lies below the jump down
point of the inhibited cells. The disinhibited RE cells, therefore, have a longer active phase.

Note that the slow inhibitory current Ig, activated when RE-RE fast inhibition is removed,
has slower rise and decay times than I4. The slow decay time can help to bring the cells
closer together while in the silent phase, as indicated by the results, presented in Section 3.6,
on mutually coupled cells with slow inhibition (see also [63]). The slow rise time enhances the
domain of attraction of the synchronous solution by expanding the window of opportunity, if the
RE-TC fast inhibition is also removed. Hence, both effects improve the ability of the TC cells to
synchronize in the absence of fast inhibition, while the former effect may encourage synchrony

even if RE-TC fast inhibition remains.

5.3.2 What Determines The Period of Synchronous Oscillations ?

The analysis in Section 4 demonstrates that when TC cells oscillate synchronously, the
period of their oscillation equals the time for which the RE cells stay active (1) plus the time it

takes for inhibition to decay sufficiently for the next TC firing to occur (7g). Thus, only those
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parameters that affect these times can influence period. Numerics in [63] verify that increasing
the decay rate of inhibition, for example, sharply decreases the period (see also [17]). The rates
of change of individual TC cell currents, however, have little effect on period. Geometric analysis
of globally inhibitory networks explains this ineffectuality; in a synchronous oscillation, TC cells
are compressed close to their silent phase rest state while the RE cells are active, and then the TC
cells evolve with little change in their intrinsic currents as inhibition decays. The slow inhibitory
conductance gp also has little effect on 77,7 and hence on period. The small influence that it
does exert comes through its mild influence on the slope of the curve of knees for the TC silent
phase, which actually causes a counterintuitive increase in the period as the strength of slow

inhibitory coupling increases (see also [93]).

5.3.3 Cortical Inputs Can Enhance Synchronization

Recent papers have emphasized the importance of the cortex in the transformation of spindle
oscillations into spike-and-wave-like (SW) epileptiform oscillations in the thalamus [74], [75], [14],
[20], [17]. The experiments and modeling described in these works have suggested that this can
arise without the removal of fast inhibition from the thalamus. In the network model, one can
view the cortex as providing excitatory input to the RE cells. In the mechanism discussed in
Subsection 5.3.1, disinhibition of the RE cells leads to more powerful RE bursts and this permits
the TC cells to synchronize. The analysis in Section 4 supports the finding [14], [20], [76], [17]
that if one does not remove the fast inhibition among the RE cells, but instead induces sufficiently
strong excitation from the cortex, then this will have the same effect: the RE cells will fire more
powerful bursts, with a longer active phase, because of the additional excitation (their cubics are
lowered).

Due to these more powerful bursts, both fast and slow inhibition of T'C cells ensue, and the
resultant additional inhibition implies that TC cells are compressed towards a rest state with
larger h,r values. Together with the extended RE active phase, this yields strong compression
of TC cells, which combines with the fast decay of fast inhibition to promote TC synchrony,
despite the fast rise time of the fast inhibition they receive. In particular, this explains the mech-
anism behind the results of Destexhe [17], in which sufficiently strong corticothalamic excitation
(achieved by blocking only cortical fast inhibition) is found to be crucial for triggering powerful
RE bursts. These bursts in turn lead to the activation of fast and slow inhibition in the thalamus

and the generation of synchronized ~ 3 Hz oscillations in TC and RE cells.
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Figure 1: Classes of bursting oscillations. A. (top) Square-wave bursting. B. (middle) Elliptic

bursting. C. (bottom) Parabolic bursting.
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Figure 2: Bifurcation structure for square-wave bursting. Here, vpqz, Umin denote maximum
and minimum values achieved by the stable periodic orbits of (FS). S consists of fixed points of
(FS) and continues in the lower right of the figure, where the left knee appears. Homoclinic and
Hopf bifurcations occur at H and H B, respectively. The dotted trajectory is the projection of a
square-wave bursting solution.
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Figure 4: Bifurcation structure for elliptic bursting. The labels are as in Figure 2. The dashed
trajectory is the projection of a elliptic bursting solution. This solution travels along S with y
decreasing in the silent phase and then jumps up to the active phase to the left of HB.
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coupling. Note that cell 2 responds to cell 1 through Fast Threshold Modulation.
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Figure 10: Instability induced by mutual inhibition. Cell 2 jumps to C'4 when cell 1 fires. The
excitable case is shown, while the identical mechanism leads to the instability of the synchronous
state in the oscillatory case.
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Figure 13: Solutions for a globally inhibitory network of four E-cells and one J-cell. A. (top) A
synchronous solution; the solid curve is the time course of E-cell voltage and the dashed curve is
the time course of J-cell voltage. B. (bottom) A 2-cluster solution; the solid and dotted curves
are the voltage time courses of two different E-cell clusters of two cells each. The dashed curve
is the time course of J-cell voltage. Note that the J-cell fires less powerful, shorter bursts in B
than in A.
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Figure 14: Nullclines for A) E-cells and B) J-cells in a globally inhibitory network [63]. The
heavy lines and points F;, (); correspond to the singular synchronous solution discussed in the
text. Note that s; decays on the slow time scale.
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Figure 15: The slow phase plane for an E-cell [63]. The curve wy(sy) is the jump-up curve,
which trajectories reach if K is large enough. The dotted curve wr(sy) consists of zeros of
Gr(w,sy) in system (4.3); trajectories tend to wg(0) as s; — 0 for small K;. Note that w' < 0
for w > wp.
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