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Managerial Use of Metrics for Object-Oriented
Software: An Exploratory Analysis

Shyam R. Chidamber, David P. Darcy, and Chris F. Kemerer

Abstract—With the increasing use of object-oriented methods in new software development there is a growing need to both
document and improve current practice in object-oriented design and development. In response to this need, a number of
researchers have developed various metrics for object-oriented systems as proposed aids to the management of these systems. In
this research an analysis of a set of metrics proposed by Chidamber and Kemerer [10] is performed in order to assess their
usefulness for practicing managers. First, an informal introduction to the metrics is provided by way of an extended example of their
managerial use. Second, exploratory analyses of empirical data relating the metrics to productivity, rework effort, and design effort
on three commercial object-oriented systems are provided. The empirical results suggest that the metrics provide significant
explanatory power for variations in these economic variables, over and above that provided by traditional measures, such as size in
lines of code, and after controlling for the effects of individual developers.

Index Terms—Software metrics, object-orientation, productivity, effort, reuse, design, SLOC, WMC, NOC, DIT, LCOM, CBO, RFC,

programmer, project management.

1 INTRODUCTION

T HERE is great interest in use of the object-oriented ap-
proach to software engineering. This is due to a variety
of claims about how it may improve the development of
software, including such factors as greater reusability and
increased extensibility. In order to help managers and devel-
opers achieve these goals, a variety of software metrics have
been proposed to help track the status of software designs.

One such set of metrics is the set proposed by Chidam-
ber and Kemerer (hereafter CK). A later paper refined the
metrics and collected empirical metrics data at two sites,
and presented the empirical distributions [10]. Interested
readers should see the latter article for a detailed treatment
of the metrics and their definitions.

Given the number of metrics that have been proposed, it
seems appropriate that attention is being turned toward
studying the degree to which various metrics actually meet
their goal of providing insight into the design process.
Sharble and Cohen report on how the CK metrics were
used by Boeing Computer Services to evaluate different OO
methodologies metrics [28]. Two implementations of an
example system, one using responsibility-based methodol-
ogy and another using data driven methodology were
analyzed using these six metrics. Based on this analysis,
Sharble and Cohen recommended the responsibility-based
design methodology for use in the organization.

This suggests an active interest in the practitioner com-
munity to use well-constructed metrics as a basis for mana-
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gerial decision-making. Li and Henry analyzed two com-
mercial systems referred to as UIMS and QUES. They found
that the CK metrics explained additional variance in main-
tenance effort beyond that explained by traditional size
metrics [23]. This finding is significant in that some previ-
ous proposed complexity metrics in the procedural domain
have been criticized as simply being surrogate measures for
the size of the application [29].

Chidamber and Kemerer also report empirical data from
two commercial organizations and suggest ways in which
the metrics can be used to manage OO design efforts [10].
In that paper it was suggested that the primary use of the
metrics by managers would be to identify outlying values
that might reflect suboptimal design practice.

Most recently, Cartwright and Shepperd collected data
from a telecommunications application in the U.K. [8]. Us-
ing a subset of the CK metrics, they found a positive corre-
lation between the Depth of Inheritance Tree (DIT) metric
and the number of user-reported problems. In Denmark,
Soren Nielsen has also been exploring the implications of
high CK metric values [24]. He has reported some prelimi-
nary results based on a study of a design model of 170
methods, 56 classes, and 150 attributes. Two classes were
flagged as having very high CBO and LCOM values, and
these classes were later identified as being the most difficult
to successfully implement. Pant et al. collected data from a
set of 69 public domain classes and 25 classes developed for
their research on the generalization of OO components for
reuse [25]. They found significant correlations of their
tested metric with size measures such as SLOC and with
previously developed complexity measures such as cyclo-
matic complexity [25, p. 26, Table 4].

Most recently Basili et al. have reported on results of
using the CK metrics suite to predict the quality (fault
proneness) of student C++ programs [2]. Five of the six
metrics were shown to be useful predictors, and the suite of
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design metrics was shown to be a more effective predictor
of fault proneness than extant code metrics.

This paper is devoted to 1) providing further explana-
tion of the CK metrics in a management, rather than a tech-
nical, context, and to 2) presenting exploratory data gath-
ered from three OO financial application systems examin-
ing the relationships between these metrics and variables of
managerial interest including productivity, re-use effort,
and design effort. Section 1 will serve as a useful introduc-
tion to the metrics by way of an extended applied example
of a type that was not presented in the first paper. Section 2
contains exploratory empirical results relating the metrics
to variables of managerial interest. In particular, it is shown
that the metrics provide useful information beyond that
provided by size metrics alone. It should be remembered
that such an approach is aimed at empirical validation
rather than theoretical validation (for similar empirical
work see [2]; for theoretical work, see [19], [7]).

The rest of the paper is organized as follows. Section 2
presents a simplified example of an OO design that is moti-
vated by the systems that were analyzed as part of this study.
This example will be used to illustrate the calculation of the
CK metrics, and their potential for use during early design.
Section 3 and Section 4 describe the actual empirical data
collection, and present the exploratory results. A summary
and concluding remarks are presented in Section 5.

2 A SIMPLIFIED TRADING SYSTEM EXAMPLE

2.1 A Base System (Version 1.0)

Consider a hypothetical OO system called TRADER that is
built to assist a trader in a securities firm that buys and sells
different financial instruments in the market place. A hy-
pothetical system is used in this section only to illustrate
use of the metrics, similar to [30]. In the later sections data
from actual commercial systems in the finance domain are
presented. This example is a highly simplified version of
one of the actual systems (the “TPM” system, see “System
Descriptions™” section) that is analyzed later in this paper.
The initial requirements for TRADER are to present the
trader with a GUI screen and to gather the details of a
transaction that is currently underway. Initially TRADER is
designed to handle equity, bond and foreign exchange
trading. TRADER will print individual transaction descrip-
tions, and also consolidate in a database all the trades un-
dertaken. In addition, TRADER has the ability to communi-
cate with other systems to retrieve pertinent information
(e.g., stock quotes, exchange rates). Fig. 1 shows the class
hierarchy for key abstractions in the system. Fig. 2 shows
the class structure, in pseudocode, for all four classes. A
superclass trade is at the root, and there are three subclasses
equity trade, foreign exchange (fx) trade and bond trade.
The three subclasses are specialized cases of the superclass,
and inherit all the methods and instance variables from it.
The six CK metrics will be illustrated below through this
example. The metrics can be roughly calculated as follows: 1)
the NOC metric is equal to the count of immediate sub-
classes, 2) WMC is the count of methods in a class (assuming
unity weights for all methods), and 3) DIT is the length of the
maximal path to the root of the class hierarchy [10]. The class

EQUITY TRADE BOND TRADE

Fig. 1. Class hierarchy for the hypothetical TRADER system (Version
1.0).

trade has three children (equity trade, fx trade, and bond trade),
three methods (evaluate_counterparty, get trade id, and posi-
tion_update), and is a root class. Therefore, its NOC, WMC,
and DIT metrics are 3, 3, and 0, respectively.

CBO is approximately equal to the number of couples
with other classes (where calling a method or instance vari-
able from another class constitutes coupling), and RFC is the
cardinality of the set of all methods that can execute in re-
sponse to the arrival of a message to an object of a class. The
CBO metric for trade is 1, since this class uses one method
from another class (the report_trade method). The RFC metric
is 4 since arrival of messages to this class could precipitate
the possible execution of four methods (three declared in
trade and the report_trade method called by position_update).

The LCOM metric is approximately equal to a count of
the number of method pairs that do not have common in-
stance variable minus the count of method pairs that do.
Since there are three methods in trade, there are a total of
three method pairs: evaluate_counterparty & get_trade,
evaluate_counterparty & position_update and get trade &
position_update. The first and second pairs have no common
instance variables. However, the third pair does have a
common instance variable (trade id). Consequently, the
number of disjoint method pairs is 2, the number of similar
method pairs is 1, and therefore LCOM metricis 1 =2 - 1).
All six metrics for the four classes are shown in Table 1.
Note that CBO is 2 for the class equity trade, since this class
uses the trade_id instance variable and the quotes method
from outside the class. Similarly, LCOM is shown as zero
because it is assumed that estimate_beta and get_stock_quotes
will both use a common instance variable.

TABLE 1
METRICS FOR TRADER CLASSES (VERSION 1.0)

Class Name | WMC | DIT NOC | CBO | RFC |LCOM
trade 3 0 3 1 4 1
bond trade 1 1 0 0 1 0
fx trade 1 1 0 0 1 0
equity trade 2 1 0 2 3 0

2.2 An Enhanced System (Version 2.0)l

Now, consider the situation where bond trading operations
are expected to include both municipal and corporate bonds.
Municipal bonds have different interest rate and maturity
calculations than corporate bonds, so the class hierarchy

1. This is a simplified example drawn from the historical design evolution
of the TPM system described later in the paper.
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// class trade

Attributes // a.k.a. instance variables
trade id, counterparty,
Operations // a.k.a. methods

evaluate_counterparty ()
base file

get_trade_id()

position_update ()

// class bond trade
Attributes // a.k.a. instance variables
bond_details // bond ratings details

Operations // a.k.a. methods

get_bond_info ()

// class fx trade
Attributes // a.k.a. instance variables
methods

Operations // a.k.a.

calculate_exchange_ rates()

// class equity trade
Attributes // a.k.a. instance variables

company, stock_market, PE ratio,

Operations // a.k.a. methods
estimate_beta ()

get_stock_guotes ()

call quotron::gquotes|()

trade value // details of the trade

// determines validity of the counterparty from a data

// obtain trade id details from the user

call position_manager::report_trade()// send message to external
position_manager class furnishing trade value and trade id.

// access bond data base for current market price information

forex_details // foreign market information

// access currency market monitor for latest rates

earnings, 52_week_hi&lo
// determine risk compared to rest of the market
// consult external stock quotation data base

for trade_id // get the latest quote for the trade

Fig. 2. Pseudocode for classes in TRADER (Version 1.0).

could be changed so as to treat municipal bond trade and corpo-
rate bond trade as specializations of the class bond trade; each
subclass can have separate calculation operations, but still
share the attributes and operations that are declared in the
class bond trade. Also, TRADER is expected to handle both
domestic and international equities. Two new subclasses can
be declared to specialize the class equity trade. The class dec-
larations and new hierarchy are shown in Figs. 3 and 4. The
metrics for the classes in the system are shown in Table 2.
Notice that CBO and RFC metrics for classes corporate
bond trade and international equity are larger due to relying
on obtaining the exchange rate information from the class fx
trade. A careful designer would have realized that this in-
formation is no longer pertinent only to foreign exchange
trading, and moved the rate calculation method to the class
trade so that all types of trades could have easy access to it.

2. For purposes of this example assume that the method is equally appli-
cable to all of the classes.

Instead, the short cut has resulted in coupling at the leaf
level classes of the system. If the CK metrics were reported
during a design review or system analysis report, the in-
crease in CBO, RFC, and WMC metric values for leaf classes
like international equity and corporate bond would indicate
that perhaps encapsulation is being compromised, and op-
portunities for reuse via inheritance are being missed. Such
compromises in design principles could lead to classes that
are more difficult to understand, test, and reuse in another
application. Notice the domestic equity class has mostly
zeros in Table 2. As can be seen from the pseudocode, this is
because this class remains largely unspecified. It is possible
(so long as there were not too many instances of zeros)
that a designer might find this information to be valuable
in terms of identifying poorly specified classes, just as he
or she would be expected to be interested in high metric
values.
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// class municipal bond trade
// Attributes a.k.a. instance variables
state_or_federal, over_the_counter
// Operations a.k.a. methods
calculate_coupon_rate()
call Tbill_server: :rates()
// class corporate bond trade
// Attributes a.k.a. instance variables
adr, sp_rating

// Operations a.k.a. methods

calc_rating(sp_rating)

// class international equity
// Attributes a.k.a. instance variables
exchange_rate, quotation

// Operations a.k.a. methods

perform _analysis_roa
using the foreign exchange rate

get_quotron (quotation)
// class domestic equity

// Attributes a.k.a. instance variables
attributel

// Operations a.k.a. methods

none defined yet

// determine the inter-rate rate for the bond

// get the current rates from another source

// get the standard & poors rating

if adr == TRUE then call fx trade::calculate_exchange_rates()
exchange rate information if this is a foreign bond issue

(fx trade::calculate_exchange_rates())

// determine the current price of stock

// get the

// analyze the stock

Fig. 3. Pseudocode for classes in TRADER (Version 2.0).

BOND TRADE

CORPORATE
BOND
TRADE

EQUITY TRADE

INTERNATIONAL
TRADE

MUNICIPAL
BOND
TRADE

DOMESTIC
EQUITY

Fig. 4. Class hierarchy for the hypothetical TRADER system (Version 2).

TABLE 2
METRICS FOR TRADER CLASSES (VERSION 2.0)
Class Name WMC | DIT [ NOC [ CBO | RFC (LCOM
trade 3 0 3 1 4 1
bond trade 1 1 2 0 1 0
fx trade 1 1 0 0 1 0
equity trade 2 1 2 2 3 0
municipal bond trade 1 2 0 1 2 0
corporate bond trade 1 2 0 1 2 0
international equity 2 2 0 1 3 1
domestic equity 0 2 0 0 0 0

Summary. This simple example demonstrates: 1) how the
metrics are calculated for individual classes, 2) that the met-
rics change as the design progresses over time, 3) that even
a rudimentary system can quickly develop unnecessary
complexity that detracts from the architectural integrity of
the design, and 4) that metrics can be used during the de-
sign process to reduce developer controllable complexity.



CHIDAMBER ET AL.: MANAGERIAL USE OF METRICS FOR OBJECT-ORIENTED SOFTWARE: AN EXPLORATORY ANALYSIS 633

3 EXPLORATORY VALIDATION STUDY

3.1 Introduction

The reduction of developer controllable complexity is of
considerable importance to a software project manager,
since researchers have demonstrated its crucial impact on
the typical managerial concerns of cost, quality, and pro-
ductivity [1]. Since the CK metrics were developed to be
measurements of design complexity, variations in produc-
tivity, rework effort, and design effort may be expected to
be explained, in part, as a function of high metric values
[18], [28], [10], [2], [8]. Data were collected from three com-
mercial systems in order to examine the relationships be-
tween the CK metrics and the above variables. Such an
analysis is designed to provide evidence on the degree to
which each complexity metric influences a dependent vari-
able. Results of such an analysis can be used by managers
to make more informed design and resource allocation de-
cisions in organizations, such as estimating the develop-
ment and maintenance costs of a piece of software.

3.2 Data Collection Requirements

The primary criterion for a data site for this research was
that the organization had to be actively undertaking object-
oriented development for production systems. Also, the
data collection needed for metrics validation requires active
collaboration from sites with at least rudimentary data col-
lection in place. In addition to these data requirements, the
site needed to be willing to make design documents, project
plans and source code available for inspection so that mul-
tiple sources of data are available to measure the model
variables. Given all of these constraints, it was decided to
study several projects over a period of time at a single data
site rather than attempt a cross-sectional study of many
organizations. Past research that has validated metrics on
commercial software systems has often adopted a similar
strategy[15], [1], [23].

It cannot be overemphasized that, given the nascent state
of OO metrics research, the analysis presented in this paper
is exploratory in nature, and it would be unwise to over-
generalize from the empirical estimates presented below.
Nevertheless, these analyses are presented as real world
examples of how the metrics may be applied and the types
of insights that metrics can provide.

3.3 Background of Data Site

The Information Systems Division (ISD) of a European
bank (referred to in this paper as European Bank Corpora-
tion, or EBC) was selected as the data site for this research.
EBC is an international bank that offers a wide range of
modern financial instruments to clients on a worldwide
basis. Technological leadership is central to their competi-
tive position in the financial services industry. The ISD staff
of over 130 people is charged with the responsibility of
providing computer hardware and software solutions that
provide access to up-to-the-minute information, analytical
capabilities and financial engineering tools to traders and
portfolio managers in the bank. These solutions help to
formulate portfolio structure, assess market risk factors,
advise market makers, and ensure liquidity of financial
positions and competitive pricing of financial instruments.

The strategic and financial implications of the transactions
that are handled by these systems are significant, and there-
fore the software systems are planned, designed and tested
with considerable care. The organization has had a tradition
of collecting detailed data during various phases of the
systems development process to facilitate management
control of IS projects.

3.4 System Descriptions

Three software systems developed by the ISD at EBC were
analyzed as part of this study. (Their names are disguised
and only basic information about their functions is pro-
vided in order to preserve the data site’s anonymity.) These
systems are used by financial traders to assist them in the
buying, selling, recording, and analysis of various financial
instruments like stocks, bonds, options, derivatives, and
foreign exchange positions. All three projects were com-
pleted in the 1990s and are used extensively by EBC traders
in the United States, Europe, and Asia. (See Table 3.)

TPM (Trade Position Manager). TPM is a key software sys-
tem in the IS infrastructure at EBC. It is responsible for
“straight through” trading, i.e., it enables computers from the
trading desk to communicate to back-office mainframe com-
puters that maintain and consolidate the massive amount of
data relating to the bank’s current and historical trading in
financial instruments. TPM manages the physical and logical
distribution of data among different computer systems,
while providing users with a single consistent database for
product risk assessment and position keeping. TPM was de-
veloped on a Sun SparcStation in C++ using the Booch OO
design methodology [6], and is comprised of several key
subsystems that were designed by a team of six designers
over a period of 8 months. This is the system that the simple
example at the beginning of the paper is based upon.

FIS (Fixed Income Sales). FIS is a trading decision support
system. It provides pricing, analytics,3 risk management
and management information to the Fixed Income Trading
and Sales teams in the investment bank. In addition to these
functions, FIS automates the manual process of issuing
“trading tickets.” Traditionally, each time a trader com-
pletes a trade, the details of the asset (stock, bond) and the
transaction are recorded on a slip of paper known as a
“ticket.” FIS also passes the consolidated information to
other mainframe computer programs for initiating elec-
tronic transfer of funds, archival and storage. FIS involved
five designers, and there are a number of different versions
of the system that have been developed over the period
1991-1993. It was developed using Objective C and works
primarily on NeXT workstations. Certain classes developed
for FIS were considered to be reusable in other systems, and
the data available for collection during this project were
restricted to the classes that were reused in another project.

SLB (Securities Lending and Borrowing). The business mis-
sion of SLB is to help maximize the returns on trading posi-
tions by effectively coordinating the borrowing and lending
of equity and equity-linked instruments. The system assists
securities traders in an investment bank to lend to and borrow

3. This is a ‘term of art’ within the finance industry. It means providing
shell analytical tools without the data. The user supplies the data.



634 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 24,

NO. 8, AUGUST 1998

TABLE 3
SUMMARY OF APPLICATION SYSTEMS
System Metrics Data Source No. of classes Dependent Variable
TPM 15,096 LOC of C++ code 45 productivity
FIS 2,705 LOC of Objective C code 27 rework effort
SLB Design documents 25 design effort

from external counterparties (other financial institutions) to
finance their trading positions. The SLB system provides
functionality to enter stock borrowings and loans into a da-
tabase, checking market price of stocks, tracking pending
loans and payments, and generating accounting and finan-
cial reports. The system provides a graphical user interface
and analysis tools and the capability to communicate with
other computer systems to access and consolidate data. Two
people were assigned to work full-time on the design of
classes for this system. They produced about 40 pages of de-
sign documents in about 3 weeks.

One aspect of the SLB system worth noting is that it pro-
vided a confirmation for a claim made in earlier work [10].
In that article it was argued that the six metrics were design
metrics and could be collected from design documents.
However, this argument was not directly supported in [10]
as the two systems represented in that paper had both been
implemented, and therefore the program code was used for
the analysis. Here the metrics data from the SLB system
were extracted from systems analysis and detailed design
reports that were issued prior to coding. Therefore, it is clear
that these data reflect design phase data, although of a de-
tailed nature.

3.5 Data Sources

Source Code Control Systems (SCCS). SCCS is a source man-
agement system used at ISD that maintains records of
changes made in files within a project. Records stating what
the changes were, why and when they were made, and who
made them are kept for each version. Previous versions can
be recovered, and different versions can be maintained si-
multaneously. Since all systems at EBC employ the SCCS
utility, detailed records of time, version, size, and pro-
grammer usage were made available for this research.

Project Management Documents. EBC has formal mecha-
nisms for project initiation, approval, and management.
There are steering committees that oversee individual proj-
ects and several documents are released during different
stages of a software products’ life cycle. Two such docu-
ments are the requirements document and the systems
analysis and design report. Both these documents contain
information on the cost (in terms of time), and early design
descriptions of key classes that are used in the system. In
addition the project manager in charge of each project re-
leases detailed project plans that describe current design
status, staffing levels and costs. These documents were
made available for the research study to aid data collection.

Programmer Reports. In addition to the formal records
maintained in SCCS and in the project management docu-
ments, individual programmer activity reports were an-
other source of data for this study. This helped in dis-
counting personal holidays and time taken to attend to ac-
tivities that are not directly related to the project. In the case

of all three projects key designers also reviewed their per-
sonal calendars to further ensure data accuracy.

3.6 Data definitions

In addition to the six metrics, WMC, DIT, NOC, RFC, CBO,
and LCOM, the following variables were used in the analy-
sis of the three systems in this study:

SIZE. Size of class in lines of code defined in that class (i.e.,
does not include LOC in any associated super or sub-
classes). This definition excludes header files but includes
comments.

EFFORT. Amount of developer time, measured in hours.
PRODUCTIVITY. Productivity measured as SIZE/EFFORT [20].

STAFF_n. Dummy variables identifying specific developers
used as control variables in the models.

4 EXPLORATORY RESULTS

Section 3 described the variables that were measured from
the three systems at EBC. Productivity, rework effort, and
design effort are the key dependent variables that are ex-
amined, as appropriate for individual systems. In Section
4, three categories of regression models using these vari-
ables are presented, along with an interpretation of the
various models.

The primary analysis technique used in the analysis is
stepwise regression. This is an exploratory technique
whereby all the independent variables are allowed to enter
and leave the model. After several iterations of adding or
removing one variable, a model is presented to which adding
any more variables will not significantly increase the degree
of variation that the model explains (i.e., R?) and removing a
variable will significantly reduce R?. Interested readers are
referred to [26] or other standard text for further details.

4.1 General Results (Three Data Sets)

One of the first empirical results are the generally small val-
ues for the NOC and DIT metrics in all three systems,
thereby reducing their chances of explaining variance in the
dependent variables (see Tables 4, 5, 6, and 7). It is interesting
to note that two earlier (and significantly larger) systems
examined at different data sites also had relatively little use
of inheritance as reflected by their NOC and DIT metric val-
ues [10]. And, most recently, Cartwright and Shepperd report
almost no use of inheritance, as measured by DIT and NOC,
at their U.K. telecommunications site [8].

This apparent lack of use of inheritance could be a result
of two possible events. One explanation would be that this
is an accidental failing to use a feature which is deemed to
be desirable. If this is the case, then for OO designers and
methodologists this may represent a growing set of docu-
mented cases of how OO adopters are not using the inheri-
tance feature of OO. For managers of OO projects and for
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senior management, it illustrates how care must be taken to
actively manage projects in such a way as to achieve prom-
ised benefits. Part of this is the illustration of how difficult
it is to achieve certain results (such as a stated level of in-
heritance) without a measurement system that records
those values. And, of course, without a means of deter-
mining the values, incentive systems to encourage the re-
sults are impossible. Alternatively, the lack of inheritance
could reflect a conscious decision not to use a feature for
which some believe that costs, in terms of complexity and
maintainability, are deemed to outweigh the benefits. This
was the case at the current data site [9]. This had also been
reported at an earlier data site [10, p. 486].

However, here it is simply noted that, regardless of
opinion on this issue, a manager should be interested in
measuring the degree to which it is present in their appli-
cations. From the perspective of the current analysis, DIT
and NOC have been omitted from possible inclusion in the
models, given the small numbers of classes that took ad-
vantage of this feature.

A second general result that is able to be commonly
analyzed across the three data sets is that the remaining
metrics exhibit some potential problems with multi-
collinearity since WMC, RFC, CBO are highly correlated
(most greater than 0.8).4‘ This suggests that, although
WMC, RFC, and CBO measure different aspects of class
design, there is a significant statistical reason to believe that
classes with high (or low) WMC also have high (or low)
values of RFC and CBO in this particular organization.
Consequently, simultaneous use of these three variables in a
regression analysis would generate coefficient estimates
that are difficult to interpret. This underscores the possibil-
ity that only subsets of the six metrics may explain variance
in the dependent variables at different data sites. In par-
ticular, it might be expected that only one metric of the set
WMC, RFC, CBO would appear in any model. The correla-
tions between RFC, WMC, and CBO for the three systems
can be seen in Table 4.

Third and finally, recall the original premise behind
managerial use of the metrics as suggested in [10]. The
premise was that extreme (outlying) values signal the pres-
ence of high complexity that may require management ac-
tion, e.g., assigning a higher skilled developer to that im-
plementation, assigning extra testing resources to that com-
ponent, etc. This approach has been generally accepted in
the software metrics literature, for example, see the early
work of Harrison [16], and recently, the OO metrics work of
Henderson-Sellers [17]. This is not only intuitive, it is also
pragmatic, as a measurement tool that suggested ‘looking
at everything’ would have insufficient discriminant ability
to be of value. Therefore, the relationship focused on in the
main analyses is that between a management oriented de-
pendent variable and outlying values of the complexity
metrics. The threshold values of the metrics could not be
determined a priori, given the novelty of these data, but

4. Recall that in [10, p. 487] it was casually observed that some classes
with high values of one metric often seemed to have high values of other
metrics as well. An interpretation of this was that there may be a small
number of highly complex or ill-designed classes in an application. The
current correlation analysis may be further evidence for this phenomenon.

rather will come from each of the three data sets, which is
consistent with the exploratory approach of this research.
However, a lower bound was defined for all data sets at 20
percent; i.e., the cutoff value for defining a “high” value for
a metric can be defined no lower than the 80th percentile.
While no hard and fast rules exist for such cutoffs, it was
believed that this was consistent with the common Pareto
(80/20) heuristic (see, for example [27]).

4.2 TPM Exploratory Analysis Results
The summary statistics for this data set are presented in
Table 5.

Since this system was developed “from scratch” rather
than a result of reuse, the dependent variable of interest for
this system is productivity, defined as size divided by the
number of hours required (effort). As a control feature, an
examination of the first order Pearson correlations among
the variables suggests that productivity is significantly
(0.05) positively correlated to SIZE and STAFF_4 (dummy
variable for a specific programmer). This suggests that
these two variables are candidates for a base model for
analysis of the marginal explanatory power of the six met-
rics, i.e., the extent to which the metrics explain variance in
the dependent variable over and beyond traditional size
measures and taking into account individual developer
ability differences [3], [15]. This approach is similar to the
one adopted by Banker et al. in demonstrating the ex-
planatory power of complexity metrics in a traditional de-
velopment environment, and of Li and Henry in an OO
environment [1], [23]. Note that it also takes into account the
suggested effect of variances in individual performance, a
factor that is much discussed in practice, but relatively rarely
accounted for in the research literature [12], [21], [22], [14].

The results of the base model are:

PRODUCTIVITY = 1.78 + 0.06 * SIZE + 64 * STAFF_4
(t=0.44) (t = 6.16) (t = 6.92)

The t statistics demonstrate the significance of the esti-
mate of the coefficient. Except for the intercept value of 1.78
(t = 0.44), all of the above t statistics show that the coeffi-
cients are significant at the 95 percent level (o = 0.05) [26].

The adjusted R-squared for this model was 0.75, and
both predictors are significant at the 0.001 level (n = 45).
The model passes the Belsley-Kuh-Welsh (BKW) test for
multicolinearity among the independent variables [4].5 The
interpretation is that productivity, as defined here, was
positively associated with size in LOC and with developer
no. 4, whose work, all else being equal, was more produc-
tive than others on this project. These two variables are re-
tained in the full model to reduce the possibility that sig-
nificant results will be attributed to the complexity metrics
due to the effect of what would otherwise (without the
controls) be omitted variables.

Dummy variables were created out of each of the complex-
ity variables, with labels such as “HICBO,” “HILCOM,” etc.
These variables take on the value of one or zero, depending on
whether the metric value exceeds the threshold value for the
data set. The threshold values were set so as to accommodate

5. The BKW test was run for all regressions reported in this paper, and
this result holds in all cases.
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TABLE 4
CORRELATIONS FOR RFC, WMC, AND CBO
TPM FIS SLB
RFC WMC CBO RFC WMC CBO RFC WMC CBO
RFC 1 - - 1 - - 1 - -
(0.0000) (0.0000) (0.0000)
wMC 0.98 1 - 0.28 1 - 0.95 1 -
(0.0001) (0.0000) (0.1509) (0.0000) (0.0001) (0.0000)
CBO 0.95 0.88 1 0.80 -0.11 1 0.87 0.95 1
(0.0001) (0.0001) (0.0000) (0.0001) (0.5957) (0.0000) (0.0001) (0.0001) (0.0000)
(cells show Pearson correlations, p-values are in parenthesis).
TABLE 5
SUMMARY STATISTICS FOR TPM DESIGN AND MAINTENANCE (n =45 CLASSES)
Variable Median | Mode Mean Max Standard Deviation
WMC 6 0 9.27 63 11.60
DIT 0 0 0.04 2 0.30
NOC 0 0 0.07 2 0.33
RFC 7 0 13.82 102 18.27
CBO 2 0 451 39 7.21
LCOM 0 0 6.96 90 16.46
PRODUCTIVITY 19.7 11.75 28.36 198 32.91
SIZE 267 66 335.47 | 1,308 263.69

natural breaks in the data at or above the 80/20 value, and
vary across the three data sets.
For example, for TPM,

HILCOM =1 if LCOM >= 40, and 0 otherwise.
HICBO =1 if CBO >= 25, and 0 otherwise.

In the discussion section managers are cautioned against
adopting these site-specific values without local calibration.

Using stepwise regression, the metric variables are al-
lowed to enter the model. The analysis yields the following
result:

PRODUCTIVITY = -6.41 + 0.10 * SIZE + 48.11 * STAFF_4
(t=-1.65) (t=8.27)  (t=5.61)
—76.57 * HICBO — 33.96 * HILCOM
(t =-4.03) (t =-3.00)

Except for the intercept all of the above t statistics show
that the coefficients are significant at & = 0.05. The adjusted
R-squared = 0.82, suggesting a good fit with the data. The
model supports the notion that developers tended to be less
productive, i.e., require more hours per line of code, for
classes with high values of either CBO or LCOM. Dummy
variables for WMC and RFC were not statistically signifi-
cant at usual levels.

The intuition behind the significance of CBO in this
model is that since classes that have a large number of in-
terconnections with other classes are likely to require
greater understanding of architectural details like the in-
heritance hierarchy and message passing, it can be hy-
pothesized that they will take more time to develop, test
and modify [6]. Consequently the productivity levels for
such classes may be lower. The CBO metric is a measure of
interclass coupling, and therefore may reflect this.

The traditional notions of cohesion measure the inter-
relatedness between portions of a program. The LCOM

value provides a measure of the relative disparate nature of
methods in the class. A smaller number of disjoint pairs
implies greater similarity of methods and greater cohesion.
Conversely, a high LCOM value indicates disparateness in
the functionality provided by the class. Such a class may be
attempting to achieve many different objectives, and conse-
quently may behave in less predictable ways than classes
that have lower LCOM values. Such classes could be more
error prone and more difficult to test, and the data suggest
that they require more effort to develop. It might be ex-
pected that high values might be more likely early in the
design process, and signal that the class design is not yet
well-understood.’

The results for CBO and LCOM are consistent with re-
sults in software engineering that higher coupling and
lower cohesion are detrimental to productive development
(see, for example [5]). In addition, they do so in a model
where the portion of the variance in productivity that might
be explained by simple size measures and by the inclusion
of a variable reflecting individual ability variances has al-
ready been allocated. The two complexity metrics explain
additional variance over and beyond these two commonly
accepted factors.

An analysis of the residuals was conducted using both
Cook’s and White’s tests [11], [31], respectively. No significant
heteroskedasticity was detected. In addition, in examining the
data it was noted that there was a single significantly outlying
value for the dependent variable, productivity. The model was
rerun without this observation and no significant changes
were observed, enhancing confidence in the results.

A further sensitivity analysis was performed, allowing
HIDIT and HINOC to enter the model. Neither did, leaving
the results invariant to the original specification.

6. We are indebted to Soren Nielsen for this latter insight.
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4.3 FIS Exploratory Analysis Results

Since one of the major benefits of the OO paradigm is the
ability to reuse key classes across applications, reusability is
a key variable of managerial interest. Reusable classes can
be a key to faster development cycles. In theory, a designer
could assemble pre-existing classes, and build a new sys-
tem in a fraction of the time it would take to build it anew.
However, it is rare that a class created in one application
would be directly reusable in another with zero rework.
This rework effort was recorded for the classes from the FIS
project that were reused on another project. The rework
effort was measured in the number of hours spent by the
next project staff to modify each class for use in the new
project. The summary statistics for these variables is pre-
sented in Table 6.

TABLE 6
SUMMARY STATISTICS FOR THE FIS DATA SET (n = 27 CLASSES)

Standard

Variable Median | Mode Mean Max Deviation
WMC 22 22 20.22 31 7.34
DIT 1 1 1.11 2 0.32
NOC 0.07 2 0.38
RFC 33 22 38.44 93 23.74
CBO 7 6 8.63 22 4.45
LCOM 0 0 29.37 387 90.72
SIZE 101 94 100.19 153 25.42
EFFORT 1 0.15 4.41 16 6.05

Similar to the process described above, a stepwise re-
gression was performed and yielded the following model:

REWORK_EFFORT = 2.09 + —10.48 * STAFF_1 + 7.43
(t=2.54) (t =-2.34) (t=3.07)
* HICBO + 8.95 * HILCOM
(t=3.28)

The adjusted R-squared for this model was 0.60, and the
first two estimated coefficients are significant at the &= 0.05
level, and with the metric variables being significant at the
o= 0.01 level. Just as with the TPM productivity data, high
levels of both CBO and LCOM were associated with mana-
gerially poorer results, in this case higher rework effort.

An analysis of the residuals was conducted using both
Cook’s and White’s tests, and no significant heteroskedas-
ticity was detected.

As with the TPM analysis, these results were statistically
significant in explaining variance over and above that al-
ready explained by conventionally accepted variables such
as individual programmer differences or the number of
lines of code for the class. However, unlike the TPM model,
the FIS model consists entirely of dummy variables, limit-
ing the total number of unique combinations. Since this is
relatively less attractive if there was a desire to actually in-
terpret the values of the estimated coefficients, a sensitivity
analysis was conducted where the size variable was added
to the above model. The following result is obtained:

REWORK_EFFORT = 3.75 + —-9.61 * STAFF_1 +7.13
(t=1.09) (t=-1.97) (t=2.82)
* HICBO + 9.26 * HILCOM + -0.01 * SIZE
(t=3.26) (t=-0.50)

Although the metric value coefficients are still significant
at an o= 0.01 level, the coder variable is no longer signifi-
cant at an o = 0.05 level and the size variable is similarly
insignificant. Understandably, the adjusted R-squared for
the model drops.

An additional sensitivity analysis was run, allowing
HIDIT and HINOC to enter the model. In this case, some-
what surprisingly, HINOC does replace HICBO in the
model. Upon close examination, this is a result of the idea,
reported above, that the metric values tend to be correlated,
i.e., a small number of classes tend to have high values of
more than one metric (the “80/20 rule). Specifically in the
case of FIS, HILCOM, and HICBO share many observations
in common, as do HICBO and HINOC. Therefore, with
HILCOM in the model, HICBO and HINOC become close
substitutes for this data set. This variance is no doubt a con-
sequence of the exploratory nature of the analysis and the
relatively small data sets.

4.4 SLB Exploratory Analysis Results

The models tested thus far have utilized data gathered from
source code from the TPM and FIS projects. The SLB project
data set is significantly different from the preceding two in
that the metrics data have been gathered prior to writing
any code. The metrics were obtained from the output of a
Joint Applications Development (JAD)-like session where
major application classes are specified, but not coded [13].
Besides the metrics data, the amount of time spent (in
hours) to specify the high level design of each of the classes
was also collected, although individual staff names were
not available. Table 7 provides the summary statistics.

TABLE 7
SUMMARY STATISTICS FOR SLB (n = 25 CLASSES)
Standard
Variable Median | Mode Mean Max Deviation
WMC 5 5 6.48 22 3.93
DIT 2 2 1.96 3 0.73
NOC 0 0 0.92 11 2.43
RFC 7 5 9.80 42 8.67
CBO 0 0 1.28 8 2.21
LCOM 0 0 4.08 83 16.65
EFFORT 4 4 4.20 24 6.41

As this analysis was performed on an early design, there
are no lines of code data to use as a SIZE variable for a base
model. Therefore, there is only a final model, developed in
a similar fashion to the TPM and FIS models:

DESIGN EFFORT = 2.05 + 7.95 * HICBO + 14.00 * HILCOM
(t=2.25) (t = 3.56) (t = 3.07)

The adjusted R-squared for this model was 0.60, and
both of the estimated coefficients for the metrics are signifi-
cant at the o = 0.01 level. One interesting aspect of this
model is that it explains about as much variance in design
effort for SLB as the model of rework effort did for FIS, but
without the two extra variables of size and staffing. Again,
as in the FIS model, the number of unique combinations is
quite small, which should serve to discourage direct inter-
pretation of the estimated coefficients.
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An analysis of the residuals was conducted using both
Cook’s and White’s tests, and no significant heteroskedas-
ticity was detected.

A further sensitivity analysis was performed, allowing
HIDIT and HINOC to enter the model. Neither did, leaving
the results invariant to the original specification. Therefore,
of the six possible opportunities for DIT and NOC to be
included in the models (two variables times three systems),
in only one case, NOC for FIS, were they included.

5 SuUMMARY AND DISCUSSION OF RESULTS

The empirical results across the three financial services ap-
plication can be summarized as follows:

« Useful metrics data could be collected on systems that
were written in a variety of programming languages
and on a system that was not yet coded;

* None of the three applications at this site showed sig-
nificant use of inheritance—DIT and NOC tended to
have minimal values;

« WMC, CBO, and RFC tended to be highly correlated;

« High levels of coupling (HICBO) and lack of cohesion
(HILCOM) were associated with:

— lower productivity
— greater rework
— greater design effort.

These results should be of interest to both practitioners and
the OO research community as to the degree to which the
metrics are of practical significance.

The low values of DIT and NOC indicate that reuse op-
portunities (via inheritance) are perhaps being compro-
mised in favor of comprehensibility of the overall architec-
ture of the application. In such cases, the low metric values
may indicate that appropriate design preferences are being
followed. It is important to note that, although generally
not able to be demonstrated in the regression models due to
their low variability, these two metrics can, in theory, be
helpful in highlighting egregious departures from design
principles (either higher or lower usage of inheritance).
This is particularly relevant in projects that are staffed with
programmers who are less familiar with object-oriented
design.

The high degree of correlation among WMC, CBO, and
RFC may explain why only CBO was a statistically signifi-
cant predictor in these models. Once the CBO dummy en-
ters the model, there may be little ‘space’ for WMC and
RFC. This may suggest that a smaller set of hybrid metrics
would have the same degree of predictive power. However,
at this early stage in the development and adoption of
Object-Oriented Design, having alternative metrics may
compensate for the multicollinearity problem by being
more meaningful to designers and managers in their work.
Also, the correlations found here need to be replicated
elsewhere before their degree of independence can be de-
termined with confidence.

In each of the three systems, the stepwise regression
analysis showed CBO and LCOM as being significant ex-
planatory variables. It is important to emphasize the
strength of this result given that each of these models had a

different dependent variable, i.e., productivity for TPM,
rework effort for FIS and design effort for SLB. It is inter-
esting to note that these results are consistent with prelimi-
nary results found elsewhere, and may reflect the strength
of the underlying concepts of coupling and cohesion [24].

As suggested in [10], [17], the metrics can be used to flag
outlying classes for special attention. Exactly what consti-
tutes an outlying class is an empirical question, but clearly
is in part a function of the degree of certainty or risk for
which the manager wishes to control. For example, in some
applications, a strong requirement for low testing and
maintenance costs would argue for paying extra managerial
attention to a quite significant fraction of the classes. Alter-
natively, a very large application or one with less stringent
requirements might dictate that only a smaller fraction of
classes could or should be given special attention. So, the
first question to be answered by the manager is what per-
centage of the classes merit examination. This may dictate
the appropriate threshold values to be used, whether they
are 20 percent or something else.

Going further, at this early stage in OO metrics research
it is not known whether there may be characteristics of en-
vironments or application types that will tend to generate
higher or lower values for the metrics. Therefore, practicing
managers are urged not to accept the values reported in the
TPM analysis section as rules, but rather to analyze local
data and to set thresholds appropriately as described
above.

Of course, a certain degree of caution needs to be exer-
cised overall in the interpretation and use of the metrics as
levers of managerial control. The data sets have small sam-
ple sizes, which reduces the statistical power and reliability
of the estimates. Additionally, all the data sets are drawn
from a single organization that develops software systems
for the financial services industry, which may limit the ap-
plicability of the specific statistical estimates to other gen-
eral OO environments.

The CK set of metrics has been shown by this empirical
validation to offer quantitative and significant insight into
the impact of OO design decisions on managerially relevant
variables of productivity and cost. It is hoped that this re-
search helps in moving software development management
in general, and OO software in particular, toward a more
scientific basis.
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