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The cost of maintaining application software has been rapidly escalating, and is currently
estimated to comprise from 50-80% of corporate information systems department budgets. In
this research we develop an estimable production frontier model of software maintenance, using
a new methodology that allows the simultaneous estimation of both the production frontier and
the effects of several productivity factors. Our model allows deviations on both sides of the estimated
frontier to reflect the impact of both production inefficiencies and random effects such as mea-
surement errors.

The model is then estimated using an empirical dataset of 65 software maintenance projects
from a large commercial bank. The insights obtained from the estimation results are found to be
quite consistent for reasonable variations in the specification of the model. Estimates of the marginal
impacts of all of the included productivity factors are obtained to aid managers in improving
productivity in software maintenance.

(SOFTWARE MAINTENANCE; SYSTEMS DEVELOPMENT LIFECYCLE; PRODUCTIV-
ITY; DATA ENVELOPMENT ANALYSIS)

1. Introduction

While advances in technology have reduced the per unit cost of computing power,
information systems expenditures have been rapidly rising. One of the major reasons for
this increase has been the escalating cost of maintaining application software, an expense
that currently is estimated to comprise from 50-80% of corporate information systems
department budgets (Elshoff 1976, Kolodziej 1986, Freedman 1986, Gallant 1986). In
this context maintenance refers to the correction, perfection and adaptation of currently
existing software, and therefore includes what are commonly referred to as enhancements
(Lientz and Swanson 1980).

In spite of the large and increasing expenditures on software maintenance in industry
there exists a relative dearth of academic research on the subject, according to a number
of researchers (Lientz and Swanson 1980, Vessey and Weber 1983).! Lientz and Swanson,
in particular, have called for more software maintenance research, particularly in the
area of the “measurement and monitoring of the maintenance process” (1980, p. 162).

Given the large sums spent on software maintenance and the current inability of
praciitioners to keep up with the growing applications backlog, it seems particularly
appropriate to concentrate on the productivity of software maintainers. From manage-
ment’s perspective what would be especially useful would be the identification of factors
under managerial control that have a significant positive or negative impact on

* Accepted by George P. Huber; received January 1989. This paper has been with the authors 4 months for
2 revisions.

! Other research in the modeling of software maintenance has typically focused on fault prediction (e.g.,
Mellor 1983, Adams 1984 ) or in the behavior of a single system over time (e.g., Belady and Lehman 1976).
Our research is a cross-sectional study of the factors impacting the productivity of signmificant software maintenance
projects.
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productivity ( Dickson, et al. 1984 ). Once identified, management can take steps to retain
and amplify the positive factors and eliminate or at least reduce the negative factors.

Software maintenance, like many other complex activities, may be difficult to under-
stand, and related problems difficult to diagnose without the aid of a model. In this
research we develop an estimable model of software development? viewed as an economic
production function. This view focuses on the inputs and outputs of the software devel-
opment process. Unlike previous related software research, we focus on the maintenance
of existing software and explicitly incorporate the multi-dimensionality of systems de-
velopment outputs. Previous research in this area, perhaps due to the unavailability of
multi-dimensional empirical data, has tended to adopt single, surrogate measures for the
entire process in order to accommodate more tractable models.

In our earlier exploratory study (Banker, Datar and Kemerer 1987) we estimated the
values of the coefficients of a two stage model. In the first stage we adopted a production
frontier approach to relate labor hours incurred on various projects to the size and com-
plexity of projects using Data Envelopment Analysis (DEA). The one-sided deviations
from observed best practice provide measures of productivity which are then regressed
against various factors (such as personnel and tool usage) affecting productivity to explain
productivity variations.

In the current paper we employ the recently developed Stochastic Data Envelopment
Analysis (SDEA ) methodology (Banker 1990) which, in addition to productivity related
deviations, also allows for the impact of random effects such as measurement errors that
may cause deviations on either side of the production frontier.

Factors affecting maintenance productivity directly influence the amount of labor input
required for any given level of outputs produced suggesting that in developing the pro-
duction model we should simultaneously consider the relationship between inputs, outputs
and other factors. We accomplish this by extending the SDEA methodology, which also
permits us to evaluate the marginal impact of each of the factors influencing maintenance
productivity. We also compare the results using this extended SDEA model with more
conventional composed error econometric models of Aigner, Lovell and Schmidt (1977)
and Meeusen and van der Broeck (1977) to examine the robustness of our resuits to the
specification assumptions.

After presenting our general model for evaluating the factors affecting software mainte-
nance productivity, we then estimate the values of the coefficients using an empirically
collected dataset of sixty-five software maintenance projects from a large commercial
bank. In this analysis we examine the effects of five factors in the areas of project team
member ability and application experience, hardware and methodological tools, and the
resulting system quality.

The remainder of this paper is organized as follows. §2 describes our general model
and two methodologies for estimating the model’s parameters. §3 discusses the managerial
variables selected and the empirical data collection procedures. The results obtained from
estimating the model’s parameters are presented and discussed in §4, the implications
for managers are discussed in §5, and concluding remarks are presented in §6.

2. Conceptual Model

In developing a model of software maintenance we build upon the conceptual foun-
dations of Kriebel and Raviv (1980) and Stabell (1982) in modeling software development
as an economic production process. The input we focus on is the number of professional

2 We will use the general term “software development” to refer to both the development of new systems and
the maintenance of existing systems. “New software development” will be used to refer to situations exclusive
of maintenance.
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Activity Output Measure Input Measure
Analysis/Design Function Points
Total Labor Hours
Coding/Testing Source Lines of Code

FIGURE 1. Measurement model.

labor hours, as this is the scarce constrained resource and is therefore the variable of
greatest economic and managerial significance.

We model software maintenance as a complex production process involving two com-
ponent activities: systems analysis/design, and coding/testing. These activities are related
as illustrated in Figure 1 above. The amount of analysis/design activity required for a
software maintenance project is measured by the number of Function Points, a metric
developed by Albrecht at IBM in 1979 and now the standard measure of business systems
functionality > ( Albrecht and Gaffney 1983, Perry 1986). Similarly, the number of source
lines of code (SLOC) is a standard measure of the size of coding/testing work ( Walston
and Felix 1977, Putnam 1978, Boehm 1981), an activity that gives rise to the requirement
for the remainder of the professional hours on a software maintenance project.

This two component activities approach is one key distinction of our conceptual mode!
from previous work that models software development. Previous research in this area
has tended to focus on new software development, and have used either Function Points
or SLOC as a surrogate for the size of the entire project, since in the case of new software
development these metrics tend to be highly correlated. However, for our work in modeling
software maintenance, the analysis/design and coding/testing phases need not be so
tightly coupled. For example, it is easy to imagine a software maintenance project that
requires a significant amount of analysis and design in order to determine the impacts
of planned enhancements, but results in relatively few SLOC being added or changed.
Therefore, we believe that this multidimensional approach more accurately models the
special process of software maintenance.

We view software maintenance as an economic production function that relates
professional labor hours incurred on a project to the size and complexity of the project
measured in terms of Function Points and SLOC. Furthermore, a large stream of research
has recognized that in addition to size and complexity, a number of environmental factors
affect the labor hours required to complete a project and hence the productivity of the
software maintenance effort. These factors include the ability and previous experience
of the software personnel (Sackman et al., 1968, Chrysler 1978 ), hardware and software
tools (Thadhani 1984, Lambert 1984, Bochm 1981, Jones 1986), and the attention spent
on systems quality (Kriebel 1979, Mohanty 1981, Case 1985). These types of factors
can also be modeled using our general approach.

Mathematically, we represent the production model as follows:

3 Function points are a measure of the size and complexity of an MIS-type system. The calculation of function
points involves counting the number of external input types, external output types, logical internal file types,
external interface file types, and external inquiry types, and classifying them as simple, average, or complex.
For example, a report that references 2 or 3 files and has between 6 and 19 data element types would count as
an average external output type. The resulting weighted “function count™ metric is modified by the ratings of
14 “processing complexity” factors to produce a measure of the number of Function Points. Albrecht’s original
exposition of the Function Points metric appears in Albrecht (1979). A revised version (and the version used
in this research ) appears in Albrecht and Gaffney (1983). For discussions of Function Points by other authors,
see Behrens (1983), Jones (1986) and Kemerer (1987a).

Copyright © 2001 All Rights Reserved



4 RAJIV D. BANKER, SRIKANT M. DATAR AND CHRIS F. KEMERER

o= (Vs Yoy Siys - o> Sky) T g, where
h, = hours for project j,
1, = Function Points for project /,
V2, = SLOC for project j,
s, = environmental variable i for projectj, i = 1,..., k, and

¢, = deviation from the frontier for project j.

We allow ¢, to take both positive and negative values. Inefficiencies in project management
and implementation result in positive deviations from the production frontier, while
random effects, such as errors in measuring project hours or the effects of any factors
which influence productivity but are not included in the model, may cause both positive
or negative deviations.* Given the assumption of a symmetric distribution for the devia-
tions caused by random effects, the amount of downward deviation from the frontier
will, on average, be less than or equal to the amount of upward deviations, since the
upward deviations are caused by both the random effects and any production inefficiencies.
This general model can be estimated using a variety of techniques, and traditional
approaches have included a number of parametric methods. In particular, we write

Sy, 8) = q(y1, ) +r(s1, ..., 80).

From an economic perspective, one question of interest is whether the function g(y,,
V) 1s separable in y; and y,. Our conceptual model (see Figure 1) suggests that the total
labor hours spent on a project are the sum of the labor hours spent on the analysis and
design activity and the labor hours incurred for coding and testing, for reasonable ranges
of data as experienced in practice. Since y, represents analysis/design outputs (measured
by Function Points) and y, represents coding /testing outputs (measured by SLOC), our
conceptual model dictates separability of y, and y,, that is

Sy, 8) = q(y) + @(32) + r(sy, ..., 80).

For example, assuming a quadratic function, if we write

g1, ¥2) = ap + aup + anyr + a3yt + aayi + asyin,

then the coefficient a5 of the last term must be zero, so that g(y;, y») can be expressed
as

(ag + oy + a3y?) + (aays + aay?).

We shall explicitly test this assumption by estimating the function and evaluating the
significance of the interaction term over the range of the observed data.

In the software engineering literature (Boehm 1981, Albrecht and Gaffney 1983, Card,
McGarry and Page 1987), the impact of environmental factors is assumed to be pro-
portional to the project size. We write s, = z,J; where z, is the measure of an environmental
factor and / = 1 or 2 depending on whether the environmental factor influences the
analysis/design activity or coding/testing. Therefore, we have

r(sla vees Sk) = z ABISI = z ﬁlZlyI’
=1k 1« k

i

i=

where (§, represents the impact of the environmental variable s,.

4 Aigner, LO\}ell and Schmidt (1977) cite a number of precedents for this interpretation, including Marschak
and Andrews (1944) and Zellner, Kmenta, and Dreze (1966).
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PRODUCTIVITY OF SOFTWARE MAINTENANCE PROJECTS 5

As stated above, our model of the impact of environmental variables (s,) on labor
hours reflects the fact that the effect of an environmental factor ( z,) will be proportionately
greater for a larger project. For example, for an environmental factor (z,), such as use
of a manual structured analysis and design methodology, the impact on project labor
hours is likely to be proportional to the level of the analysis and design activity, where
the technique has its greatest impact. In such a case, our environmental variable (s,) is
therefore defined by multiplying the environmental factor (z,) by Function Points which
is the measure of the analysis and design activity. On the other hand, an environmental
factor measuring machine response time will be proportional to the level of coding and
testing activity, since the analysis and design activity is not dependent upon access to
machine cycles.® The environmental variable (s,) in this case, is defined by multiplying
the factor (z,) by SLOC, the measure of coding and testing.

More generally, we could have modeled r(s;, ..., s¢) to include interaction terms
across various environmental factors to reflect higher order effects. We are dissuaded
from doing so because of the limited number of project observations. For example, with
just five environmental factors, including all the cross effects would introduce ten variables
necessitating ten additional parameters to be estimated.®

3. Data

A. Introduction

We illustrate the use of our general model of software maintenance production by
estimating the value of its parameters with an empirical data set collected from a site
employing professional systems analysts and programmers. Since our focus is on software
maintenance, we needed a site with a large inventory of existing software. In addition,
this approach is believed to be more meaningful for practicing managers than the typical
alternative, data from experimental results involving student programmers, who may
not be representative of actual professional practice (Conte, Dunsmore and Shen 1986).

A

B. Data-site and Project Selection

The data-site for the testing of the model is a large commercial bank’s information
systems department (hereafter referred to as “the Bank™). The types of applications
represented are typical financial transaction processing systems, and are written in COBOL
to run on IBM hardware. COBOL and IBM are the most widely used software and
hardware in commercial information systems (Freedman 1986, Withington 1987) and
therefore this site is likely to be representative of much of current business information
systems. The information systems department is divided into eighteen “‘sections,” which
are organized around common sets of applications. Three of the sections were selected
by the Bank as representative of the department as a whole.

Two criteria were used to select projects completed by these three sections: sufficient
size and recency. Selecting larger projects allows the examination of projects that consume
the bulk of the Bank’s resources. Project size is also important in that the factors affecting
productivity on short, one-person projects are likely to be overwhelmed by individual
skill differences across project staff members (Curtis 1981, Dickey 1981, DeMarco 1982).

% Of course, some of the newest approaches use automated tools to support the analysis and design phase,
which are dependent upon machine cycles. However, these tools were not 1n use on projects at the datasite
during the time period studied.

¢ However, for sensitivity analysis purposes we did rerun the model described later in the paper and found
the additional higher order variables to have no significant explanatory power.
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6 RAIJIV D. BANKER, SRIKANT M. DATAR AND CHRIS F. KEMERER

Therefore, we only considered projects at the Bank that cost a minimum of $5,000 in
internal dollars.”

Project recency is important for two reasons. Since data were collected retrospectively,
old projects were not included because personnel turnover and lack of documentation
retention made accurate data collection impossible. Second, using only recent projects
legitimizes cross project comparisons in that the technology and personnel involved are
likely to be very similar. After discussions with Bank staff, only projects completed within
the 18 month period between January 1, 1985 and July 1, 1986 were included in the
study. Data were collected during the summer of 1986. Due to a number of factors,
including reorganizations, the conversion to a new time reporting system, use of con-
tractors, personnel turnover, and the elimination of a few unsuitable (i.e., non-COBOL)
projects, complete data were available for 65 of 84 projects completed during that period.

C. Variables and Data Collection

Previous research on modeling new software development has identified over 100
possible variables to explain variations in productivity (Jones 1986). However, this work
also suggests that many of these factors are site-specific, that is, factors that are critical
in one environment (e.g., real-time command and control systems) may not be present
in another environment (e.g., commercial information systems). Therefore, we focused
our research on those variables believed to be most important by managers at the Bank.
Our general model formulation supports a large number of variables. We illustrate the
model here with five variables due to the limited amount of data available at this site.
Given the nature of the phenomenon studied, extensive efforts were made to collect data
that were both objectively measurable and under the control of managers in the infor-
mation systems department. Both of these criteria were believed to be critical if the
resulting model was to be perceived as both valid and useful to the managers at the Bank.
In addition, special care was taken in measuring and checking these data, as de-
scribed below.

Data were collected on professional (i.c., exempt) labor hours (%,), Function Points
(y1,) and SLOC (37,). Only Function Points added or changed were counted, using the
rules reported by Albrecht (1983). Added or changed SLOC were counted according to
the rules reported by Jones (1986, p. 20). The environmental factors included the ability
of the project team members, the level of previous experience with the application, the
use of a structured analysis and design software development methodology, the level of
hardware response time, and the operational quality of the resulting system. The key
input variable was the number of work-hours charged by person to the project. Raw data
on work hours was obtained from the Bank’s project reporting system. These data are
used to chargeback labor costs to requesting user departments, and are therefore believed
to be of sufficient accuracy to be used in this research. Previous research has generally
been satisfied with total aggregated work-hours by project only (Walston and Felix 1977,
Crossman 1979, Albrecht and Gaffney 1983, and Behrens 1983). The limitation of that
approach is immediately apparent if a 1000 work-hour project staffed by a team of veteran
programmer / analysts who were also intimately familiar with the application being mod-
ified is compared with one staffed by a team of novices. Intuition suggests that the former
team is likely to be more productive, yet much prior research has treated both of these
simply as two “1000 work-hour” projects. In this paper, while our unit of analysis is the
project, we characterize the actual work-hours expended along a number of individual
dimensions, particularly capability and experience.

7 The mean size of these projects was 937 work-hours, with the smallest project being 130 work-hours.
Therefore, very small “one-day fixes” are specifically excluded from this sample. The means for the output
variables were, for Function Points, 118, and for SLOC, 5,415. The Bank data fall along a spectrum of three
categories, with “type 1” being closest to new development, and “type 3” being closest to pure repairs. The
distribution of projects in the sample is 20% type 1, 58% type 2, and 22% type 3 (Kemerer 1987b).
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PRODUCTIVITY OF SOFTWARE MAINTENANCE PROJECTS 7

A measure of capability of individual project team members was obtained from the
Bank’s existing personnel system. The Bank gives annual performance appraisals, with
a staff member’s review being summarized into a numerical score on a scale of 1 to 5,
1 being the best. As these scores are used by the Bank for promotion and salary decisions,
and are reviewed at multiple levels, they were felt to be valid indicators of ability. In
addition, they had the advantages of being contemporaneously collected and being familiar
to the Bank’s information systems development managers. The characterization of pre-
vious experience of the team members was accomplished via a personnel data collection
form that requested each project member to fill in data on his or her application experience.
The forms were matched to the records in the time reporting system via an employee
number.

An important issue in measuring productivity is whether the products of efficient
projects are of the same quality as those of less efficient projects. The quality concept
used here is that of operational quality, whether the system operates smoothly once it is
implemented. This measure was generated by a staff section within the Bank from three
existing sources, daily abnormal end (abend) reports, weekly section status reports, and
ad hoc user problem reports. Data from the two month period following implementation
of each project were compared with data from the previous twelve months’ trend. Projects
were rated as belonging to one of three quality categories: below average, average, or
above average. For example, a project is rated above average if (1) no major abends or
problems specifically tied to project turnover are reported, and (2) the number of minor
turnover problems is less than one standard deviation from the average number of abends
or reported problems in the previous twelve months. This rating was generated by a team
of three individuals within the Bank for each project. These results were then forwarded
to the section heads for review and validation. The net result of this process was that, of
the 65 projects, 9 were rated as below average, 43 were rated as average, and 13 were
rated as above average.

Finally, data on Function Points, SLOC, use of the structured methodology, and hard-
ware response time were captured via distribution of a data collection form to project
leaders. All questions were drawn from previous research, particularly Albrecht and Gaff-
ney (1983), Boehm (1981) and Jones (1986). In addition, a number of steps were taken
to assure that the data collection forms would be filled out as accurately as possible. A
training session to walk through the data collection forms was held for all project leaders
and their section heads. Further, a member of the research team was on-site during the
entire data collection process and provided ad hoc support to project leaders. An auto-
mated tool was also available to aid in the counting of source lines of code.

The following controls were established to provide additional assurances of data validity.
After the project leader had completed the data collection form, it was first reviewed by
the section head. After review by the section head, the data collection form was forwarded
to the research team for a second review for completeness, reasonableness and consistency
across projects. In summary, we focused on observable variables deemed important by
managers at the Bank, and exercised much due care to ensure that the data were accuratcly
collected.

After collection, the environmental factors (z,) were operationalized as follows. Since
the focus of the study was on maintenance, we collected data on team member’s previous
experience with the application system being modified. Based on discussions with Bank
information systems managers, it was felt that a possible success factor was the presence
of at least one project member with significant® application experience. This was necessary
in order that the individual’s experience could be leveraged over the project team.

8 Deemed to be two years by a consensus of managers at the Bank, a result that is also supported by the
software engineering literature (e.g., see Jeffrey and Lawrence 1985). As the Bank’s hiring policies strongly
favor hiring graduates directly out of school, a project member’s application experience tends to be highly
correlated with his or her experience with the Bank’s version of that system.
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8 RAJIV D. BANKER, SRIKANT M. DATAR AND CHRIS F. KEMERER

Therefore, z; is a dummy variable indicating the presence (0) or absence (1) of an
experienced project team member.

Capability of the project team was viewed as a summary of the capabilities of individual
team members. Using the numerical ratings from the personnel system, staff members
with ratings of 1 or 2 were rated as above average capability team members, and those
rated 3, 4 or 5 were rated as average capability. This apportionment resulted in two
approximately equal size groups. These ratings were mapped to the hourly data and the
resulting z, variable equaled the percentage of the hours charged to the project by the
above average capability staff members.

A current topic of great interest among software development practitioners is the efficacy
of new software development tools and techniques. We had the opportunity to observe
the impact of one of these techniques in the form of a proprietary structured analysis
and design methodology that had been purchased by the Bank in the past year, and had
been used on some but not all of the projects in our sample. The variable z; is a dummy
variable indicating the use (1) or absence (0) of this technique.

The quality of the resulting system ( z,) is a three-valued categorical variable indicating
better than average, average, or less than average resulting system quality as described
above (Perry 1986). Previous software engineering research has tended to focus on either
productivity or quality to the exclusion of the other. We simultaneously investigate both
of these phenomena in our analysis.

As noted earlier, numerous previous researchers have demonstrated the importance
of hardware response time in system developer productivity. We used the measure de-
veloped by Boehm (1981) to characterize online response time and batch turnaround
time of less than four hours as good response. The variable zs is a dummy variable
indicating the presence (1) or absence (0) of good response time.

While we have chosen environmental factors that are globally supported in the literature
and recognized locally by the managers at the Bank, our research is novel in going beyond
the “black-box” approach to software development and decomposing the maintenance
activity into its two component parts. Therefore, this requires a model formulation that
specifies which of the compound activities is believed to be more greatly impacted by
each of the environmental factors.

The first three z, environmental factors were multiplied by y;, Function Points. The
factors z, and z, represent the impact of team member capability and previous experience
with the application, and it was believed that their impact would be most strongly felt
during analysis/design, where the greatest amount of leverage from their capability and
experience would be obtained. The third factor, z3, representing the use of a structured
analysis and design methodology, clearly is associated with the analysis and design output,
y1. The last two z, factors operational quality (z4) and good response time (zs), were
believed to most strongly impact the coding/testing phase. The errors represented by
operational quality, are of the type reflecting poor coding technique and/or insufficient
testing. Response time clearly is more directly related to coding/testing activities than
analysis/design work that is typically not dependent upon access to machine cycles.

4. Model Estimation

In this section we estimate a stochastic production frontier based upon the model
developed in §2. In the first part of this section, we use a parametric fornfulation. In the
second part we show that similar results are obtained when a nonparametric approach
is used. We discuss the managerial implications of the results in §5.

A. Parametric Formulation

The estimation of a stochastic frontier requires the specification of a distribution for
the error term. In particular, the econometric modeling of production frontier considers
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PRODUCTIVITY OF SOFTWARE MAINTENANCE PROJECTS 9

the error term ¢ to be composed of two terms, n and », where 7 represents the impact of
random effects and v represents the impact of production inefficiency.

As in Aigner, Lovell & Schmidt (1977), hereafter ALS, we assume the following error
structure: € = 7 + », where 7 is distributed as N(0, ¢2) and » is distributed as a half-
normal |N(0, ¢2)].

Following Weinstein (1964 ), the density function of ¢, the composed error, is given
by

fle) =(2/a)f*(e/o)[F¥(eN/o)],  —oo <e<+o0,

where 6% = 62+ ¢Zand A = 0,/ 0, and f*(+) and F*(-) are the standard normal density
and distribution functions, respectively. ALS estimate the parameters using the maximum
likelihood estimation (MLE) method.

The specific parametric form adopted for the nonlinear function g(y;, y,) is

gy, ) = a0 + oy + aoys + azyi + auyi + asyys.

To test whether g(y;, »2) is a separable production function of the form g, (y,) + ¢:(3»),
as may be the case in software maintenance, we need to test the hypothesis that as = 0.

Combining this form of the function ¢(y,, »,) with the form of the function r(s,, . . .,
5) developed in §3 and the composed error formulation described above, the estimable
form of the model is

J,.8) =11y, 1) = ap + ayy, + oy, + asyi, + aa)3, + asyi, v, + ﬁlzljy!j

+ Bazoyyyy + Bazy vy + Bazayyoy + Bszs, vy + 1 v,

forallj=1,..., 65.

The maximum likelihood estimates of the parameters of this model are shown in Table
1. The maximum likelihood estimate of o, is 351.4, while that of ¢, is 0, which means
that all of the deviations from the estimated production frontier are represented by random
effects, and none due to inefficiency. This is, of course, predicated upon the given

TABLE 1
MLE Results, Quadratic Formulation R? = .80, ad). R? = .76, F-stat. = 21.303 (.000)
Parameter Coeflicient Standard Error t-Ratio (Significance)
ao 444.151 83.610 5.312 (.000)
aj .169 1.957 .086 (.931)
a .145 .033 4.438 (.000)
a; 009 .003 2.643 ’ (.008)
ay -.000 .000 —1.733 (.083)
as -.000 .000 —.634 (.526)
61 527 .639 825 (-409)
B2 -.027 017 —1.583 (.113)
o 2.173 681 3.190 (.001)
B4 —.015 .009 —1.648 (.099)
Bs —.031 020 —1.569 (.117)
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10 RAJIV D. BANKER, SRIKANT M. DATAR AND CHRIS F. KEMERER

specification of the model, with the inclusion of the environmental variables, s,. Since
o, = 0, the estimation results correspond to ordinary least squares estimates in this case.’

An F-test of az, a4 and as, the coefficients of the quadratic terms in the g(y;, 1)
function, being all equal to zero was rejected at the 5 percent level, indicating that there
exist possible economies and diseconomies of scale in software maintenance. This is
consistent with the previous results of Banker and Kemerer (1989) with respect to new
software development, and suggests that linear models are likely to be inadequate rep-
resentations of the production process. The estimate of as is not significantly different
from zero at conventional levels of significance, supporting the notion that, for the relevant
range exhibited by these data, the function g(y,, »,) is separable in y; and y,. Given that
the modeling of software development as an economic production function with multiple
outputs has not been widely developed in the literature, this appears to be the first empirical
test of the separability hypothesis. One possible interpretation of these results is that the
separability of the analysis/design and coding/testing activities may hold for a larger
range for maintenance than for new development. This is because activities of the project
team in both phases are likely to be far more constrained in a maintenance context by
the presence of the existing system. Further research seems indicated to explore whether
this result would also hold for new software development, and of course to validate this
result for maintenance at other datasites.

B. SDEA Estimation

Although the parametric stochastic estimation of production frontiers described above
models the impact of both inefficiency and random effects, it does assume a particular
functional form for the production correspondence and the error structure. The statistical
distributions of the estimated parameters are based on these assumed functional forms.
Inferences from the statistical tests are consequently conditional on the parametric spec-
ification of the model correctly reflecting the underlying production relation (see Hil-
denbrand 1981, Varian 1984, and Banker and Maindiratta 1988). But the choice of a
particular functional form can be difficult to justify on a priori grounds. This problem
can be partially mitigated by using flexible functional forms such as the translog that can
be used to approximate the unknown true production function. Unfortunately, these
forms require the estimation of a large number of parameters relative to the available
observations. Furthermore, the underlying regularity conditions of monotonicity and
strict quasi-concavity are often violated at many points of most data sets, thus biasing
inference; for a theoretical analysis of regularity conditions, see Caves and Christen-
sen (1980).1°

The problems inherent in parametric estimation can be overcome by estimating a
nonparametric stochastic frontier using the approach of Stochastic Data Envelopment
Analysis (SDEA), a nonparametric method for evaluating productivity which (1) assumes
only the regularity condition of monotonicity of the production function and convexity
of the production possibility set, and (2) allows for the possibility of two-sided random
errors in model specification or measurement in addition to the one-sided deviations
attributable to inefficiency in the use of input resources (Banker, Charnes, and Cooper
1984 and Banker 1990).

® Goldfeld-Quandt tests did not indicate even mild heteroskedasticity, and Belsey-Kuh-Welsch collinearity
diagnostics indicated an absence of a collinearity problem except for the terms y; and y2.
10 As a test of the sensitivity of these results, we also estimated a translog form of the model, as follows:

In (h)) = ap + ai(In 31,) + aa(ln 13)) + as(In y,)* + au(In y3)* + as(In py)(In yy)

+ Bi(zy) + B2(In z3)) + B3(z3) + Ba(ln z4) + Bs(z5) + ¢,

where ¢, is specified as a composed error term as 1n the quadratic model. The signs of the estimated coeficients
of the environmental factors are 1dentical to those presented in Table 1. See also Banker, Conrad, and Strauss
(1986 ) for alternative translog cost function formulations and comparisons with DEA estimates.
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The composed error econometric models discussed above require an a priori specifi-
cation of the parametric distributions of the inefficiency and the random effect components
of the error term. On the other hand, the linear programming-based formulation of
SDEA is specified in terms of deviations above and below the frontier, and it requires
the relative weight for these positive and negative deviations to be specified in the objective
function. By varying the relative weights, we examine the sensitivity of the estimation
results to the postulated importance of deviations due to inefficiency or random factors.

Mathematically, the SDEA formulation of the software maintenance productivity
model, assuming separability, is as follows: !

65

min >, ¢v, + (1 ~ ¢)u,
J=1

s.t.

2

(1) hy= 20 t,+ Bizyyy, + Bazy Yy, + Bazay vy, + Bazayyy
=1

+ 55251J/2/ + Uj — U V]:
(ii) 0 =wi(yy —yu) — (L, — tg) vi,j, k,
(ii1) Ly Wi, iy, 0,20, 8, unconstrained.

The explanation of this formulation is as follows. The objective function is a mini-
mization of the weighted sum of the deviations from the production frontier. The u,’s
represent downward deviations (due only to random effects). The v,’s are upward de-
viations (due to either random effects or inefficiencies, or both). Here we assume that
qa(y1, ¥2) = q1(y») + q2()») where each ¢g;, [ = 1, 2, is monotonically increasing and
convex. We write #;, = g,(y;,) and let ¢, = 11, + #5,. Constraint (i) is the functional relationship
between the input variable labor hours on the left-hand side and the output and envi-
ronmental variables on the right-hand side. Constraint (ii) ensures that the functions ¢
= g,(y;) are monotonically increasing and convex, standard economic production function
assumptions. Standard nonnegativity constraints are in (iii), except that the signs of the
B,’s are unconstrained.

In this extension of the standard SDEA model, we have represented the function r(s,
..., Sx) of the environmental variables parametrically as in the earlier sections; and
therefore we obtain summary estimates of the impact of the environmental variables.
Thus the results of the SDEA formulation can be compared directly to those obtained
from the previous parametric formulations.

We allowed ¢ to vary between zero and 0.5. Values of ¢ close to zero cause all observed
deviations to be attributed to inefficiency, i.e., the usual DEA model. A value of ¢ = 0.5
causes all observed deviations to be attributed to random effects. Intermediate values of
¢ (between 0 and 0.5) cause the deviations to be attributed partly to inefficiencies and
partly to random effects.

Table 2 shows the estimates of the coefficients of the environmental variables obtained
using the separable SDEA formulation. From Table 2 we can observe a number of char-
acteristics of the estimated coeflicients of the environmental variables. First we see that
the signs of the 3, are identical and magnitudes very similar to those obtained from the
parametric formulations presented in Table 1. Our conclusions from the stochastic

"' The formulation for the nonseparable case is given in Appendix A. An examination of the results in
Appendix A shows the marked similarity between the results of both this separable model and the nonseparable
model presented in the appendix. This indicates that our insights about factors affecting productivity are consistent
across models that do and do not assume separability of Function Points and SLOC in estimating labor hours.
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12 RAJIV D. BANKER, SRIKANT M. DATAR AND CHRIS F. KEMERER

TABLE 2
Separable SDEA: Environmental Variables Coefficient Estimates
¢ 0.01 0.1 0.3 0.5
B "+0.676 +0.691 +1.114 +0.463
B> -0.017 -0.016 —0.025 —0.008
8 +2.189 +2.127 +2.043 +1.932
Bs —0.002 —0.003 —0.001 -0.014
Bs —0.030 —0.031 —0.065 -0.071

nonparametric analysis are thus consistent with the results of the parametric formulation.
Discussion of the managerial interpretations of these results will be presented in §5.

The signs of the 8,’s in Table 2 are invariant to different values of ¢, and their magnitudes
are roughly similar. The insights that we thus obtain about the direction and magnitude
of the factors that affect productivity are consistent for the different versions of the SDEA
models estimated. In particular, the insights do not change with the weights on the inef-
ficiency and random effects parameters. Appendix A further shows that these insights
are unaltered if we assume nonseparability of Function Points and SLOC.

Our extension of the SDEA methodology enables us to determine the relative explan-
atory power of each of the environmental variables. This is accomplished by running the
model (n + 1) times, where n (=5 here) is the number of environmental variables. The
first run includes all of the environmental variables. Then the model is rerun, omitting
a single (different) variable each time. The resulting objective function values are com-
pared by examining the ratio of the objective function value when all environmental
variables are included to the objective function value when one variable is omitted in
turn. This ratio shows the relative loss in explanatory power through the omission of a
variable. This is analogous to the F-Test or the likelihood ratio test in econometric theory,
although statistical properties are not obtained as no distributional assumptions are made
about the deviations. The objective function values were computed and the ratios of the
objective functions with and without suppressing each of the z variables were computed
and are shown in Table 3.

The impacts of individual factors are discussed in §5. We simply note here that Table
3 reveals that the factors with the greatest impact are z3 (use of structured methodology)
and zs (good response time). Omitting these two factors most affects the weighted sum

TABLE 3

Separable SDEA: Percentage Increase in Objective Function Values
on Suppressing Environmental Variables

c ¢ =0.01 c=0.10 c=0.30 c=10.50
z; suppressed 2.85% 3.13% 3.02% 0.37%
z, suppressed 2.00% 0.87% 1.95% 0.76%
z3 suppressed 23.03% 21.00% 19.75% 10.44%
z4 suppressed 4.08% 4.09% 2.58% 3.12%
zs suppressed 8.82% 8.31% 8.77% 10.92%
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TABLE 4
Percentage Increase in Objective Function Values on Imposing Separability
c c=0.01 c=10.10 ¢ =0.30 ¢ =0.50
No z suppressed 5.57% 4.75% 3.69% 4.62%

of absolute deviations. The positive sign on the coeflicient of the structured methodology
variable (see value of 83 in Table 2) indicates that the use of the structured methodology
for software maintenance increases labor hours incurred on analysis and design activities,
a result that is discussed in some detail in §5. The negative sign on the good response
time coefficient (see value of 35 in Tables 1 and 2) suggests that good response time has
the effect of reducing labor hours spent on coding and testing.

Table 4 indicates the extent to which the objective functions values are higher when
the separability assumption is imposed in the SDEA model. The percentage increase in
the objective function value of the order of 4-5% for various values of ¢ supports the
notion that the impacts of Function Points and SLOC on labor hours are largely separable
in the context of software maintenance for the range observed at this datasite. This is
not a critical issue here, since the estimated sign and magnitudes of the coeflicients of
the environmental variables, the principal focus of this paper, are similar in the separable
and nonseparable cases.

5. Implications for Software Maintenance Management

Our model provides a number of insights for the management of software maintenance.
An important benefit from using such a model is that it allows a quantifiable estimate
of the impact on productivity of a number of environmental variables under managerial
control. For example, Table 1 indicates that the most significant factor was the negative
impact upon short-term productivity of the use of the structured analysis and design
methodology (85). A managerial interpretation of the data in Table 1 is that for each
Function Point, the use of the methodology adds 2.17 labor hours to the project. As the
mean number of Function Points in this dataset is 118, this suggests that the average
impact of the methodology is to increase this number of labor hours by 256. (The £;
coeflicient estimation using the nonparametric SDEA model also yields very similar
results. See Tables 2 and A.1.) This result makes intuitive sense in that many of the
presumed benefits of using a detailed methodology that requires a lot of documentation
are not observed until the follow-on projects, when enhancements or repairs need to be
made to the system. In the short term, as measured in this research, the extra effort is
not necessarily going to show any benefit, and the extra hours will show up as reduced
productivity. Additionally, it should be noted that use of this methodology was new at
the Bank. Therefore, project team members were typically using this methodology for
the first time, and thus thesc results may be a manifestation of a learning curve phenom-
enon at the Bank.

Previous research investigating the productivity effects of various software engineering
management variables involving homogeneous datasets (i.e., data from similar project
types at the same firm) have typically reported results with low statistical significance.
For example, Kemerer (1987a) reported that the addition of the large numbers of ‘pro-
ductivity factors,” common in widely-used software cost estimation models, did little to
improve the relationship between size and effort on a set of 15 homogeneous MIS-type
projects. Card, McGarry and Page (1987), in a study 22 spacecraft flight dynamics pro-
grams at the Software Engineering Laboratory, found that none of the eight technologies
investigated had a statistically significant effect on productivity at even a 15% level. One
reason for these findings is perhaps the lack of inherent variability in the data. Despite
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this inherent difficulty, in the parametric analysis of software maintenance productivity
developed in §2 and estimated in §4, the managerial variables had signs in the expected
direction, and were significant at the following levels: structured methodology (53), 0.1%,
higher quality (84), 9.9%, higher ability staff (8.), 11.3%, good response time (8s), 11.7%,
and absence of application experience (8,), 40.9%, although only the null hypothesis
that the coefficient of the structured methodology variable being equal to zero was rejected
at the conventional 5% level for a two-tailed test.

Our results also suggest that a relatively small number of critical factors may explain
a large amount of the variation in productivity at a specific site. Although we believe
that the basic insights from our analysis will carryover to other similar Cobol-oriented
environments, an implication for practicing software maintenance managers is that they
should attempt to capture data on projects at their own site, as the relatively small number
of critical factors may vary across sites. We would suggest modeling software maintenance
as a multi-output production function, as was done in the current research. In order to
assist managers in performing such analyses, the following guide to interpreting some of
the less obvious results is presented, using the “higher ability staff (8,) variable for our
example. The coefficient for §, is estimated by the SDEA model to be approximately
—.02 (see Table 2). An interpretation of this is that the impact of substituting higher
ability for lower ability staff members would be to reduce the number of hours by .02
per Function Point per percentage of the hours substituted. To illustrate this with two
actual values from the observed range in the dataset, take the case of an average project
(118 Function Points) staffed with only ten percent above average ability team members.
If we were to substitute a full (100%) above average staff, then we would estimate the
difference to be 212 (=90%.02# 118) fewer labor hours charged on an average project.

It is also interesting to compare these results with the maintenance version of Boechm’s
well known COCOMO model (Boehm 1981). The maintenance COCOMO model is
essentially equivalent to the standard COCOMO model with its 15 cost drivers, except
that it: (1) allows for the notion of changed code rather than all code as in new development
(Boehm 1981, p. 71), (2) eliminates the SCED cost driver, and (3) makes small changes
to the weights assigned to the RELY and MODP cost drivers (Boehm 1981, pp.
129-130).

In our model we also adopt the notion of changed functionality and include five “cost
driver” type variables, which were chosen based on our software development experience
and their relevance to the data-site. In comparing our variables to the variables in mainte-
nance COCOMO an approximate correspondence would be as follows: The COCOMO
variable AEXP is represented by our z; application experience variable, the COCOMO
variables ACAP and PCAP are represented in the Bank environment by our z; capability
variable, the COCOMO variables TOOL and MODP are approximately correspondent
with our z3 structured analysis and design variable, the COCOMO variable TURN cor-
responds to our zs response time variable. Our z,; quality variable is not represented in
COCOMO. Other COCOMO variables were excluded because they were either (a) specific
to the primarily real-time/embedded systems studied by Boehm in his TRW database
(e.g., TIME, STOR, RELY), (b) relatively homogeneous across Bank projects (e.g.,
DATA, VIRT), or (c) captured in the Bank environment by our other variables (e.g.,
CPLX by y;, VEXP and LEXP by z;).

Our results for greater capability (positive influence on productivity ), and better re-
sponse time (positive influence on productivity) are consistent with those of Boehm (see
Bochm 1981, p. 118). However, even though our structured analysis and design variable
does not exactly correspond with COCOMO’s TOOL and MODP variables, the fact that
it exerts a negative influence, while COCOMO might posit a positive influence, strongly
suggests the need for more research in this area, perhaps in the form of laboratory studies,
to determine under what conditions each of the results might be expected.

Due to the novelty of the structured analysis and design result, we conducted further
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sensitivity analysis on it. Of course, the negative result of the Belsley-Kuh-Welch test of
collinearity mentioned earlier indicates that the results are not confounded by collinearity
problems. More specifically, we tested for possible correlations between the use of the
structured analysis and design methodology and other factors, such as project size and
complexity or quality. The Pearson correlation of the structured methodology factor with
Function Points was .11, with SLOC, .05, and with the quality factor was —.13. None
of these correlations are significantly different than zero at even the 30% level.!? These
results support the contention that the negative results for the structured methodology
are not confounded by their use on either large (small) projects or projects resulting in
higher (lower) quality.

In general, little research is available on the productivity impacts of structured analysis
and design methodologies. Their assumed net positive impact may not be obtained im-
mediately, just as Vessey and Weber (1984) found only weak support for the positive
~ impacts of structured programming. Further research needs to be done to validate these
results, and longitudinal studies should be performed to determine any possible differential
long run effects.

6. Concluding Remarks

In this paper we have provided a new model of software maintenance productivity.
This model is a significant advance over previous work in software productivity in that
it (a) provides for the multi-dimensionality of software lifecycle products, (b) allows and
tests for possible nonlinearities and separability of the software production function, (c)
explicitly models individual project member differences, and (d) directly addresses soft-
ware maintenance (rather than new development), an activity of increasing economic
importance and managerial concern.

In developing methods to estimate the model we have extended the Stochastic Data
Envelopment Analysis approach to allow the simultaneous consideration of inputs, out-
puts, and other factors. This allows the evaluation of the marginal impact of each of the
factors influencing productivity. This general approach can be used to evaluate produc-
tivity in a wide array of managerial contexts.

The use of this model is illustrated using actual data from a commercial bank. While
the external validity of the results on the impact of specific factors will need to be supported
with results from other sites, our choice of COBOL transaction processing systems is one
that is representative of the majority of business information systems being maintained
today, and therefore is of immediate practical relevance. The availability of larger data-
sets could allow for the inclusion of a greater number of productivity influencing factors,
as our general model in its current form is not limited to the five shown in the illustrative
example. We have also done extensive sensitivity analysis of our results relative to alter-
native forms of the production function and its estimation, and find them to be very
consistent. This is a useful first step in examining an area that is of considerable importance
in the management of information systems.'?

'2 We also computed the contingency coefficient version of these correlations (Siegel 1956, pp. 196-202).
None of these correlations were significantly different than zero (based on the chi-square test) at even the 20%
level.
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Appendix A. Sensitivity Analysis of the SDEA Model to the Separability Assumption

In this appendix, we present an alternative SDEA model that does not assume separability of the production
function. Mathematically, this model is as follows:

65

min >, ¢v, + (1 — o)y,
=1

S.t.

(i) =4+ Bizyyy, + Bazoyy + Bazayy, + Bazayy + Bszs vy U, — vJ,

2

(i1) 0= 2 wy(y,—yu)— (4 — &) vy, k,
1

(1ii) 1, Wi, ty, U, = 0; 8, unconstrained, where t, = q(yy, ¥2)-

This model has the same objective function as the separable model presented in §4B, and only slightly modified
constraints. The results from this model are presented in Table A.1 below. Note that the values are essentially
equivalent to those obtained under the assumption of separability. Carrying the parallel analysis forward, Table
A.2 presents the equivalent data to the separable model’s Table 3.

TABLE A.1
Nonseparable SDEA: Environmental Variables Coefficient Estimates
c 0.01 0.1 0.3 0.5
B +0.703 +0.670 +0.443 +0.215
B2 —0.011 -0.007 -0.014 —0.010
B3 +1.891 +1.971 +2.304 +1.914
Ba —-0.007 —0.006 —0.006 —0.006
Bs —-0.038 —0.041 —0.052 —-0.069
TABLE A.2

Nonseparable SDEA: Percentage Increase in Objective Function Values
on Suppressing Environmental Variables

¢ c=0.01 ¢=0.10 c=0.30 ¢ =050
z, suppressed 1.99% ) 1.78% 1.14% 0.13%
z, suppressed 1.13% 0.60% 0.91% 0.72%
z3 suppressed 12.53% 11.41% 12.05% 9.51%
z4 suppressed 6.34% 5.96% 4.04% 6.40%
zs suppressed 9.83% 9.27% 8.74% 9.45%

As can be seen by comparing Tables 3 and A.2, the managerial insights regarding the impact of each of the
five managerial variables is relatively insensitive to the separability assumption. Thus, we can conclude that the
effects of these variables are not materially changed no matter which assumption is made about the nature of

the production function.
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