1284

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 12, DECEMBER 1991

Concise Papers

Cyclomatic Complexity Density and Software
Maintenance Productivity

Geoffrey K. Gill and Chris F. Kemerer

Abstract—While the need for software metrics to aid in the assessment
of software c ity for maint e has been widely argued, little
agreement has been reached on the appropriateness and value of any
single metric. McCabe’s cyclomatic complexity metric, a measure of
the maximum number of linearly independent circuits in a program
control graph, has been widely used in research. The current research
validates previously raised concerns about the metric on a new data
set. However, a simple transformation of the metric is investigated
whereby the cyclomatic complexity is divided by the size of the system
in source statements, thereby determining a “complexity density” ratio.
This complexity density ratio is demonstrated to be a useful predictor
of software maintenance productivity on a small pilot sample of actual
maintenance projects.

Index Terms— M t. ement, performance, software
productivity, software maintenance, software complexity, McCabe met-
rics, cyclomatic complexity.

[. INTRODUCTION

A critical distinction between software engineering and other, more
well-established branches of engineering is the shortage of well-
accepted measures, or metrics, of software development. Without
metrics, the tasks of planning and controlling software development
and maintenance will remain stagnant in a “craft”-type mode, wherein
greater skill is acquired only through greater experience, and such
experience cannot be easily communicated to the next system for
study, adoption, and further improvement. With metrics, software
projects can be quantitatively described, and the methods and tools
used on the projects to improve productivity and quality can be
evaluated. These evaluations will help the discipline grow and mature
as progress is made at adopting those innovations which work well,
and discarding or revising those which do not.

Of particular concern is the need to improve the software main-
tenance process, given that maintenance is estimated to consume
40-75% of the software effort [23]. What differentiates maintenance
from other aspects of software engineering is, of course, the constraint
of the existing system. It constrains the maintenance work in two
ways—the first through the imposition of a general design structure
that circumscribes the possible designs of the system modifications,
and the second, more specifically, through the complexity of the
existing code which must be modified.

A metric of this latter, more specific type of system influence is
McCabe’s cyclomatic complexity metric, a measure of the maximum
number of linearly independent circuits in a program control graph
[14]. As described by McCabe, a primary purpose of the metric

Manuscript received November 1, 1990; revised June 10, 1991. Recom-
mended by S. H. Zweben. This work was partially supported by the Center
for Information Systems Research and the International Financial Services
Research Center.

The authors are with the Sloan School of Management, Massachusetts
Institute of Technology, Cambridge, MA 02139.

IEEE Log Number 9104158.

«

is to “ ... identify software modules that will be difficult to test
or maintain” [14, p. 308], and it is therefore of particular interest
to researchers and practitioners concerned with maintenance. The
McCabe metric has been widely used in research, and a recent article
by Shepperd cites some 63 articles which are directly or indirectly
related to the McCabe metric [20].

There is some question, however, as to the practical usefulness of
the metric [4]. As noted by Shepperd, concerns about the external
validity of the data and analyses in some of the previous studies
can be used to mitigate some of the results, particularly those using
data on small programs, often using student subjects. Therefore
these results bear validation on data from actual systems, and, in
particular, from data on maintenance projects, since use of the metric
for testing and maintenance was one of its author’s main stated
purposes. In particular, this research seeks not to determine whether
cyclomatic complexity captures all aspects of complexity in one figure
of merit, but rather to answer the question raised by Shepperd as to
whether cyclomatic complexity can serve as a “useful engineering
approximation” [20].

An additional question he raised regards the practical utility of
a number of “variants” on the original McCabe metric [15], [9].
This research investigates these variants in the context of new
development.

One area that is of considerable practical importance for research is
the effect of existing system complexity on maintenance productivity.
It is often assumed that: (a) more complex systems are harder to
maintain, and (b) that systems suffer from “entropy” and therefore
become more chaotic and complex as time goes on [1]. Knowledge
that a metric such as cyclomatic complexity accurately reflects
the difficulty in maintaining a set of source code would allow
management to make rational choices in the repair/replace decision
as well as aid in evaluating CASE tools designed to reduce existing
complexity by automatically restructuring source code [16], [22].
The empirical evidence linking software complexity to software
maintenance costs has been criticized as being relatively weak [11].
However, studies have shown that a significant fraction of the
staff resources used in maintenance is spent in understanding the
existing code [5]. This paper will report a study of the relationship
between McCabe’s cyclomatic complexity and software maintenance
productivity, given that a metric which measures complexity should
prove to be a useful predictor of maintenance costs.

The rest of this paper is organized as follows: Section II outlines
the data-collection procedures and summarizes the data set used in
the research. Results are presented in Section III, and concluding
remarks are presented in Section IV.

II. DATA COLLECTION

A. Data Overview and Background of the Data Site

The approach taken in this study was to collect detailed data about
a number of completed software projects at a single firm. All the
projects studied were small customized programs primarily for real-
time defense applications. The projects were undertaken in the period
from 1984-1989, with the majority of the work performed in the last
three years of that period. The company considers the data contained
in this study proprietary and therefore requested that its name not

0098-5589/91$01.00 © 1991 IEEE

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 12, DECEMBER 1991

be used and that any identifying data which could directly connect
it with this study be withheld. The numeric data, however, have not
been altered in any way. The company employed an average of about
30 professionals in the software department.

One benefit of this approach was that because all the projects
were undertaken by a single organization, neither interorganizational
differences nor industry differences should confound the results. A
possible limitation is that this concentration on one industry and
one company may somewhat limit the applicability of the results.
At a minimum, however, the defense industry is very important for
software'and the results will clearly be of interest to researchers in
that field. More generally, these results may provide suggestions for
research at other sites.

B. Data Sources
The data for this study were derived from three sources:

* Source Code—A copy of the source code developed or modified
by each project was obtained

* Accounting Database—This database contained the number of
hours every software engineer worked on each project for every
week of the study period

* Activity Reports—A description of the work done by each
engineer for each week for every project [7].

Of the source code developed for the projects, 74.4% was written
in Pascal and the other 25.6% in a variety of other third-generation
languages, primarily FORTRAN. Following Boehm, only deliverable
code was included in this study, with “deliverable” defined as any
code which was placed under a configuration management system [2].
This definition eliminated any purely temporary code, but retained
code which might not have been part of the delivered system but was
considered valuable enough to be saved and controlled. (Such code
included programs for generating test data, procedures to recompile
the entire system, utility routines, etc.) The source code was the main
data source for addressing the counting variants research question.

In addition to the source code, data from the accounting database
and activity reports were used in addressing the maintenance pro-
ductivity question. Because the hourly charges were used to bill the
project customer and were subject to Department of Defense (DoD)
audit, the engineers and managers took extreme care to insure proper
allocation of charges. For this reason, these data are believed to be
accurate representations of the actual effort expended on each project.
The activity reports were weekly summaries of the work done by
each software engineer every week as part of his or her standard
recordkeeping for DoD reporting. These activity reports were used to
ensure that only work related to software maintenance was included
when calculating maintenance productivity.

C. Data Definitions

For the purposes of this research, a software module was defined
as the source code that was placed in a single physical file (which
was often compiled separately). The size of the software modules
was measured in noncomment source lines of code (NCSLOC). The
definition of a line of code adopted for this study is that of Conte er
al. [3, p. 35]:

“A line of code is any line of program text that is not
a comment or blank line, regardless of the number

of statements or fragments of statements on the

line. This specifically includes all lines containing

! Fortune magazine reported in its September 25, 1989 issue that the
Pentagon spends $30 billion annually on software.

1285

program headers, declarations, and executable and
nonexecutable statements.”

This set of rules has several major benefits. It is very simple to
calculate, and it is very easy to translate for any computer language.
Because of its simplicity, it has become the most popular SLOC
metric [3, p. 35]. Through consistent use of this metric, results become
comparable across different studies.’

This research project had access to a total of 834 modules, of
which 771 were written in Pascal and 63 in FORTRAN. They
averaged 176.2 NCSLOC, with a standard deviation of 257.9. In total,
approximately 150000 lines of code (NCSLOC) from 19 software
systems were analyzed [8].

The definition of software maintenance adopted by this research is
that of Parikh and Zvegintzov—namely, “work done on a software
system after it becomes operational” [17]. The projects described
below as maintenance work pertain to all of the three Lientz and
Swanson maintenance types (corrective, adaptive, and perfective)
[12]).

Project data were gathered for seven maintenance projects in
order to test the hypothesis concerning the effect of complexity on
maintenance productivity. The average size of a maintenance project
was 1006 NCSLOC added (standard deviation, 1158), and required
an average of 1059 work hours (standard deviation, 982).

III. RESULTS

A. Empirical Tests of Analytic Critique

Before embarking on the actual study of complexity and mainte-
nance productivity, a study was done to determine whether proposed
variants of McCabe’s original metric, suggested to deal with per-
ceived weaknesses in the original metric, would be likely to affect
the results. The original McCabe metric is defined as:

V(iGy=e—n+2

where V(G) = the cyclomatic complexity of the flowgraph G of the
program in which we are interested, ¢ = the number of edges in G,
and n = the number of nodes in G.

McCabe showed that ¥7(G) is also equal to the number of binary
decision nodes in G plus one. There are four basic rules that can be
used to calculate V(G) [9]:

1) Increment one for every IF, CASE or other alternate execution
construct

2) Increment one for every Iterative DO, DO-WHILE or other
repetitive construct

3) Add two less than the number of logical alternatives in a CASE

4) Add one for each logical operator (AND, OR) in an IF.

The three variants studied in this research are defined as follows:

a) CYCMAX: all four rules are used, as in the original McCabe
version

b) CYCMID: only rules 1-3 apply, as proposed by Myers [15]

¢) CYCMIN: only rules 1 and 2 apply, as suggested by Hansen

9.

2As several authors have described, SLOC have many deficiencies as a
metric. In particular, they are difficult to define consistently, as Jones has
identified no fewer than 11 different algorithms for counting code [10}. Also,
SLOC do not necessarily measure the “value” of the code (in terms of
functionality and quality). However, Boehm also points out that no other
metric has a clear advantage over SLOC. Furthermore, SLOC are easy to
measure, conceptually familiar to software developers, and are used in most
productivity databases and cost estimation models. For these reasons, it was
the metric adopted by this research.

1286

TABLE |
MEANS OF COMPLEXITY METRICS

CYCMIN CYCMID CYCMAX
20.3 222 24.0
TABLE I

CORRELATIONS METRICS FOR CODE COMPLEXITY

NCSLOC CYCMIN CYCMID CYCMAX
NCSLOC 1.000 0.934 0.949 0.949
CYCMIN 1.000 0.985 0.986
CYCMID 1.000 0.998
CYCMAX 1.000

Note: All correlations are significant at better than the 99.99% level (n = 834).

TABLE III
ComparISON OF FORTRAN AND PAscaL AVERAGE COMPLEXITY DENSITY

Variable FORTRAN (n = 63) Pascal (n = 771)
CMINDENS 0.10 0.10
CMIDDENS 0.11 0.11
CMAXDENS 0.12 0.11

Table 1 gives the average value for each metric. Table II gives the
Pearson correlation coefficients for the three complexity metrics used
in this study.

The most striking result is the extent to which similar metrics
are highly correlated with each other. These results indicate that
the metrics proposed by Myers (CYCMID) and Hansen (CYCMIN)
measure complexity in a very similar manner to McCabe’s metric,
CYCMAX. In fact, the empirical data suggest that there are unlikely
to be any practically significant different results using CYCMIN or
CYCMID instead of CYCMAX, which is consistent with Shepperd’s
prediction [20].

As was also suggested by previous research, the length metric,
NCSLOC, and the complexity measure, CYCMAX, turned out to be
highly correlated. Table II gives the Pearson correlation coefficients
for the complexity metrics with the SLOC metrics.

B. Pilot Test of the Impact of Complexity on Maintenance Productivity

An obvious research question is whether the code length (as
measured by NCSLOC) has a significant effect on maintenance pro-
ductivity. A possible argument that NCSLOC should be a significant
factor rests on the theory that since the developer has more code to
understand, maintaining that code would be more difficult. On the
other hand, a slightly different argument suggests that the program
length effect would be relatively minor if the changes were localized
to a fairly small number of modules. The engineer would therefore
only need detailed knowledge of a small fraction of the code. The size
of this fraction depends more on how well the code is modularized
than the total size of the program. Thus the length of the entire code
is less relevant. There is no way to determine a priori which of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 12, DECEMBER 1991

these hypotheses is correct, and therefore the relationship between
NCSLOC and maintenance productivity requires an empirical test.

Knowledge of the impact of cyclomatic complexity on maintenance
productivity is potentially more valuable than that of NCSLOC,
because managers typically do not have a great deal of control over
the size of a program since it is intimately connected to the size
of the application. However, by measuring and adopting complexity
standards and/or by using CASE restructuring tools, they can manage
unnecessary cyclomatic complexity.

Because of the high correlation of cyclomatic complexity with
lines of code, it is likely that a test of the impact of complexity
on productivity using cyclomatic complexity would produce similar
results to those obtained using lines of code. Therefore a transformed
metric complexity density, CMAXDENS, is defined as the ratio of
cyclomatic complexity (CYCMAX) to thousand lines of executable
code (KNCSLOC). This complexity density measure is similar to
Gilb’s logical decisions per statement [6], but such measures have
not often been published. One exception is a by-product of Selby’s
research on reused code {19]. In his study of 25 NASA projects, his
mean was 81.4, with a standard deviation of 57.2. Other work by
Potier et al. [18] and Sunohara ez al. [21] also uses length-adjusted
complexity measures to model software quality. CMAXDENS, the
average McCabe complexity per thousand lines of code, was 121.3
for the current sample (standard deviation of 62.7).

The code analyzed in this research was written in both FORTRAN
and Pascal; therefore it is important to determine whether there exists
any effect of programming language used. The average complexity
density of FORTRAN modules was compared with Pascal modules
(see Table III).

No statistical difference between the means of the modules from
the different languages was found. These results show that there is
little difference that can be attributed to the different languages, at
least for the data in this sample. It is also an indication of the general
robustness of the complexity density metric.

Ultimately, however, the value of such a complexity metric lies
in whether it can predict how difficult a piece of software will be
to maintain. Such a prediction can be used either in estimating the
resources required or in trying to restructure the code so that the main-
tainability is improved. The current best measure of maintainability
is the productivity of the maintenance project on a piece of software.
In order to test the complexity density metric, its average value was
computed for seven application systems before they were maintained.
Logically, this initial (premaintenance) complexity density should
only affect those phases that are directly related to maintaining the
code. Tasks such as user support, system operation, and management
functions should not be directly affected by the complexity of the
code. Therefore maintenance productivity was defined as the total
number of lines added divided by the time (in hours) spent in coding
and testing upgrades to the software. These data are presented in
Table IV.

Three regressions were performed in order to estimate relations of
three statistics of the premaintenance software with the associated
maintenance productivity. (Obviously, the small number of data
points requires that any results must be treated cautiously.) The
three statistics examined were CMAXDENS and its components,
KNCSLOC and CYCMAX. The results for CMAXDENS were:

PRODUCTIVITY = 28.7 — 0.134* CMAXDENS
(t = 3.53) (t = —2.69)

R? = 0.39
F-Value = 7.22 (p = 0.04)
n=7

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 12, DECEMBER 1991

1287

TABLE 1V
SUMMARY OF MAINTENANCE PROJECT DATA VALUES

CMAXDENS Productivity NCSLOC Added Labor Hours Initial CYCMAX Initial NCSLOC
0.132 10.1 451 45 882 6682
0.134 10.3 3143 305 958 7133
0.197 3.6 395 110 1054 5343
0.196 2.0 347 174 1126 5738
0.193 6.1 341 56 1176 6085
0.152 0.3 221 737 310 2036
0.108 19.0 2147 113 370 3435

The t-values are significant at normal levels, suggesting that
CMAXDENS is a useful predictor of variations in maintenance
productivity. The R? value of 0.59 may be interpreted to mean that
more than half of the variation in maintenance productivity for these
data is accounted for by this simple model.

Neither of the two other regressions, however, yielded statistically
significant (at normal levels) results:

PRODUCTIVITY = 5.52 + 0.346* KNCSLOC
(t =0.65) (t = 0.22)

R = 0.01

F-Value =0.050 (p = 0.83)n = 7

PRODUCTIVITY = 11.8 — 0.0053 * CYCMAX
(t =1.70) (+ = —=0.69)

R* = 0.09

F-Value =048 (p = 0.32) n = 7

These results indicate that for this small sample, the complexity
and length of the premaintenance code (CYCMAX and KNCSLOC)
are not as useful predictors of the productivity of the maintenance
project as is the complexity density.?

These results suggest that maintenance productivity declines with
increasing complexity density. While it would be speculative to
ascribe too much importance to results based on only seven data
points, they do seem sufficiently interesting and the implications
sufficiently important that further study is indicated. If these results
continue to hold on a larger independent sample, then such results
would provide strong support for the use of the complexity density
measure as a quantitative method for analyzing software to determine
its maintainability. It might also be used as an objective measure of
this aspect of software quality.

IV. SUMMARY AND CONCLUDING REMARKS

Based upon the data used in this study, both the Myers and
Hansen counting variants of cyclomatic complexity seem to result

#Upon closer examination of the data, one project appeared to be an outlier.
It was determined that there were two reasons why that project might not
be representative. It was the smallest project examined, with only 221 lines
of code (NCSLOC) added. Furthermore, 21% of the hours in the project
could not be directly assigned because the activity reports had not been filed.
The remaining hours were therefore assigned proportionately based upon the
other activity reports. This was the largest percentage for any of the projects
studied (no other project had more than 15%). Regressions with the outlying
project removed for sensitivity analysis yielded improved fits in all three cases,
al;hough the CMAXDENS (the complexity density) model retains the highest
R®.

in values that are equivalent to the original version for all practical
purposes. Therefore these data support Shepperd’s hypothesis that the
variations do not represent a significant difference over the original
formulation [20]. The main research question revolved around the
empirically derived value added by the metric, given the high
correlations found by previous research between the metric and
standard size measures, most particularly NCSLOC. The data from
this study provide additional evidence of this high correlation. This
is particularly noteworthy, since these data are from actual systems
and, in particular, are from maintenance projects, which is the main
intended domain of the metric. Going beyond this correlation, this
paper has investigated the use of a transformed version of the
metric, referred to as “complexity density,” whereby the ratio of the
cyclomatic complexity of the module to its length in NCSLOC is
calculated. This ratio is meant to represent the normalized complexity
of a module and hence its likely level of maintenance task difficulty.
This proposed complexity density ratio was tested on a small sample
of projects and shown to be a statistically significant single-value
predictor of maintenance productivity. Therefore it is proposed that
this transformed version of the cyclomatic complexity metric can
provide a useful approximate measure of the difficulty of maintaining
a program. Of course, further empirical research will be required to
test these pilot results on a larger sample drawn from a different envi-
ronment in order to validate the usefulness of the complexity density
ratio. The complexity density ratio proposed by this research could
prove to be a simple, but practically useful measure of complexity.
It incorporates the McCabe cyclomatic complexity metric, a well-
known and well-understood measure of complexity. In addition, in
the intervening years since its introduction, the collection of the data
necessary to compute the metric has been automated by a number of
tools.* Thus the early difficulties in collecting these data have been
largely resolved, and therefore data collection should not prove to
be a practical barrier to the ratio’s use. The continued search for
useful metrics of software product complexity is a necessary first
step in the ongoing process of moving software development firmly
into the realm of engineering. With well-founded complexity metrics,
developers will have objective and useful yardsticks with which to
evaluate their initial products. These metrics will also be used by each
maintenance team as it seeks to enhance the initial product without
increasing the level of unnecessary complexity. Both of these aspects
should make a contribution toward the improved management of the
software development and maintenance process.

4For example, see Language Technology Incorporated’s INSPECTOR
product, and SET Laboratories’ PC-METRIC product [13].

1288

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 17, NO. 12, DECEMBER 1991

ACKNOWLEDGMENT

Helpful comments were received from B. Curtis on an earlier draft.
This paper has also benefited from the useful suggestions of the
Associate Editor and anonymous referees.

[1]
[2]
3]
[4]
[51

[6]
[71

(8]

19]

[10]

REFERENCES

L. A. Belady and M. M. Lehman. “A model of large program develop-
ment,” IBM Syst. J., vol. 15, no. 1, pp. 225-252, 1976.

B. W. Boehm, Software Engineering Economics. Englewood Cliffs,
NI: Prentice-Hall, 1981.

S. D. Conte, H. E. Dunsmore, and V. Y. Shen. Software Engineering
Metrics and Models. Benjamin/Cummings, 1986.

W. M. Evangelist, “Software complexity metric sensitivity to program
structuring rules,” J. Syst. Software, vol. 3, pp. 231-243, 1982.

R. K. Fjeldstad and W. T. Hamlen. “Application program maintenance
study: report to our respondents,” in Proc. GUIDE 48. Philadelphia,
PA: Guide Corp., 1979.

T. Gilb, Software Metrics. Cambridge, MA: Winthrop, 1977.

G. K. Gill, “A study of the factors that affect software development
productivity,” Master’s thesis, Sloan School of Management, MIT,
Cambridge, MA, 1989 (unpublished).

G. K. Gill and C. F. Kemerer. “Cyclomatic complexity metrics revisited:
an empirical study of software development and maintenance.” Ctr.
Inform. Syst. Res., Sloan School of Management, MIT, Cambridge,
MA, CISR WP No 218. Sloan WP No. 3222-90, 1991.

W. J. Hansen, “Measurement of program complexity by the pair
(cyclomatic number, operator count),” ACM SIGPLAN Notices, vol.
13, no. 3, pp. 29-33, Mar. 1978.

C. Jones, Programming Productivity. New York: McGraw-Hill, 1986.

[11] J. K. Kearney, R. L. Sedlmeyer, W. B. Thompson, M. A. Gray, and M.

[2
[13
(14
[s
[6
17

[18

[19

120

[21]

22

[23

]
]
]
]
1
]
]

]

]

]

A. Adler, “Software complexity measurement,” Commun. ACM, vol. 29,
no. 11, pp. 1044-1050, Nov. 1986.

B. P. Lientz and E. B. Swanson, Sofiware Maintenance Management.
Reading, MA: Addison-Wesley, 1980.

D. McAuliffe, “Measuring program complexity,” IEEE Computer, Oct.
1988.

T. J. McCabe, “A complexity measure,” IEEE Trans. Software Eng.,
vol. SE-2, pp. 308-320, 1976.

G. J. Myers, “An extension to the cyclomatic measure of program
complexity,” SIGPLAN Notices, vol. 12, no. 10, pp. 61-64, 1977.

G. Parikh, “Restructuring your COBOL programs,” Computerworld
Focus, vol. 20, no. 7a, pp. 39-42, Feb. 19, 1986.

G. Parikh and N. Zvegintzov, Eds., Tutorial on Software Maintenance.
Silver Spring, MD: IEEE Computer Soc., 1983.

D. Potier, J. Albin, V. Ferreol, and A. Bilodeau, “Experiments with
computer software complexity and reliability,” in Proc. 6th Int. Conf.
on Software Eng., 1982, pp. 94-101.

R. W. Selby, “Empirically analyzing software reuse in a production
environment,” in Software Reuse—£merging Technologies, W. Traz, Ed.
Los Alamitos, CA: IEEE Computer Soc., 1988.

M. Shepperd, “A critique of cyclomatic complexity as a software
metric,” Software Eng. J., vol. 3, no. 2, pp. 30-36, Mar. 1988.

T. Sunohara, A. Takano, K. Uehara, and T. Ohkawa, “Program com-
plexity measure for software development management,” in Proc. 5th
Int. Conf. on Software Eng., 1981, pp. 100-106.

“Parallel test and evaluation of a Cobol restructuring tool,” Fed. Soft-
ware Management Support Ctr., Office of Software Development and
Inform. Technol., U.S. General Services Admin., Falls Church, VA, Sept.
1987.

I. Vessey and R. Weber, “Some factors affecting program repair mainte-
nance: an empirical study,” Commun. ACM, vol. 26, no. 2, pp. 128-134,
Feb. 1983.

