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ABSTRACT—A poorly controlled acute inflammatory response can lead to organ dysfunction and death. Severe systemic

inflammation can be induced and perpetuated by diverse insults such as the administration of toxic bacterial products (e.g.,

endotoxin), traumatic injury, and hemorrhage. Here, we probe whether these varied shock states can be explained by

a universal inflammatory system that is initiated through different means and, once initiated, follows a course specified by

the cellular and molecular mechanisms of the immune and endocrine systems. To examine this question, we developed

a mathematical model incorporating major elements of the acute inflammatory response in C57Bl/6 mice, using input from

experimental data. We found that a single model with different initiators including the autonomic system could describe the

response to various insults. This model was able to predict a dose range of endotoxin at which mice would die despite

having been calibrated only in nonlethal inflammatory paradigms. These results show that the complex biology of

inflammation can be modeled and supports the hypothesis that shock states induced by a range of physiologic challenges

could arise from a universal response that is differently initiated and modulated.
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INTRODUCTION

Acute systemic inflammation is triggered by both infection
and trauma. This response involves a cascade of events medi-
ated by a network of cells and molecules. The process localizes
and identifies an insult, strives to eliminate offending agents,
and initiates a repair process. If the system functions properly,
inflammation eventually abates, and the body returns to equi-
librium. However, the inflammatory response can also compro-
mise healthy tissue, further exacerbating inflammation (1, 2)
and possibly culminating in organ failure or death (3).

Shock and organ dysfunction are major healthcare problems
that afflict victims of both trauma and sepsis. In 1999, a quarter
of a million deaths were associated with sepsis in the United
States alone (4, 5).

The initial progression of systemic inflammation can have
different manifestations depending on how it is triggered, i.e.,
infection or trauma. However, as it progresses, the resulting shock
states and organ dysfunction converge. Thus, in developing
treatments and predicting outcome, it is important to ascertain
which elements of inflammation are universal and which are
specific to the initial insult.

Much has been learned regarding the cellular and molecular
mechanisms of the acute inflammatory response. However,
except for recombinant human activated protein C (Drotrecogin
Alfa [activated]) (6) and low-dose corticosteroids in patients
with relative adrenal insufficiency (7), this knowledge has not
led to effective therapies for inflammation-induced shock. Many
attempted antiinflammatory strategies have failed to improve
outcome in large, randomized trials, despite showing promise
in animal and early-phase human studies (8).

One reason for this failure may be that inflammation-induced
shock is a complex process. The full consequences of modu-
lating single pathways or mediators are difficult to predict from
the knowledge of those pathways or mediators in isolation.
Additionally, the correct therapy may depend on the exact stage
and trajectory of the disease. We suggest that the complexity
and diversity of shock states arises from the time-dependent
interactions of a unified inflammatory response that is highly
sensitive to specific modes of initiation and modulation. We
further propose that this complexity might be effectively captured
in a mathematical model that incorporates the dynamic inter-
actions of a few key elements of the acute inflammatory
response. A mathematical model might likewise provide new
insights into the global consequences of manipulating indi-
vidual components of inflammation. Mathematical modeling is
increasingly being used to address biological complexity, in
some cases leading to novel predictions (9–13).

We have previously described two mathematical models of
inflammation of increasing complexity. The simpler model,
consisting solely of a pathogen, a single population of inflam-
matory cells, and a measure of global tissue damage/dysfunction,
could describe both recoverable infection and septic shock (14).
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Amore complex model was used to create simulated populations
of septic patients and to simulate a clinical trial of anti-TNF
therapy (15). In this paper, we report a further enhancement to
our mathematical model of acute inflammation and shock,
based on some known underlying cellular and molecular mecha-
nisms of inflammation. Our model represents the simultaneous
interactions of several different pathways. Specifically, we show
that it can account for the temporal changes in the concen-
trations of three selected cytokines and nitric oxide by-products
in mice, for disparate initial insults involving bacterial lipo-
polysaccharide (LPS, endotoxin), surgical trauma, and
hemorrhage.

MATERIALS AND METHODS

Experimental procedures
Mice—All animal experiments were approved by the Institutional Animal Care

and Use Committee of the University of Pittsburgh. The experiments were
performed in adherence to the National Institutes of Health Guidelines on the Use of
Laboratory Animals. All studies were carried out in C57Bl/6 mice (6–10 weeks old;
Charles River Laboratories, Charles River, ME).

Endotoxemia protocol—Mice received either LPS (from E. coliO111:B4, 3, 6, or
12 mg/kg intraperitoneally; Sigma Chemical Co., St. Louis, MO) or saline control.
At various time points following this injection, the mice (four to eight separate mice
per time point) were euthanized, and their sera were obtained for measurement of
various analytes (see below). All of the mice survived this high dose of LPS until the
final time point (24 h following injection of LPS).

Surgical trauma and hemorrhagic shock protocols—For surgical trauma and
hemorrhagic shock treatment, mice were anesthetized, and both femoral arteries
were surgically prepared and cannulated. For hemorrhagic shock, the mice were then
subjected to withdrawal of blood with a mean arterial pressure (MAP) maintained at
25 mmHg for 2.5 h with continuous monitoring of blood pressure as described
previously (16). The normal MAP in mice is approximately 100 mmHg. In the
resuscitated hemorrhage groups, the mice were resuscitated over 10 min with their
remaining shed blood plus two times the maximal shed blood amount in lactated
Ringer solution via the arterial catheter. For trauma, only the surgical preparation
was conducted. In some cases, LPS was administered intraperitoneally to mice
undergoing hemorrhagic shock. Animals were euthanized by exsanguination, and
their serum analyzed as described below.

Analysis of cytokines and NO2
2/NO3

2—The following cytokines were measured
using commercially available ELISA kits (R&D Systems, Minneapolis, MN): TNF,
IL-10, and IL-6. Nitric oxide was measured as NO2

2/NO3
2 by the nitrate reductase

method using a commercially available kit (Cayman Chemical, Ann Arbor, MI) (17).
Aspartate aminotransferase (AST) was measured using a commercially available kit
(Vitros Chemistry�; Ortho-Clinical Diagnostics, Raritan, NJ) according to manu-
facturer’s instructions.

Mathematical model of acute inflammation
We constructed a mathematical model of acute inflammation that incorporates

key cellular and molecular components of the acute inflammatory response (see
Results, Table 1, and Appendix). The mathematical model consists of a system of 15
ordinary differential equations that describe the time course of these components.
Included in the model equations are two systemic variables that represent mean
arterial blood pressure and global tissue dysfunction and damage. ‘‘Global tissue
damage/dysfunction’’ describes the overall health of the organism because the hall-
mark of the pathology accompanying sepsis and hemorrhagic shock is the eventual,
sequential failure of multiple organs. Given the complexity of simulating individual
organs, we approximated this process by treating it as a gradual, ongoing process
occurring in the whole body and driven by inflammation. Thus, unrecoverable tissue
damage/dysfunction served as a surrogate for death, whereas damage/dysfunction
that tended to return to baseline over a several-day period was a proxy for survival. In
the model, pathogen-derived products, trauma, and hemorrhage are initiators of
inflammation. (We note that hemorrhage is caused by injury that disrupts the
integrity of blood vessels, and thus the two processes must be included in an accurate
simulation).

Each equation was constructed from known interactions among model compo-
nents as documented in the existing scientific literature. In deriving the mathe-
matical model, we balanced biological realism with simplicity. Our goal was to find
a fixed set of parameters that would qualitatively reproduce many known scenarios
of inflammation found in the literature, correctly describe our data, and serve as a
platform for eventually testing novel predictions experimentally.

The model and parameters were specified in three stages. In the preliminary
stage, the model was constructed so it could reproduce qualitatively several different
scenarios reported in the literature. In this stage, direct values of parameters such as
cytokine half-lives were used when available. In the second stage, the model was
matched to our experimental data by adjusting some of the parameters using our
knowledge of the biological mechanisms together with the dynamics of the model to
attain desired time course shapes. In the third stage, the parameters were optimized
using a stochastic gradient descent algorithm that was implemented in software of
Immunetrics, Inc. (Pittsburgh, PA).

The units of all the quantities in the model were specified so that for the
experimental protocols tested they ranged from zero to one. This was done for
computational convenience and has no implications for the underlying biology.

TABLE 1. Dynamic variables of the mathematical model

Model component Comment

Lipopolysaccharide

(endotoxin, LPS)

Immunostimulant derived from gram-negative bacteria or administered exogenously

Resting neutrophils (NR) Renewable pool of local and circulating neutrophils susceptible to activation

Activated neutrophils (NA) Pool of local and circulating activated triggered by LPS, TNF, IL-6, and tissue dysfunction

Resting macrophage (MR) Circulating monocyte or local macrophages that act as a cellular pool for activated macrophages. The total

count of resting monocyte/macrophages can increase in proportion to the total inflammatory activity

Activated macrophages (MA) Activation triggered by LPS, TNF, IL-6, tissue trauma, and tissue dysfunction. Activation is down-regulated

by antiinflammatory cytokines

Constitutive nitric oxide

synthase (eNOS)

Normally participates in blood pressure homeostasis. Activity is increased by antiinflammatory cytokines

and decreased by LPS, TNF, and trauma

Inducible nitric oxide

synthase (iNOSd, iNOS )

Increased by LPS and TNF in activated neutrophils and macrophages. Decreased by antiinflammatory

cytokines (iNOSd is a precursor to iNOS)

NO2
2/NO3

2 (NO3) Stable reaction products of nitric oxide; related to the intensity of the local production of nitric oxide by iNOS

and eNOS

TNF A major early proinflammatory cytokine secreted mainly by activated macrophages but also by activated

neutrophils

IL-10 An early antiinflammatory cytokine whose synthesis is triggered by proinflammatory stimuli, antagonizes

TNF and iNOS via TNF-dependent and TNF-independent pathways

IL-6 A proinflammatory cytokine with additional antiinflammatory effects

Adrenergic inhibitory

activity (CA)

Represents inhibitory activity of the adrenergic system on the production of TNF and IL-6

IL-12 Secreted by activated macrophages in the presence of TNF or IL-6, this cytokine limits the activity of IL-10

Blood pressure (BP) Homeostasis depends on iNOS and eNOS activity. Blood pressure can be artificially manipulated

Tissue damage (D) Can be caused by direct trauma, hypotension, or the action of proinflammatory cytokines. Nitric oxide is

tissue-protective
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However, to compare with experimental data, it was necessary to rescale the model
outputs to experimental units by selecting optimal rescaling factors when comparing
to data. These factors are specified for only the four quantities for which exper-
imental data were available and convert the arbitrary units into true units. The final
parameter set in the Appendix is expressed in arbitrary units for the concentrations
and in hours for time.

Comparison to experimental data
The model was calibrated to experimental data sets from five scenarios of inflam-

mation: LPS intraperitoneal injection at 3 mg/kg, 6 mg/kg, and 12 mg/kg; surgical
trauma consisting of the insertion of cannulae without further intervention; surgical
trauma plus hemorrhage, with procedures as described above. Four analytes—TNF,
IL-10, IL-6, and stable reaction products of NO (NO2

2/NO3
2)—were measured in

all scenarios. These analytes were chosen because they represent a diverse selection
of the main responders of the early inflammatory response and are produced on
a rapid (TNF, IL-10), intermediate (IL-6), and slow (NO2

2/NO3
2) time scale. As we

will show, even with this limited data set, the relevant biological mechanisms and the
mathematical model are constrained (18, 19). The statistical analysis was performed
with the S-Plus statistical and programming package (Statistical Sciences, Inc.,
Seattle, WA).

Model prediction
We wished to evaluate whether the model could predict a behavior not contained

in the training data. We therefore assessed the prediction to a range of endotoxin
boluses up to 30 mg/kg, which, from existing literature data, should be lethal (18, 20,
21).

RESULTS

Differences in the kinetics of cytokine and NO production
in mouse endotoxemia, trauma, and hemorrhage

Trauma and hemorrhagic shock cause many of the
same qualitative inflammatory consequences as endotoxemia,
though with different kinetics and magnitude (22). Normal,
non-manipulated mice had low levels of cytokines in their serum
(data not shown). Surgical trauma alone resulted in elevated
circulating levels of the measured cytokines (Fig. 1). In trauma
(Fig. 1D), hemorrhagic shock (Fig. 2D), and endotoxemia
(Figs. 3D, 4D, and 5D), NO2

2/NO3
2 levels first decrease and

then rise (though the levels of NO2
2/NO3

2 rise to a much
higher peak in endotoxemia). We also note that there is a delay
of approximately 2 h before the cytokines respond. The
absolute and relative peak levels differ significantly between
trauma (Fig. 1) and endotoxemia. Compared with endotoxemia
at 3 mg/kg, TNF peak level in trauma is approximately 20 to 40
times lower, IL-6 is approximately 7 times lower, and IL-10
levels are slightly higher. TNF also has a secondary peak at 24 h

in trauma. When surgery is followed by hemorrhage, animals
had higher peak levels of TNF (Fig. 4A) and IL-6 (Fig. 4C), but
similar or slightly higher levels of IL-10 (Fig. 4B) as compared
with trauma alone. NO2

2/NO3
2 has approximately the same

form (Fig. 4D). We note that the experimental spread in the
data is very large near the peaks. Although the data exhibit
large variability at these points, the timing of these peaks is
quite predictable.

Generation of a mathematical model of acute inflammation

The dynamics of the measured analytes for these three
experimental paradigms exhibit significant differences, although
they also share qualitative similarity (2). We propose that the
observed differences in the inflammatory responses are caused
by differences in the initiating insult: pathogen-derived products
versus tissue trauma and/or blood loss. We further propose that,
once set in motion, the inflammatory response will follow
a path determined by universal physiological mechanisms. For
example, it has been recently appreciated that ‘‘alarm/danger’’
molecules such as HMGB1 or HSP-70, thought initially to
participate only in the response to pathogens (23), are also
important in the process of inflammation induced by sterile
means (e.g., trauma) (24). This new paradigm suggests that the
host is more concerned with damage or change in the status quo
than with ‘‘foreignness.’’ This response also appears to share
receptors: recent articles have implicated TLR4 in the response
to sterile inflammation induced by endogenous ligands presum-
ably released from damaged/dysfunctional tissue (for example,
in the setting of ischemia/reperfusion injury) (25).

To support our hypotheses, we constructed a mathematical
model that incorporates known physiological interactions between
the various elements of the immune system. Themodel structure
and parameters are given in the Appendix, and the output of this
model in the settings of endotoxemia and trauma/hemorrhage
are depicted as solid lines overlying the actual data in the figures.
We discuss the statistical analysis of how well the model
accounts for the data in the following section.

In the model, neutrophils and macrophages are activated
directly by bacterial LPS or indirectly by various stimuli elicited
systemically on trauma and hemorrhage. Although not included
explicitly in our model, early effects such as mast cell degran-
ulation and complement activation (1) are incorporated

FIG. 1. Experimental data and model predictions for surgery-induced inflammation. Mice (3–6 separate mice per time point) were subjected to surgical
trauma alone. Animals were euthanized by exsanguination 0, 1.5, or 4 h after surgery. At various time points following this treatment, the mice (3–6 separate mice
per time point) were euthanized, and their plasma obtained for analysis of cytokines: TNF (A), IL-10 (B), IL-6 (C), and NO2

2/NO3
2 (D). Symbols represent values

from individual mice; solid lines represent model predictions.
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implicitly in the dynamics of our LPS and cytokine variables.
These stimuli, including LPS, enter the systemic circulation
quickly and activate circulating monocytes and neutrophils (18).
Activated neutrophils also reach compromised tissue by
migrating along a chemoattractant gradient (26).

Once activated, macrophages and neutrophils produce and
secrete effectors that activate these same cells and also other
cells, such as endothelial cells. Proinflammatory cytokines—
tumor necrosis factor (TNF), interleukin (IL)-6, and IL-12 in
our mathematical model—promote immune cell activation and
proinflammatory cytokine production (27). The concurrent
production of antiinflammatory cytokines counterbalances the
actions of proinflammatory cytokines. In an ideal situation,
these antiinflammatory agents serve to restore homeostasis.
However, when overproduced, they may lead to detrimental
immunosuppression (28–30).

Our model includes a fast-acting antiinflammatory cytokine,
IL-10, and a slower-acting antiinflammatory activity encom-
passing active transforming growth factor-b1 (TGF-b1), soluble
receptors for proinflammatory cytokines, and cortisol. We note
that although activated TGF-b1 has a lifetime of only a few
minutes, latent TGF-b1 is ubiquitous (31) and can be activated
either directly or indirectly by other slower agents such as IL-6
or NO (32–34).

Proinflammatory cytokines also induce macrophages and
neutrophils to produce free radicals. In our model, inducible

NO synthase (iNOS)-derived NO is directly toxic to bacteria
and indirectly to host tissue (35–37). Although the actions of
superoxide (O2

2) and other oxidative mechanisms (37) do not
appear explicitly in the model, their activity is accounted for
implicitly through the proinflammatory agents. In the model,
the actions of these products that can cause direct tissue dysfunc-
tion or damage are subsumed by the action of each cytokine
directly. The induced damage can incite more inflammation by
activating macrophages and neutrophils (38). However, NO can
also protect tissue from damage induced by shock (39–41) even
though overproduction of this free radical causes hypotension
(36). Proinflammatory cytokines also reduce the expression of
endothelial nitric oxide synthase (eNOS), thereby increasing
tissue dysfunction (42).

In endotoxemia, the model assumes that LPS enters the
bloodstream and incites a system-wide response (43). Lipo-
polysaccharide is cleared in approximately 1 h (44, 45).
Circulating neutrophils are activated directly and produce TNF
(46) and IL-10 (47–49). The newly produced TNF combines
with LPS to activate macrophages that then secrete TNF, IL-6,
IL-12, and IL-10 (50). Activated neutrophils, macrophages, and
endothelial cells produce NO through iNOS (51). The model
assumes that locally produced NO is eventually detected as the
measured serum end products NO2

2/NO3
2, and this process

depends on the differential induction of eNOS and iNOS in
various organs over time (52, 53). In order for TNF to rise and

FIG.2. Experimental data andmodel predictions for surgery/hemorrhage-induced inflammation. Mice (3–6 separate mice per time point) were subjected
to combined surgical trauma and hemorrhagic shock. Animals were euthanized by exsanguination 0, 1.5, or 4 h after resuscitation. All analytes were measured as
described in Figure 1. Symbols represent values from individual mice; solid lines represent model predictions.

FIG. 3. Experimental data and model predictions for endotoxemia (3 mg/kg LPS)-induced inflammation. Mice received either 3 mg/kg LPS or saline
control. At various time points following this injection, all analytes were measured as described in Figure 1. Symbols represent values from individual mice; solid
lines represent model predictions.
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fall within a few hours as it does in Figure 1, the model required
an inhibitory agent to suppress TNF production; this was
accounted for by IL-10 (54, 55) and other slow antiinflamma-
tory cytokines including IL-6 (56). Previous work has indicated
that IL-6 may exert both pro- and antiinflammatory properties
(57). We believe this antiinflammatory action could be mediated
by inducing or activating TGF-b1 (32) on the surface of
neutrophils and macrophages, as has been shown for cytokines
such as interferon-g (58). To account for the saturation of IL-6
for LPS levels beyond 6 mg/kg (Fig. 2; see also Fig. 5) in the
model, we suggest that IL-6 also can act as an antiinflammatory
cytokine and inhibit production of itself (59). IL-10 is inhibited
by IL-12 (55) and stimulated by TGF-b1 (60), which can come
from various sources.

The response to trauma (Fig. 1) exhibits a different time
course from endotoxemia (Figs. 3, 4, and 5). To account for
these differences in the model, we assume that localized trauma
first induces platelets to release TGF-b1 (31), which then
chemoattracts circulating neutrophils to the site of injury
(61–63). Simultaneously, elements associated with trauma and
dysfunctional and/or damaged tissue, possibly HMG-B1 (64),
are released and activate the neutrophils when they arrive. The
trauma-induced products combine with TNF to activate local
macrophages to produce IL-6 and IL-10. To achieve the
massive release of IL-10 in comparison to IL-6 and TNF in the
model, we assume that catecholamine release by the autonomic

nervous system (65) induces production of IL-10 by macro-
phages (66, 67). Catecholamines also down-regulate produc-
tion of TNF and IL-6 (68, 69). We also assumed that trauma
causes a severe drop in eNOS (or eNOS-derived NO, e.g., by
the rapid reduction in availability of l-arginine) (70) to account
for the dip in NO2

2/NO3
2; it is known that trauma patients

exhibit reduced systemic NO2
2/NO3

2 as compared with unin-
jured controls (71, 72). A similar drop in eNOS activity or
expression also occurs in endotoxemia (73–76).

The model assumes that blood loss in hemorrhage causes
some tissue damage as well as directly contributing to neutrophil
and macrophage activation (22). This causes a greater release
of TNF, which in turn induces higher IL-10 and IL-6 release.
The model output suggests that an increase in TNF and IL-6
will be accompanied by an increase in IL-10, though the spread
in the data is too large to corroborate this prediction.

Statistical assessment of the model in comparison
to the data

Across all scenarios, using all the data points, we obtain a
correlation coefficient of 0.81 between the data and the model.
Because the scatter of the data is large, trimming outliers seems
reasonable. Eliminating 1% of outliers raises the correlation
coefficient to 0.86, and a correlation coefficient of 0.90 is
obtained by trimming 3% of the outliers. A formal test that the
correlation coefficient is zero, versus the alternative that it is

FIG. 4. Experimental data and model predictions for endotoxemia (6 mg/kg LPS)-induced inflammation. Mice received either 6 mg/kg LPS or saline
control. At various time points following this injection, the mice (3–8 separate mice per time point) were euthanized, and their plasma obtained for analysis of
cytokines as in Figure 1. Symbols represent values from individual mice; solid lines represent model predictions.

FIG. 5. Experimental data and model predictions for endotoxemia (12 mg/kg LPS)-induced inflammation. Mice received either 6 mg/kg LPS or saline
control. At various time points following this injection, the mice (3–8 separate mice per time point) were euthanized, and their plasma obtained for analysis of
cytokines as in Figure 1. Symbols represent values from individual mice; solid lines represent model predictions.
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greater that zero, yields a P value <0.0001, with an associated
z-value of 38.1, indicating a strong positive dependence between
the data and the model.

The correlation coefficients for the four separate data curves
in the five scenarios as shown in Figures 1–5 are presented in
the Appendix. This analysis indicates that although the model
seems to capture the entire data set well, it does not capture the
behavior of individual analytes uniformly well in all five scenarios.

Qualitative assessment of the model

We sought to examine the qualitative behavior of our model,
in reference to published studies of inflammation in the setting
of endotoxemia and/or trauma. We used this process as a form
of quality control in the quantitative fitting process of a given
iteration of the model, requiring that a given iteration of the
model exhibit qualitatively correct behavior across all the
scenarios depicted in Table 2. We chose these scenarios as
the qualitative test set because those published studies contained
information of relevance to the analytes whose time courses are
the core of our model.

Prediction of lethal endotoxemia

When subjected to simulated endotoxin loads exceeding
9 mg/kg, the model predicts persistent high levels of IL-6 and
high levels of damage (Fig. 6). In fact, the model predicts that
cumulative damage will grow rapidly and fail to resolve within
the first 24 h with doses exceeding 12 mg/kg. It appears that
predicted cytokine levels have reached a plateau at about that
dose, with limited increment with higher doses. The small
differences in peak cytokine levels we observed between 6mg/kg
and 12 mg/kg support this observation (saturation at or around
15 mg/kg was not built in the model). We would therefore
predict that levels as low as 9 mg/kg could be lethal in many
animals if not euthanized at 24 h. Indeed, several animals are
quite sick at the time of euthanasia. This concurs with the report
by Wakatana of an LD10 of 10 mg/kg and LD90 of 30 mg/kg at
24 h (20). Of note, others reported significantly lower LD100

doses in C57/BL6 mice (21). Our own data yielded a LD80 of
17 mg/kg (unpublished results).

DISCUSSION

The acute inflammatory response to infection and trauma is
highly complex, with many levels of feedback. As a result, the
manipulation of a single pathway may lead to unpredictable
results.We suggest it is necessary to examine the global response

of all the participating cytokines and immune cells simulta-
neously over several hours or days. Only then can successful
therapies be developed systematically (11, 77–80).

Mathematical modeling can provide such a global frame-
work (1, 77, 79, 81). Our model is based on differential equa-
tions that represent the dynamics of the mean value of
cytokines and cell levels along with variables for blood pres-
sure and global tissue damage/dysfunction. The equations are
derivable from physiological interactions using standard prin-
ciples of mass-action kinetics (82), and the simulated levels can
be compared directly to data. This contrasts with our prior
work, which presented simpler models of the innate response to
an infectious agent without calibration to prospective data (14,
15). The present manuscript describes a continuation of this
effort, with the attempt to calibrate the model to actual data; we
hope in the future to integrate several more components of the
inflammation response. The current model is a very incomplete
representation of all the processes of inflammation. However,
we believe that it captures many of the main features of acute
inflammation and can give new insights into the complex
interactions of the process. Moreover, we note that although we
used very different modeling strategies and underlying assump-
tions and elements as compared with other investigators who
are simulating acute inflammation (83, 84), our models have
often concurred (79).

Though a single mathematical model was able to encompass
the dynamics of acute inflammation induced by diverse insults
(represented as different starting conditions for our simula-
tions), we found several inconsistencies between the output of
the model and our experimental data. For example, we were
unable to satisfactorily account for the rise in TNF at 24 h in
our model in surgical trauma. Interestingly, we do not see a rise
in TNF at 24 h in the trauma/hemorrhage data as we did in
trauma alone. This discrepancy probably signifies that the
model fails to account for a biological mechanism that is of
particular relevance in the interaction of shock and hemorrhage.
For example, a possible explanation for this observed discrep-
ancy is that the increase in TNF and IL-6 induces a larger,
delayed antiinflammatory response that suppresses TNF later.
Therefore, such discrepancies stimulate additional data acqui-
sition to support the existence of mechanisms, either by refining
the search for existing data or by guiding the collection of new
data. Integration of these mechanisms, in turn, will lead to more
accurate models. The process of modeling complex systems,
where not all fundamental behaviors and interactions are well
understood, is therefore inherently iterative.

TABLE 2. Qualitative scenarios used in calibration of the mathematical model of inflammation

Animal Model Expected results References

Mice Intraperitoneal endotoxin challenge Increased levels of TNF, IL-6, NO, cardiovascular collapse (91)

Rats Intraperitoneal endotoxin challenge (5-100 ug/kg) Circulatory endotoxin within 15 minutes, 30-90 minutes to IL-6 (92)

Mice Endotoxin challenge in TNF deficiency Resistance to endotoxin induced inflammation, increase levels of IL-6. (93–97)

Mice Endotoxin challenge in IL-6 deficiency TNF-a expression is much higher than in wild type animals.

In localized tissue damage TGF-b1 and IL-10 are increased.

(98–106)

Mice Endotoxin challenge and hemorrhagic shock in

Nitric Oxide Synthase deficiency.

Decreased hypotension initially, more organ dysfunction,

no change in prognosis with endotoxin, decrease cellular recruitment.

Lower inflammation in hemorrhagic shock.

(16,107–115)
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We note that agent-based models of systemic inflammation
have also been developed (79, 83). In these methods, discrete
‘‘agents’’ representing cells and cytokines interact through a set
of fixed rules on a spatial grid, with various probabilities of a
given interaction taking place. These methods are useful when
the participating elements have large amounts of heterogeneity
and when they have many internal states that affect their
interactions with other elements. Equation-based models like
the one we have created are more applicable in settings where
the overall behavior of a given variable is sought (i.e., the
concentration of a given cytokine in the blood, or the cumu-
lative behavior of neutrophils). We feel that both approaches
have merits, and methods incorporating both approaches may
be useful in the future (79).

We hypothesize that the acute inflammatory response to
diverse insults such as endotoxemia, trauma, and hemorrhagic
shock are different manifestations of a universal system. We
have attempted to demonstrate this possibility with mathemat-
ical modeling. Additionally, our hypothesis is supported by
large epidemiologic studies, which indicate that physiological
changes, organ failure rates, and survival are similar among
patients with infectious and noninfectious causes of acute inflam-
mation (85, 86).

Our model is a biologically based, dynamical simulation. As
such, it differs from statistical models based on studies in large
patient populations, which seek correlations among various
factors (e.g., vital signs and laboratory values) and outcomes
(87). Statistical models have demonstrated conclusively that
circulating levels of cytokines such as IL-6 correlate with
outcome in septic patients (88) and have been successful in
understanding average population outcomes. However, these
statistical models are mostly descriptive, making limited use of
biological mechanisms. Consequently they are unable to provide
causal inference and are unreliable to predict outcome of
individuals (89).

In conclusion, we have developed this mathematical model
with a goal of assisting the rational design of therapies directed
against the inflammatory consequences of infection and trauma,
the current treatment of which is largely supportive (antibiotics,
vasopressors, or mechanical ventilation) (90). Despite suffering
from several limitations (a limited subset of inflammatory
interactions, the use of mass action kinetics, calibration to circu-
lating but not local levels of cytokines, limited data, and lack of
serial measurements in single animals), the model can simulate
certain disease scenarios qualitatively as well as simulating the
time course of cytokine levels in three distinct paradigms of
inflammation in mice. We are in the process of addressing these
limitations in various ways. For example, though we did not
measure Po2 and lactate in the studies described in this manu-
script, we have an initiated animal studies and inflammation-
modeling efforts in the setting of irreversible hemorrhagic
shock. In the course of those studies, we are obtaining Po2,
Pco2, and other measurements and attempting to incorporate
these measurements into our damage/dysfunction equation.
Extending this mathematical model, with validation in humans,
may lead to the in silico development of novel therapeutic
approaches and real-time diagnostics.
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APPENDIX

Below are the ordinary differential equations of the model.
The equations represent the dynamics of circulating or systemic
levels of immune cells, cytokines, and molecules. Equations
were derived from ‘‘influence diagrams’’ constructed from
literature reports. We provide an example of such a diagram in
Figure A1. Every arrow is linked to specific literature refer-
ences hosted in a citation manager supporting the existence and
occasionally providing quantitative information regarding the
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process represented by this particular arrow. In addition, are
two systemic variables representing blood pressure and tissue
damage/dysfunction. The effect of trauma is expressed as an
exponential decay of influence after an initial insult. It repre-
sents possible released cellular material that can trigger inflam-
mation. The function fB(B) is phenomenological and represents
the stimulatory effect of a decrease in blood pressure on trig-
gering a stress response. This occurs in a variety of ways, and
we are currently examining how to model it more exactly as
part of ongoing projects in larger animals. Small deviations
from normality probably are of little consequence, whereas
larger deviations are proportionally more harmful (and rapidly
so) as the ability of the organism to compensate decreases. This
is what explains the phenomenological fourth-power exponent.
For numerical ease, the variables of the equations are defined in
abstract units of concentration. The actual units are restored
with a linear scaling factor when compared to experimental
data. The time unit is fixed at hours. The differential equations
were solved numerically using the XPPAUT freeware written
by Dr. G. B. Ermentrout (University of Pittsburgh, Department
of Mathematics; www.math.pitt.edu/~phase) as well as propri-
etary software of Immunetrics, Inc. The fitting process included
quantitative data, but the overall behavior of the model had also
to be compatible with various qualitative scenarios extracted
from the literature. These scenarios are listed in Table 2. Failure
to comply with any of those qualitative behaviors resulted in
discarding a given model.

Equations
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FIG. A1. A simplified version of macrophage
dynamics. In the model used herein, resting macro-
phages (MR) are activated by a number of physiologic
processes, including endotoxin (PE), damage/dys-
function, trauma and hypotension (blood pressure
[BP] drop). This recruitment process can be up-
regulated (green lines) in the presence of tumor
necrosis factor TNF and interleukin (IL)-6, whereas IL-
10 and other antiinflammatory (CA) molecules down-
regulate (red line) these activating influences. Both
resting and activated macrophages (MA) ‘‘die’’ at their
respective rates (gray dotted line). Each process is
supported by a literature search.
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Model Parameters

Model parameters are divided into several categories: initial
conditions, source terms, rate constants, and saturation constants
(Table A1). The initial conditions determine different experimen-
tal paradigms. For endotoxemia: LPS(0) = 3, 6, or 12, TRON = 0,
AON(0)= 0, B(0) = 1; for trauma: LPS(0) = 0, TRON= 1, AON = 1,
B(0) = 1; for hemorrhage: LPS(0) = 0, TRON = 1, AON = 1,
B(0) = 0.25.

Units

The time unit is fixed at hours. The variables are all in
relative units. To match the data we use conversion factors of
35,000, 17,000, 8,000, and 1,000, respectively, to convert the
arbitrary units of TNF, IL-6, IL-10, and NO3 into true
concentrations (pg/L). The variable A is a simple representa-
tion of autonomic outflow. Epinephrine and other biogenic
amines released at the time of acute stressor such as hemor-
rhage are well known to briefly stimulate IL-10 and to a lesser
degree IL-6, IL-12, and other modulators of immunity (67,
116–119). The exponential decay was inserted to mimic the
empirical observation of a similar decay in circulating cate-
cholamines and to reflect the brevity of their biological action
on immune cells.

Statistical Complement

Examination of the data shows high heteroskedasticity for
observations obtained in different animals. A closer study of
the scatter shows a power law relationship between the standard
deviation and the mean of the analyte response, closely approx-
imating s = 1.57m0.76, where s is the standard deviation and
m is the mean. A consequence of this relationship is that, in
addition to assessing the model by using the individual data
points directly, we can also compare the model to the mean
responses, keeping in mind the fact that the observed error in
response is proportional to the mean response itself to a power
of approximately three-quarters.

A detailed analysis of fit yields the following correlation
coefficients (four analytes—IL-10, IL-6, NO, and TNF—in
four scenarios—LPS doses at 3 mg/kg, 6 mg/kg, and 12 mg/kg,
shock, and surgical trauma): IL10, 0.69 0.57 0.85 0.58 0.48;
IL6, 0.78 0.98 0.82 0.54 0.72; NO, 0.70 0.84 0.71 0.35 0.17;
TNF, 0.38 0.87 0.34 0.48 0.49. Therefore, although the fit
overall is good, P < 0.0001, some curves are not described as
well by the model.

TABLE A1. Model parameters

Initial conditions and source terms

SM = 1.0 tHRES = 2.5 MR(0) = 1 iNOS(0) = 0 TNF(0) = 0 B0 = 1.0

SN = 1.0 tTR = 1.86 MA(0) = 0 iNOS3(0) = 0 IL6(0)=0.001 IL12(0) = 0

S6 = 0.001 xTR = 0.6785 NR(0) = 1 eNOS(0) = .05 IL10(0)=0.01 xA = 1.1636

S10 = 0.01 tA = 2.0138 NA(0) = 0 NO3(0) = 0 CA(0) = 0 D(0) = 0

Rate constants

kLPS = 1.0 kNTNF = 0.2 kINOSN = 1.5 kNO3 = 0.46 K6 = 0.7 kCA = 0.1

kMLPS = 1.01 kN6 = 0.557 kINOSM = 0.1 kNOMA = 2.0 k6N = 0.2 kCATR = 0.16

kMTR = 0.04 kNB = 0.1 kINOSEC = 0.1 kTNFN = 2.97 k10MA = 0.1 k12M = 0.303

kM6 = 0.1 kND = 0.05 kINOS6 = 2.0 kTNFM = 0.1 k10N = 0.1 k12 = 0.05

kMB = 0.0495 kNTR = 0.02 kINOSd = 0.05 kTNF = 1.4 k10A = 62.87 kB = 4

kMR = 0.05 kNTGF = 0.1 kINOS = 0.101 k6M = 3.03 k10TNF = 1.485 kBNO = 0.2

kMA = 0.2 kNR = 0.05 kENOS = 4.0 k6TNF = 1.0 k106 = 0.051 kDB = 0.02

kMANO = 0.2 kNNO = 0.4 kENOSEC = 0.05 k62 = 3.4 k10 = 0.35 kD6 = 0.3

kNLPS = 0.15 kNA = 0.5 kN = 0.5 k6NO = 2.97 k10R = 0.1 kD = 0.05

kDTR = 0.05

Saturation constants

xMLPS = 10 xNLPS = 15.0 xINOS10 = 0.1 xENOSTR = 0.1 x6NO = 0.4 x1210 = 0.2525

xMD = 1.0 xNTNF = 2.0 xINOSTNF = 0.05 xTNF6 = 0.059 x10TNF = 0.05 xBNO = 0.05

xMTNF = 0.4 xN6 = 1.0 xINOS6 = 0.1 xTNF10 = 0.079 x1012 = 0.049 xD6 = 0.25

xM6 = 1.0 xND = 0.4 xINOSNO = 0.3 x610 = 0.1782 x106 = 0.08 xDNO = 0.4

xM10 = 0.297 xN10 = 0.2 xENOSTNF = 0.4 x6TNF = 0.1 x12TNF = 0.2

xMCA = 0.9 xNNO = 0.5 xENOSLPS = 1.015 x66 = 0.2277 x126 = 0.2

84 SHOCK VOL. 24, NO. 1 CHOW ET AL.


