Algebra 2 - Problem Set 9 - University of Pittsburgh, Fall 2019

Due on Friday November 15.

(1) (5 points) DF §10.4, Problem 2.
(2) (5 points) DF $\S 10.4$, Problem 3.
(3) (10 points) State a form of the structure theorem for finitely generated modules over a PID. Applying this to the PID \mathbb{Z} and a finitely generated \mathbb{Z}-module M, write down a formula for

$$
\operatorname{dim}_{\mathbb{F}_{p}} M \otimes_{\mathbb{Z}} \mathbb{F}_{p}
$$

for an arbitrary prime p. The formula should be given in terms of data appearing in the expression of the structure theorem. Similarly, write down a formula for

$$
\operatorname{dim}_{\mathbb{Q}} M \otimes_{\mathbb{Z}} \mathbb{Q}
$$

(You may of course use Theorem 17 of $\S 10.4$ and its corollaries, as well as anything else in $\S 10.4$.) Terminology, FYI:

- When R is a commutative ring and $P \subset R$ is a prime ideal, the associated "residue field of R at $P "$ is the field $\operatorname{Frac}(R / P)$. Note that Problem 3 is asking for the dimensions of a finitely generated \mathbb{Z}-module after tensoring up to the residue fields of each prime ideal of \mathbb{Z}.

Extra problems: DF $\S 15.3$, Problems 4-9. Notice that Problem 9 finishes off the equality that we discussed at the end of class on Friday November 8.

