Methods for I nverse Problems In Biology

J ohn Bartels, I mmunetrics, Inc.

Problem statement

- Modelers create rules or equations to capture essential biological interactions
- ODE example: $\mathrm{P}^{\prime}=\mathrm{gP} * \mathrm{P}-\mathrm{dP} * \mathrm{P} * \mathrm{~K}$
- Often employ free parameters for tuning model behavior
- Unknown for many reasons:
- Unmeasurable, nonphysical, individual variation, etc.
- Inverse problem: given data, find the "right" parameters
- Goals: choose parameter values such that
- "Fitting is not enough!"
- We reproduce experimental data well
- Values are justifiable
- We understand the error in our estimates

Estimation is part of a cycle

Research Biological Mechanisms

Collect
Experimental Data

Calibrate
Equations to Data

Use Model for
Predictions

Inputs For Estimation Process

- Identify parameters to estimate
- Obtain bounds \& initial estimates if possible!
- Data
- Empirical data (clinic / lab / literature)
- e.g. time series for all scenarios of interest
- Qualitative heuristics (literature, expert intuition)
- e.g. system constraints, parameter constraints
- Separate into Training \& Validation sets
- Don't cheat with validation sets!

Define "best" parameters!

- Intuition: choose parameter θ value to maximize "likelihood":
- Probability of predicting data given these parameters
- Bayesian statistics gives us formalism
- Need two probabilities
- "Probability of data" given some parameters
- Natural for stochastic model
- Deterministic (e.g. ODE) models - add noise
- Probability of a parameter value
- Based on a priori knowledge - what's biologically plausible?
- Often no info - assume some distribution!

Maximum Likelihood Principle

- Likelihood of parameter values given by Bayes' Theorem:
$P($ params \mid data $)=\frac{P(\text { data } \mid \text { params }) P(\text { params })}{P(\text { data })}$
- Concrete example - estimate parameter θ from some data:

$$
P(\theta==1.8 \mid \operatorname{data})=\frac{P(\operatorname{map}(1)=100, \operatorname{map}(2)=95, \ldots \mid \theta=1.8) P(\theta==1.8)}{P(\operatorname{map}(1)==100, \operatorname{map}(2)=95, \ldots)}
$$

- Gives basis for practical methods:
- Least-squares fitting
- Monte Carlo (e.g. Markov Chain, etc.)
- Kalman Filters

Visualizing likelihoods

How hard can it be?

- Nonlinear interactions: easy for linear problems
- High Dimensionality (10's to 1000's)
- Rough Fitness Landscape
- many comparable "high scoring" solutions
- Large spread in data
- Sparseness of data
- Many unmeasured system variables!
- Limited time-points
- Must generalize beyond training scenarios
- Beware of overfittina!

Approach I: Least Squares Fits

- If errors in data follow normal dist with mean=0, minimize:
$\operatorname{Err}(\theta)=\sum_{s} \sum_{v} \sum_{t}(o b s(s, v, t)-\operatorname{pred}(\theta, s, v, t))^{2}$
- Advantages:
- Optimal under somewhat realistic assumptions
- Intuitive, symmetric, cheap, differentiable
- Chi-square term for measurement error
- Confidence interval formulas
- How to find the values of θ that minimize the error?

Numerical Optimization For Least

 Squares- Exhaustive search (simple, slow/intractable)
- Linear programming (only for linear problems)
- Dynamic programming (only for decomposable problems)
- Gradient searches: potential candidate!
- Recall: derivative $==0$ at minimum of a function
- Gradient of scoring function is direction of steepest change - follow it!
- Problems: Step size choice! Gets stuck!

Common Search Algorithms

- Gradient methods (local search)
- Levenberg-Marquardt, Gauss-Newton, etc.
- Hillclimbing
- Stochastic Gradient-like methods (global)
- Simulated Annealing
- Evolutionary / Genetic Algorithms
- Simplex methods (e.g. Nelder-Mead)

Practical concerns

- Guide the optimizer:
- Exploit domain knowledge: symmetry, conservation, physical limits, etc.
- Weight I mportant features of curves, etc.
- Beware of:
- Non- physical solutions
- Data on vastly different scales
- Effects of noisy data
- Biased training sets

Dangers: Overfitting

- Problem:
- Model trains "too well"
- Poor generalization to prediction sets
- Causes: Too many parameters, too little data!
- Model memorizes noise in input
- Worse fit is sometimes better?

Overfitting Example

Dangers: Identifiability

- Question: how reliably can we estimate the parameters?
- Three classes: Unique / Non-unique / Non-identifiable
- Estimates of non-identifiable parameters are meaningless!
- Consider:

$$
\begin{aligned}
& A^{\prime}(x)=\theta_{1} B-\theta_{2} B=B\left(\theta_{1}-\theta_{2}\right) \\
& A^{\prime}(x)=\theta_{1} B-\theta_{2} C
\end{aligned}
$$

- Complicated by:
- Scarce / noisy data
- Biology's full of feedback loops \& compensation
- Quantified by: PCA / SVD, correlation matrices

Approach II: Back to Bayes

- Best point estimate for 1 parameter is the average value:

$$
\theta^{*}=\int_{\min } \theta P(\theta \mid \text { data }) \partial \theta
$$

- For $\mathrm{n}>1$, same idea: mean of multi-dim function:

$$
\begin{gathered}
\theta_{i}^{*}=\int \theta_{i} P\left(\theta_{i} \mid \text { data }\right) \partial \theta_{i} \quad \text { where } \\
P\left(\theta_{i} \mid \text { data }\right)=\int_{\min _{1}}^{\max _{1}} \int_{\max _{2}}^{\max _{2}} \ldots \int_{\min _{n}}^{\max _{n}} P(\theta \mid \text { data }) \partial \theta_{1}, \ldots, \partial \theta_{i-1}, \partial \theta_{i+1}, \ldots, \partial \theta_{n}
\end{gathered}
$$

Two big problems to solve

- Bayes: we can get $P(\theta \mid$ data $)$ if we know $P($ data $\mid \theta)$
- Stochastic model: repeat runs
- Deterministic model: add noise to data
- Know your error sources!
- Priors for parameter values!
- Multi-dimensional integrals are hugely expensive!
- Solution: throw a lot of darts to approximate it
- Intuitive method: rejection sampling
- Better, fancier methods based on these ideas
- Terms: Gibbs Sampling, Markov Chain Monte Carlo, VEGAS

Least-Squares vs. Monte Carlo

- Least Squares
- Classic, widely used, lots of libraries
- Assumes normal-dist, independent errors!
- (Rough) Confidence intervals available
- Often faster, good enough
- Monte Carlo
- Relatively new, fewer libraries
- Immune to badly distributed error in data
- Sensitive to assumed priors
- Still computationally expensive
- Probably the way of the future (eventually)

Real world examples

- Apply these algorithms to existing model
- Training Data: only 4 measured curves curves
- Can we fit the training data well (over all scenarios)?
- Try multiple fits: do they find similar results?
- What about the unmeasured variables?

4 Equation / 5 Scenario Fits

Immunetrics ModelTool

Without Heuristics: Violates Biology

Eendotox_12 old_adaptive.0 old_adaptive.2
old_adaptive. 4 old_adaptive. 6
Output Parameter: thf \vee Export...
no3

Eendotox_12 old_adaptive. 0 old_adaptive. 2
Wold_adaptive. 4 old_adaptive. 6
Output Parameter: no3 \vee Export...
il6

Endotox_12 old_adaptive.0 old_adaptive. 2 old_adaptive. 4 old_adaptive. 6

Output Parameter: ill
Export...
b

Eendotox_12 old_adaptive.0 old_adaptive. 2
old_adaptive. 4 old_adaptive. 6
Output Parameter: $b \quad \vee$ Export...
il10

Eendotox_12 old_adaptive. 0 old_adaptive. 2 old_adaptive. 4 old_adaptive. 6

Output Parameter: il10 \vee Export...

Eendotox_12 old_adaptive.0 old_adaptive. 2

old_adaptive. 4 old_adaptive. 6
Output Parameter: $d \quad \checkmark$ Export...

Results

- Multiple models that fit, but too under-constrained!
- Models show different behavior on untrained data
- Identifiability: similar fits but
- Different mechanisms used
- Very different parameter values
- Assessing models:
- Biological intuition for simple cases?
- Without intuition: when is the model right?
- Good fits for the wrong reasons

Heuristic Fit: Enforces Qualitative Rules

2. Immunetrics ModelTool

-

ut Parameter: thf Export..

Endotox_3
 - life_death_mouse. 0 life_death_mouse. 2
 [life_death_mouse. 4 Elife_death_mouse. 6

Output Parameter: no3 \vee Export...

Output Parameter: il6 \vee Export...
b

Endotox_3 life_death_mouse.0 life_death_mouse. 2
life_death_mouse. 4 life_death_mouse. 6
Output Parameter: b \downarrow Export...

Endotox_3 life_death_mouse.0 life_death_mouse. 2 life_death_mouse. 4 life_death_mouse. 6

Output Parameter: il10 \vee Export...

Endotox_3 life_death_mouse.0 life_death_mouse. 2 [ife_death_mouse. 4 life_death_mouse. 6

Fitting Underconstrained Models

- Assess model identifiability
- Consider Model Clouds
- Model \& experiment design must influence each other!
- Simplification:
- Reduce to simplest justifiable model (PCA)
- Knowledge of the model:
- limit parameters (and ranges) to search
- Optimization algorithms with greater awareness of the model's structure
- Biological heuristics as further constraints

Some References

- Books / Papers:
- Overview: Schittkowski
- MC: Tarantola, Geman \& Geman,
- Identifiability: Jaquez
- Genetic Algorithms: M. Mitchell; D. Goldberg
- Simulated Annealing: Kirkpatrick
- General numerics, simple optimization: Numerical Recipes: Press, et al.
- Software:
- Matlab (plus add-ons; LS, MC)
- DAKOTA (LS)
- BUGS (MC)
- GNU Scientific Library (LS)
- Lots of open-source (and commercial) code
- Write your own?

