
RESEARCH CONTRlSUllONS

Management of
Computing An Empirical Validation of
Robert W. Zmud
Editor Software Cost Estimation

Models

CHRIS F. KEMERER

ABSTRACT: Practitioners have expressed concern
over their inability to accurately estimate costs associated
with software development. This concern has become
even more pressing as costs associated with development
continue to increase. As a result, considerable research
attention is now directed at gaining a better
understanding of the software-development process as
well as constructing and evaluating software cost
estimating tools. This paper evaluates four of the most
popular algorithmic models used to estimate software
costs [SLIM, COCOMO, Function Points, and
ESTIMACS). Data on 15 large completed business data-
processing projects were collected and used to test the
accuracy of the models‘ ex post effort estimation. One
important result was that Albrecht’s Function Points
effort estimation model was validated by the independent
data provided in this study [3]. The models not developed
in business data-processing environments showed
significant need for calibration. As models of the
software-development process, all of the models tested
failed to sufficiently reflect the underlying factors
affecting productivity. Further research will be required
to develop understanding in this area.

1. INTRODUCTION
Practitioners have expressed concern over their in-
ability to accurately estimate costs associated with
software development. This concern has become
even more pressing as costs associated with develop-
ment continue to increase. As a result, considerable
research attention is now directed at gaining a better
understanding of the software-development process
as well as constructing and evaluating software cost
estimating tools.

01987 ACM OOOl-0782/87/0500-0416 750

This paper presents an empirical validation of
four algorithmic models from the literature (SLIM,
COCOMO, Function Points, and ESTIMACS) that are
proposed as general software-development cost esti-
mators. This research has built a database of com-
pleted software-development projects and :focuses on
comparing the actual costs with the ex post estimates
obtained from the four models. Of particular interest
is the comparison of the results of the four models’
use of different measures (metrics) of the outputs
underlying their productivity calculations.

Three research questions of interest to practition-
ers are addressed in this paper:

(1) Are these software cost estimating models truly
generalizable to environments other than that
in which they were developed? If not, can they
be easily calibrated to a typical business data-
processing environment?

(2) Are models that do not use source lines of code
(SLOC) as an input as accurate as those that do?
If so, then this could eliminate the need to
attempt to estimate lines of code early in the
project.

(3) Are the models available in the open literature
as accurate as proprietary models? If so, then
this could allow practitioners to avoid the costs
of purchasing the proprietary models.

Section 2 discusses the selection of the four
models, followed by brief descriptions of the models.
Section 3 describes the environment in which the
data originated and compares this data set with that
of other researchers. Section 4 describes the data-
gathering and data-analysis methods, which leads
directly into Section 5, “Results.” Finally, Section 6

416 Communications of the ACM May 1987 Volume 30 Number 5

Research Contributions

offers some summary conclusions and outlines
extensions of this work.

2. BACKGROUND TO THE MODELS

2.1 Model Selection
A review of the literature revealed that the most
interesting difference between estimation models is
between models that use SLOC as the primary input
versus models that do not. SLOC was selected early
as a metric by researchers, no doubt due to its quan-
tifiability and seeming objectivity. Since then an
entire subarea of research has developed to deter-
mine the best method of counting SLOC [lo, 121. In
response to this, and to practitioners’ complaints
about the difficulties in estimating SLOC before a
project was well under way, new models have been
developed that do not use SLOC as the primary
input [2, 201.

The next step was to choose models that were
well regarded in the current literature, and to win-
now this selection down to a manageable number
since each model’s idiosyncrasies required the col-
lection of different data. The approach to determin-
ing which models were well regarded was twofold:
First, Barry Boehm (developer of the COCOMO
model, a model eventually se!ected for this study)
has written a widely cited book entitled Software En-
gineering Economics [5] in which he provides an anal-
ysis of eight important models. This list was used to
generate candidates. The second step was a review
of articles in the most recent issues of the journal of
Parametrics, a publication of the International Society
of Parametric Analysts that devotes a large number
of its pages to software estimation articles. This sam-
pling validated whether the models cited in the
Boehm study were well represented by their inclu-
sion in other studies.

Boehm examines eight models (including
COCOMO) in his evaluation. They are (1) SDC,
(2) Wolverton, (3) SLIM, (4) Doty, (5) PRICE, (6) IBM-
FSD, (7) Boeing, and (8) COCOMO [5, 16, 25, 271.
After examining this list of candidates, a review was
undertaken of the most recent issues of the Journal of
Parametrics, to determine the popularity of these
models as demonstrated by their inclusion in other
research. The results are presented in Table I with
an ‘IX” signifying that a particular model was dis-
cussed or compared in that article [7, 9, 14, 15, 211.

From this list of candidates, COCOMO and SLIM
seem to be the most widely reviewed. The PRICE
model is also popular, but was developed primarily
for use on aerospace applications and was therefore
deemed unsuitable for the business applications that
would comprise the database. Therefore, only

TABLE I. Journal of Parametrics Articles

csbcimo ” SLIM‘ PRICE

Callisen (12/84) X
Ferens (12/84) X X X
Masters (3/85) X X X
Pinsky (12/84) X X
Rubin (8/85) X X

COCOMO and SLIM were selected for this research.
All of the above analysis centered on SLOC

models of one sort or another. This is to be expected
since software effort estimation research began with
these models and is a relatively young field. No sim-
ilar comparisons for non-SLOC models were found,
and in fact, only two models were discovered during
the period when this research was being conducted.
These two are the Function Points method, devel-
oped by Allan Albrecht at IBM in 1979 [2, 31, and
the ESTIMACS model, developed by Howard Rubin
of Hunter College and marketed by Management
and Computer Services during the period when
these data were being collected [2O, 221. Both of
these models were selected, bringing the total num-
ber of models compared to four.

These four exhibit a certain symmetry, perhaps
best illustrated in Table II. Therefore, some interest-
ing comparisons can be made between not only
measurement methods, but between models that ap-
pear in the open literature and those that do not.

TABLE II. Model Cateaories

SLOC
Non-SLOC

PWPrietafy Nonproprietary

SLIM COCOMO
ESTIMACS Function Points

2.2 Models
Due to space limitations, the following are necessar-
ily brief descriptions of the four models used in this
paper. The interested reader is referred to the refer-
ences provided for more detailed explanations.

2.2.1 SLIM. The SLIM estimating method was de-
veloped in the late 1970s by Larry Putnam of Quan-
titative Software Management [16, 171. SLIM de-
pends on an SLOC estimate for the project’s general
size, then modifies this through the use of the Ray-
leigh curve model to produce its effort estimates.
The user can influence the shape of the curve
through two key parameters: the initial slope of the
curve (the “manpower buildup index” or MBI) and a
productivity factor (the “technology constant” or PF).
Since these are dimensionless numbers, the SLIM

May 1987 Volume 30 Number 5 Communications of the ACM 417

Research Contributions

user has two options for choosing their values: The
user can calibrate the model by inputting data from
completed projects, or he or she can answer a series
of 22 questions, from which SLIM will provide a
recommended PF and MBI. The second method was
chosen for this research due to the absence of a
previously collected calibration database and the
feeling that this would more accurately reflect the
average user’s experience.

2.2.2 COCOMO. The Constructive Cost Model
(COCOMO) was developed by Barry Boehm of TRW
and published in 1981 [5]. Based on his analysis of
63 software-development projects, Boehm developed
an easy-to-understand model that predicts the effort
and duration of a project, based on inputs relating
to the size of the resulting systems and a number
of “cost drivers” that Boehm believes affect
productivity.

A simplified version of the essential COCOMO
effort equation for the Basic Model (the Intermediate
and Detailed Models are discussed later) is of the
form

MM = C (KDSI) k,

where

MM = number of man-months1
(= 152 working hours),

C = a constant,
KDSI = thousands of “delivered source instructions”

(DSI), and
k = a constant.

Boehm defines DSI as program instructions cre-
ated by project personnel that are delivered as part
of the final product. They exclude comments and
unmodified utility software, and include job control
language, format statements, and data declarations.

In Boehm’s development of COCOMO, he found
that the Basic Model predicted effort within a factor
of 1.3 only 29 percent of the time and within a factor
of 2 only 60 percent of the time for his 63-project
database. In an effort to improve the model’s accu-
racy, he refined the equation to include the effects
of 15 “cost drivers,” which are attributes of the end
product, the computer used, the personnel staffing,
and the project environment. He believes that these
15 factors affect the project’s productivity and calls
this version the Intermediate Model.

The COCOMO Detailed Model is very similar to
the Intermediate Model except that the project is
divided into four phases: Product Design, Detailed
Design, Coding/Unit Test, and Integration/Test. The
15 cost drivers are estimated and applied to each

phase separately, rather than to the project as a
whole.

2.2.3 Function Points. The Function Points. mea-
surement method was developed by Allan .Albrecht
at IBM and first published in 1976 [2, 31. Albrecht
was interested in the general problem of productiv-
ity measurement in systems development and cre-
ated the Function Points method as an alternative to
estimating SLOC. Albrecht’s Function Points are at a
more macro level than SLOC, capturing things like
the number of input transaction types and the num-
ber of unique reports. He believes Function Points
offer several significant advantages over SLOC
counts: First, it is possible to estimate them early in
the life cycle, about the time of the requirements
definition document. This can be an important ad-
vantage for anyone trying to estimate the level of
effort to be required on a software-develop:ment
project. Second, they can be estimated by a rela-
tively nontechnical project member. And, finally,
they avoid the effects of language and other imple-
mentation differences.

There are two steps involved in counting Function
Points: (1) counting the user functions, and (2) ad-
justing for processing complexity. There are cur-
rently five user function categories:’ external input
types, external output types, logical internal file
types, external interface file types, and external in-
quiry types. Albrecht recognized that the effort re-
quired to provide a given level of functionality can
vary depending on the environment. For example,
input transactions are harder to program if a lot of
emphasis is placed on system throughput or end-
user convenience. In response to this, Albrecht has a
list of 14 processing complexity characteristics that
are to be rated on a scale from 0 (no influence) to 5
(strong influence). The next step is to sum #alI the
processing complexity points assigned. This number
is then multiplied by 0.01 and added to 0.65 to ob-
tain a weighting, as follows:

PCA = 0.65 + 0.01 $J Ci,
i=l

where PCA = processing complexity adjustment
(0.65 5 PCA 5 1.35), and Ci = complexity factors
(0 I Ci 5 5).

This factor is then used in the final equation:

FP = FC(PCA),

where FP = Function Points, and FC = previously
computed Function Counts.

The end result is that the Function Points can
vary +35 percent from the original Function Counts.

’ “Man-months” is used in this paper in its vernacular sense of referring to all
the hours worked on a project, whether by men or women.

‘Albrecht’s 1979 paper has only four. omitting External Interfaze File
TYP= PI.

410 Communications of the ACM May 1987 Volume 30 Number 5

Research Contributions

Once the Function Points have been computed, they
can be used to compare the proposed project with
past projects in terms of its size.

2.2.4 ESTIMACS. The ESTIMACS model was devel-
oped by Howard Rubin of Hunter College as an out-
growth of a consulting assignment to Equitable Life.
It is a proprietary system and, at the time the data
were collected, was marketed by Management and
Computer Services (MACS). Since it is a proprietary
model, details, such as the equations used, are not
available. The model does not require SLOC as an
input, relying instead on “Function-Point-like” mea-
sures. The research in this paper is based on Rubin’s
paper from the 1983 IEEE conference on software
development tools and the documentation provided
by MACS [ZO, 221. The 25 ESTIMACS input ques-
tions are described in these documents.

3. DATA

3.1 Data Source
The source for the project data for this research was
a national computer consulting and services firm
specializing in the design and development of data-
processing software (hereafter referred to as the ABC
consulting firm). Use of this consulting firm’s data
conveyed several advantages to this research.

First, because clients are charged by the hours
spent on their projects, the consulting firm must
maintain strict, auditable timekeeping records. Since
a key element of this research is the comparison of
estimated effort to actual effort, it was important
that the measurement of actual effort be as accurate
as possible.

Second, the projects in the database reflect a
variety of data-processing applications, which should
broaden the level of interest in the results, as
opposed to, say, a database composed of all
insurance or all defense contractor applications.
However, within this framework there is a high
level of consistency in both the quality of the staff
and the methodologies employed, since all the
projects were done by the same firm within the time
span of a few years.

Third, as professional software developers, ABC is
highly interested in software productivity. Since it is
their primary business, as opposed to being relegated
to a staff function as it might be in another industry,
the ABC managers were highly motivated to provide
good quality data and cooperate with the research.

3.2 Project Database
Projects selected possessed two attributes: First, they
were medium to large in size, an explicit require-
ment of the models chosen [5, 191. The average proj-
ect size in this study is just under 200 KSLOC (SLOC

stated in thousands), and the smallest project is
39 KSLOC, which was partly written in a fourth-
generation language. Second, the project manager
must have been available during the summer of
1985 to complete the data-collection form. (See
Section 4 for more details.) This limited the database
to fairly recent projects, which had the additional
benefit of ensuring consistency in project methodol-
ogy. The oldest project in the database was started in
August 1981, and two-thirds of the projects started
in 1983 or later.

Based on the above criteria, 15 projects qualified
for inclusion in the study. The researcher or practi-
tioner interested in large business applications is
likely to find this data set to be a useful contribution
for two reasons: First, in terms of sheer number of
projects, it compares favorably with a number of
other published studies [a, 7, 9, 111. Second, and
more important than the number of projects alone,
is the content of the database. This database con-
tains large business applications, 12 of which were
written entirely in Cobol, the most widely used busi-
ness data-processing language. By contrast, Boehm’s
63-project database contains only 7 business appli-
cations, of which only 4 were written in Cobol.
Albrecht’s 1983 database contains 18 Cobol projects,
but with an average size of only 66 KSLOC. The
average size of Cobol applications in the ABC data-
base is 221 KSLOC.

4. METHODOLOGY

4.1 Data-Collection Forms
The primary data-collection tools were three data-
collection forms developed for this project. One form
was designed to capture background information
about the project (e.g., hardware manufacturer and
model), as well as the ABC project number and the
start and end dates.

After an analysis of each of the model’s require-
ments, two additional consolidated metrics data-
collection forms were devised. Although each of the
models has its own set of data requirements, there is
a fair amount of overlap in terms of the areas ad-
dressed as they relate to productivity. The questions
were organized on the forms into broad categories,
such as personnel attributes, rather than by models
in order to help the respondent ensure consistency
in his or her answers for all of the models. However,
the questions were printed on the form verbatim
from the original source documents whenever possi-
ble to minimize any effects of orginality in the word-
ing by the researcher.3 The net result was a set of
two data-collection forms, one “quantitative” (e.g.,

‘The original source documents were, for SLIM. [19]; COCOMO. 151; Function
Points, (31; and ESTIMACS. [ZZ].

May 1987 Volume 30 Number 5 Communications of the ACM 419

Research Contributions

SLOC, database size) and one “qualitative” (e.g., com-
plexity ratings). The intent of this procedure was
to retain the authenticity of the questions as asked
in the original source documents, while providing
some overall structure for the respondents.

4.2 Data-Collection Procedure
For each of the projects, there was an in-person
meeting with the project manager who would be
filling out the forms. The one exception to this pro-
cedure was a West Coast project manager who was
already familiar with the metrics used. Data collec-
tion for that particular project was done via the mail
and the telephone.

There were two main purposes to this labor-
intensive approach. The first was to discuss each of
the questions to ensure that it was understood and
that each of the managers would answer consis-
tently. The second purpose was to impress upon the
managers the importance of their participation in
this work. Given the amount of data requested
(greater than 100 questions per project), this effort
was believed necessary. The result was a large in-
crease in the response rate compared to question-
naires distributed by the normal channels at ABC.

4.3 Data-Analysis Procedures
Once the forms were returned, they were checked
for consistency. This was possible due to the redun-
dancy of many of the questions from the different
models. With the exception of the “Function-Point-
like” questions of the ESTIMACS model, no ques-
tions were combined or consolidated.4 This meant
that it was possible to ensure that an answer about,
say, project personnel skills for the COCOMO model
was consistent with the answer for the similar ques-
tion for the SLIM model. Next, the project identifica-
tion information from the “Project Actuals” form
was used to research the ABC accounting records to
determine the level of effort expended. Finally, the
metrics data were input to each of the four models.
For SLIM, COCOMO, and Function Points, this was
done by the researcher. MACS staff offered to run a
limited number of projects (without having access to
the actual results) and to provide the estimates by
telephone.

4.4 Error Analysis
The focus of this paper is on the degree to which the
model’s estimated effort (MM& matches the actual
effort (MM,,,). If the models were perfect, then for
every project MM,,, = MM,,,. Clearly, this will
rarely, if ever, be the case.

4%x the ESTIMACS results section (Section 5.51 for discussion of this issue

There are several possible methods for evaluating
the man-month estimates. A simple analyslis ap-
proach would be to look at the difference between
MMest and MMact. The problem with this absolute
error approach is that the importance of the size of
the error varies with project size. For example, on a
10 man-month project, an absolute error of 9 man-
months would be likely to cause serious project dis-
ruption in terms of staffing, whereas the salme error
on a 1000 man-month project would be much less of
a problem.

In light of this, Boehm [5] and others have recom-
mended a percentage error test, as follows:

Percentage Error = MM,,, - MM,,,
- MM

act

This test eliminates the problem caused by project
size and better reflects the impact of any error.

However, the analysis in this paper concentrates
on the models’ average performance over the entire
set of projects. Errors can be of two types: under-
estimates, where MMest < MMact; and overestimates,
where MM,,, > MM,,, . Both of these errors can have
serious impacts on projects. Large underestimates
will cause the project to be understaffed, a.nd as the
deadline approaches, project management will be
tempted to add new staff members. This results in a
phenomenon known as Brooks’s law: “Adding man-
power to a late software project makes it later” [6].
Otherwise productive staff are assigned to teaching
the new team members, and with this, cost and
schedule goals slip even further. Overestimates can
also be costly in that staff members, noting the proj-
ect slack, become less productive (Parkinson’s law:
“Work expands to fill the time available for its com-
pletion”) or add so-called “gold plating,” defined as
additional systems features that are not required by
the user [5].

In light of the seriousness of both types of errors,
overestimates and underestimates, Conte et al. [8]
have suggested a magnitude of relative error, or MRE
test, as follows:

By means of this test, the two types of errors do
not cancel each other out when an average of multi-
ple errors is taken, and therefore as the test used in
this analysis.

Still another issue in interpreting the errors con-
cerns bias. A model, because it was develolped in an
environment, say, less productive than ABC’s, may
generate errors that are biased toward overestima-
tion. However, this model may be able to be recali-
brated to approximate the ABC environment. What

420 Communications of the ACM May 2987 Volume 30 Number 5

Research Contributions

is important is that the estimates correlate with the
actual results; that is, bigger projects generate bigger
estimates than smaller, projects.

5. RESULTS

5.1 Project Data

Albrecht and others [3, 4, 81 have proposed linear
regression as a means of measuring this correlation.
Since Albrecht’s method does not produce a man-
month estimate directly, an alternative was needed
to validate the Function Point method. His proposal
was to perform a simple linear regression with man-
months as the dependent variable and Function
Points as the independent variable. He also performs
regressions with SLOC as the dependent variable to
show how Function Points could be used to generate
an SLOC estimate for other models or methods that
require it. Regression was used in this research for
all of the models by using actual man-months as the
dependent variable and the man-months estimated
by each model as the independent variable. The ad-
vantage of this method is that it can show whether a
model’s estimates correlate well with experience
even when the MRE test does not. A “perfect” score
on the MRE test would be an error percentage of 0,
whereas a “perfect” score on Albrecht’s test would
be an R2 of 1.00.5

Table III shows the background data on the projects.
The “Months” figures are project durations in calen-
dar months. The man-months (“MM”) data refer to
the total number of actual hours expended by ex-
empt staff members (i.e., not including secretarial
labor) on the project through implementation,
divided by 152. This effort measure was the only
output of the models that was evaluated, although
several of them offer other features, such as project
planning aids. The “KSLOC” figures follow Boehm’s
definition stated earlier (i.e., comments are not
counted) with two exceptions.

One project (number 8) had reused code, and this
was accounted for in the KSLOC data by counting a
modified line as equivalent to a new line. In the
KDSI data (used for COCOMO), Boehm’s conversion
formula for modified software was used [5]. This
resulted in a KDSI count of 167 as opposed to the 200
KSLOC count shown above for project number 8.

In summary, two tests are used to evaluate the
models (as recommended by Theabaut [N]): the
MRE test and regression. These tests have the ad-
vantage of not only being generally accepted in the
literature, but of also having been proposed by some
of the models’ own developers.

The other exception is that Cobol nonprocedural
statements are not specially weighted. Boehm found
this weighting necessary as only 4 of his 63 projects
were Cobol, and as he states, some “pragmatic” pro-
cedure was required to make those projects fit his
formula.6 Since the project data in this research are
overwhelmingly Cobol, no such pragmatic weighting
was deemed necessary.

51n this analysis the more conservative R’. RZ adjusted for degrees of free- 6See 1.5. p. 4791. The unavailability of these data may make the COCOMO
dom. was used. which results in slighter lower values than R’. estimates slightly higher than they would be elsewise.

TABLE III. Project Background

Project number Software Hardware Months MM KSLOC SLOC/MM

1 Cobol IBM 308X 17 287.00 253.60 884
2 cob01 IBM 43XX 7 82.50 40.50 491
3 Cobol DEC VAX 15 1,107.31 450.00 406
4 Cobol IBM 308X 18 86.90 214.40 2,467
5 Cobol IBM 43XX 13 336.30 449.90 1,338
6 Cobol DEC 20 5 84.00 50.00 595
7 Bliss DEC 20 5 23.20 43.00 1,853
8 Cobol IBM 43XX 11 130.30 200.00 1,535
9 Cobol IBM 308X 14 116.00 289.00 2,491

10 Cobol, Natural IBM 308X 5 72.00 39.00 542
11 Cobol IBM 308X 13 258.70 254.20 983
12 Cobol IBM 43Xx, 308X 31 230.70 128.60 557
13 Cobol HP 3000,68 20 157.00 161.40 1,028
14 Cobol IBM 308X 26 246.90 164.80 667
15 Natural IBM 308X 14 69.90 60.20 861

Mean
Standard deviation
Cobol mean
Cobol standard deviation

14.3 219.25
7.5 263.06

186.57 1,113
136.82 689
221.37 1,120
131.14 720

May 1987 Volume 30 Number 5 Communications of the ACM 421

Research Contribufions

TABLE IV. SLIM Data

~al;~&z
My .‘d :

1 287.0 3,857.8 1,244.18 12 5 18 3
2 82.5 100.1 21.33 15 4 16 5
3 1,107.3 11,982.0 982.08 f6 4 19 5
4 86.9 2,017.2 2,221.29 13

z
18 1

5 336.3 3,382.0 905.65 15 21 4
6 84.0 262.5 212.50 13 4 19 6
7 23.2 106.3 358.19 16 5 20 5
8 130.3 1,224.6 839.83 14 4 20 3
9 116.0 1‘454.1 1,153.53 15 4 20 2

10 72.0 235.7 227.36 12 4 18 6
11 258.7 1,623.O 527.37 15 5 19 3
12 230.7 513.3 122.50 15 4 12 1
13 157.0 3,119.8 1.887.13 11 5 16 1
14 246.9 380.3 54.03 17 4 14 1
15 69.9 643.8 821.03 11 4 15 1

Mean (absolute values) 219.25 2,060.17 771.87 14.0 4.3 17.7 3.1
Standarddeviation 263.06 3,014.77 661.33 1.9 0.5 2.6 1.9

5.2 SLIM Results
SLIM was run using the default parameters provided
by the model when the user answers the SLIM set
of 22 questions. Table IV shows the actual man-
months, the SLIM man-month estimate,7 and the
error percentage. Also shown are the SLIM default
PF, the default MBI, the calibrated PF, and the cali-
brated MBI. (The calibrated factors were obtained
after the fact by using the SLIM “calibrate” function
for use in later analyses.)

SLIM does not do well via the MRE test. The aver-
age percentage error is 772 percent, with the small-
est error being 21 percent. In addition, the errors are
all biased; effort is overestimated in all 15 cases. A
possible explanation for this is that SLIM was origi-
nally developed using data from defense-related
projects, including real-time systems. Productivity
for these is typically less than that in the business
data-processing systems developed by ABC [18, 231.

One possibility is that SLIM accurately reflects the
project conditions, but is calibrated too high for the
ABC environment. To evaluate this Albrecht’s test
was applied by means of a regression run with the
SLIM estimate as the independent variable and the
actual man-months as the dependent variable. The
results were that the SLIM estimates correlated well
with the actuals, generating an E2 of 87.8 percent,
with a coefficient t statistic of 10.11.

Actual man-months
= 49.9 + 0.082 (SLIM)

(10.11)

P
87.8%

7 The SLIM man-month is 168 man-hours. All SLIM man-month estimates
were converted to 152 man-hour man-months to aid comparison.

The main input for SLIM is KSLOC, whose regres-
sion with actual man-months produced an R2 of only
48.5 percent, so the SLIM model seems to be adding
information.

5.3 COCOMO Results
The results for the three COCOMO versions (Basic,
Intermediate, and Detailed Models) appear in
Table V. In the table “BAS” refers to the Basic
Model, “INT” to the Intermediate Model, and “DET”
to the Detailed Model. The “error %” columns are
calculated by dividing the difference between the
estimate and the actual man-months by the actual
man-months.

All three COCOMO models did poorly according
to the MRE percentage error test. The average error
for all versions of the model was 601 percent, with
the lowest single error being 83 percent. As was the
case with SLIM, the estimates are biased; effort is
overestimated in all 45 cases. Again, this may be due
to COCOMO’s development on TRW’s data. The av-
erage KSLOC/MM figure for Boehm’s data is much
lower than that for the ABC data, probably reflecting
the composition of the type of systems developed by
TRW and ABC. Again, it is possible that COCOMO is
accurately reflecting the project conditions, but is
calibrated too high for the ABC environment. In his
book Boehm acknowledges the probable need for
calibration of his model in a new environment [5].

To evaluate this Albrecht’s regression test was
run. The results were as follows:

Actual man-months
= 27.7 + 0.156 (COCOMO-Basic)

(5.54)

-2 R
68.0%

422 Communications of the ACM May 1987 Volume 317 Number 5

Actual man-months
= 62.1 + 0.123 (COCOMO-Intermediate) 59.9%

(4.68)

Actual man-months
= 66.8 + 0.118 (COCOMO-Detailed)

(4.06)

52.5%

Paradoxically, the more advanced versions,
COCOMO-Intermediate and COCOMO-Detailed, do
not do as well as COCOMO-Basic in this instance.
This implies that the cost drivers of the latter two
models are not adding any additional explanation
of the phenomenon. This is consistent with the
results of Kitchenham and Taylor, who evaluated
COCOMO on some systems programming and real-
time systems projects developed by British Telecom
and ICL [13].

In addition, a regression was run on the primary
input to the COCOMO models, delivered source in-
structions, or KDSI. The result was an K* of 49.4
percent, which is not as good a fit as any of the
COCOMO models. Therefore, COCOMO seems to be
adding information.

5.4 Function Points Results
In this section three separate analyses are per-
formed. The first analysis compares the man-month
predictions from Function Points to the actual man-
months and is similar to the analysis done for the
other models. In addition, two of Albrecht’s other
models are tested, one for predicting man-months
from SLOC, and the other for predicting SLOC from
Function Points.

Research Contributions

5.4.1 Function Points to Man-Month Results. As
shown in Table VI, the average MRE is 102.74 per-
cent, substantially better than either of the two
SLOC-based models. This is probably due to the sim-
ilarity of applications (business data processing) done
by ABC and IBM’s DP Services group, the source of
Albrecht’s data. The regression analysis of these esti-
mates and the actual man-months was the following:

Actual (ABC) man-months -2 R
= -37 + 0.96 (Function Points 55.3%

(4.26) estimated man-months)

The regression analysis result from the ABC data
is as follows:

ABC man-months -2 R
= -122 + 0.341 (Function Points)

(4.28)
55.3%

By way of comparison, in Albrecht’s validation
paper [3] he developed the following estimation
equation from a data set of 24 projects:

IBM man-months -2 R
= -88 + 0.355 (Function Points)

(12.37)
86X%

Albrecht’s equation developed using IBM data is
strikingly similar to the equation using ABC data,
differing primarily by the constant term. The results
of an F-test comparing the two individual regressions
with a single regression on all 39 data points re-
vealed that the null hypothesis that the two models
were the same could not be rejected at the 95 per-
cent confidence level [26].

TABLE V. COCOMO Data

Proiect number

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Mean (absolute values)
Standard deviation

COCOMO-BAS CocOMOwr COCOMOSET
Actual CocOMO error CDcOhlO error C&OMO &Of

MM BAS (W .INT.. ’ (%) DE7 is)

287.00 1,095.lO 281.57 917.56 219.71 932.96 225.07
82.50 189.40 129.58 151.66 83.83 151.19 83.26

1,107.31 5,497.40 396.46 6,182.65 458.35 5,818.75 425.49
86.90 1.222.30 1,306.56 558.98 543.25 566.50 551.90

336.30 1,466.OO 335.92 1,344.20 299.70 1.316.04 291.33
84.00 393.60 368.57 313.36 273.05 312.24 271.71
23.20 328.40 1,315.52 234.78 911.98 234.51 910.82

130.30 925.30 610.13 1,165.70 794.63 1,206.17 825.69
116.00 3,231.OO 2.685.34 4,248.73 3.562.70 4.577.62 3,846.22

72.00 181.60 152.22 180.29 150.40 181.36 151.89
258.70 1,482.20 472.94 1,520.04 487.57 1,575.68 509.08
230.70 691.00 199.52 558.12 141.92 584.37 153.30
157.00 891.20 467.64 1,073.47 583.74 1,124.36 616.15
z46.90 511.00 106.97 629.22 154.85 663.84 168.87

69.90 295.30 322.46 133.94 91.62 130.72 87.01

219.25 1,226.72 610.09 1.280.85 583.82 1.291.75 607.85
263.06 1.412.58 684.55 1,698.43 862.79 1,667.24 932.96

May 1987 Volume 30 Number 5 Communications of the ACM 423

Research Contributions

TABLE VI. Function Points-MM Data

Project number Actual MM

1 287.00
2 82.50
3 1,107.31
4 86.90
5 336.30
6 84.00
7 23.20
8 130.30
9 116.00

10 72.00
11 258.70
12 230.70
13 157.00
14 246.90
15 69.90

Mean (absolute values) 219.25
Standarddeviation 263.06

Functioh Function AlbrechtFP
Points Counts : MMesthhate

1,217.10 1,010.00 344.30
507.30 457.00 92.13

2,306.80 2.284.00 731.43
788.50 881.00 192.03

1.337.60 1.583.00 387.11
421.30 411.00 61.58

99.90 97.00 -52.60
993.00 998.00 264.68

1,592.90 1.554.00 477.81
240.00 250.00 -2.83

1,611.OO 1,603.OO 484.24
789.00 724.00 192.21
690.90 705.00 157.36

1,347.50 1,375.oo 390.63
1,044.30 976.00 282.91

999.14 993.87 266.87
569.60 577.17 202.36

Albrecht MM
error (X)

19.96
11.68

-33.95
120.98

15.11
-26.69

-326.73
103.13
311.90

-103.93
87.18

-16.68
0.23

58.21
304.73

102.74
112.11

A similar regression was performed on the ABC of Albrecht’s claim of Function Points as a /predictor
Function Count data, the main input to Function of KSLOC. Albrecht provides the following model for
Points. estimating Cobol SLOC from Function Points:

ABC man-months -2 R
= -111 + 0.333 (Function Counts) 533%

(4.16)

IBM Cobol KSLOC
= -6.5 + 0.12 (Function Points)

(6.55)

-2 R
71.2%

The difference between using Function Points,
which include 14 factors that modify the Function
Counts, and the Function Counts themselves, seems

slight in this instance.

5.4.2 Source Lines of Code to Man-Month Results.
Albrecht provides another model, showing the rela-
tionship for his data between Cobol KSLOC and
man-months.

The results are shown in Table VIII, and show an
average MRE of 38.17 percent, with a large negative
bias. The estimated relationship between the actual
KSLOC and the estimates is the following:

ABC Cobol KSLOC It2
= 6 + 1.68 (Function Points 65.6%

(4.69) estimated KSLOC)

In general, these results seem to validate
Albrecht’s claims that Function Points do correlate

IBM man-months -2 R
= -19.2 + 2.5 (Cob01 KSLOC)

(6.85)
73X%

The results are shown in Table VII.
The average MRE of 167.3 percent is not as good

as that generated by Function Points. The equivalent
equation for the ABC data is the following:

ABC man-months -2 R
= -65 + 1.47 (Cob01 KSLOC)

(2.99)

413%

The results of an F-test are that we can reject the
null hypothesis that the IBM and ABC models are
the same at the 95 percent confidence level, but not
at the 99 percent level.

5.4.3 Function Points to Source Lines of Code Results.
Another validation that was performed was a check

TABLE VII. Cob01 KSLOC-MM Data
t :i :

,;,,- ($‘ / ,8_ Atbrooht Atbrecht
_ ,' ;>I,, ~Qtuat .$LCCMM MM

Projoctnumber __ _.-> -8 ',:MM~ estimate errorf!!)

1 287.00 613.67 113.82
2 82.50 81.90 -0.73
3 1,107.31 1,103.76 -0.32
4 86.90 515.85 493.61
5 336.30 1,103.51 228.13
6 84.00 105.61 25.72
8 130.30 479.91 268.32
9 116.00 702.00 505.18

11 258.70 615.16 137.79
12 230.70 301.74 30.79
13 157.00 383.59 144.33
14 246.90 392.08 58.80

Mean(absolute values) 260.30 533.23 167.29
Standarddeviation 280.60 327.25 177.07

424 Communications of the ACM May 1987 Volume 30 Number 5

Research Contributions

TABLE VIII. Function Points-COBOL KSLOC Data

Project number

Atbracht Albracht
KSLOC error

KSLOC estimate (“/I

1 253.60 137.98 -45.59
2 40.50 53.73 32.66
3 450.00 267.33 -40.59
4 214.40 87.10 -59.37
5 449.90 152.28 -66.15
6 50.00 43.52 -12.96
8 200.00 111.38 -44.31
9 289.00 182.59 -36.82

11 254.20 184.74 -27.33
12 128.60 87.16 -32.22
13 161.40 75.52 -53.21
14 164.80 153.46 -6.88

Mean (absolute values) 221.37 128.07 38.17
Standard deviation 131.14 64.65 17.47

well with eventual SLOC. The results for the ABC
were as follows:

ABC Cobol KSLOC
= -5.0 + 0.20 (Function Points)

(4.69)

-2 R
65x%

ABC Cobol KSLOC
= -13.2 + 0.207 (Function Counts) 75.1%

(5.85)

Although the IBM and ABC models are apparently
fairly similar, the results of an F-test are that we can
reject the null hypothesis that the models are the
same at the 99 percent level.

The second result is that, for the ABC data, the
unmodified Function Counts have a higher correla-
tion than the modified Function Points. This sug-
gests that the functionality represented by Function
Counts is related to eventual SLOC, but that the 14

“complexity adjustment” factors are not adding any
information for this particular sample.

5.5 ESTIMACS Results
As explained in the “Methodology” section
(Section 4), the procedure for testing ESTIMACS
was to gather the data (excluding the actual man-
months), send them to MACS, and receive the esti-
mate. This procedure was performed on 9 of the 15
projects in the database. These 9 were simply the
first projects for which data were collected. The data
for ESTIMACS are presented in Table IX.

The ESTIMACS average error is 85 percent, which
includes some over and some under estimates, and
is the smallest average error of the four models. This
may be due to the similarity of the ESTIMACS appli-
cation base (originally an insurance firm) and the

ABC database, although this cannot be verified due
to the proprietary nature of the ESTIMACS data.
The regression data were as follows:

Actual man-months -2 R
= 31 + 0.723 (ESTIMACS) 13.4%

(1.50)

Although the average error was less, the fit with
the actual effort is worse than the other models. The
t statistic is also less, although still significant at
approximately the 92 percent confidence level.

To check the possibility that the g-project subset
estimated by ESTIMACS was somehow different
from the 15project data set as a whole, each of the
models and its inputs were run against only that
g-project data set. The results were the following:

Actual man-months
= 54.1 + 0.084 (SLIM)

(10.17)

-2 R
922%

Actual man-months
= 11.4 + 0.195 (COCOMO-Basic)

(10.82)

93.6%

Actual man-months
= 51 + 0.17 (COCOMO-Intermediate) 94.9%

(12.24) '

Actual man-months
= 40.3 + 0.181 (COCOMO-Detailed)

(11.62)
94.4%

Actual man-months
= -203 + 0.451 (Function Points)

(4.63)
71.8%

Actual man-months
= -175 + 0.426 (Function Count)

(4.09)
66.2%

TABLE IX. ESTIMACS Data

ESTIMACS

Proiactnumbar
ACUW error

MM ESl'lhlACS tw

1 287.00 230.26 -19.77
2 82.50 111.26 34.86
3 1,107.31 523.51 -52.72
4 86.90 234.59 169.95
5 336.30 687.63 104.47
8 130.30 389.26 198.74

10 72.00 67.20 -6.67
11 258.70 624.43 141.37
12 230.70 324.78 40.78

Mean (absolute values) 287.97 354.77 85.48
Standard deviation 322.48 219.66 70.36

May 1987 Volume 30 Number 5 Communications of the ACM 425

Research Contributions

Actual man-months
= -94 + 1.67 (KDSI)

(2.90)
44.5%

Actual man-months
= -102 + 1.68 (KSLOC)

(2.83)
43.2%

It does not appear that this g-project subset
was any more difficult to estimate than the full
15-project data set. In fact, SLIM, Function Points,
and all three versions of COCOMO did better on the
subset. Only KDSI and KSLOC did slightly worse,
and these are not inputs to ESTIMACS. If anything,
this suggests that the 6 projects not estimated by
ESTIMACS were more difficult to accurately esti-
mate than the original 9.

Another possibility may be related to how the in-
put data for the ESTIMACS analysis were collected.
Of the 25 required data items, 5 deserve special
mention: (1) number of major business functions,
(2) number of unique business inputs, (3) number of
unique business outputs, (4) number of logical files,
and (5) number of on-line inquiry types. These fac-
tors (which ESTIMACS collectively refers to as “vol-
ume”) tend to drive most estimates.’ Upon examin-
ing the ESTIMACS documentation, the last four of
these questions sound exactly like the 1979 version
of Albrecht’s Function Points. For example, here are
two direct quotations on the subject of inputs, the
first by Albrecht and the second by Rubin:

External Input Types: Count each unique user data or
user control input type that enters the external bound-
ary of the application being measured, and adds or
changes data in a logical internal file type. An external
input type should be considered unique if it has a differ-
ent format, or if the external design requires a process-
ing logic different from other external input types of the
same format. . . . Do not include the input part of the
external inquiry types as external input types, because
these are counted as external inquiry types. [3]

Number of External Inputs: How many unique logical
business inputs will the system process? This is a count
of the number of major data types that will enter the
system from outside of it. In this way internal data base
information is excluded from this total. On-line inquiry
only screens are also excluded. Think in terms of major
business communication transactions. Inputs counted
should be unique in that they require different process-
ing logic from other inputs. [z]

These two questions appear to address the same
concept, and Albrecht’s 1979 paper is cited in
Rubin’s 1983 paper. Therefore, in conducting this
research, the Function Point definitions were used
to answer the matching ESTIMACS questions. Ac-

cording to the MACS staff, however, this may result
in overestimating these input quantities by a factor
of three9 or four.” How the difference is defined was
not available from MACS, so “correct” use of the
model may come only with experience. This begets
the question of whether the use of Function Points
for the “Function-Point-like” questions affected the
model’s performance. If the estimates had been uni-
formly high, then this would seem a likely possibil-
ity. However, given that the estimate errors ranged
from -52.7 percent to +198.7 percent, this does not
seem to be the case.

5.6 Sensitivity Analysis
As discussed in Section 3, this data set of 15 com-
pleted software projects is large relative to many
other published studies. However, it is still small in
terms of what researchers might like in order to
assure that the results are robust. In particular, read-
ers should note the sensitivity of the regression
models to project number 3, which, although almost
exactly equal to project number 5 in its KSLOC
count, is several times larger in its actual man-
months figure. Were this project to be dropped from
the data set, almost all of the regression models on
the new 14-point data set (particularly COCOMO’s)
would exhibit decreases in their i?‘, the measure of
“goodness of fit”. The sole exceptions to this were
the KDSI and KSLOC regressions, which exhibited
very slight increases. This last result is likely due to
the elimination of one of the two similarly sized
projects (450 KSLOC) that had very different produc-
tivity rates. This would tend to make the remaining
large project somewhat of an “anchor” for the
regression.

A similar analysis was done for the g-project
“ESTIMACS subset.” The results of the regressions
run on the 8-project subset were that the Em2 for
SLIM, COCOMO, and ESTIMACS were all in the
38-49 percent range. The results for Function Points
and Function Counts decreased to the 54-60 percent
range, and the results for KSLOC and KDSI increased
to the 56-59 percent range. Again, this last result is
likely due to the elimination of one of the two simi-
larly sized projects (450 KSLOC) that had very differ-
ent productivity rates. As a test of this, the data
were rerun on a 7-project subset without either of
the largest projects. The models whose performance
improved with the 8-project data set (ESTIMACS,
KSLOC, KDSI) all worsened as a result. Therefore,
the improvements seemed only related to the crea-
tion of project number 5 as a new “anchor.” Conse-
quently, project number 3 was not dropped, given

gPer~~nal correspondence, L. Kleeck, T/la/as.
‘“Per~~nal correspondence. P. Madden, 8/13/&i 8Personal correspondence. P. Madden. July 1985.

426 Communications of the ACM May 1987 Volume 30 Number 5

Research Contributions

no a priori reason for doing so, plus the new regres-
sion models’ increased dependence on project num-
ber 5, the “new outlier” if project number 3 were
dropped.

Owing to large differences in project productivity,
variation such as the difference between project
number 3 and project number 5 is not uncommon in
project data. As an example, Albrecht’s 24project
data set contains the following two projects:

Project number 1
Project number 2
24-project mean

24-project standard
deviation

KSLOC

130
318

61
62

Man-Hours
(in thousands)

102.4
105.2

21.9
27.8

The difference between his largest project (num-
ber 2) and the next largest (number l), in terms of
KSLOC, is 188, which is a difference of 3.03 standard
deviations. The equivalent calculation for the ABC
data is 2.93 standard deviations. The difference be-
tween Albrecht’s largest project and the mean is
257, or 4.15 standard deviations, whereas the equiv-
alent calculation for ABC is 3.38. Therefore, the ABC
data have a less severe outlier problem than even
Albrecht’s data.

The existence of these outliers and large varia-
tions in productivity is not a particularly desirable
situation from a research perspective. However,
given the difficulty and cost in gathering this kind of
data, the best available data are relatively small sets
that are subject to this type of condition.

6. CONCLUSIONS
Having examined each model independently, it
seems appropriate to summarize these results, Spe-
cifically, it is time to address the questions posed in
the introduction to this paper to see what answers
have been provided by this research. Of course, it
will be important to bear in mind that these results
stem from 15 projects developed by one firm, and
overly broad generalizations are not possible. Rather,
these results suggest certain hypotheses that may be
verifiable with further research.

6.1 Implications for Practitioners
The first research question to be answered con-
cerned the accuracy of the models outside their orig-
inal environments and the ease with which they
could be recalibrated to fit a new environment. One
conclusion is that models developed in different en-
vironments do not work very well uncalibrated, as
might be expected. Average error rates calculated
using the MRE formula ranged from 85 to 772 per-

cent, with many in the 500-600 percent range. This
variation is most likely due to the degree to which
the productivity of the environments where the
models were developed matches the target (ABC)
environment. This points out the need for organiza-
tions that wish to use algorithmic estimating tools
to collect historical data on their projects in order
to calibrate the models for local conditions.

After allowing for calibration, the best of the
models explain 88 percent of the behavior of the
actual man-month effort in this data set. This result
alone probably justifies consideration of an algo-
rithmic estimating method by a software manager
who has sufficient data to calibrate it to his or her
environment. In addition, there are benefits to the
estimation task simply from the structure the models
impose on the estimation process. Providing inputs
for model parameters and sizing estimates requires a
project team to carefully consider many important
aspects of the upcoming project. Of course, as the
model developers themselves point out, these
models are adjuncts to, not substitutes for, a detailed
estimate by task by the project management [3].

The second research question concerned the rela-
tive efficacy of SLOC models versus non-SLOC
models. In terms of the MRE results, the non-SLOC
models (Function Points and ESTIMACS] did better,
although this is likely due to their development in
business data-processing environments similar to
ABC’s. In terms of the regression results, both of the
SLOC models (COCOMO and SLIM) had higher cor-
relations than either ESTIMACS or Function Points.
However, these data must be considered in light of
an important implementation question. The SLOC
counts were obtained ex post and are therefore likely
to be much more accurate than SLOC counts ob-
tained before a project begins. Although SLIM does
provide a means for modeling this initial uncertainty
(through a beta distribution approach), it is unlikely
that a project manager could estimate SLOC counts
with the degree of accuracy used in this research.
Presumably, the variance between ex ante and ex
post Function Point counts is less, although verifying
this is an open research question.

An additional consideration is that Function
Points and Function Counts can be used as predic-
tors of KSLOC. In particular, Function Counts
correlated with KSLOC at the level of 75.1 percent,
which is similar to the correlations published by
Albrecht [3], and is likely to be good enough to be of
use to the software manager.

The third and final research question concerns
the relation between the proprietary and the non-
proprietary models. This question was not answered
conclusively by this research, as the proprietary

May 1987 Volume 30 Number 5 Communications of the ACM 427

Research Contributions

SLIM model outperformed (in its i? value) the non-
proprietary COCOMO model on this data set, while
the nonproprietary Function Points model out-
performed the proprietary ESTIMACS model on
this data set.

6.2 Directions for Future Research
This paper has provided several important research
results regarding software metrics and models. First,
Albrecht’s model for estimating man-months of ef-
fort from Function Points has been validated on an
independent data set. This is particularly significant
in that Function Points has been proposed by IBM as
a general productivity measure and prior to this
there was only limited evidence for their utility
from non-IBM sources [a].

One interesting research question raised by this
Function Points result is the degree to which ex ante
and ex post Function Points counts are similar. As
pointed out in the previous section, the higher corre-
lations generated by the SLOC-based models must
be tempered by a recognition that, in practice, accu-
rate ex ante SLOC estimates may be difficult to
achieve. An interesting research question involves
the degree to which initial misestimates change the
results achieved by these models. A more general
extension of this is, what impact do the estimates
themselves have on projects? A recent paper by
Abdel-Hamid and Madnick [l] discusses this issue
from a systems dynamics perspective. The authors
make the point that the effort required on a soft-
ware-development project is in part a function of the
estimate given at the beginning of the project. From
this premise they devise a model (not shown in the
cited paper) that presumably includes the estimate
as an endogenous variable. They then develop an
example to show that an estimate that was more
accurate could also be more expensive in terms of
creating a bigger project.

Although an interesting example, one problem
with it is that they draw the unsupported conclusion
that the accuracy of software cost estimation models
cannot be judged by their performance on historical
(completed) projects. Clearly, ex post estimates can-
not influence the project. Therefore, it seems reason-
able to evaluate them by this method. It could be
argued that software cost estimation models that do
not include their own estimate are deficient, but this
is a different conclusion than the one drawn by the
authors. However, their idea of the effect of the esti-
mate on a project is an interesting one, and further
research should be done in this area.

Finally, although improving estimation techniques
within the industry is a worthwhile goal, the ulti-
mate question must concern how the productivity of
software developers can be improved. These estima-

tion and productivity questions. are related in that
the estimation models contain descriptions of what
factors their developers believe affect productivity.
How well do these models identify and reflect these
factors?

The models researched in this study do n.ot seem
to capture productivity factors very well. There are
several pieces of evidence to support this conclusion.
The first is that the COCOMO-Intermediate and
COCOMO-Detailed Models (the versions with the
productivity factor “cost drivers”) did not perform
significantly better than the Basic Model and in fact
correlated less well with actual man-months.
Second, the raw Function Count data correl.ated as
well as or better than the Function Point numbers,
which reflect the 14 “processing complexity” adjust-
ments. Third, ESTIMACS, with its 20 additional
productivity-related questions, did less well than the
similar Function Counts alone. Finally, the model
that had the highest correlation, SLIM, has the prob-
lem that its questions designed to elicit productivity-
related information uniformly generated PFs that
were too low (the reason all the default estimates
were too large) and MBIs that were too high.. This
was determined by comparing these values to the
values that would have been obtained had the SLIM
“calibrate” feature been used.

A reasonable conclusion from all this is tlhat the
models, although an improvement over their raw
inputs for estimating project effort, do not model the
factors affecting productivity very well. One possible
extension of this research is to analyze the (data in
this study to attempt to determine the causes for the
wide swings in accuracy of the estimates across pro-
jects. What characteristics make a project a:menable
to this type of estimation? What factors could be
added to the models to enable them to do a better
job on all of the projects? On the productivity side,
the projects in this data set show a large amount of
variance in terms of such traditional metric.s as
SLOC per man-month. Can these variations be traced
to productivity factors controllable by the software
manager? What are the effects of modern program-
ming practices, such as the use of fourth-generation
languages, or AI techniques? Further resear’ch needs
to be done to isolate and measure these factors affect-
ing systems professionals’ productivity if the profes-
sion is to meet the challenges of the future.

Acknowledgments. The author wishes to thank
Fred Forman, Charles Kriebel, and Mary Shaw for
their assistance with this paper. Additional thanks to
Douglas Putnam of Quantitative Software Manage-
ment and Patrick Madden of Management and Com-
puter Services for permission to use their m’odels
during this research.

428 Communications of the ACM May 1987 Volume 30 Number 5

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

REFERENCES
Abdel-Hamid. T.. and Madnick, S. Impact of schedule estimation on
software project behavior. IEEE Softw. 3,4 (July 19861, 70-75.
Albrecht, A.J. Measuring application development productivity. In
Proceedinns of fhe IBM Applications Development Symposium, GUIDE/
SHARE (Goiterey, Calic,‘Oct. 14-17). IBM, 1979,‘pp. 83-92.
Albrecht. A.J.. and Gaffney. J., Jr. Software function, source lines of
code, and development effort prediction: A software science valida-
tion. IEEE Trans. Softw. Eng. SE-g, 6 (Nov. 1963), 639-646.
Behrens. CA. Measuring the productivity of computer systems de-
velopment activities with Function Points. IEEE Trans. Softw. Eng.
SE-g, 6 (Nov. 1963). 646-652.
Boehm, B.W. Software Engineering Economics. Prentice-Hall, Engle-
wood Cliffs, N.J.. 1981.
Brooks, F.P. The Mythical Man-Month. Addison-Wesley, Reading.
Mass.. 1975.
Call&m, H., and Colborne, S. A proposed method for estimating
software cost from requirements. J. Parmetrics 4,4 (Dec. 1984),
33-40.
Conte. S., Dunsmore, H.. and Shen, V. Software Engineering Metrics
and Models. Benjamin/Cummings, Menlo Park. Calif., 1986.
Ferens, D.V. Software support cost models: Quo vadis? J. Pammetrics
4. 4 (Dec. 1984). 64-99.
Gaffney. J.E.. Goldberg. R.. and Misek-Falkoff. L. SCORE82 Sum-
mary. Perform. Eval. Rev. 12.4 (Winter 1984-1985). 4-12.
Golden. J.R., Mueller. J.R., and Anselm. B. Software cost estimating:
Craft or witchcraft. Database 12. 3 (Spring 1981), 12-14.
Jones, C. Programming Productivity. McGraw-Hill, New York, 1986.
Kitchenham. B.. and Taylor, N.R. Software cost models. ICL Tech. J.
4.1 (May 1984), 73-102.
Masters, T.F.. II. An overview of software cost estimating at the
NSA. J Parmetrics 5. 1 (Mar. 1985), 72-84.
Pinsky, S.S. The effect of complexity on software trade off equations.
J, Pammetrics 4, 4 (Dec. 1984), 23-32.
Putnam. L.H. General empirical solution to the macro software siz-
ing and estimating problem. IEEE Trans. Soffw. Eng. SE 4, 4 (July
19781, 345-361.
Putnam. L.. and Fitzsimmons, A. Estimating software costs. Datama-
tion 25, lo-12 (Sept.-Nov. 1979).
Quantitative Software Management. Refprence Notes for the DOD
SLIM Sofrware Cost Estimating Course. Quantitative Software Manage-
ment. McLean. Va., 1983.
Quantitative Software Management. SLIM User Manual (IBM PC Ver-
sion) Draft copy ed. Quantitative Software Management. McLean,
Va.. 1984.

Research Contributions

20. Rubin, H.A. Macroestimation of software development parameters:
The Estimacs system. In SOFTFAIR Conference on Software Deuelop-
ment Took, Techniques and AIternatiues (Arlington, Va., July 25-28).
IEEE Press, New York, 1983. pp. 109-118.

21. Rubin. H.A. The art and science of software estimation: Fifth gener-
ation estimators. In Proceedings of the 7th Annual ISPA Conference
(Orlando, Fla., May 7-9). International Society of Parametric
Analysts, McLean, Va.. 1985. pp. 56-72.

22. Robin, H.A. Using ESTIMACS E. Management and Computer
Services, Valley Forge, Pa., Mar. 1984.

23. Software Productivity Research. SPQR/ZO User Guide. Software Pro-
ductivity Research, Cambridge, Mass., 1986.

24. Theabaut. SM. Model evaluation in software metrics research. In
Computer Science and Statistics: Proceedings of the 15th Symposium on
the Interface (Houston, Tex., Mar.). 1983. pp. 277-285.

25. Walston. C.E.. and Felix, C.P. A method of programming measure-
ment and estimation. IBM Syst. J, 26, 1 (Jan. 1977), 54-73.

26. W&berg. S. Applied Linear Regression. Wiley, New York, 1980.
27. Wolverton, W.R. Cost of developing large scale software. lEEE Trans.

Comput. C-23, 6 (June 19741, 615-634.

CR Categories and Subject Descriptors: D.2.8 [Software Engineer-
ing]: Metrics-performance measures; D.2.9 [Software Engineering]: Man-
agement-cost estimatiott: K.6.1 [Management of Computing and Infor-
mation Systems]: Project and People Management-management tech-
niques: K.6.3 [Management of Computing and Information Systems]:
Software Management-software developmenf

General Terms: Management, Measurement, Performance
Additional Key Words and Phrases: COCOMO. ESTIMACS, Function

Points, SLIM. SLOC

Received 3/86; revised 8/86 and 10/86; accepted lo/86

Author’s Present Address: Chris F. Kemerer, Graduate School of Indus-
trial Administration, Carnegie-Mellon University, Schenley Park,
Pittsburgh, PA 15213.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

May 1987 Volume 30 Number 5 Communications of the ACM 429

