AN AGENDA FOR RESEARCH IN THE MANAGERIAL EVALUATION OF
COMPUTER-AIDED SOFTWARE ENGINEERING (CASE) TOOL IMPACTS

Chris F. Kemerer

MIT Sloan School of Management
Cambridge, MA

‘ABSTRACT

While sales of computer-aided software engineering
(CASE) tools are already significant and are continuing
to rise, many software developers have adopted a ‘wait
and see’ attitude, due in part to the complete lack of
validated research demonstrating any of the tools
proposed productivity benefits. This paper suggests that
the lack of results in this area is due to a number of
inherent difficulties in the CASE evaluation process,
and proposes a series of research initiatives to address
the shortfalls in managers’ current ability to evaluate
these tools.

I. INTRODUCTION

Sales of computer-aided software engineering (CASE)
tools were over $100 million in 1987, and are expected to
double in each of the next three years, according to a
report by Business Technology Research [Case88]. The
tremendous growth of this nascent industry has been
fueled entirely by the overwhelming demand by
practitioners for any remedy to the software
productivity and quality crisis. However, how many
more software developers have yet to adopt the tenets of
the CASE faith, fearing that, like fourth generation
languages or structured software development before it,
CASE may be another unproven productivity nostrum?
This evaluation problem is faced by practicing software
development managers, but is currently being addressed
by software engineering researchers and CASE tool
vendors. However, efforts by both researchers and
vendors have generally failed to validate the impacts of
CASE tools. This problem stems from a number of
inherent difficulties in the CASE evaluation research
problem and in the limitations of the current approaches
to evaluation.

This discussion paper proposes a list of research
problems that 1) suggest some reasons why no
significant results have been found by previous research
and 2) set out an agenda of CASE research problems
that require attention before substantial progress can be
made on solving questions of evaluation. Solutions to
these problems will, in the short run help practicing
managers evaluate CASE technologies and in the long
run will advance research in the general area of
information technology impacts.

0073-1129/89/0000/0219$01.00 © 1989 IEEE

Broadly construed, CASE evaluation research problems
reside in three areas: 1) impacts and their measures, 2)
models, and 3) methodologies. (Clearly, there can be
overlap in those three areas, in that the choice of a model
may dictate a certain type of measure or suggest a
particular methodology. However, for presentation
purposes it will be useful to separate these categories.)
The types of impacts that will be considered are those
that are likely to be of interest to practicing IS
managers, and are often (but not exclusively) those that
are touted by CASE vendors in their marketing
literature, including increases in systems development
productivity and quality. By a model what is meant is a
representation, possibly formal, of the software
development process which allows the identification of
the impacts of CASE tools. A measure is a particular
metric for some construct in the model chosen. Thus, for
example, a choice of source lines of code (SLOC) per
work-month as a measure of the productivity impact of a
CASE tool is based on some model, perhaps an economic
production process model of capital for labor
substitution.

These models and measures are realized or implemented
by use of some research methodology, such as a formal
experiment or a case study. In some circumstances the
choice of methodology follows naturally from the
research model and measures (e.g. a survey of systems
developers' attitudes to investigate the impact of CASE
tools on job satis‘action), whereas in other circumstances
the researcher may have multiple options regarding how
to best investigate the phenomenon at hand, such as
collecting a large empirical dataset for statistical
analysis versus running an experiment to research
productivity impacts.

The format of this paper is as follows. Section Il
describes managerial impacts that are commonly
associated with CASE tools and discusses why
measuring these impacts can be difficult. Additionally,
some less commonly cited impacts are raised and
suggestions for research in these areas are made.
Section III discusses the importance of models of
software development to research in this area, and
highlights the need for further work at this level.
Section IV describes three popular research
methodologies, experiments, field studies, and surveys
and shows their respective limitations with regard to

219



Research Agenda for Evaluation of CASE Tool Impacts

CASE tool evaluation. Finally, Section V offers a brief
summary and concluding remarks which prioritize
many of the research problems presented earlier in the

paper.
II. CASE IMPACTS AND THEIR MEASURES

Managerial impacts of CASE tools can be categorized
ilong a number of dimensions. One broad categorization
used in the paragraphs that follow is between those
impacts that are most commonly ascribed to CASE tools,
such as improved productivity and quality and those less
widely discussed, such as the impacts on the quality of
work life. These latter impacts can be divided into
individual impacts, (such as whether or not CASE tools
act to "deskill” certain occupations), and group or
organizational impacts, such as power or status shifts.
Finally, the measurement of the CASE tools themselves
is discussed as a current impediment to research in all of
these areas.

A. Productivity Metrics

The most commonly used productivity metric, source
lines of code (SLOC) per labor unit (usually work-hours
or work-months, depending upon the size of the project),
suffers from two distinct sets of problems. The first is
the general difficulty in capturing comparable SLOC
metrics, a problem that has received extensive
discussion elsewhere [Jone86] and will only be
summarized here. The second problem, and more
relevant to the CASE tools discussion, is getting
agreement on whether increasing this ratio is desired,
and how it can be used to assess new CASE tools that
directly affect the numerator by changing the language
level (for instance, in fourth generation-like very high
level languages) or by automatically creating the SLOC,
as in code generators.

The first set of problems with the SLOC per labor unit
metric includes 1) varied counting rules for the
numerator, 2) effect of changed or deleted lines, and 3)
counting rules for the denominator. Jones has
documented some eleven "standard” SLOC counting
rules, mostly reflecting variations on rules concerning
comments, line delimiters, and JCL [Jone86]. This
problem is exacerbated by attempts to compare SLOC
across programming languages. Rules regarding the
proper procedure to count changed or deleted SLOC are
becoming especially critical now that research attention
is finally beginning to focus on software maintenance in
addition to new software development. Finally, there is
little agreement on how labor should be accounted for,
with variations arising from what project phases are
included, which staff personnel are included (e.g. all or
just exempt, all exempt or just programmers), and which
if any levels of management are counted. Worse than the
fact that there is little standardization in these areas is
that published research often neglects to inform the
reader which decision about data collection were made.

CASE tools provide special measurement challenges in
that many of the standard approaches, such as SLOC per
labor unit are directly affected by the impact of the tool
itself. For example, code generators produce lines of
code at a rate hundreds or even thousands of times faster
than a programmer writing by hand. Given that the
current state of the art in these tools generally leaves
some code to still be written by hand, what might be of
the most interest is the combined productivity of writing
the additional lines and understanding the generated
code. Presumably the productivity of a programmer
maintaining code he or she wrote is higher than that of
maintaining machine generated code. Whether this
effect is permanent or diminishes with time according to
some learning curve is an open research question.

A similar question could be asked about code
restructurers, CASE tools that increase the degree of
structure of existing programs. The intent is that, by
restructuring code, potential defects will be eliminated,
thus reducing the amount of corrective maintenance to
be performed in the future. Also, a claim could be made
that the code will be easier to understand for a new
programmer who is about to perform maintenance on a
program. However, veteran applications programmers
are often reluctant to use such tools, in that by having
the restructurer change their code they lose some of
their insight into how the program works, and therefore
lose some productivity on future changes. Also, some
restructurers generate more code than the existing
program had, and therefore increase the total SLOC
investment that requires maintenance, further
complicating attempts to measure productivity in this
area.

The issue of the use of restructured code highlights a
more general problem with productivity metrics based
on labor units. Typically these units are expressed
simply as "hours charged”, with no note taken of the
individuals who charged the hours. This ignores a large
body of literature highlighting the significant
differences in the productivity of individual systems
developers [Sack68, Curt81, Bank87]. These differences
in ability are compounded by differences in general
experience, experience with a particular language or
tool, experience with a particular application domain,
or, in the case of maintenance work, experience with a
particular piece of software. Many productivity effects
may be either a) masked by the effects of missing
experience variables, or b) contingent upon a particular
set of variables, such as use by relatively trained or
untrained staff members. This latter case is
particularly relevant in the discussion about CASE
tools, as the full impact on productivity may be
contingent upon sufficient experience or training so as to
reach a higher point on the learning curve. Or,
conversely, the impact of structured design tools that
provide a lot of documentation of the application may
prove to have a large impact on relative application

220



Research Agenda for Evaluation of CASE Tool Impacts

novices, but do little to aid programmers with previous
experience with the application.

The last reason why SLOC per labor unit measures are
deficient is that they are of little or no use in evaluating
CASE tools that are not involved in the programming
phase of the systems development lifecycle, such as
computer-aided design tools. The impact of these tools
must be measured in some other manner. One proposal
is to measure Albrecht’s Function Points per labor unit.
While Function Points have a clear advantage over
SLOC in this type of task, they are no panacea. They are
very labor-intensive to collect, and require a non-trivial
investment in training in their measurement in order to
expect consistent results. Further, their development in
a classic data processing environment limits their
applicability in other domains, such as real-time
systems, and requires some translation when used with
database-oriented, as opposed to file-oriented systems
[Symo88]. Finally, Function Points are still a measure of
system functionality as opposed to business
functionality. John Henderson has noted that one
impact of CASE design tools may be to reduce the size of
the system (by elimination of redundancy) while holding
the business functionality, possibly unmeasured by
Function Points, constant!.

Few standard alternatives to the use of Function Points
as a measure of non-coding productivity have been
developed. For the requirements analysis stage some
suggestions have been made along the lines of observing
the entire process and noting the number of issues
covered, alternatives examined, or even the number of
conflicts raised. These are interesting suggestions, but
as of yet no generalizable metrics have emerged from
this work. In the detailed design area, a number of
suggestions (typically stemming from structured
analysis and design or database design techniques) have
been made, including DeMarco's BANG or metrics
relating to data structure charts (DeMa82, Gold81,
Wrig88]. These also show promise, but have yet to
become widely adopted.

Finally, another impact that is commonly associated
with productivity, but need not be, is time to market.
With the increasing emphasis on the use of information
systems for strategic advantage, the competitor who is
first able to produce a system (perhaps aided in his
development by CASE tools) may reap substantial
rewards. While productivity and time to market are
likely to be highly correlated, they need not be identical
For example, a large systems development project is
likely to have a number of parallel activities, not all of
which are on 'the critical path’. Increasing the
productivity of these slack activities will not reduce the

1Personal communication.

time to market. Or, another problem may be that
productivity is increased, but insufficiently to meet
competitive threats, if, say for example, the system was
completed in 18 months rather than two years, but the
competition was done in one year. If research was
focused on the time to market question, rather than the
productivity question exclusively, new opportunities for
CASE tools might emerge.

B. Quality Metrics

Quality means a wide variety of things depending upon
one's perspective, even in the relatively limited domain
of software. Therefore, in order to keep the problem
tractable, the discussion here will be limited to those
aspects of quality that are often proposed as areas of
impact of CASE tools. Typically, the suggested impact is
one of aiding in the reduction of defects, where a defect is
some aspect of a system that causes a failure, and where
a failure is any departure of the results of the system
from what is required [Musa87]. In this definition then,
defects could be systems designs that did not include
requested functionality as well as program bugs that
cause missing or incorrect results.

The impact of CASE design aids on the quality of a
system design is difficult to measure, since there seem to
be few measures of the "goodness"” of a design. Thisisa
critical shortcoming, given the conventional wisdom
that defects introduced during the analysis and design
phases that are not found until the system is operational
are more expensive to correct than those discovered at
the same time, but that were introduced later in the life
cycle.

The attempts to document both a) the efficiency of defect
removal methods (perhaps aided by a CASE debugging
tool), and b) the cost-effectiveness of such approaches
rest on the ability to measure the number and severity of
defects in a meaningful way. Unfortunately, the metrics
for counting and classifying defects are in the early
stages. And, even if good schemes existed for such
collection, the perennial question is whether identifying
a large number of defects in the testing phase says
anything about the quality of the final product. One
assumption is that it is good to identify large numbers of
bugs in that all programs have some set of bugs, and
that the more that are found indicates that fewer
remain. Alternatively, the argument can be made that
the number of bugs in programs varies tremendously,
and that finding a large number of bugs simply indicates
that there are large numbers to be found. DeMarco
notes that program bugs are much like their insect
analogues in that if, for example, a cockroach is seenina
restaurant the assumption is not that THE cockroach
has been found, but rather that the place is probably
infested with them [DeMa82} In summary, the
problems of the inadequate understanding of what the
number of defects discovered means and the poor quality
of the data collection in this area are related, in that



Research Agenda for Evaluation of CASE Tool Impacts

better empirical data would help to clarify which model
of defects is more appropriate.

C. Work Force Impact

One area of potential impact that has not gotten much
attent.on from too! vendors or software engineering
researchers, but has occupied the minds of some
sociologists is the impact of such tools on the systems
development work force. These impacts can be at the
individual level, the group level, or the organizational
level.

Two contradictory hypotheses are proposed in terms of
the impact of CASE technology on the work-lives of the
individual systems developers. The first of these is that
tools such as CASE act to "deskill" an occupation,
removing the craft aspects of the profession and making
it dull and routinized. This argument is reflected in the
early complaints about structured programming, which
stated that by following the dicta the programmer had
no control over his or her 'art'. The second, and opposite
hypothesis is that CASE tools relieve the programmer or
analyst of such mechanical tasks such as checking a
database for consistency, or checking a set of data flow
diagrams for completeness, leaving more time for
creative work.

The problem with attempting to demonstrate the truth
of either of these hypotheses is that good measures of
systems development tasks seem to be lacking, and
therefore any before and after testing founders on not
being able to determine exactly what tasks were done at
either stage, and therefore how they compare. A further
complication stems from the fact that the kinds of
systems that are being built and the tools used change so
rapidly that such comparisons would be difficult to do
even if reasonable measures existed. This is a generic
problem to this type of measurement in that the effect of
tools may be to create differences in kind (systems are
completed that would not otherwise be attempted)
rather than differences in the degree of efficiency with
which certain classes of systems are created

An entire other set of impacts can be proposed at the
group or organizational level. Implementation of CASE
tools into the systems development process can radically
change the roles of team members. For example, a tool
may lower the level of technical knowledge that is
required to perform some programming task. For
example, the writing of JCL or an assembly code
interface may be automatically generated by a tool
utilized by one of the applications programmers
Without the tool, they may have had to allocate the task
to one of the systems programmers or more senjor
applications programmers. Thus, in this example the
tool acts to reduce the power and authority of the more
technical staff. Another example is the use of a design
tool that that generates standard detailed design and
program specifications. This may enable the
centralizing of a group of programmers who merely code

from the specifications, whereas without the tool on
previous projects these programmers were members of
decentralized project teams.

These types of group or organizational impacts have not
received much research attention, and therefore there is
a real shortage of research instruments such as metrics
of power and relative centralization or decentralization.
However, organizations that implement CASE tools in
search of other impacts such as improved individual
productivity ignore these organizational impacts at
their own peril.

D. Tool Measurement

The above sections have dealt with measures of the
impacts of tool usage. While this is a eritical focus,
another problem area concerns the measure of the use of
the tools themselves. Too often studies simply note that
a tool was or was not used. This dummy variable
formulation is likely to miss out much of what is
believed to be important and relevant about the use of
CASE tools. These issues are a) the applicability of a
tool to a particular project, b) the extent of use of a tool,
and c) the level of skill used in applying the tool. Each of
these issues poses some difficult measurement
questions.

The question of tool applicability is important in that a
study that finds no effect for the use of a tool without
taking the applicability into account does not
differentiate between tools that provide little or no
benefit in general with tools whose value may be found
only in specific sets of circumstances. These
circumstances may be rather obvious things, like a
COBOL restructurer not being valuable on an ADA
(TM, US DoD) programming project, to more subtle
ideas like whether the scale of a project warrants the use
of a tool. For example, many tools are designed to aid
Systems managers and developers in dealing with
complexity. If the system being developed is relatively
not that complex (where complexity might be measured
in a number of dimensions, e.g. data structure
complexity or algorithmic complexity), then a particular
tool may have no benefit. Indeed, the learning and other
overhead costs may introduce negative net benefits
{Bank87]. Finally, a tool may not be applicable because
of the particular staff involved, whose prior skills and
experience either do not permit them to take advantage
of what the tool has to offer or, in the less likely case,
make the marginal return on the tool zero or negative.

Measuring the depth of use of a tool is another issue that
has not been widely addressed. Previous experience
with older tools, such as text editors suggest two ideas.
The first is that the vast majority of commands and
features are not used by the average user (the so-called
80/20 rule may apply here). The second, which is
perhaps a corollary to the first, is that a few individuals
will make great use of a tool, pushing it to its limits and
greatly increasing their productivity in the process.

222



Research Agenda for Evaluation of CASE Tool Impacts

Therefore, a simple statement such as 'the tool was used'
is likely to be very meager representation of what is
actually taking place.

Finally, the impact of a too! is likely to be highly
variable from its first use to its second and subsequent
uses due to the learning costs that are incurred. In fact,
the learning costs for most CASE tools are probably
significantly large enough to effect a decrease in
productivity on the first projects on which they are used.
While this is a well recognized phenomenon, the
influence this should have in terms of how the results of
experiments ("the experimental group used the tool,
while the control group did not") and non-longitudinal
field studies should be interpreted does not always seem
to be appreciated. What needs to be done are
longitudinal studies where the effects of learning can be
accounted for.

III. MODELS FOR IDENTIFYING CASE
IMPACTS

The role of models in the evaluation of CASE tools is to
guide the research and to provide a framework with
which to assess the impacts. Additionally, formal
models, through analysis or simulation can be used
predict the impacts of CASE tools.

A. Typical problems stemming from lack of good
models

At the heart of the difficulties in researching the impact
of CASE tools is the lack of a generally accepted
underlying model of the software development process.
Even the selection of a dimension or dimensions of
impact is confounded by the lack of well-accepted
definitions for such basic concepts as productivity and
quality. Is a particular CASE tool going to make systems
development more efficient by increasing productivity,
more effective by increasing the quality, or both of these
goals simultaneously?

Productivity and quality are closely interrelated, in that
activities that benefit quality (e.g. defect removal) also
improve productivity in the long term view of
productivity, where the systems development lifecycle
includes systems operation and maintenance. However,
productivity is often thought of in the short term, or
project sense, and therefore activities such as design
walkthroughs and code inspections may appear to
reduce project productivity where that is defined as
completing the project with the minimum amount of
resources. Therefore, whether increased quality comes
with increased productivity or at its expense is very
dependent upon the particular productivity concept
employed.

Even-when a definition of productivity is agreed upon,
the lack of well-accepted models of the software
development process hinders the ability to evaluate new
methodologies and technologies. One familiar example
is the set of techniques known as structured analysis,

223

design, and programming. The notion is that careful
development according to an explicit set of rules will
result in "better” systems. Better has been taken to
variously mean higher quality and/or easier to develop
or maintain. However, a review by Vessey and Weber of
about a decade's worth of research on the analogous
issue of structured programming suggests that the
results of research using a wide variety of methodologies )
have found very weak support for this contention
[Vess84]. And given that there are some suggestions
that the initial cost of development using these
techniques is higher, it is no wonder that the
implementation and acceptance of these techniques by
practitioners has often been half-hearted.

Even when the constructs are well understood, the
problem of inferring causal relationships from
statistical data is very difficuit. To cite one famous
example, the Atlantic Systems Guild supported a study
called "Coding Wars", where programmers from a
number of field sites coded a given program and recorded
the time it took them, along with a number of other
environmental factors [DeMa85]. One of the results of
the study was that programmers who had a) larger
offices and b) secretaries to pick up their ringing phones
were more productive. This begets the question of
whether bigger offices make better programmers, or
whether better programmers get promoted and get
bigger offices.

A more common real life example arises due to how
project teams are assigned. Presumably, more senior
staff with greater experience are more productive and
produce higher quality systems than newer staff
members. However, these senior staff members are also
likely to be assigned to manage larger and more complex
projects, both due to their greater ability to handle the
responsibility and as part of the natural promotion
process. Therefore, studies of the effects of experience
and ability may be masked by the assignment of these
better individuals to more difficult projects.

B. Goal driven vs process driven models

What these examples point up is that clear underlying
models of the software development process have not
been agreed to. One set of candidates are the
"goal/product driven” models, such as a microeconomic
production process model. In this model, software
development is largely a black box where the inputs of
labor and capital are transformed into tangible goods
and services. The extreme case of this model is the
"software factory” approach, where software is viewed as
a product rolling off an assembly line [Cusu87). This
latter approach has been criticized as underrepresenting
the service rather than product aspects of custom
systems development {Coop87]. Also, the large degree to
which the labor inputs are at the craft level rather than
easily substitutable unskilled assembly line workers
may cause sufficient anomalies to upset the assumptions
of the factory model. Other models of software



Research Agenda for Evaluation of CASE Tool Impacts

development are process-driven, and concentrate on the
human aspects, particularly the relative power wielded
by systems developers and systems users. These models
can be criticized as not taking sufficient account of the
influences of the technical aspects of systems
development, with the argument being that systems
development is more than simply a negotiation problem
like others in the organization. What are really needed
are models that integrate these two perspectives,
product and process. Until there is greater agreement
on these types of modeling questions, progress in the
evaluation of individual aspects of the software
development process will be held back.

1V. METHODOLOGIES USED TO EVALUATE
CASE IMPACTS

The preceding two major sections have suggested that
analyses of the impacts of CASE tools are negatively
impacted by the lack of agreement on models of the
likely effects of the tools and by the absence of robust
measures of both the impacts and the tools themselves.
This section will discuss the limitations imposed by
current methodological approaches to research on CASE
tools. The approaches generally consist of a) formal
experiments, b) single site field studies, or-¢) multi-site
surveys.

A. Formal Experiments

In the experimental approach, some attempt is made to
control for the effects of variables other than the
variable of interest, here assumed to be use of CASE
tools. The difficulties with this approach stem partially
from general factors that plague all social science
research using this approach, and partially from factors
that are more specific to the systems development and
CASE tool problems.

The general problem with this type of work is that the
overall assumption of ceteris paribus, all other things
being equal, is extremely difficult to enforce. The
problems of knowing which other variables, such as
experience, ability, and interests are important for the
experimental task, and then knowing how to measure
and control for them (perhaps by matching) is difficult.
Other problems, such as the Hawthorne effect, also
affect experiments with human subjects.

Added to these general problems are the particular
problems imposed by the systems development problem
domain and the measurable impact of CASE tools. One
issue is that due to the scarcity of systems development
talent relative to the demand, developing systems is a
very expensive proposition, which makes systems
development staff too valuable a resource to use in large
experiments. Second, and related to this imbalance
between systems demanded and the current rate of
supply, is that systems development management is
often so overwhelmed by the short-run concerns of
getting the current workload accomplished that their

interest in work with long term payoffs, such as
research, is often limited. Finally, the expense of such
experiments militates against having the large sample
sizes that could help to alleviate the problems associated
with human variability.

One research reaction to this is to attempt to measure
the actual results of a project using the CASE tool, and
then ask the developers to estimate what the project
would have required without the tool [Lemp88]. The
difficulties with this approach are apparent if
consideration is given to the fact that there is ample
research to suggest that software developers are very
poor at effort estimation [Keme89]. Therefore, while
this approach has been a reasonable one for previous
exploratory work in CASE evaluation, future research
needs to develop approaches that lend themselves more
readily to independent validation and confirmation.

The other set of research reactions to these problems has
been either a) to use students as substitute subjects for
professional systems developers, b) to select very small
tasks for experimental subjects to perform, or ¢) both.
The problem with student subjects is that their skill and
experience levels are likely to be very different from that
of the professional systems developers for whom the
tools are intended {Cont86]. This suggests that the
results from these experiments may not apply in the real
world environment (a problem known as lack of external
validity). This is a systems development problem rather
than a problem with experiments generally since much
research, in the psychology of decision-making, for
example, is not generally impacted by factors such as
particular real world job experience.

Even if real world subjects are used, because of their
market value, experiments are generally constrained to
very small tasks, given that the parallel design of
typical experiments requires redundant effort. The
specific problem here is that many, perhaps most CASE
tools are designed to solve problems associated with
programming-in-the-large. Their effects on small
problems are likely to be limited, or perhaps even
negative, given the fixed costs discussed in a preceding
section. A final problem is that the impact of many
CASE tools (for instance, structured design
methodologies) may only have an impact on productivity
over time, and therefore classic experiments are
unlikely to capture these longitudinal effects.

What remains to be done in this area is for experiments
to be directed only at those micro problems that, because
of the perceived lack of longitudinal effects, are deemed
appropriate to research via the experimental method. In
addition, what would be helpful would be greater
participation on the part of industry and government
information systems managers to allow their staff to
participate in small but well-run formal experiments.
Some recent work at the Federal Software Management
Support Center is an example of a step in this direction
[FSMS87].

224



Research Agenda for Evaluation of CASE Tool Impacts

B. Single-site Field Studies

In order to overcome the economic obstacles surrounding
formal experiments without resorting to student
subjects, one practical alternative is to study actual
projects at a real world site. While in many respects an
improvement over the limitations of formal
experiments, field studies have their own set of obstacles
to effective CASE tool research. These are 1) finding
acceptable sites ("data quality”), 2) getting sufficiently
large sample sizes ("data quantity"), and 3) being able to
draw appropriate inferences in the absence of an
experimental structure.

B.1 Data Quality

In order for a field site to be acceptable, a number of
criteria must be met. Primary among these is the ability
to collect sufficient high quality data to make analysis
possible. Unfortunately, the average commercial firm
does not, on a routine basis, collect the information
necessary to perform these kinds of analyses. Given
some of the measures discussed in previous sections, it is
clear why this is the case. Work-hour data, if captured
at all by project, may reflect sloppy or even incorrect
bookkeeping. Staff members or managers may not
report hours if they will lead to a project going
overbudget. Or, they may report them to another project
or to an overhead account, further compounding the
error. Even if accurate records are kept by project,
detailed data by phase, by person, or both are kept only
in a few firms. Unfortunately, the lack of such data
prohibits the analysis of many of the most interesting
proposed effects of CASE tools, such as the shifting of
effort from mundane to more creative tasks, and the
increased ability of junior personnel to handle tasks
previously reserved for individuals with more expertise.

Even if labor hour data are correctly captured, the
likelihood that all other data, such as data on output,
defects, user satisfaction, complexity, and
environmental factors such as system response time, are
also captured decreases almost in direct proportion to
the degree of detail required by the research question.
In other words there are broad effects that are well
known, such as that more experienced project teams are
more productive, but attempts to get beyond these broad
effects into the more interesting questions of how and
why these effects occur require the type of detailed data
that is rarely available.

B.2 Data Quantity

The problem of sample size also frustrates attempts to do
good field research. While much of the data collection
may already be in place within a progressive IS
organization, undoubtedly a well done study will require
other data that will require new collection efforts.
Practitioners are understandably concerned about not
placing any additional significant demands on an

already overburdened IS staff. The need to minimize the
impact of these additional data collection efforts may
require the sample to be limited to a small group of
hopefully representative projects. In order to reach a
sufficient sample size, one of two options are likely.
Either data from past completed projects can be used, in
which case care must be taken to ensure the accuracy of
the non-contemporaneous data, or the researcher must
wait for data from future projects. Collection of
historical data is often made particularly problematic by
the high turnover in most IS departments. It is not at all
unusual to begin to collect data on a completed project
only to discover that the project manager or some other
key individual no longer works there. This sometimes
results in projects being excluded from the analysis,
since the contemporaneous records require
interpretation or supplementation from the project
manager, whose absence renders this impossible.

There are two problems with waiting for future data.
The first is that care must be taken to ensure the
accuracy of data being collected by individuals who may
perceive alternative uses (particularly managerial
control uses) for the data. For example, self-reported
data on SLOC or Function Points delivered may be
"fudged" to give the impression of high personal
productivity. The second problem is that it may take the
typically-sized firm a long time to generate sufficient
new projects from which to collect data. This problem is
exacerbated in the evaluation of CASE tools since many
of them are designed to be of greatest (perhaps any)
value only on large systems. A firm is likely to do these
large systems projects only infrequently, and of course,
being large, they take a long time to complete.

The ultimate danger with making the research take a
long time is three-fold. One, the field site is less likely to
sponsor a research project at all whose results are more
than a year away. Two, the pressure to publish
discourages researchers from. working on multi-year
projects. Three, there is also a danger that if the results
take very long, then changes in the business or the
technology at the site will be sufficient so as to
invalidate any results obtained. All of these problems
also decrease the likelihood of any longitudinal research
being done, a prospect that dims the possibility of
observing some proposed CASE tool effects at all.

B.3 Validity

Problems of validity are serious obstacles to performing
meaningful field research in CASE tool evaluation.
CASE tools, like other new methodologies, are likely to
be "rolled out” using one or a few specially selected pilot
projects. These pilot projects may or may not be
representative of the population of systems projects as a
whole. If volunteers are solicited, then clearly there will
be some selection bias on the part of rapid technology
adapters or simply staff members who are dissatisfied
with their current work. Even if pilot projects are

225



Research Agenda for Evaluation of CASE Tool Impacts

selected by management, the Hawthorne effect may still
predominate. Therefore, it may be difficult to get a
representative sample, in addition to the previously
described learning curve problem.

Finally, the ultimate problem with any field study may
be its external validity. Even if a CASE tool effect can
be shown, and a causal relationship is believed to be
supported by the statistical data, there is little
theoretical basis for assuming those results extend to
other firms, even other firms that appear similar. A
CASE tool implementation at one firm may have been
well-received by a staff that is eager for its use, well-
educated in its theoretical background, and gently
introduced to its mechanics through excellent training
and ongoing support. The same tool at another site may
reach unreceptive ears, and be seen as being forced on
them by management. These implementation
differences are only one example of how firms may
differ, and therefore how a tool can fail to have a similar
impact elsewhere. Differences in applications mix,
technical environment, personnel, management, users,
backlog, organizational structure, and history can all
have an impact on the final result. Therefore, field
studies, while a critical part of any research portfolio,
are limited in the total results they can support.

For all their problems and expense, field studies still
seem to be a promising avenue for CASE tool evaluation
research. What needs to be done are larger and better
controlled studies and greater publication of data and
results, so that other researchers and practitioners can
determine the degree to which they feel the results will
be valid in other environments.

C. Multi-site Surveys

Another approach that is less commonly applied to the
study of CASE tool evaluation, but is still deserving of
some discussion are multi-site surveys Multi-site
surveys are sometimes employed to counteract the
external validity questions raised by single site field
studies. They can also be used to generate larger sample
sizes, when it is believed that the different sites
represent a single statistical population, and therefore
can be pooled (For an example of such work, see
[Norm87].).

Many of the problems of multi-site surveys are the same
as the data problems encountered by single-site field
studies, which are the lack of accurate and detailed data
collection by the sites, This problem may even be
compounded in a survey (typically done by mail) where
there is little opportunity for the researcher to perform
quality control, (if less than good quality data are
recorded by the survey participant) with the exception of
gross sensitivity analysis to comb out obvious outliers.
Well-designed surveys can attempt to mitigate this
situation, through the use of multiple informants, or
through the use of multiple methods, but in practice this
may still leave some unsolved problems. One possible

approach in software engineering research is to use both
an objective and a subjective measure of some construct
such as complexity. The systems analyst or project
manager will be asked to rate complexity on a scale, and,
in addition, some measure such as McCabe's cyclomatic
complexity will be recorded [McCa76]. The difficulty
arises when these two metrics disagree. Does it mean
that the objective metric (e.g., McCabe's) does not
capture all of the notions of complexity, or is this yet
another piece of evidence that humans are poor
information processors? A conservative approach to
research might be to discard those data points where
there is a low level of correlation between the metrics.
However, due to the difficulties discussed above in
getting significant sample sizes, the temptation not to do
this is great.

Another, perhaps more common use of survey data is in
assessing attitudes towards software engineering
innovations such as CASE tools. Many of the problems
in the use of surveys to capture objective data are
removed, but attitudes are generally of less interest
than the other types of impacts that researchers attempt
to measure. And even attitudinal measurement is far
from easy. One problem with attitudes towards CASE
tools is that the responses to initial surveys after a first
implementation of CASE tools may not be reflective of
attitudes after users are further along the learning
curve. Or, reactions may simply reflect some standard
inertia that is to be expected to any change in the
established procedures. Ideally, surveys would be
conducted before, after and much after the initial
implementation of the CASE tool in order to more
accurately assess the impact. However, this
longitudinal approach to surveying suffers from the
same obstacles to longitudinal research that have been
previously discussed.

Surveys can be a useful research tool, but their use
needs to be limited to areas where the costs of field
studies cannot generate the necessary sample sizes, or
where attitudes about the use of CASE tools are of
interest.

V.SUMMARY: AN AGENDA FOR RESEARCH

This discussion paper has presented a long list of why
CASE evaluation research is difficult. These problems
center around the lack of well-understood models, the
lack of widely accepted metrics, and the difficulty of
applying standard research methodologies to CASE
evaluation problems. These problems have left open the
question as to whether the lack of substantial evidence
for the impact of CASE tools has been due to a true lack
of impact or whether the current research approaches
are inadequate for the task.

However, in all problems the optimist sees
opportunities, and the evaluation of CASE tools should
be similarly viewed. Researchers wishing to make

226



Research Agenda for Evaluation of CASE Tool Impacts

contributions that will have an impact on practice as
well as contributing to a theory of software development
production have ample opportunities, as revealed by the
lists below.

In the area of metrics, a number of topics are worth
pursuing. In terms of existing productivity metrics more
work needs to be done in terms of refining SLOC metrics
to take account of the effects of changed, deleted, and
generated code as opposed to the current assumptions of
only handwritten new code. In addition, work should
proceed on incorporating personnel aspects such as
application or tool experience, and task aspects, such as
the degree of structure of existing code for maintenance
projects. In terms of new metrics, research on metrics
for the analysis and design phases would fill a needed
void, and additional work on quality metrics,
particularly work towards developing standards in the
collection of defect statistics would also be a major
contribution. Metrics for tool usage, particularly
functionality and extent of use are important levers for
additional research. Measurements of tasks and the skill
levels necessary or applied would do much to progress
research on work force impacts.

The lack of well-understood models of software
development has been shown to retard progress in the
evaluation of CASE technology. Work should proceed
along two paths. The first is theoretical work, perhaps
relying on models from other disciplines. Production
models from microeconomics and management science
are one source for this work, as are process models from
the behavioral sciences.

The second, and parallel set of activities should focus on
empirical data gathering with which to validate and
refine the theoretical models proposed. This empirical
data gathering should rely on multiple methods for data
collection, especially field studies but also including
experiments and surveys where appropriate. Emphasis
should be placed on committing resources for
longitudinal studies, since this is where many of the
CASE tool effects are likely to be present.

This is a large agenda for research, and will require the
dedicated efforts of both academic researchers and
practitioners. However, there is some room for
optimism. Practitioners have acquired a heightened
sense of the importance of collecting data on their
systems development activities, thus preparing the way
for future researchers [Kitc86, Grad87]. And
researchers have profited with greater understanding
owing to the initial attempts to establish results in this
field. By addressing the problems stated in this paper,

2Helpful comments from participants at the MIT MIS Design
workshop,W. Chismar, and three anonymous referees are
gratefully acknowledged.

the research in the next decade should bring a series of
results that will provide better insights for practitioners,
vendors and the entire CASE tool community.2

REFERENCES

[Albr83]

Albrecht, A. J. and J. Gaffney, Jr.
Software Function, Source Lines of Code, and
Development Effort Prediction: A Software Science
Validation.
IEEE Transactions on Software Engineering SE-9
(6):639-648, November,1983.

[Bank87]

Banker, R., S. Datar and C. Kemerer
Factors Affecting Software Maintenance
Productivity: An Exploratory Study.
Proceedings of the 8th International Conference on
Information Systems, Pittsburgh, PA, December
1987.

[Boeh81]

Boehm, Barry W.
Software Engineering Economics
Prentice-Hall, Englewood Cliffs, N.J, 1981,

[Case88]
CASE Growth Will Skyrocket,
Software Magazine, V. 8, N. 3, March 16, 1988, p.16.

[Cont86]

Conte, S., H. Dunsmore and V. Shen.
Software Engineering Metrics and Models.
Benjamin/Cummings, Reading, MA, 1986,

[Coop87]

Cooper, Randy
Management Information Systems Development:
Initial Thoughts Comparing Service Delivery and
Goods Production Viewpoints
University of Michigan Working Paper, 10/21/87.

[Curt81]

Curtis, Bill.
Substantiating Programmer Variability
Proceedings of the IEEFE 69 (7):846, July, 1981.

[Cusu87]

Cusumano, M.
The Software Factory Reconsidered
MIT Sloan School Working Paper #1885-87, June
1987.

227



Research Agenda for Evaluation of CASE Tool Impacts

[DeMa8g2]

DeMarco, Tom.
Controlling Software Projects.
Yourdon Press, New York, NY, 1982.

[DeMa85]

DeMarco, T. and T. Lister.
Programmer Performance and the Effects of the
Workplace.
Proceedings of the 8th International Conference on
Software Engineering, Pages 268-272. IEEE
Computer Society, Washington, D.C., August 28-30,
1985.

[FSMS87}]
Parallel Test and Evaluation of a Cobol
Restructuring Tool
Federal Software Management Support Center,
United States General Services Administration,
Office of Software Development and Information
Technology, Falls Church, VA, September 1987.

[Gold81]

Golden, J. R.,J. R. Mueller and B. Anselm.
Software Cost Estimating: Craft or Witchcraft.
Database 12 (3):12-14, Spring, 1981.

{Grad87]

Grady, R. B.and D. L. Caswell
Software Metrics: Establishing A Company-Wide
Program
Prentice-Hall, Englewood Cliffs, NJ (1987).

[Jone86]

Jones, Capers.
Programming Productivity.
McGraw-Hill, New York, 1986.

[Keme87]

Kemerer, Chris F.
An Empirical Validation of Software Cost
Estimation Models.
Communications of the ACM 30 (5):416-429, May,
1987.

[Keme89]

Kemerer, Chris F.
Software Cost Estimation Models
Forthcoming in Software Engineers Reference Book,
Butterworth Scientific, Ltd., Surrey, England, UK
(1989).

[Kitc86]

Kitchenham, B. A. and J. A. McDermid
Software Metrics and Integrated Project Support
Environments
Software Engineering Journal, v. 1n.1,January
1986, pp. 58-64.

[Leav87]

Leavitt, Don.
Scratching the Surface of CASE Potential.
Software News 7 (2):50-53, February, 1987.

[Lemp88]

Lempp, P. and R. Lauber
What Productivity Increases to Expect from a CASE
Environment: Results of a User Survey
Proceedings of the ACM 27th Annual Technical
Symposium, Gaithersburg, MD, June 9, 1988.

[McCa78]

McCabe, T.
A Complexity Measure.
IEEE Transactions on Software Engineering SE-
2:308-320, December, 1976.

[Musa87}

Musa, J., A. lannino, and K. Okumoto
Software Reliability
McGraw-Hill, NY, NY (1987)

[Norm87]

Norman, Ronald
Integrated Development Environments in Support of
Information Systems Design Methodology and
Systems Analysts’ Productivity, PhD. Dissertation,
University of Arizona, (1987).

[Sack68]

Sackman, H., W.J. Erikson, E.E. Grant.
Exploratory Experimental Studies Comparing
Online and Offline Programming Performance.
Communications of the ACM 11 (1):3-11, January,
1968.

[Symo88]

Symons, C. R.
Function Point Analysis: Difficulties and
Improvements
IEEE Transactions on Software Engineering, v. 14,
n.1,January 1988, pp. 2-11.

[Vess84]

Vessey, [. and R. Weber
Research on Structured Programming: An
Empiricist's Evaluation
IEEE Transactions on Software Engineering SE-10
(4):397-407, July 1984.

[Wrig88]

Wrigley, C. and A. Dexter
A Model for Estimating Information Systems
Requirements Size: Preliminary Findings
Forthcoming in Proc. of the 9th International
Conference on Information Systems, Minneapolis,
Minn. December 1988.



