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ABSTRACT: Practitioners have expressed concern 
over their inability to accurately estimate costs associated 
with software development. This concern has become 
even more pressing as costs associated with development 
continue to increase. As a result, considerable research 
attention is now directed at gaining a better 
understanding of the software-development process as 
well as constructing and evaluating software cost 
estimating tools. This paper evaluates four of the most 
popular algorithmic models used to estimate software 
costs [SLIM, COCOMO, Function Points, and 
ESTIMACS). Data on 15 large completed business data- 
processing projects were collected and used to test the 
accuracy of the models‘ ex post effort estimation. One 
important result was that Albrecht’s Function Points 
effort estimation model was validated by the independent 
data provided in this study [3]. The models not developed 
in business data-processing environments showed 
significant need for calibration. As models of the 
software-development process, all of the models tested 
failed to sufficiently reflect the underlying factors 
affecting productivity. Further research will be required 
to develop understanding in this area. 

1. INTRODUCTION 
Practitioners have expressed concern over their in- 
ability to accurately estimate costs associated with 
software development. This concern has become 
even more pressing as costs associated with develop- 
ment continue to increase. As a result, considerable 
research attention is now directed at gaining a better 
understanding of the software-development process 
as well as constructing and evaluating software cost 
estimating tools. 
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This paper presents an empirical validation of 
four algorithmic models from the literature (SLIM, 
COCOMO, Function Points, and ESTIMACS) that are 
proposed as general software-development cost esti- 
mators. This research has built a database of com- 
pleted software-development projects and :focuses on 
comparing the actual costs with the ex post estimates 
obtained from the four models. Of particular interest 
is the comparison of the results of the four models’ 
use of different measures (metrics) of the outputs 
underlying their productivity calculations. 

Three research questions of interest to practition- 
ers are addressed in this paper: 

(1) Are these software cost estimating models truly 
generalizable to environments other than that 
in which they were developed? If not, can they 
be easily calibrated to a typical business data- 
processing environment? 

(2) Are models that do not use source lines of code 
(SLOC) as an input as accurate as those that do? 
If so, then this could eliminate the need to 
attempt to estimate lines of code early in the 
project. 

(3) Are the models available in the open literature 
as accurate as proprietary models? If so, then 
this could allow practitioners to avoid the costs 
of purchasing the proprietary models. 

Section 2 discusses the selection of the four 
models, followed by brief descriptions of the models. 
Section 3 describes the environment in which the 
data originated and compares this data set with that 
of other researchers. Section 4 describes the data- 
gathering and data-analysis methods, which leads 
directly into Section 5, “Results.” Finally, Section 6 
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offers some summary conclusions and outlines 
extensions of this work. 

2. BACKGROUND TO THE MODELS 

2.1 Model Selection 
A review of the literature revealed that the most 
interesting difference between estimation models is 
between models that use SLOC as the primary input 
versus models that do not. SLOC was selected early 
as a metric by researchers, no doubt due to its quan- 
tifiability and seeming objectivity. Since then an 
entire subarea of research has developed to deter- 
mine the best method of counting SLOC [lo, 121. In 
response to this, and to practitioners’ complaints 
about the difficulties in estimating SLOC before a 
project was well under way, new models have been 
developed that do not use SLOC as the primary 
input [2, 201. 

The next step was to choose models that were 
well regarded in the current literature, and to win- 
now this selection down to a manageable number 
since each model’s idiosyncrasies required the col- 
lection of different data. The approach to determin- 
ing which models were well regarded was twofold: 
First, Barry Boehm (developer of the COCOMO 
model, a model eventually se!ected for this study) 
has written a widely cited book entitled Software En- 
gineering Economics [5] in which he provides an anal- 
ysis of eight important models. This list was used to 
generate candidates. The second step was a review 
of articles in the most recent issues of the journal of 
Parametrics, a publication of the International Society 
of Parametric Analysts that devotes a large number 
of its pages to software estimation articles. This sam- 
pling validated whether the models cited in the 
Boehm study were well represented by their inclu- 
sion in other studies. 

Boehm examines eight models (including 
COCOMO) in his evaluation. They are (1) SDC, 
(2) Wolverton, (3) SLIM, (4) Doty, (5) PRICE, (6) IBM- 
FSD, (7) Boeing, and (8) COCOMO [5, 16, 25, 271. 
After examining this list of candidates, a review was 
undertaken of the most recent issues of the Journal of 
Parametrics, to determine the popularity of these 
models as demonstrated by their inclusion in other 
research. The results are presented in Table I with 
an ‘IX” signifying that a particular model was dis- 
cussed or compared in that article [7, 9, 14, 15, 211. 

From this list of candidates, COCOMO and SLIM 
seem to be the most widely reviewed. The PRICE 
model is also popular, but was developed primarily 
for use on aerospace applications and was therefore 
deemed unsuitable for the business applications that 
would comprise the database. Therefore, only 

TABLE I. Journal of Parametrics Articles 

csbcimo ” SLIM‘ PRICE 

Callisen (12/84) X 
Ferens (12/84) X X X 
Masters (3/85) X X X 
Pinsky (12/84) X X 
Rubin (8/85) X X 

COCOMO and SLIM were selected for this research. 
All of the above analysis centered on SLOC 

models of one sort or another. This is to be expected 
since software effort estimation research began with 
these models and is a relatively young field. No sim- 
ilar comparisons for non-SLOC models were found, 
and in fact, only two models were discovered during 
the period when this research was being conducted. 
These two are the Function Points method, devel- 
oped by Allan Albrecht at IBM in 1979 [2, 31, and 
the ESTIMACS model, developed by Howard Rubin 
of Hunter College and marketed by Management 
and Computer Services during the period when 
these data were being collected [2O, 221. Both of 
these models were selected, bringing the total num- 
ber of models compared to four. 

These four exhibit a certain symmetry, perhaps 
best illustrated in Table II. Therefore, some interest- 
ing comparisons can be made between not only 
measurement methods, but between models that ap- 
pear in the open literature and those that do not. 

TABLE II. Model Cateaories 

SLOC 
Non-SLOC 

PWPrietafy Nonproprietary 

SLIM COCOMO 
ESTIMACS Function Points 

2.2 Models 
Due to space limitations, the following are necessar- 
ily brief descriptions of the four models used in this 
paper. The interested reader is referred to the refer- 
ences provided for more detailed explanations. 

2.2.1 SLIM. The SLIM estimating method was de- 
veloped in the late 1970s by Larry Putnam of Quan- 
titative Software Management [16, 171. SLIM de- 
pends on an SLOC estimate for the project’s general 
size, then modifies this through the use of the Ray- 
leigh curve model to produce its effort estimates. 
The user can influence the shape of the curve 
through two key parameters: the initial slope of the 
curve (the “manpower buildup index” or MBI) and a 
productivity factor (the “technology constant” or PF). 
Since these are dimensionless numbers, the SLIM 
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user has two options for choosing their values: The 
user can calibrate the model by inputting data from 
completed projects, or he or she can answer a series 
of 22 questions, from which SLIM will provide a 
recommended PF and MBI. The second method was 
chosen for this research due to the absence of a 
previously collected calibration database and the 
feeling that this would more accurately reflect the 
average user’s experience. 

2.2.2 COCOMO. The Constructive Cost Model 
(COCOMO) was developed by Barry Boehm of TRW 
and published in 1981 [5]. Based on his analysis of 
63 software-development projects, Boehm developed 
an easy-to-understand model that predicts the effort 
and duration of a project, based on inputs relating 
to the size of the resulting systems and a number 
of “cost drivers” that Boehm believes affect 
productivity. 

A simplified version of the essential COCOMO 
effort equation for the Basic Model (the Intermediate 
and Detailed Models are discussed later) is of the 
form 

MM = C (KDSI) k, 

where 

MM = number of man-months1 
(= 152 working hours), 

C = a constant, 
KDSI = thousands of “delivered source instructions” 

(DSI), and 
k = a constant. 

Boehm defines DSI as program instructions cre- 
ated by project personnel that are delivered as part 
of the final product. They exclude comments and 
unmodified utility software, and include job control 
language, format statements, and data declarations. 

In Boehm’s development of COCOMO, he found 
that the Basic Model predicted effort within a factor 
of 1.3 only 29 percent of the time and within a factor 
of 2 only 60 percent of the time for his 63-project 
database. In an effort to improve the model’s accu- 
racy, he refined the equation to include the effects 
of 15 “cost drivers,” which are attributes of the end 
product, the computer used, the personnel staffing, 
and the project environment. He believes that these 
15 factors affect the project’s productivity and calls 
this version the Intermediate Model. 

The COCOMO Detailed Model is very similar to 
the Intermediate Model except that the project is 
divided into four phases: Product Design, Detailed 
Design, Coding/Unit Test, and Integration/Test. The 
15 cost drivers are estimated and applied to each 

phase separately, rather than to the project as a 
whole. 

2.2.3 Function Points. The Function Points. mea- 
surement method was developed by Allan .Albrecht 
at IBM and first published in 1976 [2, 31. Albrecht 
was interested in the general problem of productiv- 
ity measurement in systems development and cre- 
ated the Function Points method as an alternative to 
estimating SLOC. Albrecht’s Function Points are at a 
more macro level than SLOC, capturing things like 
the number of input transaction types and the num- 
ber of unique reports. He believes Function Points 
offer several significant advantages over SLOC 
counts: First, it is possible to estimate them early in 
the life cycle, about the time of the requirements 
definition document. This can be an important ad- 
vantage for anyone trying to estimate the level of 
effort to be required on a software-develop:ment 
project. Second, they can be estimated by a rela- 
tively nontechnical project member. And, finally, 
they avoid the effects of language and other imple- 
mentation differences. 

There are two steps involved in counting Function 
Points: (1) counting the user functions, and (2) ad- 
justing for processing complexity. There are cur- 
rently five user function categories:’ external input 
types, external output types, logical internal file 
types, external interface file types, and external in- 
quiry types. Albrecht recognized that the effort re- 
quired to provide a given level of functionality can 
vary depending on the environment. For example, 
input transactions are harder to program if a lot of 
emphasis is placed on system throughput or end- 
user convenience. In response to this, Albrecht has a 
list of 14 processing complexity characteristics that 
are to be rated on a scale from 0 (no influence) to 5 
(strong influence). The next step is to sum #alI the 
processing complexity points assigned. This number 
is then multiplied by 0.01 and added to 0.65 to ob- 
tain a weighting, as follows: 

PCA = 0.65 + 0.01 $J Ci, 
i=l 

where PCA = processing complexity adjustment 
(0.65 5 PCA 5 1.35), and Ci = complexity factors 
(0 I Ci 5 5). 

This factor is then used in the final equation: 

FP = FC(PCA), 

where FP = Function Points, and FC = previously 
computed Function Counts. 

The end result is that the Function Points can 
vary +35 percent from the original Function Counts. 

’ “Man-months” is used in this paper in its vernacular sense of referring to all 
the hours worked on a project, whether by men or women. 

‘Albrecht’s 1979 paper has only four. omitting External Interfaze File 
TYP= PI. 
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Once the Function Points have been computed, they 
can be used to compare the proposed project with 
past projects in terms of its size. 

2.2.4 ESTIMACS. The ESTIMACS model was devel- 
oped by Howard Rubin of Hunter College as an out- 
growth of a consulting assignment to Equitable Life. 
It is a proprietary system and, at the time the data 
were collected, was marketed by Management and 
Computer Services (MACS). Since it is a proprietary 
model, details, such as the equations used, are not 
available. The model does not require SLOC as an 
input, relying instead on “Function-Point-like” mea- 
sures. The research in this paper is based on Rubin’s 
paper from the 1983 IEEE conference on software 
development tools and the documentation provided 
by MACS [ZO, 221. The 25 ESTIMACS input ques- 
tions are described in these documents. 

3. DATA 

3.1 Data Source 
The source for the project data for this research was 
a national computer consulting and services firm 
specializing in the design and development of data- 
processing software (hereafter referred to as the ABC 
consulting firm). Use of this consulting firm’s data 
conveyed several advantages to this research. 

First, because clients are charged by the hours 
spent on their projects, the consulting firm must 
maintain strict, auditable timekeeping records. Since 
a key element of this research is the comparison of 
estimated effort to actual effort, it was important 
that the measurement of actual effort be as accurate 
as possible. 

Second, the projects in the database reflect a 
variety of data-processing applications, which should 
broaden the level of interest in the results, as 
opposed to, say, a database composed of all 
insurance or all defense contractor applications. 
However, within this framework there is a high 
level of consistency in both the quality of the staff 
and the methodologies employed, since all the 
projects were done by the same firm within the time 
span of a few years. 

Third, as professional software developers, ABC is 
highly interested in software productivity. Since it is 
their primary business, as opposed to being relegated 
to a staff function as it might be in another industry, 
the ABC managers were highly motivated to provide 
good quality data and cooperate with the research. 

3.2 Project Database 
Projects selected possessed two attributes: First, they 
were medium to large in size, an explicit require- 
ment of the models chosen [5, 191. The average proj- 
ect size in this study is just under 200 KSLOC (SLOC 

stated in thousands), and the smallest project is 
39 KSLOC, which was partly written in a fourth- 
generation language. Second, the project manager 
must have been available during the summer of 
1985 to complete the data-collection form. (See 
Section 4 for more details.) This limited the database 
to fairly recent projects, which had the additional 
benefit of ensuring consistency in project methodol- 
ogy. The oldest project in the database was started in 
August 1981, and two-thirds of the projects started 
in 1983 or later. 

Based on the above criteria, 15 projects qualified 
for inclusion in the study. The researcher or practi- 
tioner interested in large business applications is 
likely to find this data set to be a useful contribution 
for two reasons: First, in terms of sheer number of 
projects, it compares favorably with a number of 
other published studies [a, 7, 9, 111. Second, and 
more important than the number of projects alone, 
is the content of the database. This database con- 
tains large business applications, 12 of which were 
written entirely in Cobol, the most widely used busi- 
ness data-processing language. By contrast, Boehm’s 
63-project database contains only 7 business appli- 
cations, of which only 4 were written in Cobol. 
Albrecht’s 1983 database contains 18 Cobol projects, 
but with an average size of only 66 KSLOC. The 
average size of Cobol applications in the ABC data- 
base is 221 KSLOC. 

4. METHODOLOGY 

4.1 Data-Collection Forms 
The primary data-collection tools were three data- 
collection forms developed for this project. One form 
was designed to capture background information 
about the project (e.g., hardware manufacturer and 
model), as well as the ABC project number and the 
start and end dates. 

After an analysis of each of the model’s require- 
ments, two additional consolidated metrics data- 
collection forms were devised. Although each of the 
models has its own set of data requirements, there is 
a fair amount of overlap in terms of the areas ad- 
dressed as they relate to productivity. The questions 
were organized on the forms into broad categories, 
such as personnel attributes, rather than by models 
in order to help the respondent ensure consistency 
in his or her answers for all of the models. However, 
the questions were printed on the form verbatim 
from the original source documents whenever possi- 
ble to minimize any effects of orginality in the word- 
ing by the researcher.3 The net result was a set of 
two data-collection forms, one “quantitative” (e.g., 

‘The original source documents were, for SLIM. [19]; COCOMO. 151; Function 
Points, (31; and ESTIMACS. [ZZ]. 
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SLOC, database size) and one “qualitative” (e.g., com- 
plexity ratings). The intent of this procedure was 
to retain the authenticity of the questions as asked 
in the original source documents, while providing 
some overall structure for the respondents. 

4.2 Data-Collection Procedure 
For each of the projects, there was an in-person 
meeting with the project manager who would be 
filling out the forms. The one exception to this pro- 
cedure was a West Coast project manager who was 
already familiar with the metrics used. Data collec- 
tion for that particular project was done via the mail 
and the telephone. 

There were two main purposes to this labor- 
intensive approach. The first was to discuss each of 
the questions to ensure that it was understood and 
that each of the managers would answer consis- 
tently. The second purpose was to impress upon the 
managers the importance of their participation in 
this work. Given the amount of data requested 
(greater than 100 questions per project), this effort 
was believed necessary. The result was a large in- 
crease in the response rate compared to question- 
naires distributed by the normal channels at ABC. 

4.3 Data-Analysis Procedures 
Once the forms were returned, they were checked 
for consistency. This was possible due to the redun- 
dancy of many of the questions from the different 
models. With the exception of the “Function-Point- 
like” questions of the ESTIMACS model, no ques- 
tions were combined or consolidated.4 This meant 
that it was possible to ensure that an answer about, 
say, project personnel skills for the COCOMO model 
was consistent with the answer for the similar ques- 
tion for the SLIM model. Next, the project identifica- 
tion information from the “Project Actuals” form 
was used to research the ABC accounting records to 
determine the level of effort expended. Finally, the 
metrics data were input to each of the four models. 
For SLIM, COCOMO, and Function Points, this was 
done by the researcher. MACS staff offered to run a 
limited number of projects (without having access to 
the actual results) and to provide the estimates by 
telephone. 

4.4 Error Analysis 
The focus of this paper is on the degree to which the 
model’s estimated effort (MM& matches the actual 
effort (MM,,,). If the models were perfect, then for 
every project MM,,, = MM,,,. Clearly, this will 
rarely, if ever, be the case. 

4%x the ESTIMACS results section (Section 5.51 for discussion of this issue 

There are several possible methods for evaluating 
the man-month estimates. A simple analyslis ap- 
proach would be to look at the difference between 
MMest and MMact. The problem with this absolute 
error approach is that the importance of the size of 
the error varies with project size. For example, on a 
10 man-month project, an absolute error of 9 man- 
months would be likely to cause serious project dis- 
ruption in terms of staffing, whereas the salme error 
on a 1000 man-month project would be much less of 
a problem. 

In light of this, Boehm [5] and others have recom- 
mended a percentage error test, as follows: 

Percentage Error = MM,,, - MM,,, 
- MM 

act 

This test eliminates the problem caused by project 
size and better reflects the impact of any error. 

However, the analysis in this paper concentrates 
on the models’ average performance over the entire 
set of projects. Errors can be of two types: under- 
estimates, where MMest < MMact; and overestimates, 
where MM,,, > MM,,, . Both of these errors can have 
serious impacts on projects. Large underestimates 
will cause the project to be understaffed, a.nd as the 
deadline approaches, project management will be 
tempted to add new staff members. This results in a 
phenomenon known as Brooks’s law: “Adding man- 
power to a late software project makes it later” [6]. 
Otherwise productive staff are assigned to teaching 
the new team members, and with this, cost and 
schedule goals slip even further. Overestimates can 
also be costly in that staff members, noting the proj- 
ect slack, become less productive (Parkinson’s law: 
“Work expands to fill the time available for its com- 
pletion”) or add so-called “gold plating,” defined as 
additional systems features that are not required by 
the user [5]. 

In light of the seriousness of both types of errors, 
overestimates and underestimates, Conte et al. [8] 
have suggested a magnitude of relative error, or MRE 
test, as follows: 

By means of this test, the two types of errors do 
not cancel each other out when an average of multi- 
ple errors is taken, and therefore as the test used in 
this analysis. 

Still another issue in interpreting the errors con- 
cerns bias. A model, because it was develolped in an 
environment, say, less productive than ABC’s, may 
generate errors that are biased toward overestima- 
tion. However, this model may be able to be recali- 
brated to approximate the ABC environment. What 
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is important is that the estimates correlate with the 
actual results; that is, bigger projects generate bigger 
estimates than smaller, projects. 

5. RESULTS 

5.1 Project Data 

Albrecht and others [3, 4, 81 have proposed linear 
regression as a means of measuring this correlation. 
Since Albrecht’s method does not produce a man- 
month estimate directly, an alternative was needed 
to validate the Function Point method. His proposal 
was to perform a simple linear regression with man- 
months as the dependent variable and Function 
Points as the independent variable. He also performs 
regressions with SLOC as the dependent variable to 
show how Function Points could be used to generate 
an SLOC estimate for other models or methods that 
require it. Regression was used in this research for 
all of the models by using actual man-months as the 
dependent variable and the man-months estimated 
by each model as the independent variable. The ad- 
vantage of this method is that it can show whether a 
model’s estimates correlate well with experience 
even when the MRE test does not. A “perfect” score 
on the MRE test would be an error percentage of 0, 
whereas a “perfect” score on Albrecht’s test would 
be an R2 of 1.00.5 

Table III shows the background data on the projects. 
The “Months” figures are project durations in calen- 
dar months. The man-months (“MM”) data refer to 
the total number of actual hours expended by ex- 
empt staff members (i.e., not including secretarial 
labor) on the project through implementation, 
divided by 152. This effort measure was the only 
output of the models that was evaluated, although 
several of them offer other features, such as project 
planning aids. The “KSLOC” figures follow Boehm’s 
definition stated earlier (i.e., comments are not 
counted) with two exceptions. 

One project (number 8) had reused code, and this 
was accounted for in the KSLOC data by counting a 
modified line as equivalent to a new line. In the 
KDSI data (used for COCOMO), Boehm’s conversion 
formula for modified software was used [5]. This 
resulted in a KDSI count of 167 as opposed to the 200 
KSLOC count shown above for project number 8. 

In summary, two tests are used to evaluate the 
models (as recommended by Theabaut [N]): the 
MRE test and regression. These tests have the ad- 
vantage of not only being generally accepted in the 
literature, but of also having been proposed by some 
of the models’ own developers. 

The other exception is that Cobol nonprocedural 
statements are not specially weighted. Boehm found 
this weighting necessary as only 4 of his 63 projects 
were Cobol, and as he states, some “pragmatic” pro- 
cedure was required to make those projects fit his 
formula.6 Since the project data in this research are 
overwhelmingly Cobol, no such pragmatic weighting 
was deemed necessary. 

51n this analysis the more conservative R’. RZ adjusted for degrees of free- 6See 1.5. p. 4791. The unavailability of these data may make the COCOMO 
dom. was used. which results in slighter lower values than R’. estimates slightly higher than they would be elsewise. 

TABLE III. Project Background 

Project number Software Hardware Months MM KSLOC SLOC/MM 

1 Cobol IBM 308X 17 287.00 253.60 884 
2 cob01 IBM 43XX 7 82.50 40.50 491 
3 Cobol DEC VAX 15 1,107.31 450.00 406 
4 Cobol IBM 308X 18 86.90 214.40 2,467 
5 Cobol IBM 43XX 13 336.30 449.90 1,338 
6 Cobol DEC 20 5 84.00 50.00 595 
7 Bliss DEC 20 5 23.20 43.00 1,853 
8 Cobol IBM 43XX 11 130.30 200.00 1,535 
9 Cobol IBM 308X 14 116.00 289.00 2,491 

10 Cobol, Natural IBM 308X 5 72.00 39.00 542 
11 Cobol IBM 308X 13 258.70 254.20 983 
12 Cobol IBM 43Xx, 308X 31 230.70 128.60 557 
13 Cobol HP 3000,68 20 157.00 161.40 1,028 
14 Cobol IBM 308X 26 246.90 164.80 667 
15 Natural IBM 308X 14 69.90 60.20 861 

Mean 
Standard deviation 
Cobol mean 
Cobol standard deviation 

14.3 219.25 
7.5 263.06 

186.57 1,113 
136.82 689 
221.37 1,120 
131.14 720 
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TABLE IV. SLIM Data 

~al;~&z 
My .‘d : 

1 287.0 3,857.8 1,244.18 12 5 18 3 
2 82.5 100.1 21.33 15 4 16 5 
3 1,107.3 11,982.0 982.08 f6 4 19 5 
4 86.9 2,017.2 2,221.29 13 

z 
18 1 

5 336.3 3,382.0 905.65 15 21 4 
6 84.0 262.5 212.50 13 4 19 6 
7 23.2 106.3 358.19 16 5 20 5 
8 130.3 1,224.6 839.83 14 4 20 3 
9 116.0 1‘454.1 1,153.53 15 4 20 2 

10 72.0 235.7 227.36 12 4 18 6 
11 258.7 1,623.O 527.37 15 5 19 3 
12 230.7 513.3 122.50 15 4 12 1 
13 157.0 3,119.8 1.887.13 11 5 16 1 
14 246.9 380.3 54.03 17 4 14 1 
15 69.9 643.8 821.03 11 4 15 1 

Mean (absolute values) 219.25 2,060.17 771.87 14.0 4.3 17.7 3.1 
Standarddeviation 263.06 3,014.77 661.33 1.9 0.5 2.6 1.9 

5.2 SLIM Results 
SLIM was run using the default parameters provided 
by the model when the user answers the SLIM set 
of 22 questions. Table IV shows the actual man- 
months, the SLIM man-month estimate,7 and the 
error percentage. Also shown are the SLIM default 
PF, the default MBI, the calibrated PF, and the cali- 
brated MBI. (The calibrated factors were obtained 
after the fact by using the SLIM “calibrate” function 
for use in later analyses.) 

SLIM does not do well via the MRE test. The aver- 
age percentage error is 772 percent, with the small- 
est error being 21 percent. In addition, the errors are 
all biased; effort is overestimated in all 15 cases. A 
possible explanation for this is that SLIM was origi- 
nally developed using data from defense-related 
projects, including real-time systems. Productivity 
for these is typically less than that in the business 
data-processing systems developed by ABC [18, 231. 

One possibility is that SLIM accurately reflects the 
project conditions, but is calibrated too high for the 
ABC environment. To evaluate this Albrecht’s test 
was applied by means of a regression run with the 
SLIM estimate as the independent variable and the 
actual man-months as the dependent variable. The 
results were that the SLIM estimates correlated well 
with the actuals, generating an E2 of 87.8 percent, 
with a coefficient t statistic of 10.11. 

Actual man-months 
= 49.9 + 0.082 (SLIM) 

(10.11) 

P 
87.8% 

7 The SLIM man-month is 168 man-hours. All SLIM man-month estimates 
were converted to 152 man-hour man-months to aid comparison. 

The main input for SLIM is KSLOC, whose regres- 
sion with actual man-months produced an R2 of only 
48.5 percent, so the SLIM model seems to be adding 
information. 

5.3 COCOMO Results 
The results for the three COCOMO versions (Basic, 
Intermediate, and Detailed Models) appear in 
Table V. In the table “BAS” refers to the Basic 
Model, “INT” to the Intermediate Model, and “DET” 
to the Detailed Model. The “error %” columns are 
calculated by dividing the difference between the 
estimate and the actual man-months by the actual 
man-months. 

All three COCOMO models did poorly according 
to the MRE percentage error test. The average error 
for all versions of the model was 601 percent, with 
the lowest single error being 83 percent. As was the 
case with SLIM, the estimates are biased; effort is 
overestimated in all 45 cases. Again, this may be due 
to COCOMO’s development on TRW’s data. The av- 
erage KSLOC/MM figure for Boehm’s data is much 
lower than that for the ABC data, probably reflecting 
the composition of the type of systems developed by 
TRW and ABC. Again, it is possible that COCOMO is 
accurately reflecting the project conditions, but is 
calibrated too high for the ABC environment. In his 
book Boehm acknowledges the probable need for 
calibration of his model in a new environment [5]. 

To evaluate this Albrecht’s regression test was 
run. The results were as follows: 

Actual man-months 
= 27.7 + 0.156 (COCOMO-Basic) 

(5.54) 

-2 R 
68.0% 
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Actual man-months 
= 62.1 + 0.123 (COCOMO-Intermediate) 59.9% 

(4.68) 

Actual man-months 
= 66.8 + 0.118 (COCOMO-Detailed) 

(4.06) 

52.5% 

Paradoxically, the more advanced versions, 
COCOMO-Intermediate and COCOMO-Detailed, do 
not do as well as COCOMO-Basic in this instance. 
This implies that the cost drivers of the latter two 
models are not adding any additional explanation 
of the phenomenon. This is consistent with the 
results of Kitchenham and Taylor, who evaluated 
COCOMO on some systems programming and real- 
time systems projects developed by British Telecom 
and ICL [13]. 

In addition, a regression was run on the primary 
input to the COCOMO models, delivered source in- 
structions, or KDSI. The result was an K* of 49.4 
percent, which is not as good a fit as any of the 
COCOMO models. Therefore, COCOMO seems to be 
adding information. 

5.4 Function Points Results 
In this section three separate analyses are per- 
formed. The first analysis compares the man-month 
predictions from Function Points to the actual man- 
months and is similar to the analysis done for the 
other models. In addition, two of Albrecht’s other 
models are tested, one for predicting man-months 
from SLOC, and the other for predicting SLOC from 
Function Points. 

Research Contributions 

5.4.1 Function Points to Man-Month Results. As 
shown in Table VI, the average MRE is 102.74 per- 
cent, substantially better than either of the two 
SLOC-based models. This is probably due to the sim- 
ilarity of applications (business data processing) done 
by ABC and IBM’s DP Services group, the source of 
Albrecht’s data. The regression analysis of these esti- 
mates and the actual man-months was the following: 

Actual (ABC) man-months -2 R 
= -37 + 0.96 (Function Points 55.3% 

(4.26) estimated man-months) 

The regression analysis result from the ABC data 
is as follows: 

ABC man-months -2 R 
= -122 + 0.341 (Function Points) 

(4.28) 
55.3% 

By way of comparison, in Albrecht’s validation 
paper [3] he developed the following estimation 
equation from a data set of 24 projects: 

IBM man-months -2 R 
= -88 + 0.355 (Function Points) 

(12.37) 
86X% 

Albrecht’s equation developed using IBM data is 
strikingly similar to the equation using ABC data, 
differing primarily by the constant term. The results 
of an F-test comparing the two individual regressions 
with a single regression on all 39 data points re- 
vealed that the null hypothesis that the two models 
were the same could not be rejected at the 95 per- 
cent confidence level [26]. 

TABLE V. COCOMO Data 

Proiect number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

Mean (absolute values) 
Standard deviation 

COCOMO-BAS CocOMOwr COCOMOSET 
Actual CocOMO error CDcOhlO error C&OMO &Of 

MM BAS (W .INT.. ’ (%) DE7 is) 

287.00 1,095.lO 281.57 917.56 219.71 932.96 225.07 
82.50 189.40 129.58 151.66 83.83 151.19 83.26 

1,107.31 5,497.40 396.46 6,182.65 458.35 5,818.75 425.49 
86.90 1.222.30 1,306.56 558.98 543.25 566.50 551.90 

336.30 1,466.OO 335.92 1,344.20 299.70 1.316.04 291.33 
84.00 393.60 368.57 313.36 273.05 312.24 271.71 
23.20 328.40 1,315.52 234.78 911.98 234.51 910.82 

130.30 925.30 610.13 1,165.70 794.63 1,206.17 825.69 
116.00 3,231.OO 2.685.34 4,248.73 3.562.70 4.577.62 3,846.22 

72.00 181.60 152.22 180.29 150.40 181.36 151.89 
258.70 1,482.20 472.94 1,520.04 487.57 1,575.68 509.08 
230.70 691.00 199.52 558.12 141.92 584.37 153.30 
157.00 891.20 467.64 1,073.47 583.74 1,124.36 616.15 
z46.90 511.00 106.97 629.22 154.85 663.84 168.87 

69.90 295.30 322.46 133.94 91.62 130.72 87.01 

219.25 1,226.72 610.09 1.280.85 583.82 1.291.75 607.85 
263.06 1.412.58 684.55 1,698.43 862.79 1,667.24 932.96 
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TABLE VI. Function Points-MM Data 

Project number Actual MM 

1 287.00 
2 82.50 
3 1,107.31 
4 86.90 
5 336.30 
6 84.00 
7 23.20 
8 130.30 
9 116.00 

10 72.00 
11 258.70 
12 230.70 
13 157.00 
14 246.90 
15 69.90 

Mean (absolute values) 219.25 
Standarddeviation 263.06 

Functioh Function AlbrechtFP 
Points Counts : MMesthhate 

1,217.10 1,010.00 344.30 
507.30 457.00 92.13 

2,306.80 2.284.00 731.43 
788.50 881.00 192.03 

1.337.60 1.583.00 387.11 
421.30 411.00 61.58 

99.90 97.00 -52.60 
993.00 998.00 264.68 

1,592.90 1.554.00 477.81 
240.00 250.00 -2.83 

1,611.OO 1,603.OO 484.24 
789.00 724.00 192.21 
690.90 705.00 157.36 

1,347.50 1,375.oo 390.63 
1,044.30 976.00 282.91 

999.14 993.87 266.87 
569.60 577.17 202.36 

Albrecht MM 
error (X) 

19.96 
11.68 

-33.95 
120.98 

15.11 
-26.69 

-326.73 
103.13 
311.90 

-103.93 
87.18 

-16.68 
0.23 

58.21 
304.73 

102.74 
112.11 

A similar regression was performed on the ABC of Albrecht’s claim of Function Points as a /predictor 
Function Count data, the main input to Function of KSLOC. Albrecht provides the following model for 
Points. estimating Cobol SLOC from Function Points: 

ABC man-months -2 R 
= -111 + 0.333 (Function Counts) 533% 

(4.16) 

IBM Cobol KSLOC 
= -6.5 + 0.12 (Function Points) 

(6.55) 

-2 R 
71.2% 

The difference between using Function Points, 
which include 14 factors that modify the Function 
Counts, and the Function Counts themselves, seems 

slight in this instance. 

5.4.2 Source Lines of Code to Man-Month Results. 
Albrecht provides another model, showing the rela- 
tionship for his data between Cobol KSLOC and 
man-months. 

The results are shown in Table VIII, and show an 
average MRE of 38.17 percent, with a large negative 
bias. The estimated relationship between the actual 
KSLOC and the estimates is the following: 

ABC Cobol KSLOC It2 
= 6 + 1.68 (Function Points 65.6% 

(4.69) estimated KSLOC) 

In general, these results seem to validate 
Albrecht’s claims that Function Points do correlate 

IBM man-months -2 R 
= -19.2 + 2.5 (Cob01 KSLOC) 

(6.85) 
73X% 

The results are shown in Table VII. 
The average MRE of 167.3 percent is not as good 

as that generated by Function Points. The equivalent 
equation for the ABC data is the following: 

ABC man-months -2 R 
= -65 + 1.47 (Cob01 KSLOC) 

(2.99) 

413% 

The results of an F-test are that we can reject the 
null hypothesis that the IBM and ABC models are 
the same at the 95 percent confidence level, but not 
at the 99 percent level. 

5.4.3 Function Points to Source Lines of Code Results. 
Another validation that was performed was a check 

TABLE VII. Cob01 KSLOC-MM Data 
t :i : 

,;,,- ( $‘ / ,8_ Atbrooht Atbrecht 
_ ,' ;>I,, ~Qtuat .$LCCMM MM 

Projoctnumber __ _.-> -8 ',:MM~ estimate errorf!!) 

1 287.00 613.67 113.82 
2 82.50 81.90 -0.73 
3 1,107.31 1,103.76 -0.32 
4 86.90 515.85 493.61 
5 336.30 1,103.51 228.13 
6 84.00 105.61 25.72 
8 130.30 479.91 268.32 
9 116.00 702.00 505.18 

11 258.70 615.16 137.79 
12 230.70 301.74 30.79 
13 157.00 383.59 144.33 
14 246.90 392.08 58.80 

Mean(absolute values) 260.30 533.23 167.29 
Standarddeviation 280.60 327.25 177.07 
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TABLE VIII. Function Points-COBOL KSLOC Data 

Project number 

Atbracht Albracht 
KSLOC error 

KSLOC estimate (“/I 

1 253.60 137.98 -45.59 
2 40.50 53.73 32.66 
3 450.00 267.33 -40.59 
4 214.40 87.10 -59.37 
5 449.90 152.28 -66.15 
6 50.00 43.52 -12.96 
8 200.00 111.38 -44.31 
9 289.00 182.59 -36.82 

11 254.20 184.74 -27.33 
12 128.60 87.16 -32.22 
13 161.40 75.52 -53.21 
14 164.80 153.46 -6.88 

Mean (absolute values) 221.37 128.07 38.17 
Standard deviation 131.14 64.65 17.47 

well with eventual SLOC. The results for the ABC 
were as follows: 

ABC Cobol KSLOC 
= -5.0 + 0.20 (Function Points) 

(4.69) 

-2 R 
65x% 

ABC Cobol KSLOC 
= -13.2 + 0.207 (Function Counts) 75.1% 

(5.85) 

Although the IBM and ABC models are apparently 
fairly similar, the results of an F-test are that we can 
reject the null hypothesis that the models are the 
same at the 99 percent level. 

The second result is that, for the ABC data, the 
unmodified Function Counts have a higher correla- 
tion than the modified Function Points. This sug- 
gests that the functionality represented by Function 
Counts is related to eventual SLOC, but that the 14 

“complexity adjustment” factors are not adding any 
information for this particular sample. 

5.5 ESTIMACS Results 
As explained in the “Methodology” section 
(Section 4), the procedure for testing ESTIMACS 
was to gather the data (excluding the actual man- 
months), send them to MACS, and receive the esti- 
mate. This procedure was performed on 9 of the 15 
projects in the database. These 9 were simply the 
first projects for which data were collected. The data 
for ESTIMACS are presented in Table IX. 

The ESTIMACS average error is 85 percent, which 
includes some over and some under estimates, and 
is the smallest average error of the four models. This 
may be due to the similarity of the ESTIMACS appli- 
cation base (originally an insurance firm) and the 

ABC database, although this cannot be verified due 
to the proprietary nature of the ESTIMACS data. 
The regression data were as follows: 

Actual man-months -2 R 
= 31 + 0.723 (ESTIMACS) 13.4% 

(1.50) 

Although the average error was less, the fit with 
the actual effort is worse than the other models. The 
t statistic is also less, although still significant at 
approximately the 92 percent confidence level. 

To check the possibility that the g-project subset 
estimated by ESTIMACS was somehow different 
from the 15project data set as a whole, each of the 
models and its inputs were run against only that 
g-project data set. The results were the following: 

Actual man-months 
= 54.1 + 0.084 (SLIM) 

(10.17) 

-2 R 
922% 

Actual man-months 
= 11.4 + 0.195 (COCOMO-Basic) 

(10.82) 

93.6% 

Actual man-months 
= 51 + 0.17 (COCOMO-Intermediate) 94.9% 

(12.24) ' 

Actual man-months 
= 40.3 + 0.181 (COCOMO-Detailed) 

(11.62) 
94.4% 

Actual man-months 
= -203 + 0.451 (Function Points) 

(4.63) 
71.8% 

Actual man-months 
= -175 + 0.426 (Function Count) 

(4.09) 
66.2% 

TABLE IX. ESTIMACS Data 

ESTIMACS 

Proiactnumbar 
ACUW error 

MM ESl'lhlACS tw 

1 287.00 230.26 -19.77 
2 82.50 111.26 34.86 
3 1,107.31 523.51 -52.72 
4 86.90 234.59 169.95 
5 336.30 687.63 104.47 
8 130.30 389.26 198.74 

10 72.00 67.20 -6.67 
11 258.70 624.43 141.37 
12 230.70 324.78 40.78 

Mean (absolute values) 287.97 354.77 85.48 
Standard deviation 322.48 219.66 70.36 
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Actual man-months 
= -94 + 1.67 (KDSI) 

(2.90) 
44.5% 

Actual man-months 
= -102 + 1.68 (KSLOC) 

(2.83) 
43.2% 

It does not appear that this g-project subset 
was any more difficult to estimate than the full 
15-project data set. In fact, SLIM, Function Points, 
and all three versions of COCOMO did better on the 
subset. Only KDSI and KSLOC did slightly worse, 
and these are not inputs to ESTIMACS. If anything, 
this suggests that the 6 projects not estimated by 
ESTIMACS were more difficult to accurately esti- 
mate than the original 9. 

Another possibility may be related to how the in- 
put data for the ESTIMACS analysis were collected. 
Of the 25 required data items, 5 deserve special 
mention: (1) number of major business functions, 
(2) number of unique business inputs, (3) number of 
unique business outputs, (4) number of logical files, 
and (5) number of on-line inquiry types. These fac- 
tors (which ESTIMACS collectively refers to as “vol- 
ume”) tend to drive most estimates.’ Upon examin- 
ing the ESTIMACS documentation, the last four of 
these questions sound exactly like the 1979 version 
of Albrecht’s Function Points. For example, here are 
two direct quotations on the subject of inputs, the 
first by Albrecht and the second by Rubin: 

External Input Types: Count each unique user data or 
user control input type that enters the external bound- 
ary of the application being measured, and adds or 
changes data in a logical internal file type. An external 
input type should be considered unique if it has a differ- 
ent format, or if the external design requires a process- 
ing logic different from other external input types of the 
same format. . . . Do not include the input part of the 
external inquiry types as external input types, because 
these are counted as external inquiry types. [3] 

Number of External Inputs: How many unique logical 
business inputs will the system process? This is a count 
of the number of major data types that will enter the 
system from outside of it. In this way internal data base 
information is excluded from this total. On-line inquiry 
only screens are also excluded. Think in terms of major 
business communication transactions. Inputs counted 
should be unique in that they require different process- 
ing logic from other inputs. [z] 

These two questions appear to address the same 
concept, and Albrecht’s 1979 paper is cited in 
Rubin’s 1983 paper. Therefore, in conducting this 
research, the Function Point definitions were used 
to answer the matching ESTIMACS questions. Ac- 

cording to the MACS staff, however, this may result 
in overestimating these input quantities by a factor 
of three9 or four.” How the difference is defined was 
not available from MACS, so “correct” use of the 
model may come only with experience. This begets 
the question of whether the use of Function Points 
for the “Function-Point-like” questions affected the 
model’s performance. If the estimates had been uni- 
formly high, then this would seem a likely possibil- 
ity. However, given that the estimate errors ranged 
from -52.7 percent to +198.7 percent, this does not 
seem to be the case. 

5.6 Sensitivity Analysis 
As discussed in Section 3, this data set of 15 com- 
pleted software projects is large relative to many 
other published studies. However, it is still small in 
terms of what researchers might like in order to 
assure that the results are robust. In particular, read- 
ers should note the sensitivity of the regression 
models to project number 3, which, although almost 
exactly equal to project number 5 in its KSLOC 
count, is several times larger in its actual man- 
months figure. Were this project to be dropped from 
the data set, almost all of the regression models on 
the new 14-point data set (particularly COCOMO’s) 
would exhibit decreases in their i?‘, the measure of 
“goodness of fit”. The sole exceptions to this were 
the KDSI and KSLOC regressions, which exhibited 
very slight increases. This last result is likely due to 
the elimination of one of the two similarly sized 
projects (450 KSLOC) that had very different produc- 
tivity rates. This would tend to make the remaining 
large project somewhat of an “anchor” for the 
regression. 

A similar analysis was done for the g-project 
“ESTIMACS subset.” The results of the regressions 
run on the 8-project subset were that the Em2 for 
SLIM, COCOMO, and ESTIMACS were all in the 
38-49 percent range. The results for Function Points 
and Function Counts decreased to the 54-60 percent 
range, and the results for KSLOC and KDSI increased 
to the 56-59 percent range. Again, this last result is 
likely due to the elimination of one of the two simi- 
larly sized projects (450 KSLOC) that had very differ- 
ent productivity rates. As a test of this, the data 
were rerun on a 7-project subset without either of 
the largest projects. The models whose performance 
improved with the 8-project data set (ESTIMACS, 
KSLOC, KDSI) all worsened as a result. Therefore, 
the improvements seemed only related to the crea- 
tion of project number 5 as a new “anchor.” Conse- 
quently, project number 3 was not dropped, given 

gPer~~nal correspondence, L. Kleeck, T/la/as. 
‘“Per~~nal correspondence. P. Madden, 8/13/&i 8Personal correspondence. P. Madden. July 1985. 
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no a priori reason for doing so, plus the new regres- 
sion models’ increased dependence on project num- 
ber 5, the “new outlier” if project number 3 were 
dropped. 

Owing to large differences in project productivity, 
variation such as the difference between project 
number 3 and project number 5 is not uncommon in 
project data. As an example, Albrecht’s 24project 
data set contains the following two projects: 

Project number 1 
Project number 2 
24-project mean 

24-project standard 
deviation 

KSLOC 

130 
318 

61 
62 

Man-Hours 
(in thousands) 

102.4 
105.2 

21.9 
27.8 

The difference between his largest project (num- 
ber 2) and the next largest (number l), in terms of 
KSLOC, is 188, which is a difference of 3.03 standard 
deviations. The equivalent calculation for the ABC 
data is 2.93 standard deviations. The difference be- 
tween Albrecht’s largest project and the mean is 
257, or 4.15 standard deviations, whereas the equiv- 
alent calculation for ABC is 3.38. Therefore, the ABC 
data have a less severe outlier problem than even 
Albrecht’s data. 

The existence of these outliers and large varia- 
tions in productivity is not a particularly desirable 
situation from a research perspective. However, 
given the difficulty and cost in gathering this kind of 
data, the best available data are relatively small sets 
that are subject to this type of condition. 

6. CONCLUSIONS 
Having examined each model independently, it 
seems appropriate to summarize these results, Spe- 
cifically, it is time to address the questions posed in 
the introduction to this paper to see what answers 
have been provided by this research. Of course, it 
will be important to bear in mind that these results 
stem from 15 projects developed by one firm, and 
overly broad generalizations are not possible. Rather, 
these results suggest certain hypotheses that may be 
verifiable with further research. 

6.1 Implications for Practitioners 
The first research question to be answered con- 
cerned the accuracy of the models outside their orig- 
inal environments and the ease with which they 
could be recalibrated to fit a new environment. One 
conclusion is that models developed in different en- 
vironments do not work very well uncalibrated, as 
might be expected. Average error rates calculated 
using the MRE formula ranged from 85 to 772 per- 

cent, with many in the 500-600 percent range. This 
variation is most likely due to the degree to which 
the productivity of the environments where the 
models were developed matches the target (ABC) 
environment. This points out the need for organiza- 
tions that wish to use algorithmic estimating tools 
to collect historical data on their projects in order 
to calibrate the models for local conditions. 

After allowing for calibration, the best of the 
models explain 88 percent of the behavior of the 
actual man-month effort in this data set. This result 
alone probably justifies consideration of an algo- 
rithmic estimating method by a software manager 
who has sufficient data to calibrate it to his or her 
environment. In addition, there are benefits to the 
estimation task simply from the structure the models 
impose on the estimation process. Providing inputs 
for model parameters and sizing estimates requires a 
project team to carefully consider many important 
aspects of the upcoming project. Of course, as the 
model developers themselves point out, these 
models are adjuncts to, not substitutes for, a detailed 
estimate by task by the project management [3]. 

The second research question concerned the rela- 
tive efficacy of SLOC models versus non-SLOC 
models. In terms of the MRE results, the non-SLOC 
models (Function Points and ESTIMACS] did better, 
although this is likely due to their development in 
business data-processing environments similar to 
ABC’s. In terms of the regression results, both of the 
SLOC models (COCOMO and SLIM) had higher cor- 
relations than either ESTIMACS or Function Points. 
However, these data must be considered in light of 
an important implementation question. The SLOC 
counts were obtained ex post and are therefore likely 
to be much more accurate than SLOC counts ob- 
tained before a project begins. Although SLIM does 
provide a means for modeling this initial uncertainty 
(through a beta distribution approach), it is unlikely 
that a project manager could estimate SLOC counts 
with the degree of accuracy used in this research. 
Presumably, the variance between ex ante and ex 
post Function Point counts is less, although verifying 
this is an open research question. 

An additional consideration is that Function 
Points and Function Counts can be used as predic- 
tors of KSLOC. In particular, Function Counts 
correlated with KSLOC at the level of 75.1 percent, 
which is similar to the correlations published by 
Albrecht [3], and is likely to be good enough to be of 
use to the software manager. 

The third and final research question concerns 
the relation between the proprietary and the non- 
proprietary models. This question was not answered 
conclusively by this research, as the proprietary 
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SLIM model outperformed (in its i? value) the non- 
proprietary COCOMO model on this data set, while 
the nonproprietary Function Points model out- 
performed the proprietary ESTIMACS model on 
this data set. 

6.2 Directions for Future Research 
This paper has provided several important research 
results regarding software metrics and models. First, 
Albrecht’s model for estimating man-months of ef- 
fort from Function Points has been validated on an 
independent data set. This is particularly significant 
in that Function Points has been proposed by IBM as 
a general productivity measure and prior to this 
there was only limited evidence for their utility 
from non-IBM sources [a]. 

One interesting research question raised by this 
Function Points result is the degree to which ex ante 
and ex post Function Points counts are similar. As 
pointed out in the previous section, the higher corre- 
lations generated by the SLOC-based models must 
be tempered by a recognition that, in practice, accu- 
rate ex ante SLOC estimates may be difficult to 
achieve. An interesting research question involves 
the degree to which initial misestimates change the 
results achieved by these models. A more general 
extension of this is, what impact do the estimates 
themselves have on projects? A recent paper by 
Abdel-Hamid and Madnick [l] discusses this issue 
from a systems dynamics perspective. The authors 
make the point that the effort required on a soft- 
ware-development project is in part a function of the 
estimate given at the beginning of the project. From 
this premise they devise a model (not shown in the 
cited paper) that presumably includes the estimate 
as an endogenous variable. They then develop an 
example to show that an estimate that was more 
accurate could also be more expensive in terms of 
creating a bigger project. 

Although an interesting example, one problem 
with it is that they draw the unsupported conclusion 
that the accuracy of software cost estimation models 
cannot be judged by their performance on historical 
(completed) projects. Clearly, ex post estimates can- 
not influence the project. Therefore, it seems reason- 
able to evaluate them by this method. It could be 
argued that software cost estimation models that do 
not include their own estimate are deficient, but this 
is a different conclusion than the one drawn by the 
authors. However, their idea of the effect of the esti- 
mate on a project is an interesting one, and further 
research should be done in this area. 

Finally, although improving estimation techniques 
within the industry is a worthwhile goal, the ulti- 
mate question must concern how the productivity of 
software developers can be improved. These estima- 

tion and productivity questions. are related in that 
the estimation models contain descriptions of what 
factors their developers believe affect productivity. 
How well do these models identify and reflect these 
factors? 

The models researched in this study do n.ot seem 
to capture productivity factors very well. There are 
several pieces of evidence to support this conclusion. 
The first is that the COCOMO-Intermediate and 
COCOMO-Detailed Models (the versions with the 
productivity factor “cost drivers”) did not perform 
significantly better than the Basic Model and in fact 
correlated less well with actual man-months. 
Second, the raw Function Count data correl.ated as 
well as or better than the Function Point numbers, 
which reflect the 14 “processing complexity” adjust- 
ments. Third, ESTIMACS, with its 20 additional 
productivity-related questions, did less well than the 
similar Function Counts alone. Finally, the model 
that had the highest correlation, SLIM, has the prob- 
lem that its questions designed to elicit productivity- 
related information uniformly generated PFs that 
were too low (the reason all the default estimates 
were too large) and MBIs that were too high.. This 
was determined by comparing these values to the 
values that would have been obtained had the SLIM 
“calibrate” feature been used. 

A reasonable conclusion from all this is tlhat the 
models, although an improvement over their raw 
inputs for estimating project effort, do not model the 
factors affecting productivity very well. One possible 
extension of this research is to analyze the (data in 
this study to attempt to determine the causes for the 
wide swings in accuracy of the estimates across pro- 
jects. What characteristics make a project a:menable 
to this type of estimation? What factors could be 
added to the models to enable them to do a better 
job on all of the projects? On the productivity side, 
the projects in this data set show a large amount of 
variance in terms of such traditional metric.s as 
SLOC per man-month. Can these variations be traced 
to productivity factors controllable by the software 
manager? What are the effects of modern program- 
ming practices, such as the use of fourth-generation 
languages, or AI techniques? Further resear’ch needs 
to be done to isolate and measure these factors affect- 
ing systems professionals’ productivity if the profes- 
sion is to meet the challenges of the future. 
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