RN T 15

Adoption of Software Engineering
Process Innovations: The Case of
Object Orientation

Robert G. Fichman ¢ Chris F Kemerer

OFTWARE DEVELOPMENT, SO CRITICAL TO THE EFFECTIVE USE OF INFORMATION
S TECHNOLOGY, IS POORLY UNDERSTOOD AND MANAGED. NUMEROUS SOFTWARE
engineering process innovations have been proposed to improve software development,
the latest of which is object orientation. How can information systems managers
decide whether to invest in such technologies? This paper proposes a general two-
dimensional framework based on theories about organizational and communitywide
technology adoption. The authors test the framework by applying it to three previous
innovations, and it accurately describes their adoption trajectories. Then they apply
it to object orientation and take the controversial position that this new technology is
not likely to be quickly adopted by large in-house business information systems

groups. €9

Robert G. Fichman is a doctoral
candidate and Chris F. Kemerer
is the Douglas Drane Career
Development Associate Professor
of Information Technology and
Management, bovh at the MIT
Sloan School of Management.

e — R ——

rganizations increasingly rely on information

technology (IT) both to perform their day-to-

day operations and as a source of new products
and services. The popular focus has been on hardware
components, and that story has been overwhelmingly
positive: the new technologies that come to market are
cheaper, more reliable, and more portable than previous
ones.

However, much less has been written about the soft-
ware side of IT, and what has been written has not been
positive. We commonly read that software is late, over
budget, and of poor quality. Specific examples of soft-
ware in the news are almost always negative — micro-
computer software vendors that deliver releases late,
federal government systems projects that never reach
the implementation stage, and the recent telephone sys-
tem outage that was blamed on a Texas supplier who
“changed only three or four lines of the program.™

This imbalance has reached such proportions that it
has been termed the software crisis. Software production

SLOAN MANAGEMENT REVIEW/WINTER 1993

represents the single biggest obstacle to the successful
use of IT in organizations; all precepts such as “using I'T
for strategic advantage,” “reengineering the business,”
and “informating the workplace” become mere slogans if
the necessary software is not propetly delivered on time.
Into this void have rushed a multitude of vendors
and consultants offering solutions to the crisis. A quick
review of trade press magazines will reveal articles on
such topics as computer-aided software engineering
(CASE), rapid applications development, cleanroom
software engineering, software factories, and object-
oriented (OO) approaches. All of these represent soffware
engineering process technologies, that is, means by which
an application software product is created (hereafter
“software process technologies”).? The idea that process
technologies in general are critical sources of economic
success is gaining acceptance.* However, the problem
with this rich set of software process technologies is that
they may be technically incompatible, or, if not, then at
least sufficiently expensive and requiring significantly

FicHMAN & KEMERER 7

L

large changes in an organization’s operation that they are
unlikely to be successfully adopted at the same time.
How, then, can the chief information officer (CIO)
of a large business application development organiza-
tion choose which, if any, of these new software process
technologies to adopt? Unfortunately, the choice of a
new approach is rendered very difficult by the lack of
unbiased information sources. All of the technologies

are shrouded in new vocabularies and explainable only

by a self-selected cadre of experts.

Moreover, many previous technologies have been so
oversold that it is now sometimes difficult to tell legiti-
mate enthusiasm from marketing hype. Fred Brooks has
even coined a term for such oversold software process
innovations — silver bullets.* One of Brooks’s silver bul-
lets is artificial intelligence (AI) expert systems. These
were supposed to solve many problems, not just soft-
ware development, and they merited atleast two cover
stories in Business Week over the past decade, perhaps
the only software process technology to merit such gen-

ill OO become the
dominant software
' process technology of
the future for in-house business
application developmente

eral press attention. However, according to Brooks and
others, the gains delivered by this technology have been
much less than promised.’ In contrast to the initial
waves of enthusiasm, it now appears that relatively few
new systems in business organizations are being devel-
oped using this technology and that their use remains
plateaued at a small niche of applications, most of them
limited to diagnostic tasks.

This is not to say that Al expert systems are a poor
technology, just that they did not meet the inflated ex-
pectations. The critical point is that Al expert systems
have not become a dominant software process tech-
nology. An intuitive test of technology dominance is
whether the majority of organizations developing appli-
cations software would choose this technology in devel-
oping or replacing their core applications. For example,
third-generation software languages such as COBOL,
FORTRAN, and C are dominant over their predecessor
second-generation assembly languages in that second-
generation languages are now relegated to highly spe-

8 FicHMAN & KEMERER

cialized portions of applications and are not chosen as
the primary software process technology for program-
ming if any other alternative is available.

The reason that a CIO should care about sorting out
which new software process technologies are likely to be
dominant is that the costs of choosing a nondominant
technology can be substantial. In particular, even tech-
nologies that offer some technical advantages over their
predecessors may not end up dominating because they
fail to achieve a critical mass. And once an organization
commits to a technology that then fails to become dom-
inant, it faces a number of additional problems, such as:
» Difficulties in hiring experienced staff;

* Limited enhancements to core technology available on
the market;

¢ Few complementary products available;

* Third-party training opportunities less available;

| * Lack of accumulated wisdom in the industry as to

how best to improve the technology’s performance; and
* Possible loss of vendor support.

Given the significant learning and adoption startup
costs, and the increased risk of failure, these additional
burdens may make the adoption of a nondominant
technology extremely expensive in the long run.

The question remains: How can you choose tomor-
row’s dominant software process technology from
today’s list of candidates? Arguably, the leading candi-
date at the moment is the object-oriented approach.
Although some of the key ideas of OO date back to late
1960s computer science research, it is in the past six
years that OO has become a popular research topic and
that commercial products have become widely available
for its use. Recently OO was featured on the cover of
Business Week as the key to “making software simple.”
The central ideas of QO fit well with previous advances
in software engineering, and proponents argue that the
approach lends itself to the assembly of previously de-
veloped, well-tested components into software systems,
thereby avoiding the labor-intensive and less reliable ap-
proach of building everything from scratch.

Will OO become the dominant software process
technology of the future for in-house business applica-
tion development? Our thesis is that for any software
process technology to become dominant, it must first
overcome a series of obstacles to adoptability. In particu-
lar, we evaluate adoption from two perspectives: diffu-
sion of innovations and economics of technology stan-
dards. There is a rich academic and practical history of
studying the diffusion of innovations, that is, the adop-
tion of technology by individuals and their organiza-
tions, and of sorting out the characteristics of those in-

SLOAN MANAGEMENT REVIEW/WINTER 1993

R e

novations that have been successfully adopted. The eco-
nomics of technology standards perspective examines
technologies that have significant increasing returns to
adoption. That is, the benefits of adoption largely de-
pend on the size (past, present, and future) of the com-
munity of other adopters. Technologies have a greater
likelihood of success to the degree that barriers to adop-
tion are lowered.

In the sections that follow, we describe these two
points of view and apply them to three past software
process technologies (structured analysis and design
methodologies, production fourth-generation languages,
and relational database management systems). We con-
struct a framework that evaluates the likelihood of dom-
inance based on the technology’s adoptability for both
individual organizations and for whole communities or
industries. And, finally, we introduce OO and analyze it
in terms of the framework. We find ¢hat object-oriented
technology faces considerable hurdles to both individual
and industry adoption.

Perspectives on Technology Adoption

Why are some innovations adopted more rapidly than
others? This simple question has been the subject of in-
tense study by innovation diffusion researchers. Object
orientation qualifies as an innovation — some say a rad-
ical one — in software engineering process technology;
as a result, the vast body of literature on the diffusion of
innovations (DOI) is a natural starting point in the
search for clues about the technology’s ultimate disposi-
tion. DOI researchers have typically studied the technol-
ogy adoption decisions of individuals or organizations
without taking into account community issues that
strongly affect the innovation’s inherent economic value.

Yet, community effects are likely to be crucial for
software engineering process innovations because the
benefits of adoption usually depend on the size of the
current and future network of other adopters. (For ex-
ample, widespread adoption of a software engineering
process innovation increases the likelihood of the avail-
ability of complementary software tools.) Fortunately, a
second line of research, in the area of the economics of
technology standards, is focused on the role of commu-
nity effects on technology adoption. Hence, for the pur-
poses of the current analysis, we will use these two com-
plementary petspectives.

Diffusion of Innovations

DOI research has been broadly defined as the study of

how innovations spread through a population of poten-

SLOAN MANAGEMENT REVIEW/WINTER 1993

tial adopters over time.” From the DOI perspective, dif-
fusion is predominantly a process of communication;
when and how a potential adopter learns about an inno-
vation are important determinants of whether that indi-
vidual will adopt. Other factors include the characteris-
tics of the adopters and the means employed by vendors
and change agents to persuade them to adopt.

To address the broader question of the likely rate of
adoption of a specific innovation across an entire popu-
lation, one must look to attributes of the innovation it-
self. Everett Rogers reviewed hundreds of diffusion stud-
ies and identified five generic innovation attributes that
influence rates of adoption: (1) relative advantage, (2)
compatibility, (3) complexity, (4) trialability, and (5) ob-
servability.® Although Rogers’s synthesis is based mostly
on studies of adoptions by individuals (e.g., of consumer
goods), Van de Ven and others have argued that innova-
tion attributes also play an important role in adoptions
by organizations.’ In fact, these researchers maintain
that innovation attributes take on a broader role in the
context of organizational adoption of complex technolo-
gies, affecting not only the initial decision to adopt, but
also the ease of traversing later stages of adoption such as
implementation, adaptation, and routinization. Hence,
the analysis of innovation attributes provides a basis for
assessing not only the likely rate of adoption across a
population, but also the technology’s comparative
“adoptability” within individual firms (i.e., the overall
ease of reaching a state of routinized use).

Table 1 briefly defines Rogers’s five innovation at-
tributes, tailored somewhat to better fit the context of
organizational adoption of complex technologies.”® With
the exception of complexity, “high” values of the at-
tribute are favorable to easier implementation within a
given organization.

The explanations for the relative advantage, compati-
bility, and complexity attributes are straightforward
enough: organizations are more likely to be willing and
able to adopt innovations that offer clear advantages,
that do not drastically interfere with existing practices,
and that are easier to understand. Trialability and ob-
servability are both related to risk. Adopters look unfa-
vorably on innovations that are difficult to put through
a trial period or whose benefits are difficult to see or de-
scribe. These characteristics increase the uncertainty
about the innovation’s true value.

Economics of Technology Standards

The traditional DOI approach is a valuable but incom-
plete view of the dynamics of technologies, which, like
software process technologies, are subject to the phe-

FICHMAN & KEMERER 9

s g <

Table1 Attributes of Innovations

Relative Advantage The innovation is technically superior
(in terms of cost, functionality,
“image,” etc.) than the technology it
supersedes.

Compatibility The innovation is compatible with
existing values, skills, and work prac-
tices of potential adopters.

Complexity The innovation is relatively difficult to
understand and use.

Trialability The innovation can be experimented
with on a trial basis without undue
effort and expense; it can be imple-
mented incrementally and still pro-
vide a net positive benefit.

Observability The resuits and benefits of the inno-
vation’s use can be easfly observed
and communicated to others.

nomenon of increasing returns to adoption." Increasing
returns to adoption means that the benefits of adopting
an innovation largely depend on the size (past, present,
and future) of the community of other adopters. Even
though the DOI perspective recognizes the effects of
community adoption on how potential adopters perceive
a technology (e.g., by increasing social pressure to
adopt), community adoption levels also affect the inber-
ent value of any class of technology that has large in-
creasing returns to adoption.

Economists have identified several sources of increas-
ing returns to adoption, but the three most applicable to
software process technologies are learning by using, posi-
tive network externalities, and technological interrelated-
ness. Learning by using means that a technology’s price-
performance ratio improves rapidly as a community of
adoprers (vendors and users) accumulates experience in

developing and applying the

ness means that a large base of compatible products —
and hence a large base of likely adopters — is needed to
make the technology worthwhile as a whole.

Several economists have developed analytical models
to predict the circumstances under which technologies
subject to increasing returns to adoption are likely to
achieve critical mass and be widely adopted as a stan-
dard.”? Among them, Farrell and Saloner have noted that
a group of adopters, facing a decision to adopt a new and
technically superior standard, may still fail to adopt in
numbers necessary to achieve critical mass because of
each adopter’s reluctance to be the first to pay either of
two early adoption penalties: transient incompatibility
costs (because of delays in achieving a satisfactory network
for the new technology) and risk of stranding (because
of failure to ever achieve a critical mass of adoption).”

These two penalties can cause “excess inertia” to de-
velop around an existing technology and prevent the
adoption of an otherwise superior new technology.”* A
well-known example of this situation is the persistence
of the inefficient QWERTY layout for typewriter key-
boards (designed in the late 1800s to slow typists down
sufficiently to avoid key jamming) despite the later in-
vention of many superior keyboard layouts.

What determines whether a technology will achieve
critical mass? Several factors have been identified by
economists: (1) prior technology “drag,” (2) investment
irreversibility, (3) sponsorship, and (4) expectations (see
Table 2).

The reasoning behind these factors is as follows.
When a prior technology exists that has already devel-
oped a mature adoption network (i.e., it has a large in-
stalled base), the disparity in short-term benefits be-
tween the old and new technologies is likely to be large,
even though the new technology may hold more
promise in the long term. Hence the mere existence of a
prior technology’s installed base represents a “drag” on

technology. Positive network

Table2 Economic Factors Affecting Technology Adoption

externalities (sometimes
called network benefits)
means that the immediate
benefits of use are a direct
function of the number of | Irreversibility of
current adopters. (The clas- | Investments

sic example here is the tele-
phone network, where the
number of people available
to call depends on the num-
ber of previous subscribers.)

Prior Technology Drag

Sponsorship

Expectations

A prior technology provides significant network benefits because of a
large and mature installed base.

Adoption of the technology requires irreversible investments in areas
such as products, training, and accumulated project experience.

A single entity (person, organization, consortium) exists to define the
technology, set standards, subsidize early adopters, and otherwise
promote adoption of the new technology.

The technology benefits from an extended period of widespread ex-
pectations that it will be pervasively adopted in the future.

Technological interrelated-

10 FICHMAN & KEMERER

SLOAN MANAGEMENT REVIEW/WINTER 1993

RS T

the community’s progress toward switching to the new
technology because few adopters are willing to absorb
the transition costs associated with joining a small, im-
mature network. When adoption requires large, irre-
versible investments, this reluctance grows even stronger
because a substantial risk premium must be added to
adoption costs to take into account the chance of being
stranded should a satisfactory network never develop for
the new technology.

If prior technology drag and irreversible investments
were the only relevant factors, dominant technologies
might never be overturned. There are, however, two
common ways that a new technology can overcome the
head start of a prior technology: strong sponsorship and
positive expectations. Sponsors can tip the cost-benefit
equation in favor of the new technology by actively sub-
sidizing early adopters, by making credible commit-
ments to develop the technology regardless of the initial
adoption rate, and by setting standards that ensure that
a single network will emerge around the new technology
instead of a pastiche of smaller, potentially incompa-
tible networks (with correspondingly diffused network
benefits).

Expectations about a technology’s chances for domi-
nance are also a crucial dimension in the technology
standards view, for expectations largely drive critical
mass dynamics. Early in the development cycle, promis-
ing new technologies typically enjoy a kind of “honey-
moon” period during which some firms join an imma-
ture network assuming that widespread adoption will
occur later. If not enough firms hold these positive ex-
pectations to begin with, or if the honeymoon period is
cut short unexpectedly, then critical mass is unlikely to
be achieved.

What determines the length and robustness of a new
technology’s honeymoon period? Positive characteristics
include a strong scientific base and a clear match be-
tween the technology’s unique strengths and apparent
industry trends. For example, in the software industry,
data-oriented design methodologies emerged at the
same time many organizations were beginning to view
data as a shared corporation resource. Such characteris-
tics can lend an air of inevitability to a technology. On
the negative side, widely publicized adoption “horror
stories,” substantial improvements to the existing domi-
nant technology, or the rise of a new, even more prom-
ising substitute technology can cut the honeymoon
period short."” Also, the expectation that the technology
itself is soon to be significantly improved can induce in-
ertia in potential adopters.

The technology standards approach to adoption of

SLOAN MANAGEMENT REVIEW/WINTER 1993

new technologies complements the DOI approach in
three key ways. First, it defines a special class of innova-
tions, those subject to increasing returns to adoption, to
which software process technologies clearly belong.
Second, it identifies several communitywide factors
(e.g., prior technology drag) that are not included in the
DOI view and that have an impact on the adoption of
such technologies. Third, it predicts different patterns
of adoption for technologies subject to increasing re-
turns to adoption. According to the DOI perspective,
innovation attributes may distinguish whether the cu-
mulative adoption of an innovation is a steep or gently
rolling S-curve, but in any case adoption should still fol-
low an S-curve. The technology standards perspective,
by contrast, sees adoption much more dichotomously: if
a technology achieves critical mass within some reason-
able period of time (during its honeymoon period), it
will become dominant. Otherwise, the tide of expecta-
tions about the technology will turn among “swing vot-
ers,” those who will consider adoption only if they ex-
pect the technology to dominate, and adoption will
abruptly plateau or even turn negative as adopters dis-
continue use. Therefore, both perspectives add value to
our discussion.

Examples of Software Engineering

Innovations

The two perspectives described above have been useful
in explaining adoption in many industries, but how ac-
curately do they describe the speed and pattern of adop-
tion for historical innovations in software engineering?
To answer this question, we examined three recent
candidates for dominance in the realm of software engi-
neering: (1) structured analysis and design methodolo-
gies (hereafter “structured methodologies”), (2) produc-
tion fourth-generation languages (4GLs), and (3)
relational database management systems (RDBs). Each
of these innovations was intended to revolutionize a dif-
ferent segment of the software engineering discipline —
analysis and design, coding and testing, and data man-
agement, respectively. And, like object orientation, each
was preceded by tremendous publicity. Table 3 provides
an overview of these technologies.
* Structured Methodologies. In the mid-1970s, struc-
tured methodologies (such as DeMarco structured
analysis and Yourdon/Constantine structure design)
emerged to replace the informal analysis and design
practices of the day with an engineering style dedicated
to rigorous procedures, formal diagrams, and measures

of design quality. These methodologies went beyond the

FicHMAN & KEMERER 11

Table3 Software Engineering Innovations

Structured Methodologies
Bring engineering-style rigor to
the process of systems analysis
and design.

General Goals

Prior Technology Informal, “homegrown” analysis

and design methodologies.

Key Characteristics
opment into a sequence of well-
defined, mandatory activities.

Formal, standard techniques and
diagrams for eliciting user re-
quirements and representing
candidate designs.

Metrics for judging system de-
sign quality. *

Notahle Example DeMarco Structured Analysis

A revolution in software
engineering.

Early Predictions

Significant reduction in systems
maintenance costs.

Elimination of large-scale
development fiascoes.

Slow acceptance as the sanc-
tioned approach to systems
development in most large
companies.

Adoption History

Significant resistance to use in
practice.

Decomposition of systems devel-

Production 4GLs

Substantially reduce the guantity
of program code in typical busi-
ness applications and eliminate
the applications backlog.

36GLs, especially COBOL.

Nonprocedural constructs for
screen management, menus,
reports, and graphics generation.

Many built-in language functions
(mathematical and statistical
calculations, searching for
character strings, etc.).

RDBs

Make databases more easily
accessible and more flexible to
meet changing requirements.

Hierarchical and network
datahase models.

Data represented as self-
contained tables of values.

Relationships between tables
created by shared values instead
of programmer-defined links.

Data manipulated via powerful

set-level operators (select, join,
High-level control clauses to project, efc.).
facilitate structured programming
(e.g., "select case”).

Natural Oracle

The long-awaited death knell for ~ Domination of database market.
COBOL.

Improved database design stabil-
ity and flexibility due to in-
creased data independence.

Ten-to-one improvements in
programmer productivity.

Nontechnical users develop their
Own queries.

Applications development
“without programmers.”

3GLs still dominant for business
applications.

Rapidly adopted as dominant
technology for new development
after some early “growing

4GLs in danger of becoming pains.”
“stranded” in face of newer tech-
nologies (CASE, code generators,

object orientation).

Gradual conversion of existing
installed base of applications.

mere adoption of a systems development life cycle and
prescribed very specific schedules of tasks and activities.
* Production 4GLs. Although a wide variety of special-
purpose 4GLs had previously existed, it was not until
the early 1980s that a new breed of production 4GLs
became commercially available. Production 4GLs, un-
like end-user query-oriented 4GLs like FOCUS and
RAMIS 11, are those languages such as Natural,
ADS/Online, and IDEAL that were designed to support
development of large-scale business systems, a domain
that was then dominated by COBOL.

» RDBs. Commercial RDBs emerged in the early 1980s
as an alternative to the hierarchical and network model
databases such as IMS and IDMS. Although RDBs and
production 4GLs emerged concurrently, and some ven-
dors bundled the two technologies together, most ven-

12 FicHMAN & KEMERER

dors took a mix-and-match approach wherein a produc-
tion 4GL could be used with nonrelational databases,
and a relational database could be accessed via 3GLs, es-
pecially COBOL.

Because the adoption context is important, the analy-
sis below assumes a large, technologically capable infor-
mation systems department of a business organization
during the early adoption window for the respective in-
novations — a typical early adopter. For structured
methodologies, the early adoption window occurred in
the mid-1970s when they were proposed as a replace-
ment for informal (or no) processes. For production
4GLs and RDBs, this window was the early 1980s,
when they were slated to replace 3GLs and earlier
database models, respectively.

The point of studying prior technological innova-

SLOAN MANAGEMENT REVIEW/WINTER 1993

tions is that their adoption trajectories can be used to
test dominance theories. Of the three technologies, only
RDBs have proven to be dominant in the sense that
they replaced the prior technology for new development
activities. It is unlikely that an organization would rou-
tinely proceed with developing a new application using
an older generation (nonrelational) database model,
whereas organizations continually choose the older,
third-generation languages for new development.
Similarly, structured methodologies have not reached
the stage of widespread routinized use. Many organiza-
tions still cling to ad hoc methods within the life cycle
approach or have abandoned the life cycle altogether for
prototyping approaches that make no use of structured
methods. The lack of adoption of structured methods
has even been cited as a major barrier to the adoption of
integrated CASE tools.
i

Analysis from DOI Perspective

According to the DOI view, an innovation’s adoption
rate and ease of implementation are largely determined
by its degree of relative advantage, compatibility, com-
plexity, trialability, and observability. Of the three soft-
ware process innovations, structured methodologies
stand out as having faced particularly difficult chal-
lenges on these terms. Although structured methodolo-
gies (like any legitimate candidate to dominance) of-
fered relative advantages over informal methodologies,
relatively high complexity and relatively low compatibil-
ity, trialability, and observability raised substantial barri-
ers to rapid widespread adoption.

Structured methodologies were largely incompatible
with the practices of most development groups because
they overturned the “craft-oriented” values of experi-
enced project managers of the 1970s, who had individ-
ually acquired an idiosyncratic array of guidelines dur-
ing their apprenticeships. Structured methodologies had
other compatibility problems as well. They required
adopters to learn an extensive new skill set, and they
changed many standard work practices associated with
project organization and developer-client interactions
(such as requiring that greater resources be devoted to a
project’s analysis and design phases). In addition, struc-
tured methodologies were far more complicated than
the ad hoc methods they replaced. Entire books were
devoted to presenting the details, including procedural
guidance, diagram notations, and diagram construction
rules.

Structured methodologies were also difficult to put
through a trial period because of significant upfront
training costs. But as the benefits of structured method-

SLOAN MANAGEMENT REVIEW/WINTER 1993

ologies were mainly improved system maintainability
and avoidance of development fiascoes, an extended
trial period was needed to allow time for these benefits
to unfold. Finally, structured methodologies suffered
from low observability because it was difficult to de-
scribe concretely how benefits such as higher maintain-
ability were to be achieved.

In summary, the DOI view would have suggested a
slow and problematic adoption of structured method-
ologies, owing to relatively low compatibility, high com-
plexity, low trialability, and low observability.

Production 4GLs and RDBs, on the other hand,
would have rated much more favorably, suggesting com-
paratively rapid and smooth diffusion. By the 1980s,
programming languages had evolved through three pre-
vious technology “generations,” and it was reasonable to
assume that these new languages, optimistically called
the fourth generation, would enjoy similar success.
Vendors and the business press were reporting produc-
tivity gains of ten-to-one; indeed, one industry guru de-
fined 4GLs in this way. RDBs enjoyed the advantage of
a respected theoretical foundation and near universal ac-
claim in the academic community as a simpler, more ele-
gant data model that was also more robust to change.
Therefore, the relative advantages of production 4GLs
and RDBs were perceived as being particularly high.

Production 4GLs and RDBs did not have the com-
patibility problems that structured methodologies had.
Adoption of production 4GLs and RDBs required a
more straightforward substitution of new skills for old,
with no major changes in work organization or reduc-
tions in autonomy for system developers. Although
some idiosyncratic 3GL skills were lost with production
4GLs, the effect was less severe than with structured
methodologies. In addition, inherently high complexity
was not a problem. Production 4GLs were intended to
simplify programming by letting the machine do more
of the work, which is not to say that production 4GLs
were simple to use in some absolute sense, but rather
that they were simpler to use than alternative languages
like COBOL. Likewise, RDBs were much simpler to
use than first-generation database systems, with relative-
ly intuitive select and join commands replacing arcane
pointer references.

Although production 4GLs and RDBs required up-
front investments in software and training comparable
to structured methodologies, it was possible to demon-
strate value on a single pilot project. As a result, the
costs of experimenting with either technology could be
kept at reasonable levels. Finally, production 4GLs were
highly observable because adopters could draw concrete

FicHMAN & KEMERER 13

comparisons between applications written in a produc-
tion 4GL and a third-generation language (e.g., number
of work hours). RDBs, by contrast, suffered from lower
observability because it was difficult to describe in con-
crete terms how they would achieve greater flexibility
and data independence.

In summary, 4GLs and RDBs faced many fewer ob-
stacles to adoption than did structured methodologies,
and therefore the DOI view would have suggested more
rapid and smooth adoption of these two technologies.

However, only RDBs have become dominant.
Although the DOI view accounts for the fate of struc-
tured methodologies, it does not effectively discriminate
between 4GLs and RDBs and, therefore, would have

been an inadequate single explanation of dominance.

Analysis from Economics of Technology Standards
b

an innovation facing a monolithic installed base, name-
ly, the COBOL programming language. Forgoing the
COBOL standard meant missing out on a large net-
work of experienced personnel and compatible tools
(e.g., database systems). Hence, prior technology drag
was especially high.

Adoption of production 4GLs required largely irre-
versible investments in staff training and software —
specialized assets that lose most or all of their value
should the investment project be abandoned later.
Naturally, organizations are reluctant to incur the risk
associated with such investments, especially when the
investment pertains to technologies that, like most soft-
ware engineering innovations, require a critical mass of
other adopters to achieve full benefits over the long
term.

Lack of sponsorship also created a hurdle for 4GLs.

Perspective
The three technologies under discussion

Figure 1 Software Engineering Process Technologies Adoption Grid

are all subject to increasing returns to
adoption; they become much more valu-
able to individual adopters to the extent
that others adopt. Widespread adoption
leads to faster maturation (learning by
using), wider availability of qualified per-
sonnel (positive network externalities),
and a larger array of complementary
products and services (technological in-
terrelatedness). Hence, the technology

standards view is appropriate for analyz- Low
ing the communitywide adoptability of
these three technologies. As described
. . —>
earlier, four factors largely determine "
 B5 TEE Low _ High
whether a technology wxll. achieve critical Community adoptability g
mass and become a dominant technolo- (economics of standards
gy: prior technology drag, irreversibility perspective)
of investments, sponsorship, and expec-
tations. . N
duction 4 Niche Adoption will start out fast among adopters who are rel-

Production 4GLs stand out among atively insensitive to standards issues or who have opti-
the three technologies as having faced es- mistic expectations about future levels of adoption. But
pecially severe obstacles from the eco- adoption will plateau ata posmop.short of dominance

. . because of a failure to achieve critical mass.

nomics of technology standards view.
Production 4GLs faced extensive prior | Dominant Technology The technology will be rapidly adopted as a dominant
technology drag’ required 1arge irre- process technology. It will face relatively low barriers to
versible investments, were poorly spon- individual or community adoption.
sored, and had diminished expectations Slow Mover The technology will diffuse steadily but slowly because

(due to publicity surrounding adoption
fiascoes and the lack of a strong scientific
base).

When introduced in the early 1980s,
production 4GLs were a textbook case of

High T

Organizational
adoptability
(DOI perspective)

Experimental

|
|
Niche | Dominant technology
{Production 4GLs) \ (RDBs)
|
N
Experimental Slow mover

|

|

| .

‘ {Structured methodologies)
|

|

|

of the difficulty of individual organization adoption.

The technology will need to evolve before it is widely
adopted by mainstream organizations as a dominant
technology.

14 FicHMAN & KEMERER

m e RS 2 R

SLOAN MANAGEMENT REVIEW/WINTER 1993

A dominant sponsor can advance the adoption of a
technology by promoting a unified standard, by subsi-
dizing early adopters, or by making a credible commit-
ment to develop the technology even in the face of ex-
pected delays in widespread adoption. In the case of
production 4GLs, many languages emerged — none
supported by a dominant sponsor. Production 4GLs
even lacked a single authority figure to define exactly
what capabilities a production 4GL should provide.

Finally, expectations worked against community
adoption. Production 4GLs were developed primarily
by innovators in the commercial sector and suffered
from a lack of scientific support or more objective boost-
erism from the academic community. Perhaps more
damaging, 4GLs experienced some widely publicized
adoption fiascoes, such as the infamous New Jersey
Department of Motor Vehicles case.'s

In summary, the economics of tethnology standards
view offers an explanation for the failure of 4GLs to
achieve critical mass because of high prior technology
drag, large irreversible investments, relatively poor spon-
sorship, and rapidly diminished expectations.

Structured methodologies and RDBs, on the other
hand, would have rated much more favorably from the
economics of technology standards view. On the first
" and most important dimension — prior technology
drag — structured methodologies were an attempt to
impose order on chaos and thus faced essentially no in-
stalled base. RDBs faced an installed base of first-gener-
ation database systems, although not one so mature and
ubiquitous as COBOL. In addition, the first-generation
database market was fragmented, meaning that the ben-
efits associated with joining the network of any given
database product (e.g., IMS or IDMS) were corre-
spondingly reduced.

As with production 4GLs, RDBs and structured
methodologies required largely irreversible investments
in staff training. Additionally, adoption of RDBs re-
quired the purchase of expensive software. This suggests
that the irreversible investments dimension is not a sig-
nificant discriminator among any of the three technolo-
gies. On the sponsorship dimension, RDBs had a
founding father in E.E Codd who clearly established
the criteria for database management systems (DBMS)
to qualify as fully relational. Structured methodologies
also had easily identifiable founding fathers (e.g., Ed
Yourdon and Tom DeMarco, among others). Although
none of the three technologies was strongly sponsored
in the traditional sense of a single organization encour-
aging adoption, RDBs and structured methodologies
had widely recognized leaders defining the technology

SLOAN MANAGEMENT REVIEW/WINTER 1993

and proselytizing for widespread adoption, and they
therefore rank relatively higher than production 4GLs
on this dimension.

With an unassailable scientific base and near univer-
sal support in the academic community, RDBs benefit-
ed from high expectations. In addition, the strengths of
RDBs — data independence and greatly simplified in-
formation retrieval — complemented industry trends
toward more data-intensive applications. Structured
methodologies were certainly in line with the trend in
the 1970s toward large-scale development projects, and
they also escaped widely publicized disasters. Therefore,
production 4GLs rated the poorest on this dimension.

To summarize, compared with production 4GLs,
RDBs faced a much less well-established installed base
and had the advantage of positive expectations and a
strong sponsor to push forward a cohesive definition of
the technology. Structured methodologies had effective-
ly no installed base to overcome, required less in the
way of irreversible investments, and were somewhat bet-
ter sponsored. Hence, other things being equal, the
economics of technology standards view would have
implied a relatively easy community adoption of struc-
tured methodologies and RDBs.

Again, however, only RDBs have actually become
dominant. Therefore, the economics of technology
standards view, although accurately reflecting the fate of
production 4GLs, does not effectively discriminate be-
tween structured methodologies and RDBs and there-
fore would have been an inadequate single explanation
of the ultimate dispositions of these technologies.

Framework for Assessing Software
Engineering Process Technologies

To summarize, the DOI perspective rates production
4GLs highly but fails to take into account the effects of
increasing returns to adoption present in software pro-
cess technologies. The economics of technology stan-
dards perspective rates structured methodologies highly
but fails to consider the delays caused by low organi-
zational adoptability. Of the three, only RDBs have be-
come a dominant technology, and only RDBs rate high-
ly on both criteria. This suggests that it may be neces-
sary to consider both perspectives in order to accurately
forecast the likelihood of the innovation dominance.
Figure 1 illustrates a unified framework for assessing
the likelihood of software engineering technologies be-
coming dominant. The vertical axis reflects the DOI
view of organizational adoptability. The horizontal axis
reflects the economics of technology standards perspec-

FicHMaN & KEMERER 15

tive of community adoptability. The space defined by
the two continuums can be simplified by dividing each
in half and creating four quadrants, each of which im-
plies a distinctive adoption trajectory.

This framework effectively explains the adoption pat-
terns of these three past software engineering process in-
novations. Production 4GLs diffused rapidly to a num-
ber of organizations but never displaced 3GLs as the
dominant choice for new development, except possibly
in some niche applications. 3GLs are still the language
of choice for code generators, which may imply that a
plateau has been reached for production 4GL adoption.
Structured methodologies, almost twenty years after
their introduction, are still being adopted very slowly, as
evidenced by the difficulty in introducing CASE tools
that are tied to these methodologies. RDBs became a
dominant technology during the 1980s and now repre-
sent the vast majority of new implementations of large-
scale business systems.

Advocates of OO claim that adherence to these ideas
advances such long-standing software engineering goals
as abstraction, modularity, and reuse.

Designers achieve encapsulation by placing a set of
data and all the valid operations on that data together
inside a metaphorical “capsule” called an object. The
logic behind encapsulation is simple: as there is usually a.
limited number of sensible operations for any given data
structure, why not restrict processing to only these oper-
ations and put them together with the data in one
place? Although this seems reasonable, it is not how tra-
ditional systems are organized. In a traditional system,
the various operations associated with any given set of
data (edits, calculations, transformations, update logic,
and so forth) are typically repeated, more or less consis-
tently, in many otherwise independent application pro-
grams. To take a simple example, variants on an “update
customer balance” operation might appear in a billing
program, a cash processing program, and a credit pro-

Table4 Object-Oriented Terminology

What Is Object
Orientation?
Class
Object-oriented technologies
are being touted as tomorrow’s Encapsulation

software process technology. In
this section, we give a very brief
introduction to OO as it is por-
trayed by its advocates. The sec-
tion is designed as a primer to
these ideas for the CIO or equiv-
alent.

A daunting lexicon has de-
veloped around object-oriented
technology, partly because the
object-oriented approach touch-
es all aspects of software engi-
neering and partly because many
of the concepts associated with
OO have no direct analogs in
the world of conventional sys-
tems development (see Table 4
for a list of key terms). Yet the
essence of the object-oriented
approach can be captured by
two principles for structuring
systems: storing data and related
operations together within ob-
jects (encapsulation) and shar-
ing commonalities between
classes of objects (inheritance).

Information Hiding

Inheritance

Message Passing

Method

Object

Polymorphism

Variable

An abstract definition or template for a collection of objects that share
identical structure and behavior.

Enclosing a data structure and all operations that access the structure in-
side a “capsule” or object, which prevents direct access to the data by
means other than those operations.

A design principle that states that the internal structure of a given module
should be a black box that stays hidden from other modules. Information
hiding insulates other modules from changes that affect a given module’s
internal representation but not its external interface.

A mechanism that allows objects from different but related classes to
share common characteristics (variable and method definitions) by placing
those common characteristics in higher-level classes and creating links to
those classes.

The practice of using explicit messages sent from one object to another as
the only form of object communication. A message consists of an object
identifier, a method name, and a set of arguments.

A small program associated with an object that performs an atomic and
cohesive operation, usually on that object’s data.

An abstraction of a real-world object that encapsulates a set of variables
and methods corresponding to the real-world object’s attributes and
behaviors.

A programming mechanism that allows the same message protocol to be
sent to abjects from distinct yet similar classes to invoke a common ac-
tion. For example, polymorphism allows the same PRINT message proto-
col to be sent to a document or spreadsheet rather than having separate
message protocols for each.

An item of data associated with an object.

16 FicHMAN & KEMERER

MR A

SLOAN MANAGEMENT REVIEW/WINTER 1993

PP P S e 1

Table 5 Software Engineering Goals

Abstraction

Modularity

Abstraction is & “simplified description or specification of a system that
emphasizes some of the systems details or properties while suppressing
others.”* The evolution of software engineering can be seen as a stream
of improved software abstraction mechanisms, beginning in the 1950s
with the invention of symbolic assemblers and continuing over the next
three decades with the invention of callable procedures, stepwise refine-
ment, structured programming, and, especially, successive generations of
higher-level programming languages.

Modularity is the principle of decomposing program logic into a collection
of well-defined, self-contained units (modules) rather than creating a sin-
gle, monalithic program. Ideally, modules should be loosely coupled and
highly factored. Loosely coupled modules have a minimum of interdepen-
dencies, which means that an individual module can be modified or ex-
tended without causing a cascade of related changes. Factoring, the prac-
tice of putting one thing in one place, seeks to eliminate duplicate code
across similar but not quite identical modules. By eliminating redundant
coding efforts, factoring reduces the size of development and mainte-
nance projects and avgids the creeping inconsistencies that may appear
over time in modules that share redundant code.

Software reuse means applying a piece of program code for some purpose
beyond what it was originally intended for. Subroutine libraries, program
skeletons, and cutting-and-pasting code from one program to another are
all forms of reuse. The reuse of software eliminates the need to redun-
dantly develop software, thereby improving productivity, and allows the
use of tested and proven components, thereby improving quality.

* M. Shaw, “Abstraction Techniques in Modern Programming Languages,”

arate and largely redundant sets
of data and operations (one for
each employee type). As with en-
capsulation, inheritance is rarely
used in traditional systems devel-
opment because conventional
programming languages make it
difficult to be implemented as a
primary structuring principle.
Advocates of OO have argued
that encapsulation and inheritance
can advance the software engi-
neering goals of abstraction, mod-
ularity, and reuse (see Table 5).
These qualities in turn can drasti-
cally reduce system development
and maintenance cost while im-
proving system flexibility and
quality. Not surprisingly, com-
puter scientists have been seeking
better ways to promote these
three qualities for decades.
Abstraction is a tool for manag-
ing complexity. Designers pro-
mote abstraction of computer

IEEE Software, October 1984, pp. 10-26.

systems (or any other technical
artifact) by emphasizing details

cessing program. Traditional systems are designed this
way because they were developed prior to the
widespread advocacy of encapsulation and because con-
ventional languages make encapsulation, as a primary
structuring principle, awkward to achieve.

Inheritance in OO is something like inheritance in
the real world. To take a particularly literal example, a
sporting dog inherits attributes (physical characteristics)
and behaviors (pointing and retrieving) from its parents.
Likewise, within an object-oriented system, classes of
software objects inherit common variables and methods
from ancestor classes. The net result of inheritance is
that developers can avoid coding redundancies by plac-
ing each operation at the appropriate level in a hierarchy
of system modules (object classes). For example, sup-
pose that employees are classified as houtly or salaried.
With inheritance, a designer places common data and
operations in a parent “employee” class and unique
characteristics (e.g., regarding compensation) in two
subclasses, “hourly employee” and “salaried employee.”
This avoids the need to either (a) create a single set of
data and operations with extra logic to handle differ-
ences between kinds of employees or (b) create two sep-

SLOAN MANAGEMENT REVIEW/WINTER 1993

that are important to the user
while suppressing details that are unnecessary for the
task at hand. For example, consider the different level of
detail required to explain a combustion engine to a driv-
e, mechanic, or physicist. Encapsulation promotes ab-
straction by making it easier to define objects in terms
of what they do instead of how they do it. OO advocates
believe inheritance is potentially even more powerful for
promoting abstraction. One of the best ways to create
useful abstractions is to describe some idea first in its
most general form, followed by progressively specific
versions (e.g., mammal, canine, sporting dog, retriever).
This is precisely what an inheritance hierarchy does —
it defines a hierarchical taxonomy of object classes from
most general (at the top of the hierarchy) to most spe-
cific (at the bottom).

Modularity is a powerful tool for managing large
problem domains. In fact, the structured programming
movement in the Jate 1960s and early 1970s was largely
an attempt to develop methods to improve the extent
and quality of modularity in delivered systems. The net
result of high-quality modularity is to localize system
functionality so that changes can be made to one part
of a system without a cascade of related changes. This

FicHMAN & KEMERER 17

R TR

cascade of changes (the so-called ripple effect) can be
devastating; in many systems, hundreds or thousands of
programs may be interdependent because of program
code redundancies or, more subtly, the sharing of com-
mon data. (A seemingly minor change to the meaning
or structure of data can ripple across all programs that
share the data.) Encapsulation promotes a looser cou-
pling of modules by disallowing sharing of data and
limiting the range of module interdependencies to their
external interfaces. Inheritance, when properly used,
provides an elegant tool for extracting logic common to
a group of classes at one level and placing it in a single,
higher-level “superclass.”

Reuse is the well-known principle of avoiding extra
work by not reinventing the wheel. Although software
reuse is perhaps the most persistently claimed advantage
of object orientation, it has existed in one form or an-
other since the early days of prograthming. But al-
though conventional approaches allow for reuse of code,
object orientation provides mechanisms that facilitate
and enforce reuse. Encapsulation promotes information
hiding, which reduces the burden of describing and
finding reusable components — a significant obstacle to
reuse in a large-scale environment. Inheritance plays an
even more important role. Each time a new class is de-
fined in an inheritance structure, this implicitly enforces
reuse of operations from the parents of the new class.
Finally, encapsulation and inheritance can both support
reuse indirectly by improving system modularity. When
system components are highly modular, they are much
easier to reassemble in new combinations to support a
new context.

In summary, object orientation is a software engi-
neering process innovation whose essential principles —
encapsulation and inheritance — have been claimed to
lead to systems that are more abstract, more modular,
and more reusable.

Object Orientation: Where Does It Fit?

Where does object orientation fit on the new frame-
work? Is it more likely to become a dominant technolo-
gy or to end up in the slow mover, niche, or experimen-
tal categories? To answer this question, we must analyze
object orientation along the dimensions of organiza-

tional adoptability and community adoptability.

Organizational Adoptability

Like production 4GLs and RDBs, object orientation
rates highly on perceived relative advantage. The practi-
tioner literature has taken an almost uniformly positive

18 FiICHMAN & KEMERER

tone toward OO, and a strong body of theoretical evi-
dence supports the approach. Proponents have argued
that object orientation promotes abstraction, modulari-
ty, and reuse, all of which are long-standing objectives
of the software engineering field. It is fair to assume,
then, that many potential adopters will develop favor-
able opinions of the advantages of object orientation
based on positive reviews in the literature and their own
assessments of the technology’s potential merits.

As in the case of structured methodologies, however,
compatibility appears to be a significant pitfall. Object
orientation is a new development model and requires
new skills in analysis, design, and programming that re-
place, rather than build on, those associated with con-
ventional development.”” In addition, several authors
have noted that successful reuse requires marked
changes in culture and values.”® It has been observed
that to maximize reuse, developers must learn to assem-
ble applications using objects developed by others. This
means that developers must learn to trust classes they
did not develop and to overcome the “not invented
here” bias. Furthermore, OO adoption as an organiza-
tion’s standard approach will likely require a restructur-
ing of development teams. Some proponents have sug-

bject orientation, as a
process technology,
rates unfavorably on the
complexity dimension.

gested the need to institutionalize reuse through
creation of a new function similar to data administra-
tion that administers and controls the common reposi-
tory of reusable components.”” Others have gone so far
as to suggest that object orientation requires the cre-
ation of new categories of developers — class “produc-
ers” who develop the foundation classes in the reposi-
tory and class “consumers” who assemble existing
components into new applications.”

Object orientation, as a process technology, also rates
unfavorably on the complexity dimension, even relative
to other complex software engineering technologies like
structured methodologies. To be successful with OO as
a software engineering process technology, an adopter
must absorb a new lexicon, new development method-
ologies, and new development tools. The need to mas-
ter such concepts as encapsulation, inheritance, infor-
mation hiding, polymorphism, and many others

SLOAN MANAGEMENT REVIEW/WINTER 1993

RIS i

beyond those presented in Table 4 represents a signifi-
cant barrier to achieving an overall understanding of ob-
ject orientation and its proper application.

Object orientation, as a process technology, is also
difficult to put through a trial period. As with the struc-
tured methodologies, production RDBs, and 4GLs,
OO will require substantial upfront expenditures on
software and training in order to conduct meaningful
pilot projects. Many of the ultimate benefits of object
orientation come from the repository of reusable com-
ponents, which may take many years to create.” In the
meantime, adopters are likely to experience an initial
productivity decline because of the extra initial effort to
design modules for reuse.

As a software engineering process innovation, object
orientation is largely a “black box” technology — unless
one mistakenly equates object orientation, as many do,
with iconic user interfaces. The benefits of object orien-
tation resist direct observation, and few organizations
collect and track the software metrics required to
demonstrate increased reuse, improved maintainability,
or incremental improvements in productivity. As a re-
sult, object orientation suffers from low observability.

In summary, object orientation rates comparably
with structured methodologies, the least favorable of the
three previously reviewed technologies, on ease of adop-
tion, with high relative advantage, but equal or lower
ratings on compatibility, complexity, trialability, and
observability.

Community Adoptability

For object orientation, the rival entrenched technology
is not just a language generation or a database model,
but the entire procedural paradigm for software devel-
opment. It is therefore difficult to imagine a more com-
pelling instance of prior technology drag in software en-
gineering. New approaches have been proposed in every
segment of software engineering: analysis (OOA), de-
sign (OOD), programming (OOP), and databases
(OODBMS). Full object orientation also requires more
extensive irreversible investments than production 4GLs
or RDBs because of a substantially larger training bur-
den and a wider array of potential software purchases
(i.e., CASE tools to support analysis and design, new
programming languages, and a new DBMS).

Object orientation does have a sponsor, the Object
Management Group (OMG). OMG, a consortium of
over two hundred technology vendors and users, per-
forms all of the roles of a traditional technology spon-
sor: coordination of standards, subsidization of early
adopters (e.g., through technology-sharing agreements),

SLOAN MANAGEMENT REVIEW/WINTER 1993

and general promotion of the technology (e.g., through
seminars and technology fairs). However, an industry
consortium is a relatively weak type of sponsor as it is
subject to defections and even disbandment if the ven-
dor participants decide it is in their interest to do so. In
addition, standards generated by committee generally
take longer to form than de facto or other unilateral
standards and may therefore be less successful. For both
these reasons, a consortium can be a weaker sponsor
than a single vendor or other source.

Object orientation possesses many of the characteris-
tics that lead to an extended period of favorable expecta-
tions. Object technology has a strong scientific base and
enjoys widespread support in the academic community

lthough expectations for OO
are currently positive, they
were similarly positive for

4GLs when first infroduced.

as a “better way” to develop software. It provides power-
ful mechanisms for software modularity and abstrac-
tion; these can be seen as central to most software engi-
neering advances to date. In addition, object technology
is aligned with many current technology trends. It ap-
pears well suited to event-driven graphical user inter-
faces, multimedia systems (voice, imaging, animation),
and highly parallel processing (e.g., for full text search-
ing and retrieval). These kinds of applications tend to
require complex multilevel data structures and data en-
capsulation, both of which are difficult to implement
within the procedural paradigm, but they play to the
particular strengths of object orientation. However, pro-
duction 4GLs also had high positive expectations, re-
flected in their very name, which implied an inevitability
to their replacing 3GLs. In addition, OO faces a more so-
phisticated and skeptical adoption community as the
passing years have provided a larger array of proposed
software process technologies that failed to live up to
early expectations.

In summary, object orientation rates about the same
as production 4GLs, the lowest of the previously re-
viewed software engineering innovations, from the eco-
nomics of technology standards view. Object orienta-
tion faces an even more thoroughly entrenched standard
(the procedural paradigm) and requires a more extensive
investment in irreversible assets than production 4GLs.

FicHMAN & KEMERER 19

Although expectations for OO are currently positive,
they were similarly positive for 4GLs when first intro-
duced. While object orientation does appear to be bet-
ter sponsored than production 4GLs, this sponsorship is
in the form of a potentially fragile consortium.

The combined ratings on ease of both individual and
community adoption place object orientation in the ex-
perimental quadrant of the framework. This suggests
that further development of the technology will be
needed before widespread adoption will occur.

Conclusions

The poor state of software development practice has en-
gendered a large number of proposed process technolo-
gy improvements. Managers secking advice on new soft-
ware process technologies should learn from the lessons
of technological change in other domatns while recog-
nizing the relatively unique features of software process
technologies. The two-dimensional framework com-
bines the work on diffusion of innovations and eco-
nomics of technology standards to create a method for
evaluating the potential of technology dominance. As
we have shown, the framework offers an explanation
for the adoption trajectory of previous technologies in
analysis and design, coding and testing, and data man-
agement. Object orientation, the latest widely touted
software process technology, rates unfavorably on both
scales relative to these prior technologies and thus is un-
likely to become the dominant software process tech-
nology for large in-house business application develop-
ers without significant changes.

What are the risks for the CIO of ignoring the
framework when evaluating software process technolo-
gies? The primary risk associated with early adoption of
niche technologies is being stranded on a technological
“spur” away from the main track of technology develop-
ment; the primary risk associated with early adoption of
slow movers is implementation failure or the need to
weather an extended period of transient incompatibility
costs while waiting for a robust network to emerge. For
some organizations, under some circumstances, these
risks may be acceptable. Companies facing a wave of
crucial new development projects that cannot feasibly
be done with current technologies might consider a par-
ticularly well-suited niche technology — with the un-
derstanding that an expensive redevelopment or conver-
sion may become necessary sooner (e.g., within five to
ten years) rather than later (e.g., within ten to twenty
years). Companies that are facing a major system re-
placement decision, that have a successful track record

20 FicHMAN & KEMERER

in adopting “bleeding edge” technologies, and that have
the resources to support a robust internal training pro-
gram might consider adopting a slow mover.

The risks of full-scale organizational adoption of cur-
rent OO technology include both of the above, given its
predicted trajectory into the experimental cell of the
matrix. It will prove difficult to make the technology a
routine part of software development. And, even if the
organization successfully adopts the technology, the cru-
cial benefits that accrue from a large network of users
may never develop, given the barriers to industry adop-
tion. The organization may end up locked into a
stranded technology, finding it difficult to hire experi-
enced staff, to purchase complementary tools, and in
general to achieve the benefits that adopters of domi-
nant process technologies enjoy.

Having said this, in the immediate future, there will
no doubt be a series of OO success stories — some gen-
uine and others overstated for dramatic effect, as ven-

irst movers will be in the ironic
posifion of having to hope they
are quickly followed, so that
crifical mass will be reached and the
technology will become dominant.

dors and early adopters try to encourage a bandwagon.
In assessing these stories, however, managers must con-
sider several key questions. First, to what degree is the
system truly “object oriented”? As with expert systems, a
new technology often accrues a certain status so that
vendors quickly give the new label to all their technolo-
gies within reach, whether or not they actually deserve
it. Second, who did the development? Results achieved
by handpicked internal stars or a team of industry con-
sultants cannot be generalized to an entire IS develop-
ment organization. Third, what kind of system was de-
veloped? Here again, a stand-alone application in a
specialized domain might not be representative of the
broader range of large business-oriented systems that
comprise the core applications of most IS organizations.
And finally, has the adopting company truly made the
transition to routinized use, where OO has become the
default technology for new applications? All too many
software innovations end up as “shelfware” after promis-
ing pilot projects, because of the difficulty in replicating
the success of one team across the entire organization.
But isn it desirable to be different from your com-

SLOAN MANAGEMENT REVIEW/WINTER 1993

B I

petitors? Wouldn't being a first mover in adopting OO
provide a competitive advantage as many proponents
suggest? This is unlikely. Publicly available technologies
rarely provide a sustainable competitive advantage in
and of themselves: they require mating with some other
relatively unique organizational competence, otherwise
all competitors would also adopt the technology and
quickly close the gap. In fact, in the case of OO, first
movers will be in the ironic position of having to hope
they are quickly followed, so that critical mass will be
reached and the technology will become dominant.
Meanwhile — even assuming dominance eventually is
achieved — the benefits of being a first mover (e.g., rid-
ing the internal learning curve sooner, building general
innovative capabilities, and attracting leading-edge per-
sonnel) could easily be outweighed by disadvantages
(e.g., joining an immature network with high transient
incompatibility costs, adopting an ehrly and less favor-
able technology vintage, and experiencing a loss of
trained staff to other companies). As a result, instances
of first-mover advantages for corporate IS departments
are likely to be rare. (For software vendors, however, an
alternative scenario exists where heavy initial investment
in OO could trigger a virtuous cycle of increased mar-
ket share and resulting increased economics of scale.)

The framework we have described outlines the likely
diffusion pattern at the time the ratings are performed.
The most appropriate time to perform the assessment is
during the technology’s first widespread commercial
availability. It is possible that, over a period of years, rat-
ings on individual dimensions could evolve enough to
move a technology’s trajectory to a different cell. Having
said that, such a move is probably unusual given the
rapid arrival of new technologies and the inevitable loss
of uncritical media attention typically bestowed on an
emerging technology. Technologies can be new and ex-
citing only once; premature deployment and excessive
claims about benefits can be very damaging.”? However,
some speculation on the possibility of OO’s trajectory
changing is clearly appropriate, both for proponents
who wish to increase the adoption rate of their technol-
ogy and for potential adopters who wish to track the
progress of this technology for signs of increasing likeli-
hood of its widescale adoption.

On the positive side, better than expected growth in
the demand for applications that fit well with the OO
approach is likely to increase OO’s relative advantage.
Thus a growth in multimedia applications and the de-
mand for applications running in client-server environ-
ments would clearly help. New tools that reduce the
technology’s complexity or make OO more compatible

SLOAN MANAGEMENT REVIEW/WINTER 1993

with existing techniques would also be positive steps.
Adoption of OO techniques in university programs
would enable the next generation of software engineers
to avoid the compatibility trap. Favorable trade press
coverage about OO success stories and the absence of
widely publicized OO disasters would further improve
the technology’s observability and would improve the
general level of expectations. The ability of the Object
Management Group to maintain the coalition and gen-
erate some initial successes on standards would solidify
its position as external sponsor of the technology.

On the negative side, slow progress on the above-
mentioned fronts will be warning signs that OO’s po-
tential for dominance is limited. Additionally, wide-
scale adoption of OO is threatened by growth from
competing technologies, such as CASE (specifically
CASE templates), which offers many of the same ad-
vantages of productivity, quality, and reuse. Rapid
progtess in this or other areas may sharply reduce OO’s
honeymoon period. Finally, the development of a
newer, yet-to-be-announced technology could supplant
the current interest in OO, riding the same wave of en-
thusiasm that currently benefits OO.

Our conclusion that object orientation has low
prospects for becoming dominant in large in-house IS
organizations is in sharp contrast to the enthusiastic
touting we hear in the trade press.”® We see many obsta-
cles in object orientation’s way. Some of these can be
worked around with an appropriate adoption strategy,
while others depend on communitywide actions beyond
any individual adopting organization’s control. For ven-
dors and other OO proponents, this framework offers a
clear agenda for the future by outlining several avenues
where an aggressive, coordinated effort is needed to
lower obstacles to individual and communitywide

adoptability. &

References

We received helpfisl comments on earlier versions of this paper from S.
Brobst, E. Brynjolfsson, J. Quillard, W. Orlikowski,]. Rockart, W.
Stevens, L. Votta, and participants at the UCLA Information Systems
Colloquium. We gratefully acknowledge the funding provided for this
work by Credit Suisse and the MIT Center for Information Systems
Research.

1. M.L. Carnevale, “DSC Says Software Change Led to Phone
Outages,” Wall Street Journal, 10 July 1991, p. 5.

2. The innovation literature distinguishes process technology innova-
tions from product innovations. A process innovation is one that
changes the production process, that is, the way a product is pro-
duced. Most industrial tools, when first introduced, are simultaneous-
ly process and product innovations — a product innovation for the
tool producer and a process innovation for the tool consumer. For ex-
ample, for a DBMS vendor, a new RDB offering is a product innova-

FICHMAN & KEMERER 21

tion; for a systems developer, RDB technology is a process innovation
that, among other things, involves the purchase of a product. As this
article is targeted at consumers rather than producers of software tech-
nologies, we define them as process innovations. For further reading
on the topic of process and product innovations, see:

W.J. Abernathy and J.M. Utterback, “Patterns of Industrial
Innovation,” Technology Review, June-July 1978, pp. 40-47.

3. L. Thurow, “Who Owns the Twenty-First Century?” Sloan
Management Review, Spring 1992, pp. 5-17.

4, F.P. Brooks, “No Silver Bullet: Essence and Accidents of Software
Engineering,” JEEE Compurer 20 (1987): 10-19.

5. W.M. Bulkeley, “Bright Outlook for Artificial Intelligence Yields to
Slow Growth and Big Cutbacks,” Wall Street Journal, 5 July 1990, pp.
BI1, B3.

6. “Software Made Simple,” Business Week, 30 September 1991, pp.
92-100.

7. E.M. Rogers, Diffusion of Innovations (New York: Free Press,
1983).

8. Ibid., ch. 6.

9. See, for example:

J.E. Eveland and L.G. Tornatzky, “The Deploymént of Technology,”
in The Processes of Technological Innovation, eds. L.G. Tornatzky and
M. Fleischer (Lexington, Massachusetts: Lexington Books, 1990), pp.
117-148;

T.H. Kwon and RW. Zmud, “Unifying the Fragmented Models of
Information Systems Implementation” in Critical Issues in Information
Systems Research, eds.].R. Boland and R. Hisshheim (New York: John
Wiley & Sons, 1987);

D. Leonard-Barton, “Implementation Characteristics of Organiza-
tinal Innovations,” Communication Research 15 (1988): 603-631;
G.C. Moore, “End-User Computing and Office Automation: A Dif-
fusion of Innovations Perspective,” Infor 25 (1987): 214-235;

J.-M. Pennings, “Technological Innovations in Manufacturing,” in
New Technology as Organizational Change, eds.].M. Pennings and
A. Buitendam (Cambridge, Massachusetts: Ballinger, 1987), pp. 197-
216; and

AH. Van de Ven, “Managing the Process of Organizational Innova-
tion” in Changing and Redesigning Organizations, ed. G.P. Huber
(New York: Oxford University Press, 1991).

10. We use Rogers’s five innovation attributes mainly because they are
familiar in the DOI field. Van de Ven, Moore, and Kwon and Zmud
also use Rogers’s definitions, although others have provided alternative
taxonomies of the salient attributes of complex organizational tech-
nologies. Leonard-Barton identifies transferability, organizational
complexity, and divisibility. Pennings identifies concreteness, divisibil-
ity, and cost. Eveland and Tornarzky identify trialability, lumpiness,
adaptability, degree of packaging, and the “hardness” of the underly-

ing science. In most cases, these attributes can be mapped to one or

22 FICHMAN & KEMERER

more of Rogers’s original five attributes, at least as they are used here.
11. W.B. Arthur, “Competing Technologies: An Overview,” in Tech-
nical Change and Economic Theory, ed. G. Dosi (New York: Columbia
University Press, 1987).

12. See:

Arthur (1987);

J. Farrell and G. Saloner, “Competition, Compatibility, and Stan-
dards: The Economics of Horses, Penguins, and Lemmings,” in
Product Standardization and Competitive Strategy, ed. H.L. Gabel
(Amsterdam: North-Holland, Elsevier Science, 1987);

M.L. Katz and C. Shapiro, “Technology Adoption in the Presence of
Network Externalities,” Journal of Political Economy 94 (1986): 822-
841.

13. Farrell and Saloner (1987).

14. Ibid.

15. N. Rosenberg, “On Technological Expectations,” in Tnside the Black
Box: Technology and Economics (New York: Cambridge University
Press, 1982).

16. G. Rifkin and M. Betts, “Strategic Systems Plans Gone Awry,”
Computerworld, 14 March 1988, pp. 1, 104-105.

17. R. Fichman and C. Kemerer, “Object-Oriented and Conventional
Analysis and Design Methodologies: Comparison and Critique,”
IEEE Computer 25 (1992): 20-39.

18. See S. Atre, “The Scoop on OOPS,” Computerworld, 17 Septem-
ber 1990, pp. 1115-1116;

J. Moad, “Cultural Barriers Slow Reusability,” Datamation, November
1989, pp. 87-92; and

M. Stewart, “Object Projects: What Can Go Wrong,” Horline on
Object-Oriented Technology 2 (1991): 15-17.

19. Moad (1989).

20. Stewart (1991).

21. Atre (1990).

22. Rogers (1983) notes that unfulfilled expectations about an innova-
tion’s benefits are a primary cause of subsequent discontinuance.
Leonard-Barton has argued that discontinuers can become influential
“negative” opinion leaders, and that entrenched opinions about an
early technology generation are hard to overturn, even when later and
more viable technology generations become available. See:

D. Leonard-Barton, “Experts as Negative Opinion Leaders in the
Diffusion of a Technological Innovation,” Journal of Consumer
Research, 11 March 1985, pp. 914-926.

23. As mentioned previously, adoption context is important to the rat-
ings. In some segments, such as CAD/CAM, CASE, operating sys-
tems, and simulation-oriented applications more obviously suited to
OOQ’s strengths, a different classification may resulr.

Reprint 3421

SLOAN MANAGEMENT REVIEW/WINTER 1993

