PHASE FIELD COMPUTATIONS OF SINGLE-NEEDLE CRYSTALS, CRYSTAL GROWTH, AND MOTION BY MEAN CURVATURE

G. CAGINALP AND E. SOCOLOVSKY

Abstract. The phase field model for free boundaries consists of a system of parabolic differential equations in which the variables represent a phase (or "order") parameter and temperature, respectively. The parameters in the equations are related directly to the physical observables including the interfacial width ϵ, which we can regard as a free parameter in computation. The phase field equations can be used to compute a wide range of sharp interface problems including the classical Stefan model, its modification to incorporate surface-tension and/or surface kinetic terms, the Cahn–Allen motion by mean curvature, the Hele-Shaw model, etc. Also included is anisotropy in the equilibrium and dynamical forms generally considered by materials scientists. By adjusting the parameters, the computations can be varied continuously from single-needle dendritic to faceted crystals.

The computational method consists of smoothing a sharp interface problem within the scaling of distinguished limits of the phase field equations that preserve the physically important parameters. The two-dimensional calculations indicate that this efficient method for treating these stiff problems results in very accurate interface determination without interface tracking. These methods are tested against exact and analytical results available in planar wave, faceted growth, and motion by mean curvature up to extinction time.

The results obtained for the single-needle crystal show a constant velocity growth, as expected from laboratory experiments.

Key words. phase field, interface, viscosity methods, solidification, computation of free boundaries

AMS subject classifications. 65M06, 82B24, 35K57

1. Introduction. The problem of numerical computation of a moving boundary has been under active study from a number of perspectives (see [GI] for a survey). The phase field approach to free boundaries has two appealing features: (i) a broad spectrum of distinct problems that can be studied by means of a single set of equations, and (ii) the interface in these problems does not need to be tracked explicitly, as the computations use a system of parabolic equations in which the interface has been diffused.

The phase field equations specifically identify all macroscopic parameters, e.g., latent heat, diffusivity, etc., and a parameter ϵ that is a measure of interface thickness.

We begin by defining a set of sharp interface problems in a spatial region $\Omega \subset \mathbb{R}^n$ with the interface defined as $\Gamma(t)$ with $t \in \mathbb{R}^+$. A basic problem is to find a temperature function $T(x, t)$ and a curve (or surface) $\Gamma(t) \subset \Omega$ that satisfy the equations

\begin{align}
\rho c_{s,p} \frac{\partial T}{\partial t} &= K \Delta T \quad \text{in } \Omega \setminus \Gamma(t), \tag{1.1}
\rho \dot{\varepsilon} &= K \nabla T \cdot n \quad \text{on } \Gamma(t), \tag{1.2}
T - T_E &= \frac{\sigma}{|s_E|} \kappa - \alpha \frac{\sigma v}{|s_E|} \quad \text{on } \Gamma(t). \tag{1.3}
\end{align}

T_E := equilibrium melting temperature,
$\dot{\varepsilon}$:= latent heat per unit mass,
K := thermal conductivity,
σ := surface tension between two phases,
ρ := density.

*Received by the editors July 27, 1992; accepted for publication (in revised form) February 23, 1993.
1 Mathematics and Statistics Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15260. This author was supported by National Science Foundation grant DMS-9002242.
2 Center for Nonlinear Analysis, Mathematics Department, Hampton University, Hampton, Virginia 23668.
\(c_{\text{spm}} := \) specific heat per unit mass,
\([s]_{E} := \) entropy difference between phases per unit volume,
\(v := \) normal velocity (positive if motion is directed toward liquid),
\(\kappa := \) sum of principal curvatures at the particular point on the interface,
\(\nabla T \cdot n \bigg|^{+}_{-} := \) jump in the normal component of the temperature (from solid to liquid),
\(\alpha := \) kinetic undercooling coefficient.

By defining a dimensionless temperature, \(u := (T - T_{E})c_{\text{spm}}/\ell \), a diffusion parameter
\(D := K/\rho c_{\text{spm}}, \) and a “capillary length” \(d_{0} := \sigma c_{\text{spm}}/([s]_{E} \ell) \), one can rewrite (1.1)-(1.3) as

\[
(1.1') \quad u_{t} = D \Delta u \quad \text{in } \Omega \setminus \Gamma(t),
\]
\[
(1.2') \quad v = D \nabla u \cdot n \bigg|^{+}_{-} \quad \text{on } \Gamma(t),
\]
\[
(1.3') \quad u = -d_{0}k - \alpha d_{0}v \quad \text{on } \Gamma(t).
\]

Note that the parameter \(D \) simply adjusts the time versus length scales in the problem. Thus
one could set \(D := 1 \) by simply adjusting \(\alpha \) (which has units of time/(space)^2), as does \(\frac{1}{\ell} \). Within this scaling, the latent heat \(\ell \) has been incorporated into the dimensionless temperature so that the coefficient of \(v \) in (1.2’) is unity. For the limiting situations such as Hele–Shaw in which latent heat approaches zero, one must adopt a scaling such as (1.1’)-(1.3), which avoids division by \(\ell \).

The oldest mathematical model for an interface between two phases, e.g., liquid and solid, is known as the classical Stefan model and incorporates heat diffusion (1.1) and the latent heat due to fusion (1.2). Furthermore, it stipulates that the interfacial temperature remains at the melting temperature, i.e., \(u = 0 \) replaces (1.2). This last condition amounts to setting \(\sigma = 0 \) in (1.3) or \(d_{0} = 0 \) in (1.3’). Although the capillarity length \(d_{0} \) is often very small compared to the other length scales in the problem, such as \(\kappa^{-1} \), it is nevertheless very significant as a stabilizing force [Ch].

The classical Stefan model’s neglect of surface tension and surface kinetics can be partially remedied by the imposition of (1.3) with finite \(\sigma \) and \(\alpha \). The numerical study of the surface tension and kinetics model (1.1)-(1.3) then becomes even more challenging as a consequence of the curvature term in (1.3).

Another sharp interface problem that arises in the context of a fluid between two plates is
the Hele–Shaw model, which can be expressed as equations (1.1)-(1.3) with the left-hand side
of (1.1) set at zero. For the Hele–Shaw problem, \(u \) describes pressure, and the constants \(\ell, \kappa, \alpha \),
etc. represent different physical quantities (see [Oc], [Cr] and references contained therein).

Finally, one may consider the Cahn–Allen model of motion by mean curvature problem
[AC], in which the interface moves with normal velocity

\[
(1.4) \quad v = \frac{-1}{\alpha} \kappa
\]
at each point on the interface \(\Gamma(t) \).

Anisotropy may be considered in all of the problems above. In typical materials, the
anisotropy is present in the surface tension \(\sigma \) and in the kinetic coefficient \(\alpha \) so that (1.3’)
becomes

\[
(1.5) \quad u = -d_{0}(\theta)k - \alpha(\theta)d_{0}(\theta)v,
\]
where α is now a function of the orientation angle θ, and

$$(1.5') \quad d_0(\theta) := \frac{\sigma'(\theta) + \sigma''(\theta)}{[s]_E \ell} c_{\text{spm}}.$$

The term $\beta(\theta) := \alpha(\theta)d_0(\theta)$ is often called the mobility (see [Ta] for general discussion). The orientation angle θ may be defined as the angle between the normal to the interface and a fixed direction, or the angle between a fixed direction and the line from a central point to a point of the interface.

The precise nature of anisotropy and its interaction with undercooling (liquid below the equilibrium freezing temperature) is important in determining the shape of the interface, and one can obtain both a single-needle crystal and cubic crystal growth from a cubic symmetry material (see §5 for details).

Another approach to free boundary problems involves the use of a phase or “order” parameter φ that specifies the phases ($\varphi = 1$ is liquid, $\varphi = -1$ is solid) while the level set $\varphi = 0$ is now the interface. This approach has its origins in Landau theory [LL], Cahn–Hilliard type equations [CaHi], [La], and the application of mean field theory to critical phenomena [HH].

Phase field theories are generally rooted in the idea that each molecule or “spin” is under the influence of all others that effectively constitute an average “field” of interactions. This, of course, is a vast simplification over evaluating the sum over all possible states to calculate the partition function and, thereby, the free energy. Preliminary reports on a system of equations closely related to those discussed here (but with a different scaling that does not precisely attain any of the sharp interface models defined above) include [Ca] and [F].

The variable φ represents the mean field or “averaged” description of the phase at each point (t, x) in time-space. This mean field approach has been used with some, but not complete, success in the suble area of equilibrium critical phenomena. The application to ordinary phase transitions is actually quite different in that the correlation length (i.e., mean distance at which molecules are “aware” of one another’s presence) is very small, whereas it is very large in the critical region. In fact, the large correlation length provided the original justification for this approach. (See references in [Ca2] for further discussion.) Another difference between the critical region and ordinary phase transitions is that critical phenomena can rely on universality, which states that the critical exponents should be independent of the details of the system. For solidification, it is generally desirable to specify all material parameters and to obtain quantitatively reliable results.

Using the scaling introduced in [Ca1], we write the phase field equations in the form

$$(1.6) \quad c_{\text{spm}} T_t + \frac{\ell}{2} \varphi_t = \frac{K}{\rho} \Delta T,$$

$$(1.7) \quad \alpha \varepsilon^2 \varphi_t = \varepsilon^2 \Delta \varphi + \frac{1}{2} (\varphi - \varphi^3) + \frac{\varepsilon [s]_E}{3 \sigma} (T - T_E),$$

where ε is a parameter that is a measure of the interface width and all other constants are as defined earlier. In 1985 it was shown [Ca1], using asymptotics, that the major free boundary problems could be attained as distinguished limits of the phase field equations in the form (1.6), (1.7). In particular, if ε approaches zero while all other parameters including σ are held fixed, then the asymptotic solutions of (1.6), (1.7) are governed to leading order by the surface tension and kinetics model (1.1)–(1.3).

The classical Stefan model can be similarly recovered in the distinguished limit as both ε and σ vanish with $\varepsilon/\sigma \to 0$. The formal asymptotics have been made mathematically rigorous.
in some cases of special symmetry such as traveling waves [CN] and general 1d and radially symmetric [CC]. Other important free boundary models such as the Hele–Shaw equations and motion by mean curvature are also obtained from the phase field equations [Ca2].

Using the variables defined before (1.1')–(1.3'), the equations (1.6), (1.7) can be written in the form

\[
(1.6') \quad u_t + \frac{1}{2} \varphi_t = D \Delta u,
\]

\[
(1.7') \quad \alpha \epsilon^2 \varphi_t = \epsilon^2 \Delta \varphi + \frac{1}{2} (\varphi - \varphi^3) + \frac{\epsilon}{3d_0} u.
\]

With \(d_0\) and/or \(\alpha\) possibly depending on \(\theta\), the solutions of (1.6'), (1.7') approach those of (1.1'), (1.2'), (1.5). In a philosophical sense, this approach to solidification computation problems is similar to artificial viscosity methods [PT] in gas dynamics in that the success of the method depends on whether the interface development is independent of \(\epsilon\) for some range \((0, \epsilon_0)\).

The boundary conditions imposed on (1.6'), (1.7') are the same as the sharp interface problem for \(u\) with compatible conditions for \(\varphi\). In particular, if one imposes Dirichlet conditions \(u = u_{\theta_k}\), then the corresponding values of \(\varphi\) are the roots of

\[
(1.8) \quad \frac{1}{2} (\varphi_+ - \varphi_-^3) + \frac{\epsilon}{3d_0} u_{\theta_k} = 0,
\]

where the plus and minus denote the liquid and solid portions of the boundary, respectively.

In this paper we discuss the numerical study of the phase field equations with the aim of demonstrating that a single system of equations can be used to compute a broad spectrum of phenomena that are generally associated with the sharp interface problems defined above. The advantages of the phase field model include the following: (i) The variety of phenomena ranging from motion by mean curvature to stable anisotropic crystal growth to single-needle dendrites are all obtained by simply varying parameters. (ii) The system of equations has smooth solutions and does not involve explicit conditions on the interface. Hence the interface is simply the level set \(\varphi = 0\) and interface tracking is not required. (iii) All of the physical parameters are clearly identified so that the system can be used to obtain quantitatively reliable numbers. (iv) Computations involving self-interactions of the interface do not pose difficulties for the phase field model.

To illustrate how intersections create problems, we consider the following example. Two solid spheres with a small space between them are surrounded by the liquid that is undercooled so that the spheres grow slowly. At some point the spheres touch and begin to solidify. If one models this situation using (1.1)–(1.3), then there is the appearance of a mathematical singularity due to (1.3) when the spheres touch. This is a mathematical artifact; however, because (1.3) is not a physically complete description of the interfaces in this complex situation, as condition (1.3) has not been defined when the classical normal is not defined. On the other hand, the phase field equations are guaranteed to have a smooth solution \((\varphi, T)\) if the initial and boundary conditions are sufficiently smooth. Thus the phase field model naturally describes the evolution of intersecting interfaces, such as this example, as it is based on a free energy description of the phases rather than a macroscopic derivation for a particular (smooth) geometry. The situation may be summarized by stating that the sharp interface problems such as (1.1)–(1.3) or (1.4) are a macroscopic approximation for simple geometries, so that a discrepancy between these models and the phase field is generally resolved by noting that the sharp interface model is not a correct approximation for the physical problem when the conditions for their derivation are no longer valid.
Figure 1.1 displays the computational evolution (using the phase field equations) of two such spheres surrounded by a slightly undercooled melt. The spheres increase in size until they touch, at which point the two interfaces fuse into a single one, which then has two points of (negative) high curvature. The curvature of these points diminishes rapidly due to the interface conditions that are implicit in the phase field equations. Figure 1.2 is a computation of the same problem with crystalline anisotropy included in the form discussed at the end of §5. In this case, the initial spheres evolve toward the dynamic Wulff shape discussed in §5 for a single seed. This evolution conforms to the theoretical predictions for an interface condition with anisotropic mobility, i.e., $(1.5')$ with α depending on orientation. The two seeds meet at a corner and then evolve into a single Wulff shape, i.e., a new square. In both computations, there is an absence of any unphysical singularities or blow-ups. In both Figs. 1.1 and 1.2 all parameters and conditions are identical with those described in §5 for Fig. 5.1, with anisotropy excluded from the equations for Fig. 1.1.

![Fig. 1.1. Self-intersection of interfaces without anisotropy. Two seeds of solid are surrounded by a slightly undercooled melt. The intersection of the interfaces poses no difficulty for the computation of the phase field equations.](image)

The numerical study of (1.6), (1.7) must confront the issue that the true physical size of ϵ (which is of the order of the width of the interface) is about 10^{-8} cm, while the overall domain of interest may vary between 10^{-1} cm for dendritic growth and 10^{2} cm for casting of metals. Since the grid spacing cannot be significantly larger than ϵ without large errors [CS1], [CS2], a simple application of the phase field equations with physical parameters would imply a grid of at least $10^2 \times 10^7$ for dendritic growth and $10^{10} \times 10^{10}$ for casting, for example. This
grid size is prohibitive for practical computations. With this motivation, [CS1] and [CS2] studied the ansatz that \(\epsilon \) can be made orders of magnitude larger (i.e., the interface can be spread) within the limitations of (a) and (b) below, without significant error, provided that this stretching is done within the proper scaling limits [Ca1], [Ca2] so that the crucial quantities such as the surface tension are not altered even by a small amount. The two key restrictions are that: (a) \(\epsilon \) must be smaller than the radius of curvature; (b) \(\epsilon \) cannot be large enough to destroy the double-well nature of the potential \(\frac{1}{2}(\varphi - \varphi^3) \pm \frac{4}{3} \frac{\epsilon}{\Omega} \). The restriction (b) is easily remedied with a modification such as that introduced in [CC], where \(\mu \) is multiplied by a factor \((1 - \varphi^2)^2 \) or a similar function. This has the effect of trivializing the role of temperature outside of the interfacial region where it is usually very small. On the other hand, restriction (a) is fundamental and is intrinsic to the physical problem. In particular, independent of the specific method, one does not expect to resolve an interface with a radius of curvature \(R \) by means of a mesh spacing \(\Delta x \) that is greater than \(R \). Within this natural limitation, [CS1] and [CS2] showed that quantitatively reliable calculations could be performed using (1.6), (1.7).

In particular, [CS1] and [CS2] studied the one-dimensional and radially symmetric equations corresponding to (1.6), (1.7), compared the computations with the exact solutions for the limiting sharp interface problem, and examined them through self-consistency. Subject to the radius of curvature limitation, it was established that the interface could be stretched by orders of magnitude without significant loss of accuracy, even in physically delicate situations. On the other hand, even a 10% change in surface tension resulted in dramatic changes in the evolution of the interface.
In this paper, our primary aim is to show that in two dimensions a range of sharp interface problems with distinct patterns can be computed using the phase field equations. A secondary objective is to verify that the interface can be stretched with quantitative accuracy when the computations are truly higher dimensional (instead of radially symmetric equations). In the higher-dimensional case, the issue of interface stability is also relevant, so that enlarging ϵ is predicated on the expectation that it does not significantly alter stability properties. We confirm this in both the planar and spherical cases, and again we use self-consistency and comparison with exact solutions.

We begin by considering planar traveling waves for the phase field equations within the modified Stefan limit. Since the velocity of the traveling waves for the sharp interface problem is known [CCh] from the analytic solution, we compare our computations with the exact results. The traveling wave is then perturbed with a sine wave so that the stability properties can be examined in the context of the sharp interface problem. We find that a typical unstable mode in the sharp interface problem is also unstable in the phase field equations.

In §3 we consider the problem of the critical radius, which is an unstable equilibrium in solidification [CH] and we obtain quantitative agreement with the analytical results. Anisotropic surface tension is then considered as we observe the change in interface shape as a function of both equilibrium and dynamical anisotropy. In equilibrium, these results can be compared with well-established results such as the Wulff construction approach [Wu], [Ta], [CH].

In §§4–6 we demonstrate that a broad spectrum of sharp interface problems can be approximated by the phase field model in the distinguished scaling limits as indicated in [Ca1] and [Ca2]. Section 4 features the limit of motion by mean curvature in which the interface is often characterized by reduction of curvature by becoming more circular and then shrinking until extinction. The extinction time from a circle is readily calculated analytically so that quantitative agreement of the numerical computations is verified along with the qualitative.

In §5 we consider solidification in the case of the single-needle crystal. The computations result in a single needle that moves at essentially constant velocity. Furthermore, this velocity is independent of the initial conditions. This is consistent with the known experimental [GS], [SG], and theoretical [BP], [L], and [KKL] results.

Finally, in §6, we consider solidification under conditions that favor more stable growth, so that the faceted crystal growth is observed in the anisotropic situation. It is noteworthy that a completely smooth set of equations with smooth initial data render faceted shapes, e.g., cubic. The results obtained are consistent with those obtained from the classical Wulff construction methods.

Throughout this study we use finite difference methods [CL], [CS2] with a fixed grid to isolate the issues that are of specific interest. In principle, a combination of phase field methods and adaptive grids with finite elements should provide similar accuracy at a lower cost.

Some of the other numerical studies of solidification include [LF], [SS], [K], and [RT].

2. Plane fronts, stability, and the emergence of single-needle dendrites. We study first the traveling wave solutions for the phase field equations (1.6), (1.7), the existence of which was established in [CN]. Next, we perturb the planar fronts to examine the stability properties of the interface (for which there are no analytical results). In particular, we present the growth of needle-type crystals from perturbations. These computations bridge the gap between the initial Mullins–Sekerka instability [MS] and the steady-state dendrites [BP] that evolve from them.

We consider (1.6'), (1.7') in the distinguished limit of the surface tension and kinetics model (1.1')–(1.3'), i.e., ϵ approaches zero with all other variables fixed. For the sharp interface problem, one can verify the existence [CCh], [DHOX] of the following traveling wave solutions
with velocity v^* and $u(t, \infty) = u_{\text{cool}}$:

\begin{align}
\tag{2.1}
 u(t, x) &= \begin{cases}
 u_{\text{cool}} + e^{-v^*(x-v^*t)/D} & x > v^*t, \\
 u_{\text{cool}} + 1 & x \leq v^*t,
 \end{cases} \\
\tag{2.2}
 v^* &= -\frac{1}{\alpha d_0} (u_{\text{cool}} + 1).
\end{align}

To ensure the positivity of the velocity v^*, one must assume that

\begin{equation}
 u_{\text{cool}} + 1 < 0.
\end{equation}

Note that the velocity v^* and the temperature at the interface $u_{\text{cool}} + 1$ (and in fact for all x in the solid region, $x \leq v^*t$) are both determined by the temperature at ∞, i.e., u_{cool}. Also, the latent heat is just unity for our temperature scale.

To state the analogous problem for the phase field equations (1.6'), (1.7'), one must impose conditions on φ as well as on u. A natural set of conditions [CN] is

\begin{equation}
 \varphi(-\infty) = \varphi^\varepsilon, \quad \varphi(\infty) = \varphi_\infty^\varepsilon,
\end{equation}

\begin{equation}
 u(-\infty) = u_{\text{cool}} + 1, \quad u(\infty) = u_{\text{cool}},
\end{equation}

in terms of the moving coordinate $z := x - vt$ where v is to be determined. Here, the values $\varphi_\infty^\varepsilon$ must satisfy the compatibility condition (1.8).

In terms of the moving coordinates, the phase field equations have the form

\begin{equation}
 \epsilon^2 \varphi_{zz} = \alpha \epsilon^2 \nu \varphi_z + \frac{1}{2} (\varphi - \varphi^3) + \frac{\epsilon}{3 d_0} u = 0,
\end{equation}

\begin{equation}
 Du_{zz} + \nu \left(u_z + \frac{1}{2} \varphi_z \right) = 0.
\end{equation}

It was proven in [CN] that there exists a unique solution of (2.6), (2.7) subject to (2.4), (2.5) for small ϵ, and the velocity v (which depends on ϵ) approaches v^* given by (2.2). The far-field temperature u_{cool} not only determines the velocity, but the other boundary conditions in (2.4), (2.5) as well [CN]. In the limit of $\epsilon \to 0$, the temperature u in (2.6), (2.7) converges to the temperature (2.1) of the sharp interface model uniformly with respect to the distance measure given by the moving coordinate z. Other analyses of traveling waves for phase field equations in other scaling limits have been performed in [Wi], [BS], and [LBT].

An important question that is not resolved by the theoretical results is the rate at which the velocity $v(\epsilon)$ converges to v^* as ϵ approaches zero. Stated differently, the physically realistic value of ϵ is on the order of Angstroms, whereas, in practical computations, one would need to make ϵ larger by orders of magnitude.

Hence, our first goal is to determine if the computation of plane waves is still reliable in the above situation. If so, by taking values of ϵ, which are small but still much larger than the true physical value, the front velocities and stability properties should not differ significantly from the velocity of the sharp interface model.

In our experiments we set the parameters to be $D = 1.0, \alpha = 1.0, d_0 = 0.01$, and $u_{\text{cool}} = -1.05$, which yield a theoretical velocity $v^* = 5.0$. We then examined the nature of the convergence to the exact solution of the sharp interface model by halving ϵ as shown in Table 1.
We perform the same computation with each value of ϵ, and we examine the relative error of the interface

$$\frac{x_{(\text{theoretical})} - x_{(\text{experimental})}}{x_{(\text{theoretical})}}$$

at a characteristic point ($t = 0.0051$). Note that while ϵ is cut in half between experiments 1 and 2, the relative error in the interface position is reduced to one-fourth. Similarly, the relative error in velocity is reduced from 0.543 for $\epsilon = 0.00495$ to 0.093 for $\epsilon = 0.00247$. Between experiments 2 and 3, the relative error in the interface is similarly reduced. Since the approximations used in determining velocity are less accurate than those of the interface, there appears to be a finite limit to the relative error in velocity.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>ϵ</th>
<th>Relative error in interface at $t = 0.0051$</th>
<th>Relative error in velocity at $t = 0.0051$</th>
<th>Maximum relative error in velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.00495</td>
<td>0.162</td>
<td>0.543</td>
<td>0.911</td>
</tr>
<tr>
<td>2</td>
<td>0.00247</td>
<td>0.048</td>
<td>0.093</td>
<td>0.353</td>
</tr>
<tr>
<td>3</td>
<td>0.00124</td>
<td>0.015</td>
<td>0.081</td>
<td>0.135</td>
</tr>
<tr>
<td>4</td>
<td>0.00062</td>
<td>0.005</td>
<td>0.033</td>
<td>0.037</td>
</tr>
</tbody>
</table>

In earlier work [CS1], [CS2], we studied plane fronts in the distinguished limit of the classical Stefan model (there are no traveling waves in this case), using a one-dimensional formulation. The significant difference between one- and two-dimensional computations necessitates the testing of plane fronts and traveling waves in the actual two spatial dimensions. In our 2d experiments, we reproduce the exact classical Stefan results with a relative error of 0.0008 with 200 mesh points and $\epsilon = \Delta x$. The two sets of computations (1d and 2d) agree to the first 12 digits, thereby confirming the absence of extraneous grid effects in 2d.

Hence, our basic conclusions for the 1d traveling waves [CS1], [CS2] in the surface tension and kinetics limit remain valid within the 2d context. The overall φ profile is essentially identical with the 1d calculations. The boundary conditions φ_{\pm} are determined by (2.4) in correspondence with (1.8). The φ-level curves are all parallel to the interface and φ is approximately given by the function $\tanh\left(\frac{x-\text{int}}{2\epsilon}\right)$ as indicated by the theoretical results [CN].

The transition layer, is thus $O(\epsilon)$ as in the 1d case. More specifically, if we take $\varphi = \pm 9$ as the cutoff in the transition layer, then the transition layer has a width 6ϵ; for cutoff $\varphi = \pm 9.9$ it is 10ϵ. Of course, we know from the theoretical results that the order ϵ correction to φ is crucial in the selection of the interface velocity, so that a correct interface velocity is confirmation of φ profile to order ϵ.

It is also noteworthy that the numerical error does not cause shape instability of the planar front, unlike the perturbation discussed below. This is consistent with the phase field theory since the stability properties of (1.6), (1.7) are the same as those of (1.1)–(1.3) to leading order [J], and the latter can be expected to be stable for perturbations with wavelengths that are on the size of the mesh used. The precise conditions are given in [CCh] and [J].

Next, we consider a planar wave whose interface is perturbed by a sinusoidal function, so that the interface location is given by

$$x(y) = a + b \cos ny.$$

The parameters and boundary conditions remain the same as in experiment 1 with the initial temperature set at $u_\infty + 1$ in the solid with exponential decay to the boundary in the x-direction.
In Fig. 2.1 we show snapshots of the time evolution of the interface at $t = 0.0, 0.00367, 0.00826, 0.01286, 0.01745, 0.022041, \text{and } 0.03122$. In this experiment, $m = 1, a = 0.21, \text{and } b = 0.1485$. It can be clearly observed that the initial perturbation evolves into a needle-type shape.

![Image of snapshots](image)

FIG. 2.1. Single-needle crystal growth due to instability of a planar front. Initial interface at $x = 0.21 + 0.1485 \cos y$. Parameters are $D = 1.0, \alpha = 1.0, d_0 = 0.01, \text{and } u_\infty = -1.05$, which yield a Stefan planar front velocity $\nu = 5.0$.

Hence the development of instabilities where one expects them on physical and theoretical grounds, and the absence of extraneous instabilities due to numerical error, indicate the suitability of using phase field equations to study interfaces.

It was noted in [CS1], [CS2] that there are questions of optimization in choosing ϵ with respect to the mesh spacing Δx. For a fixed grid, practical constraints impose a lower bound on Δx. For a given Δx, the question of the optimal choice of ϵ is more subtle. If ϵ is too small compared to Δx, then the surface tension, which is proportional to $\int (\nabla \phi \cdot n)^2 dx$, will not be calculated accurately since there will be too few grid points in the interfacial region. This is easily illustrated with the tanh function that approximates ϕ, so that surface tension is essentially proportional to $\int \text{sech}^2(r/2\epsilon)dr$. Recalling that the transition layer is about six to ten ϵ, depending on the precise cutoff point, a grid spacing of about $\Delta x = \epsilon$ would result in six to ten grid points on the interfacial region. Clearly, any fewer than six points would mean that the surface tension is not accurately computed. Since surface tension is crucial for the stability properties of the interface and this integral also has a key role in determining the $O(\epsilon)$ terms in the solution, this is an important constraint.
Alternatively, if ε is too large, then (a) it diffuses the interface so that geometries with radii of curvatures smaller than ε would not be captured, and (b) the $O(\varepsilon)$ dynamics becomes a more significant factor limiting the quantitative accuracy of the interface velocity, as indicated by the asymptotic analysis.

In the two-dimensional problems we found the optimal value of the ratio $\frac{\varepsilon}{\Delta x}$ to be $0.75 \leq \frac{\varepsilon}{\Delta x} \leq 1.1$, as in the 1d problems. This is not very surprising in view of the asymptotic analysis, in which the size of ε is significant primarily in the direction perpendicular to the interface.

For the remainder of this paper we will use the ratio $\varepsilon/\Delta x = 1$. Performing the same empirical optimization in some of the low symmetry examples implies a similar range for $\varepsilon/\Delta x$.

The computation in Figs. 2.1, 3.1, 4.1, 5.1, 6.2, and 6.3 were done using a CRAY YMP with 200 meshpoints per side. Computations performed with 400 meshpoints were very similar, though much more costly. We use the same type of explicit schemes as in [CS1] and [CS2] and similar timescales. The timestep in all cases is the largest allowed by numerical stability considerations. The numerical runs continued until complete solidification or melting.

3. The critical radius and unstable equilibrium. A well-known instability in materials science is the critical radius [Ch. p. 67] in which a solid sphere with the sum of principal curvatures equal to κ_0 is in equilibrium with its melt at temperature u_0 with

$$u_0 = -\sigma_0 \kappa_0.$$

(3.1)

Under suitable conditions, e.g., Dirichlet boundary conditions, and ℓ, K^{-1} sufficiently small, a perturbation of the sphere to a larger one results in complete solidification and, analogously, for melting (see [CS2] for more discussion). The numerical computations assuming spherical symmetry confirmed this unstable equilibrium and showed that a small change in κ or σ produces a dramatic difference (melting to freezing or vice versa), while a large change in ε only produces a small change in velocity.

We study this problem now in the fully two-dimensional geometry (without imposing spherical symmetry), and we find that the spherical geometry is preserved. The values of K, ℓ, \ldots are identical to those reported in [CS2], and again there is a 12-digit agreement between the one-dimensional and two-dimensional results for the location of the interface. Again, this confirms the absence of artificial grid effects.

Thus the two-dimensional calculations confirm the existence of this physical instability without causing artificial numerical instabilities nor necessitating the use of explicit equations of motion for the interface. Furthermore, in Fig. 3.1 we illustrate the results obtained when the initial interface is the perturbed circle $r = 0.3(1 + \frac{1}{3} \cos \theta)$. The parameters correspond to a critical radius $r_0 = 0.01732$, and, as predicted by (1.5), the interface evolves to a spherical shape and continues to freeze.

The introduction of anisotropy with respect to a fixed angle in the surface tension changes (3.1) into

$$\kappa_0 = -[\sigma_0 \varepsilon u_0 / (\sigma(\theta) + \sigma''(\theta))].$$

(3.2)

This expression for the curvature implies that the equilibrium shape is a dilation of the Wulff region. Figure 3.2 depicts the Wulff crystal for pivalic acid. This will be discussed in greater detail within the context of crystal growth in §5.

The 2d computations on the critical radius and the perturbed circle (Fig. 3.1) are also useful in demonstrating that grid effects do not introduce artificial anisotropy. In particular, the grid effects would be most pronounced for the critical radius problem since the initial configuration is borderline between melting and freezing, so that any extraneous effects would be magnified.
FIG. 3.1. Stability of perturbations in the case of unstable equilibrium at critical radius. Initial interface at \(r = 0.3(1 + \frac{1}{3} \cos \theta) \). Parameters are \(\alpha = 1.0, \ D = 1.0, \ \ell = 0.01, \ \langle \tau \rangle_\infty = 4, \ \epsilon = 0.005, \ and \ \sigma = 0.034651, \) with critical radius \(r_0 = 0.01732. \)

FIG. 3.2. Wulff crystal for pivalic acid.
4. The single-needle crystal. In §§4–6 we use the phase field equations to study a spectrum of problems that involve different physical parameters and behavior. One set of numerical experiments (see Figs. 3.1, 4.1, 5.1, and 6.3) are performed with identical initial conditions to illustrate the wide range of applicability.

The first of these is the single-needle crystal solidification at high velocities. Anisotropy is generally regarded as important for this problem as both σ and α vary with respect to orientation angle, θ. A series of physical experiments [SG], [GS] indicate that the role of anisotropy is to select the direction of the growth rather than to determine the shape or velocity of the tip. (However, other measurements, with samples that are not as pure as those used by [GS] suggest that the anisotropy of these materials is much closer.) For example, the extent of anisotropy in the surface tension is ten times greater for pivalic acid than succinonitrile, yet the shape and dimensionless velocity (as a function of undercooling) are essentially identical [GS]. In earlier work [CL], the anisotropy in σ has been studied. In these numerical experiments, we study the effects of dynamic anisotropy, which is not as well understood in terms of the physical experiments. As a precise physical form for dynamical anisotropy has not been established, we use a (phenomenological) function that is strongly anisotropic along the diagonal. In particular,

\[
\alpha^{-1} = \begin{cases}
\alpha_0 + (1 - \alpha_0) \left(\cos \frac{\theta}{\sqrt{2}} d \right)^4 & \text{if } -\frac{\sqrt{2}}{8} < d < \frac{\sqrt{2}}{8}, \\
\alpha_0 & \text{otherwise,}
\end{cases}
\]

where d is the distance to the diagonals (between \hat{x} and \hat{y} axes). Note that the dynamic anisotropy will not generally have a form such as (1.5'), which arises from the second derivatives in the Laplacian.

In a part of the interface in which the temperature and curvature do not vary significantly, the velocity is given by

\[
v \equiv -\alpha^{-1} (\text{const}),
\]

so that the diagonal is the preferred direction of growth. Figure 4.1 displays a time sequence in which the initial condition is a circle that is strongly perturbed by a sine function with values of $\alpha_0 = 0.1$. The growth is chiefly in the preferred direction. The diagonal was chosen as the preferred direction to ensure that anisotropic growth would not be the result of grid effects. In fact, the absence of anisotropic growth when α^{-1} is isotropic indicates that grid effects are not significant.

There is considerable experimental [SG], [GS], [DG] and theoretical evidence [BP], [KKL], [L] that suggests that the velocity of the single needle should be constant. This is confirmed by our numerical experiments, even though only linear interpolation is used to determine both the interface location and its velocity.

Furthermore, this velocity is found to be independent of the initial conditions, which is consistent with the experimental and theoretical results cited above. Figure 4.2 depicts the convergence to a selected velocity from distinct initial conditions. The velocity 44.13 is constant to within 0.62%.

5. Faceted crystal growth. The geometric patterns and facets that arise from crystal growth have posed intriguing questions for many years. A very early scheme to describe the equilibrium interface is known as the Wulff construction [Wu], which will be described later in this section. The propagation of facets and the development and elimination of corners has been studied extensively in recent decades from the minimal surfaces and related approaches [Ta].
Fig. 4.1. Single-needle crystal growth due to anisotropic mobility (4.1) with \(\alpha_0 = 0.1 \). Initial interface at \(r = 0.3(1 + \frac{1}{2} \cos \theta) \). Parameters are \(D = 1.0, \ell = 0.01, [s]_E = 4, \epsilon = 0.005 \), and \(\sigma = 0.034641 \).

Fig. 4.2. Tip and axis velocities of needle crystals obtained with different initial interfaces. Needle crystal tip velocity convergence to a constant independent of initial interface. Initial interfaces at \(r = 0.3, r = 0.3(1 + \frac{1}{2} \cos m(\theta - \frac{\pi}{2})) \) and \(r = 0.3(1 + \frac{1}{2} \cos m\theta) \) for \(m = 4, 8 \). Parameters are \(D = 1.0, \ell = 0.01, [s]_E = 4, \epsilon = 0.005 \), and \(\sigma = 0.034641 \).
In such studies, the corners are explicitly part of the numerical scheme. The evolution of faceted crystal growth poses a particularly strong challenge for a smooth set of parabolic equations, such as the phase field. Given a smooth initial data (e.g., first frame of Fig. 5.1), a material with anisotropy must eventually develop corners and facets and must propagate along planar fronts dictated by the geometry and anisotropy.

![Diagram](image)

Fig. 5.1. Faceted crystal growth due anisotropic mobility \((\sigma^{-1} = 0.655(1 + 0.818 \cos 4(\theta - \frac{\pi}{2}))\) is the angle between interface normal and x-axis. Initial interface at \(r = 0.3(1 + \frac{1}{2} \cos 2\theta)\). Parameters are \(D = 1\), \(\epsilon = 0.01\), \([r]_e = 4\), \(\epsilon = 0.005\), and \(\sigma = 0.03464\).

The anisotropy in the phase field equations can involve both \(\sigma(\theta)\) and \(\sigma(\theta)\), where \(\theta\) is now defined to be the angle between the normal to the interface and the x-axis, i.e.,

\[
\cos \theta = \frac{\nabla \varphi}{|\nabla \varphi|} \cdot \hat{x}.
\]

(5.1)

We study the anisotropy by assuming \(\sigma\) and/or \(\alpha\) are of the form

\[
\sigma(\theta) = \sigma_0[1 + \delta_\sigma \cos M(\theta - \theta_\sigma)],
\]

(5.2)

\[
\alpha^{-1}(\theta) = \alpha_0^{-1}[1 + \delta_\alpha \cos M(\theta - \theta_\alpha)],
\]

(5.3)

where \(M\) is an integer \((M = 4\) for cubic anisotropy), \(\delta_\sigma, \delta_\alpha \in \mathbb{R}^+\) are the amplitudes of the anisotropies, and \(\theta_\sigma, \theta_\alpha\) are the "preferred" angles. The latter will be defined more precisely below.

The phase field equations we study are then (1.6'), (1.7') with \(d_0\) and \(\alpha\) given by (1.5'), (5.2), (5.3). In the asymptotic limit as \(\epsilon\) approaches zero, the solutions to these phase field
equations are governed to leading order by those of (1.1'), (1.2'), (1.5), (1.5'). Since these dimensionless equations are related to the fully dimensional equations by simple substitution, every parameter in our system including those involving anisotropy, e.g., δ_σ, can be obtained directly from experimental data. Of course, we wish to "stretch out" the parameter ϵ, as discussed earlier, for computational convenience.

Next, we consider the issue of preferred direction, which is similar for the phase field and sharp interface models, in view of the remarks above. Consider the sharp interface problem (1.1'), (1.2'), (1.5), (1.5') in equilibrium so that temperature is constant. Then (1.5), (1.5') implies that (for some constant C^2)

$$\kappa = \frac{C^2}{\sigma'(\theta) + \sigma''(\theta)}.$$

(5.4)

$$\sigma(\theta) + \sigma''(\theta) = a_0[1 - (M^2 - 1)\delta_\sigma \cos M(\theta - \theta_0)].$$

(5.5)

Hence, if we assume that δ_σ satisfies $(M^2 - 1)\delta_\sigma < 1$, then the curvature has its maximum when $\theta = \theta_\sigma$. For cubic anisotropy ($M = 4$) with $\theta_0 := \frac{\pi}{4}$ this means that the equilibrium shape of the interface is such that the solid protrudes further in the diagonal directions.

This brief illustration is one implication of the Wulff construction [Wu] and can be obtained from the Cahn-Hoffman [CH] vector approach or the Herring spheres approach. Note that when $\sigma + \sigma''$ changes sign, then one has facets in the equilibrium shape as a consequence of missing angles or orientations. The values of δ_σ for two materials used in dendritic experiments are 0.05 for pivalic acid and 0.005 for succinonitrile [GS].

The dynamical situation is more complicated even if the kinetic term αd_α in (1.6) is neglected completely. On the other hand, in a limiting case in which curvature is neglected and $\alpha \neq 0$, one can acquire a basic understanding of the effects of this kinetic term. This analysis amounts to a comparison of velocities of planar fronts with different orientations, so that (1.5), (1.5') imply

$$v \sim \frac{C^2}{\alpha(\theta)[\sigma(\theta) + \sigma''(\theta)].}$$

(5.6)

Once again, for small δ_σ and δ_α, and $\theta_\sigma = \theta_\alpha$, the velocity is maximum at $\theta = \theta_\sigma$ = θ_α. Hence in the cubic case ($M = 4$, $\theta_\sigma = \theta_\alpha = \frac{\pi}{4}$), the growth is fastest in the diagonal directions.

These two calculations illustrate the following expectations. An initially spherical solid with cubic anisotropy will tend to grow fastest in the diagonal directions. If the boundary conditions are such that equilibrium is reached (e.g., appropriate Neumann conditions), then the interface will correspond to the Wulff shape, which is shown in Fig. 3.2, i.e., a square with rounded corners. Note that while the equilibrium result (5.4) is exact, the dynamic result (5.6) is only suggestive since the temperature will not be exactly constant and curvature is not precisely zero. Furthermore, one has a natural expectation that the dynamics will be less stable than equilibrium, thereby exaggerating growth in the favored directions. Thus it is possible that the dynamical problem will have facets for smaller anisotropies than those required by the vanishing of the denominator of (5.6), which would be the condition for "corners" or missing angles in equilibrium according to the Wulff construction.

While we consider the usual case in which $\theta_\sigma = \theta_\alpha$, it is worth noting that some materials exhibit dynamical anisotropy with a different preferred direction than that of the equilibrium.

In our numerical computations, we study a material with anisotropy given by (5.2) or (5.3) (with $\delta_\sigma = 0.05$ or $\delta_\alpha = 0.818$ and $M = 4$ and $\theta_\sigma = \frac{\pi}{4}$ or $\theta_\alpha = \frac{\pi}{4}$). Note that the dynamic anisotropy appears to be larger, but the coefficient of δ_σ is multiplied by $M^2 - 1 = 15$. Our
value of δ_0 corresponds exactly to that reported by [GS] for pivalic acid. The computations show that a material with such anisotropy will evolve into a shape with fourfold symmetry, regardless of the initial pattern. In particular, Fig. 5.1 displays 12 frames in the phase field computations (1.6'), (1.7') using (5.3) (i.e., with $\delta_0(\theta)$ defined by (1.5')). Similar results are obtained with (5.2). The fact that such different sources of anisotropy (5.2) versus (5.3) result in very similar patterns is an important physical conclusion that is not obvious from the form of the equations. The initial shape is the same perturbed circle used in the formation of the single-needle dendrite. By frame 3 of Fig. 5.1, this interface develops some corners and facets, some of which correspond to the favored directions discussed above, while others form as an immediate consequence of the initial conditions. In frames 3–9, these latter facets are gradually eliminated at the expense of the dominant facets distinguished by (5.4) and (5.6). In the last few frames (i.e., 10–12) these dominant planes become extended until they meet at the $x-y$ diagonal with a slightly smoothed-out right angle. The solidification then continues without any change in shape.

A rigorous result [So] has established that an interface moving in accordance with (1.3') alone, with constant v, would retain the anisotropic shape. While there are no rigorous results for the full set of equations involved in solidification, our numerics show that this is indeed the case for the phase field equations. Since these equations are asymptotically governed by (1.1')–(1.3') to leading order, the same conclusion remains valid for the sharp interface problem.

6. Motion by mean curvature. The problem of motion by mean curvature (see [Br] and references contained therein) is to determine a $(d - 1)$-dimensional surface (or curve) $\Gamma(t)$ in $\Omega \subset \mathbb{R}^d$, such that the (normal) velocity, $v(t, x)$, at each point on the surface satisfies

$$v(t, x) = -\alpha^{-1}k(t, x),$$

(6.1)

where k is again the sum of principal curvatures and α^{-1} is a constant or a function of orientation angle.

A closely related problem is to find the level set

$$\Gamma(t) := \{x \in \Omega : \varphi(t, x) = 0\},$$

(6.2)

where φ is a solution to the single parabolic equation

$$\alpha \epsilon^2 \varphi_t = \epsilon^2 \Delta \varphi + \frac{1}{2}(\varphi - \varphi^3).$$

(6.3)

Equation (6.3), which was introduced by Cahn and Allen [Ca], [AC] in the context of antiphase boundaries is a limiting case of the phase field equations. As the latent heat ℓ approaches zero, while the initial and boundary conditions imposed on u are also zero, the phase field equations (1.6'), (1.7') have solutions that are governed by those of (6.3) and consequently (6.1) to leading order. Thus the leading order asymptotics for (1.6'), (1.7') is just a special case of (1.5) in which $\mu = 0$ [Ca2]. In recent years, the connections with materials science through the phase field equations have stimulated a resurgence of interest in the mathematical theory of (6.3) and other regularizations of (6.1) [BK], [MSc], [GG]. From a formal analysis it is clear that an initial interface of the form of frame 1 in Fig. 6.3 will tend to approach a circle and then shrink until extinction. The time of extinction from a circle is easily calculated.

Our numerical calculations consist of studying (1.6), (1.7) in the limit of small ℓ, with zero boundary and initial conditions for u, and the standard conditions of φ described in (2.10) so that $\varphi_+ = +1$ on the (exterior) liquid and $\varphi_- = -1$ in the (interior) solid in this case. In our first experiment we compared the numerical results with a theoretical solution. We took $\alpha = 1$, $\ell = 0$, zero boundary and initial conditions for u and the initial solid seed to be a circle of radius 0.3. The theoretical solution gives a circle with radius $r(t) = (0.09 - 2t)^{1/2}$, which has an extinction time $T_0 = 0.045$.

G. CAIGNALP AND E. SOCOLOVSKY
Fig. 6.1. Motion by mean curvature. Computed and theoretical interface locations for a circular initial interface. Exact radius is $r(t) = (0.09 - 2t)^{1/2}$, $0 \leq t \leq 0.045$. Parameters are $D = 1.0$, $\xi = 0$, $[\varepsilon] = 4$, $\epsilon = 0.005$, and $\sigma = 0.866025$.

Fig. 6.2. Motion by mean curvature. Crystal evolution corresponding to the computation of Fig. 6.1.
In Fig. 6.1 we depict the computed and theoretical radius of the circle as a function of time. There is an agreement of two or more digits up to $t = 0.0345$ and the accuracy deteriorates approaching T_0 as expected. The computational extinction time is between 0.04575 and 0.0465. Figure 6.2 depicts the evolution at times

$$t = 0.0, 0.00675, 0.01425, 0.02175, 0.02925, 0.03675,$$

$$0.04425, 0.04565, 0.0465.$$

The initial condition in frame 1 of Fig. 6.3 is identical to those that we used for faceted crystals and stable solidification. In frames 1–4, the interface moves toward a circle (frame 5) with a radius that is approximately that of the perturbed circle in frame 1. The interface acts in a way to minimize the surface tension during this phase. The surface tension in (6.3) or (1.7) is determined to leading order by the coefficients of $\Delta \varphi$ and the $\frac{1}{2}(\varphi - \varphi^3)$ term.

Fig. 6.3. Motion by mean curvature. Crystal evolution for initial interface $r = 0.3(1 + \frac{1}{3} \cos 8\theta)$. Parameters are the same as in Figs. 6.1 and 6.2.

The anisotropic analog of (6.1) involves replacing the constant α by a function of orientation angle as discussed earlier in the single-needle or faceted-crystal growth cases. Note that the anisotropy involved in the surface tension is not relevant in this limit since α cancels in the asymptotics. In the anisotropic case the evolution of the interface is similar except that the convergence of the interface is toward the appropriate Wulff shape rather than the sphere.

Acknowledgments. The authors thank the Pittsburgh Supercomputing Center for computing time and use of facilities.
REFERENCES

[I] J. JONES, Univ. of Pittsburgh, Pittsburgh, PA, manuscript.

