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Abstract

In this paper, we study bilevel mixed integer programming (MIP) problem and present a

novel computing scheme based on reformulations and decomposition strategy. By converting

bilevel MIP into a constrained mathematical program, we present its single-level reformulations

that are friendly to perform analysis and build insights. Then, we develop a decomposition

algorithm based on column-and-constraint generation method, which converges to the optimal

value within finite operations. A preliminary computational study on randomly generated in-

stances is presented, which demonstrates that the developed computing scheme has a superior

capacity over existing methods. As it is generally applicable, easy-to-use and computationally

strong, we believe that this solution method makes an important progress in solving challeng-

ing bilevel MIP problem.

Key words: bilevel optimization, mixed integer programming, reformulation, decomposition

algorithm

1 Introduction

Bilevel optimization is an optimization scheme to model a non-centralized system that has two

decision makers (DMs) at different levels driven by their own interests. Decisions made by the

upper-level DM affect the feasible decision set of the lower-level DM, while an equilibrium response,

i.e., an optimal decision, from the lower-level constitutes a part of the performance evaluation of

the upper-level. Indeed, because of such sequential interaction between them, this decision mak-

ing structure is also called Stackelberg leader-follower game, where the upper-level and lower-level
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DMs are treated as the leader and follower respectively. Mathematically, by defining two opti-

mization problems for those DMs respectively, the whole decision making structure is formulated

as the following bilevel optimization model.

BiMIP : Θ∗ = min fx + gy + hz (1)

s.t. Ax ≤ b, x ∈ Rmc
+ × Zmd

+ , (2)

(y, z) ∈ F(x) ≡ arg max{wy + vz : Py + Nz ≤ R−Kx,y ∈ Rnc
+ , z ∈ Znd

+ } (3)

where x represents the upper-level decision variables, y represents the lower-level continuous

decision variables, and z represents the lower-level discrete decision variables. The differentiation

between y and z is to highlight discrete variables and to streamline our exposition in the remainder

of this paper. Clearly, the membership requirement in (3) ensures that an optimal solution of the

lower-level DM is fed back to the upper-level DM. Note that formulation BiMIP is often referred

to as optimistic bilevel formulation as the upper-level DM is able to select (y, z), if F(x) is not

a singleton, for her own favor. A more conservative model, which is less studied, is pessimistic

bilevel formulation [34] where the lower-level DM is assumed to against her by choosing the least

favorable one. In this paper, we follow the majority of existing research and focus our study on

optimistic bilevel formulation.

Since its introduction in 1970s [11, 16], bilevel optimization has received enormous research

attention and has been widely applied to study and support many practical hierarchical decision

making problems. Such situations happen very often in transportation planning and network

capacity expansion [12, 19, 35], government policy making [8, 18], revenue management [13, 20],

and computational biology [41, 15]. With deregulations of power systems and organizations of

electricity markets, bilevel and general multilevel optimization have been applied to deal with

various management challenges between market administrators and participants, including power

generation, market bidding, and capacity expansion [43, 27, 31]. Moreover, the interdiction

model, a special class of bilevel optimization model, where the upper-level and lower-level DMs

have completely opposite interests, has been intensively utilized in military and homeland security

applications for strategic planning and system vulnerability analysis [1, 44, 10, 14, 33].

Although it is widely applied in modeling and analyzing practical problems, computing bilevel
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mixed integer programming (MIP) problem, i.e., BiMIP in (1-3), is not easy. Even for the sim-

plest bilevel linear programming (LP) problem, whose both upper and lower-level problems are

linear programs, it is theoretically NP-hard [25, 3]. Yet, using results of Karush-Kuhn-Tucker

(KKT) optimality conditions or strong duality from linear programming theory, bilevel LP is

often converted into an LP with complementarity constraints or an MIP, which yields a com-

putationally feasible approach to solve practical issues. Indeed, because those crucial structural

properties are only applicable to LP, the majority of existing research efforts does not consider

general BiMIP with mixed integer lower-level problems. Up to know, only a few algorithms have

been developed [22, 37, 49, 50] that are able to compute bilevel problem whose lower-level prob-

lem has discrete variables. Nevertheless, we note that those algorithms either (i) heavily depend

on enumerative Branch-and-Bound strategies based on a rather weak relaxation, or (ii) involve

complicated operations that are problem specific and challenging for most researchers and practi-

tioners. Hence, existing methods are of very limited computational capability. As a consequence,

there is no commonly accepted approach and little support is available to transform BiMIP into

a decision making tool for real system practice. Given such situation, some researchers consider

general BiMIP as an open problem in operations research [21].

In this paper, to improve our solution capacity on BiMIP and to change its application

status in practical systems, we present a new solution scheme that has a clear mathematical

foundation for analysis and a simple algorithmic structure for implementation. In theoretical

aspect, through reformulations, it provides strong and computationally friendly relaxations, and

ensures validity and convergence of the whole procedure. In algorithmic aspect, it employs an

easy-to-use decomposition approach, which minimizes unnecessary operations and computational

expenses to derive exact solutions. In computational aspect, on a set of random instances, it often

produces optimal solutions within a very small number of algorithmic operations and demonstrates

a superior performance over existing ones. Given those advantages, we believe that this new

solution method to BiMIP is an effective tool that is of a great significance in practice.

We organize the rest of this paper as follows. In Section 2, we briefly review existing solution

methods for bilevel optimization problem. In Section 3, we present an equivalent formulation

different from BiMIP formulation in (1-3) and analyze its advantages. In Section 4, we introduce

a few single-level reformulations and discuss their mathematical implications. In Section 5, we
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describe a decomposition method that converges to the optimal value within a finite number of

iterations. In Section 6, we present numerical results obtained on a set of randomly generated

instances. Section 7 concludes this paper with a discussion on future research directions.

2 Existing Solution Methods of Bilevel MIP

Although many efficient algorithms and software packages have been designed and developed for

general or structured single-level MIP, computing bilevel MIP remains challenging. One funda-

mental reason is that the bilevel formulation itself in (1-3) is defined in a rather implicit way.

Let 3-tuple (x,y, z) represent one solution of BiMIP. Its feasible set, which is often called the

inducible region, is defined in the following parametric fashion.

ΩI = {(x,y, z) : Ax ≤ b, (y, z) ∈ F(x),x ∈ Rmc
+ × Zmd

+ }.

Analyzing such parametric representation and developing structural insights are difficult.

However, under a special situation where the lower-level problem is a pure LP, i.e., no z vari-

ables and nd = 0, ΩI ’s mathematical representation can be drastically simplified. Recall that

for an LP problem with a finite optimal value, its Karush-Kuhn-Tucker (KKT) conditions, which

include primal feasibility, dual feasibility, and complementary slackness conditions, are necessary

and sufficient to characterize an optimal solution. In other words, those KKT conditions can

be used to represent optimal solutions. Hence, we can replace F(x) by the corresponding KKT

conditions [24]. As a result, ΩI is reformulated into the following set with linear and disjunc-

tive constraints (from complementary slackness conditions in (6)), where π is the vector of dual

variables with appropriate dimension n1. For the easiness of exposition, we employ ⊥ signs to

compactly represent complementarity conditions.

ΩI = {x ∈ Rmc
+ × Zmd

+ ,y ∈ Rnc
+ , π ∈ Rn1

+ : Ax ≤ b, (4)

Py ≤ R−Kx, Ptπ ≥ wt, (5)

y ⊥ (Ptπ −wt), π ⊥ (R−Kx−Py)}. (6)
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Therefore, BiMIP is equivalently converted into the following single-level optimization model.

min{fx + gy : (4)− (6)} (7)

Such single-level reformulation provides a great convenience to design computing algorithms. For

example, the disjunctive structure displayed in (6) motivates many Branch-and-Bound methods,

including [24, 6, 7, 26, 48]. Actually, BiMIP with ΩI in (4-6) is a mathematical program with

linear complementarity constraints (MPCC) [46], which is often solved by nonlinear programming

algorithms [42, 30, 40]. Moveover, constraints of complementary slackness conditions can be

linearized using additional binary variables [3], along with nonnegativity properties of decision

variables. Specifically, consider a complementary slackness condition πi(R−Kx − Py)i = 0,

where subscript i is to denote ith component of the associated vector. It is equivalent to

πi ≤Mδi, (R−Kx−Py)i ≤M(1− δi), δi ∈ {0, 1} (8)

where M is a sufficiently large number. By applying this conversion to every complementary

slackness condition, the whole BiMIP formulation then can be reformulated into a regular MIP

problem. Indeed, in concert with powerful professional MIP solvers, this MIP reformulation

strategy has been widely employed as it allows researchers and practitioners to compute BiMIP

instances with little effort on designing sophisticated algorithms.

A natural connection between bilevel MIP and single-level MIP can be established if we simply

require (y, z) to be feasible, instead of optimal, for a given x. Then, bilevel MIP reduces to the

following single-level MIP, which is called high point problem [37].

φ∗ = min
(x,y,z)∈Ω

(fx + gy + hz)

where

Ω = {x ∈ Rmc
+ × Zmd

+ ,y ∈ Rnc
+ , z ∈ Znd

+ : Ax ≤ b,Py + Nz + Kx ≤ R}.

It is easy to see that ΩI ⊆ Ω and high point problem is a relaxation to BiMIP. Indeed,

it has been proven in [17, 9, 5] that when both upper and lower-levels are LP problems, i.e.,
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md = nd = 0, an optimal solution to BiMIP will be an extreme point of Ω. Hence, a few

algorithms are developed to identify an optimal solution by evaluating extreme points of Ω, which

is often referred to as vertex enumeration, in an efficient way [17, 39, 4, 9]. Nevertheless, we point

out that those vertex enumeration methods only work for instances with LP upper and lower-level

problems. On the contrary, the KKT conditions based reformulation strategy is more general as

it does not restrict the upper-level to be an LP.

When the lower-level problem has discrete variables, which renders KKT conditions invalid,

algorithm development becomes scarce. Among a couple of algorithms [37, 22, 49, 45] developed

over the last 20 years, almost all of them are directly implemented with Branch-and-Bound

techniques [37, 22, 49, 45, 50], which are more suitable for those with pure IP lower-level problems

[22, 49]. Actually, high point problem is generally adopted as the fundamental relaxation within

those Branch-and-Bound schemes. However, as demonstrated in [37], this relaxation is very

weak, leading to very large Branch-and-Bound trees with long computation time. To improve

performance of Branch-and-Bound methods, fast heuristic variants are designed [37], cutting

planes are generated for strengthening [22], and a sophisticated master-sub problem decomposition

method is designed to guide the branching process and to create nodes [49]. Different from

Branch-and-Bound methods, a parametric integer programming approach is developed in [32],

which, however, is rather a conceptual method with no numerical evaluation.

The interdiction model, as a structured bilevel optimization problem, is formulated as the

following.

Θ∗ = min
x

max
(y,z)∈F0(x)

wy + vz (9)

where F0(x) = {y ∈ Rnc
+ , z ∈ Znd

+ : Py + Nz ≤ R−Kx}. Because the gain of one level is exactly

the loss of the other one, it represents a zero-sum game and is widely employed in decision making

and analysis of security and defense applications. When the lower-level is an LP, the interdiction

model is often reformulated into a single-level problem with a bilinear objective function as in

(10), based on the strong duality (with π satisfying all constraints in the dual problem).

min
x

max
y∈F0(x)

wy⇔ min
x,π

π(R−Kx). (10)
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In many cases [1, 2, 38], especially for network interdiction applications, x are binary variables.

So, the nonlinear products between x and π can easily be linearized and the whole formulation

is converted into an MIP. We mention that, compared with the reformulation based on KKT

conditions, this formulation is with less variables and constraints and typically demands much

less computational expenses [1]. Certainly, as one type of BiMIP, neither reformulation strategy

is applicable when discrete variables appear in the lower-level. Nevertheless, because network

interdiction problems often demonstrate clear structural properties, some specialized computing

methods are developed for those with mixed integer lower-level problems [45, 21].

Overall, we note that, for BiMIP with an LP lower-level problem, the KKT conditions based

single-level reformulation strategy is arguably the most popular solution method. In particular,

the MIP representation of that reformulation, in concert with existing powerful MIP solvers, pro-

vides a convenient and efficient computing approach. As a result, this type of BiMIP has been

employed as an analytical tool in decision making of real problems. Nevertheless, for BiMIP with

an MIP lower-level problem, the situation is very different. Although several computing methods

are proposed or designed, they are either designed for those with special structures or their im-

plementations involve sophisticated analysis and complicated operations. Moreover, the popular

high point problem relaxation is weak, which indicates the associated Branch-and-Bound schemes

are less effective. Hence, up to now, there is no commonly accepted algorithm to compute this

general type of BiMIP. Without support of effective solution methods or computing tools, some

researchers consider general BiMIP “still unsolved by the operations research community” [21].

Consequently, its application in addressing real problems is very restricted.

In the following sections, different from traditional methods that mainly depend on Branch-

and-Bound techniques, we develop a new solution scheme based on reformulation and decompo-

sition methods. Specifically, in Section 3 and 4, we introduce a couple of reformulations, and

discuss their connections and advantages to the traditional BiMIP formulation in (1-3). Then,

based on those reformulations, we present a decomposition method and prove its convergence and

complexity in Section 5.

3 A Revisit of Bilevel MIP Problem

First, we consider a couple of situations where BiMIP can be simplified.
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Proposition 1. 1. If high point problem is infeasible, BiMIP is infeasible.

2. If (g,h) = α(w,v) with α ≤ 0, BiMIP reduces to high point problem.

3. If (g,h) = α(w,v) with α > 0, BiMIP reduces to

Θ∗ = min
x

fx + α max
(y,z)∈F0(x)

wy + vz. (11)

�

In the remainder of this paper, without loss of generality we assume that high point problem is

feasible and Ω is not empty. Nevertheless, it is observed that, even that Ω is not empty, provided

that there are discrete decision variables in the lower-level, i.e., nd is non-zero, BiMIP may

not have any optimal solution [32]. Under such situation, min should be replaced by inf in (1).

To concentrate on designing computing algorithms for BiMIP, we assume that it has a finite

optimal solution (x,y, z) in this paper. We mention that, when inf cannot be reduced to min,

the presented research in this paper could be applied to derive an ε-optimal solutions, which is

often sufficient in solving practical instances.

Most of existing research on solving bilevel MIP directly studies BiMIP formulation in (1-3)

and seeks to derive critical properties for deeper insights and more support for computational im-

provements. Instead of following that convention, we duplicate decision variables and constraints

of the lower-level problem and provide the following equivalent formulation, to which we denote

as BiMIPd.

BiMIPd : Θ∗ = min fx + gy0 + hz0 (12)

s.t. Ax ≤ b, x ∈ Rmc
+ × Zmd

+ , (13)

Py0 + Nz0 ≤ R−Kx, y0 ∈ Rnc
+ , z0 ∈ Znd

+ , (14)

wy0 + vz0 ≥ max{wy + vz : Py + Nz ≤ R−Kx,y ∈ Rnc
+ , z ∈ Znd

+ }.(15)

Note that (14-15) ensure that (y0, z0) is an optimal solution to the lower-level problem for any

x. Hence, the equivalence between BiMIPd and BiMIP is straightforward. Similar to the

conventional solution concept of BiMIP, we let 3-tuple (x,y0, z0) to represent a solution of
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BiMIPd and point out that an optimal solution to the lower-level problem, with respect to x,

can be obtained by setting (y, z) = (y0, z0).

Besides our independent work on this reformulation, we note that this type of formulation

was presented in the early 1990s [47] for bilevel linear programming problems to design global

optimization algorithms. As more variables and constraints are involved in, it does not appear to

be an effective formulation to solve bilevel linear optimization problems. Hence, over the last 20

years, this formulation has received very limited attention. We next present some observations

and insights on BiMIPd, from which we believe that this formulation actually is an informative

and convenient representation for analysis and algorithm design for general bilevel MIP.

Remarks:

(i) By replicating variables (and constraints), it provides a complete variable set, including the

original upper-level variables x and the lower-level variables, which are now represented by (y0, z0),

at control of the upper-level DM. Mathematically, due to constraint (15), it is clear that the feasible

set of (x,y0, z0) is ΩI , the inducible region of the complete bilevel MIP problem. Conceptually,

the upper-level DM will be able to use (y0, z0) to simulate the response of the lower-level DM, and

to evaluate the impact of that response in her decision scheme. Indeed, they naturally support

us to capture further interactions and restrictions between the upper and lower-level solutions.

For example, as mentioned in [36], the upper-level constraint (2) may depend on the lower-level

solution, which is of the following form where (y, z) ∈ F(x).

Ax + By + Cz ≤ b.

For such situation, because of (15), it can be easily reformulated as

Ax + By0 + Cz0 ≤ b,

which replaces the corresponding part in (13). We mention that for such type of bilevel MIP

problems, our reformulation strategy and decomposition algorithm developed in the following

sections work well without modifications. For the structured interdiction model where the upper-

level problem has an opposite objective function and does not have any constraint involving

lower-level solution, we also mention in Section 4.3 that such variable replication is not necessary.
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(a) Ω and ΩI (b) Inducible regions if z ∈ R+

Figure 1: Feasible Sets of Various Problems

(ii) Unlike BiMIP that imposes a membership restriction on (y, z), an inequality constraint (15)

on (y0, z0) would be more friendly to general mathematical programming tools. Indeed, if we

ignore (15), or equivalently replace the right-hand-side of (15) by −∞, it is straightforward to see

that the resulting formulation is high point problem, a weak relaxation of BiMIPd or BiMIP.

Naturally, if we can strengthen the right-hand-side of (15), a stronger relaxation will be obtained.

(iii) Note that bilevel MIP with a lower-level LP can be solved by using its KKT condition based

reformulation. Nevertheless, it has been recognized that relaxing the lower-level MIP into an LP

does not yield a valid method to solve the original bilevel MIP. Through BiMIPd and (15), it is

rather easy to identify the actual reason: given that the LP relaxation has an optimal value larger

than that of original MIP problem, replacing the right-hand-side of (15) by its LP relaxation will

lead to a very different constraint that may cut off a large portion of the bilevel feasible set ΩI .

Next, we employ an instance presented in Moore and Bard [37] to illustrate our understanding.

Example 1. (adapted from [37])

Consider the following bilevel MIP problem represented in the popular BiMIP form.

min
x∈Z+

−x− 10z (16)

z ∈ arg max{−z : −25x+ 20z ≤ 30, x+ 2z ≤ 10, 2x− z ≤ 15, 2x+ 10z ≥ 15, z ∈ Z+}.
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Its corresponding BiMIPd reformulation is

min
(x,z0)∈Z2

+

−x− 10z0

−25x+ 20z0 ≤ 30, x+ 2z0 ≤ 10, 2x− z0 ≤ 15, 2x+ 10z0 ≥ 15, (17)

−z0 ≥ max{−z : −25x+ 20z ≤ 30, x+ 2z ≤ 10, 2x− z ≤ 15, 2x+ 10z ≥ 15, z ∈ Z+}.

For this instance, its optimal value is −22 and its unique optimal solution is (x, z) = (2, 2) for

BiMIP form (or (x, z0) = (2, 2) for BiMIPd form) .

In Figure 1, we provide feasible sets of related problems of this instance. The collection of

solid dots in Figure 1(a) is the inducible region (also the feasible set of (17)) of this instance.

The collection of all dots in the convex polytope in Figure 1(a), including both solid and empty

ones, represents the feasible set of high point problem, i.e., the set Ω. Note that high point

problem actually is equivalent to BiMIPd formulation with the last constraint replaced by −z0 ≥

−∞. Clearly, this high point problem is a relaxation to the bilevel MIP instance. Nevertheless,

comparing its optimal value, which is −42 from (x, z) = (2, 4), to that of the bilevel MIP, we

observe that this relaxation is weak.

If we relax the lower-level variable z in (16) to be continuous, which equivalently sets both z0

and z in (17) to be continuous, the resulting bilevel MIP has its inducible region be the collection

of diamond points in Figure 1(b), and its optimal value −18 from (x, z) = (8, 1). Clearly, this

inducible region does not have any strong connection with respect to ΩI as their intersection is

the single point (8, 1). A deeper insight can be developed by analyzing (17) and Figure 1(b). Note

that the collection of bold lines (including all diamond points), which is the feasible set of (x, z0)

without considering the optimality constraint between z0 and z in (17), contains ΩI as its subset.

Nevertheless, if that optimality constraint between z0 and z is imposed, because a larger optimal

value serves as its right-hand-side, it cuts off most part of that collection, including ΩI , and just

leaves diamond points as feasible points.

Actually, even that we keep z0 as discrete and simply relax z to be continuous in (17), we

cannot derive a good solution either. Under such situation, that optimality constraint between

z0 and z cuts off almost all integer points of Ω and just leaves point (8, 1) as the only feasible

solution. �
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4 Reformulations and Strong Relaxations of Bilevel MIP

4.1 A Single-Level Reformulation and Strong Relaxations

In this subsection, we present a single-level equivalent reformulation of BiMIPd, which is the

basis of our solution scheme. The main idea of this reformulation is to expand (15) through

enumeration. We make one assumption that for any possible (x, z), the remaining lower-level

problem has a finite optimal value. Such assumption is similar to the relatively complete recourse

property, a frequently used concept in stochastic programming literature to ensure the feasibility

of the recourse problem under any feasible choice of the first stage decision. Hence, we refer to

this assumption as relatively complete response.

First, we separate discrete and continuous variables in the lower-level to restructure the right-

hand-side of (15) as follows:

wy0 + vz0 ≥ max
z∈Z

vz + max{wy : Py ≤ R−Kx−Nz,y ∈ Rnc
+ } (18)

where Z represents the collection of all possible z. One may think that it is pointless to replace

(15) by (18), given that BiMIPd becomes even harder. However, as the second maximization

problem in (18) is a pure LP, the classical reformulation method using KKT conditions can be

applied. Hence, we have its equivalent form

wy0 + vz0 ≥ max
z∈Z

vz + wy

s.t. (y, π) ∈ {Py ≤ R−Kx−Nz, Ptπ ≥ wt, y ⊥ (Ptπ −wt), π ⊥ (R−Kx−Nz−Py)}.

Unless explicitly mentioned, we assume that Z is a finite set such that Z = {z1, . . . , zk}.

We believe that such assumption is very mild in practice. Note that if some components of z

can take very large values, it may not be necessary to treat them as discrete variables and we

can consider them as continuous ones. Then, by enumerating zj and introducing corresponding

variables (yj , πj) and their related KKT conditions, we have the following result.

Theorem 2. The formulation BiMIPd in (12-15) is equivalent to its expanded single-level for-
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mulation

ΣZ : min fx + gy0 + hz0 (19)

s.t. (13− 14)

wy0 + vz0 ≥ vzj + wyj , 1 ≤ j ≤ k (20)

Pyj ≤ R−Kx−Nzj , Ptπj ≥ wt, 1 ≤ j ≤ k (21)

yj ⊥ (Ptπj −wt), πj ⊥ (R−Kx−Nzj −Pyj), 1 ≤ j ≤ k (22)

yj ∈ Rnc
+ , πj ∈ Rn1

+ , 1 ≤ j ≤ k. (23)

Remarks:

(i) Note that the aforementioned equivalent reformulation ΣZ is a mathematical program with

complementarity constraints. It can be easily converted into a regular MIP using the linearization

technique presented in (8), which, therefore, enables us to readily solve bilevel MIP using popular

MIP solvers. Or, it can be directly computed by using Branching-and-Bound techniques on

complementarity constraints. Various methods [46, 30, 40, 28] for mathematical program with

complementarity constraints may be applicable, most of which, however, only deal with continuous

problems.

(ii) For some bilevel MIP, if its upper-level problem is an MIP and its lower-level problem includes

discrete variables, we may not be able to achieve its infimum, for which we need to replace

min with inf in (1) and (12) [32]. Although our focus is to develop algorithms for those with

optimal solutions, it is interesting to note that the relatively complete response property provides

a sufficient condition to ensure the existence of an optimal solution.

Corollary 3. If a bilevel MIP problem has the relatively complete response property, its optimal

solutions exist, which can be obtained by branching on complementarity constraints of ΣZ. �

(iii) Similar to well-known Benders Reformulation and Dantzig-Wolfe Reformulation, this equiv-

alent reformulation, however, could be extremely large, which is more of a theoretical value rather

than of a practical significance. One idea is to consider some subset of those constraints.

Corollary 4. Let Z be a subset of Z. A partial reformulation constructed with respect to Z,

which is denoted by ΣZ, is a relaxation and provides a lower bound to BiMIPd. In particular,
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it is stronger than high point problem by strengthening the right-hand-side of (15) through using

KKT conditions. �

It is easy to see that we can always obtain a stronger relaxation and better lower bound by

considering a larger Z and computing the corresponding ΣZ. Hence, it would be beneficial to

develop a procedure to dynamically expand Z.

4.2 Relatively Complete Response Property and Extended Formulation

For a bilevel MIP problem that does not have the relatively complete response property, there

exists some (x, z) tuple such that the remaining lower-level linear program is infeasible. For such

a situation, we can introduce additional variables ỹ = (ỹ1, . . . , ỹn1) with big-M penalty coefficients

for constraint violations. Specifically, we replace (15) in BiMIPd with the following constraint

where I is the identity matrix.

wy0 + vz0 ≥ max{wy + vz−M
∑
i

ỹi : Py + Nz ≤ R−Kx + Iỹ, (y, ỹ) ∈ Rnc+n1
+ , z ∈ Znd

+ }(24)

We refer to the formulation BiMIPd with constraint (15) replaced by constraint (24) as the

extended formulation of the original one.

Proposition 5. (i) The extended formulation has the relatively complete response property. (ii)

Assume M is sufficiently large. The extended formulation is a relaxation of the original formu-

lation in (12-15). Moreover, there exists an optimal solution to the extended formulation that is

also feasible and optimal to the original one.

Proof. The first statement is obvious. We provide a proof for the second one. To show that the

extended BiMIPd formulation with (15) replaced by (24) is a relaxation to the original one, it

is sufficient to show that if (x,y0, z0) is in the inducible region, i.e., being feasible to the original

formulation, it is also feasible to the extended one.

For this x, let ((y∗, ỹ∗), z∗) denote an optimal solution to the lower-level problem of the

extended formulation as in the right-hand-side of (24). Also, it is easy to see that ((y0,0), z0) is

feasible to the same problem. By contradiction, we assume that

wy∗ + vz∗ −M
∑
i

ỹ∗i > wy0 + vz0 −M
∑
i

0 = wy0 + vz0. (25)
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Nevertheless, because M is sufficiently large, unless ỹ∗ = 0, (25) will not be valid. When ỹ∗ = 0,

(y∗, z∗) is feasible to the lower-level problem of the original formulation, which, according to (25),

is better than (y0, z0). Hence, in either cases, we have a contradiction. Therefore, we conclude

that ((y0,0), z0) is an optimal solution to the lower-level problem of the extended formulation.

Because (24) is satisfied, (x,y0, z0) is feasible to the extended formulation.

Furthermore, for any given x, it is valid for any M that

max{wy + vz−M
∑
i

ỹi : Py + Nz ≤ R−Kx + Iỹ, (y, ỹ) ∈ Rnc+n1
+ , z ∈ Znd

+ } ≥

max{wy + vz : Py + Nz ≤ R−Kx, y ∈ Rnc
+ , z ∈ Znd

+ }. (26)

So, for an optimal solution of the extended formulation, it must satisfy (15) of the original

formulation, which ensures its feasibility. Because the extended formulation is a relaxation to the

original one, its optimality follows.

Clearly, the extended formulation provides a practical strategy to handle instances without

the relatively complete response property. Nevertheless, according to Corollary 3, if bilevel MIP

does not have any optimal solution, it can be inferred that there is no finite big-M to ensure

validity of the second statement of Proposition 5. Next, we employ one example from [32] to

provide an illustration.

Example 2. (adapted from [32])

Consider the following bilevel MIP problem

inf x− z (27)

s.t. 0 ≤ x ≤ 1, z ∈ arg max
{
− z : −z ≤ −x, z ∈ {0, 1}

}
. (28)

Its extended formulation is

min x− z0

s.t. 0 ≤ x ≤ 1, −z0 ≤ −x, z0 ∈ {0, 1}

−z0 ≥ max
{
− z −Mỹ : −z ≤ −x+ ỹ, z ∈ {0, 1}, ỹ ≥ 0

}
.
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Since this extended formulation has the relatively complete response property, the original bilevel

MIP in (27-28) is equivalent to the following expanded single-level formulation ΣZ with Z = {0, 1}.

ΣZ : min x− z0

s.t. 0 ≤ x ≤ 1, −z0 ≤ −x

−z0 ≥ 0−Mỹ1, ỹ1 ≥ x, π1 ≥ −M, ỹ1 ⊥ (π1 +M), π1 ⊥ (ỹ1 − x)

−z0 ≥ −1−Mỹ2, ỹ2 ≥ x− 1, π2 ≥ −M, ỹ2 ⊥ (π2 +M), π2 ⊥ (ỹ2 − x+ 1)

z0 ∈ {0, 1}, ỹ1 ≥ 0, ỹ2 ≥ 0, π1 ≤ 0, π2 ≤ 0

where π1 and π2 are dual variables for the constraint of the lower-level problem for z = 0 and 1

respectively.

Certainly, we can solve it numerically for any fixed M . Indeed, it can be analytically de-

rived that there exists an optimal solution with (x, z0, ỹ1, ỹ2, π1, π2) = ( 1
M , 1,

1
M , 0,−M, 0) and the

optimal value is 1
M − 1. �

According to [32], the original bilevel MIP does not have optimal solution and the infimum

of the objective function value is −1. Obviously, we can use the extended formulation and derive

ε-optimal solutions by adjusting the value of M . In the next subsection, by using an alternative

reformulation based on strong duality, we present a more straightforward illustration.

4.3 Alternative Reformulations

In addition to using KKT conditions to derive the single-level reformulation, another popular

approach is to employ the strong duality theorem of linear programming. Following this line,

we next present the strong duality based equivalent reformulation of BiMIPd. Rewriting the

right-hand-side of (18) by strong duality, we have

wy0 + vz0 ≥ max
z∈Z

vz + min{(R−Kx−Nz)tπ : Ptπ ≥ wt, π ∈ Rn1
+ }.

We can remove its min operator to obtain the next one.

wy0 + vz0 ≥ max
z∈Z

vz + {(R−Kx−Nz)tπ : Ptπ ≥ wt, π ∈ Rn1
+ }.
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Then, an equivalent formulation, similar to that of Theorem 2, follows easily.

Theorem 6. The formulation BiMIPd in (12-15) is equivalent to its expanded single-level for-

mulation

Σd
Z : min fx + gy0 + hz0 (29)

s.t. (13− 14) (30)

wy0 + vz0 ≥ vzj + (R−Kx−Nzj)tπj , 1 ≤ j ≤ k (31)

Ptπ
j ≥ wt, 1 ≤ j ≤ k (32)

πj ∈ Rn1
+ , 1 ≤ j ≤ k. (33)

�

Remarks:

(i) Note that πj variables for all j are defined by a set of same constraints: {Ptπ ≥ wt, π ∈ Rn1
+ }.

Given that a finite optimal solution to BiMIP exists, which indicates a particular optimal primal

and dual pair (yj , πj) exits, the dual feasible set defined by the aforementioned constraints is

never empty. Hence, this strong duality based reformulation does not depend on any additional

assumptions or property, which is less restrictive than the KKT conditions based reformulation.

Actually, we think that it may reveal an essential logic implied in BiMIPd. Following from the

non-empty dual feasible set that, for fixed (x, z), the remaining lower-level LP is either finitely

optimal or infeasible. If the first case occurs, as shown in (31), a non-trivial lower bound, which

is parameterized by x, will be available. Otherwise, that lower-bound will become trivial as the

right-hand-side of (31) may equal to −∞. Next, we provide an illustration using Example 2.

Example 2. (continue)

In order to make use of strong duality for the lower-level problem, we augment the bilevel formu-

lation in Example 2 by introducing a continuous variable y as the following.

inf x− z

s.t. 0 ≤ x ≤ 1,

z ∈ arg max
{
− z + 0y : −z − y ≤ −x, y ≤ 0, y ≥ 0, z ∈ {0, 1}

}
.
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Note that constraints on y simply force it to be 0. Given Z = {0, 1}, its single-level equivalent

formulation through strong duality is

inf x− z0 (34)

s.t. 0 ≤ x ≤ 1,−z0 − y0 ≤ −x0, y0 ≤ 0, y0 ≥ 0, z0 ∈ {0, 1} (35)

−z0 ≥ 0− π11x (36)

−π11 + π12 ≥ 0, π11, π12 ≥ 0 (37)

−z0 ≥ −1 + π21(1− x) (38)

−π21 + π22 ≥ 0, π21, π22 ≥ 0 (39)

where π11 and π12 are dual variables for the first and second constraint of the lower-level problem

for z = 0. Similarly, π21 and π22 are introduced as dual variables for z = 1.

From (36), it can be seen that when x > 0, the right-hand-side could be −∞, given that π11 can

be positively unbounded. So, this constraint is trivial. At the same time, from (38), given x ≤ 1

and π21 ≥ 0, it can be seen that the inequality can reduce to −z0 ≥ −1. Hence, both (36) and

(38) can be trivial, all constraints on dual variables can be removed, and the whole formulation

behaves like high point problem. Nevertheless, when x = 0, the situation is different. Constraint

(36) becomes −z0 ≥ 0 (and (38) can still be trivial), which, together with nonnegativity constraint,

leads to z0 = 0.

According to this discussion, we show the feasible set of (x, z0) in Figure 2 (i.e., the inducible

region ΩI of the original bilevel MIP), as well as the feasible region Ω of the corresponding high

point problem. Note that ΩI does not include point (0, 1) and it actually is a union of {(0, 0)}

and
{

(0, 1]× {1}
}

. As an observation made in [32], without that point, such union is not closed.

On the contrary, Ω includes point (0, 1) and becomes closed and bounded, which allows high point

problem to achieve its optimal value.

If we bound all dual variables by M in this single-level equivalent formulation, it can be derived

that an optimal solution can be obtained by setting (x, z0)=( 1
M , 1) with the optimal value 1

M − 1,

which is also same as those from the extended formulation. �

(ii) Comparing Σd
Z and the KKT conditions based ΣZ in Theorem 2, it is clear that Σd

Z is

of a simpler structure with less variables and constraints. Nevertheless, bilinear terms between

18



(a) ΩI (b) Ω

Figure 2: Feasible Sets

x and πj in constraint (31) render Σd
Z (and its relaxation defined with respect to subset Z) a

challenging mixed integer nonlinear program. It probably is less friendly than ΣZ to practitioners

as the latter one can be easily linearized into an MIP model. For an instance where x are binary

variables, products between x and πj can also be linearized easily and its Σd
Z formulation can be

converted into an MIP problem, which could lead to better computational performance than its

KKT based one [1].

For the interdiction model presented in (9) and the formulation in (11) , we can also derive their

alternative equivalent reformulations that are simpler than ΣZ. Next, we give a demonstration

using the interdiction model. Because the upper and lower-level DM have completely opposite

objective functions, we can just minimize the largest possible objective function value of the

lower-level problem, without introducing (y0, z0) variables and related constraints. The equivalent

single-level reformulation based on KKT conditions is presented in the following and the one based

on strong duality can be derived similarly.

Corollary 7. The interdiction model in (9) is equivalent to its expanded single-level formulation

ΣI
Z : min{η : η ≥ vzj + wyj , 1 ≤ j ≤ k, (13), (21− 23)}.

�
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As presented in Corollary 4, it is easy to see that, for any aforementioned single-level equivalent

formulation, a partial reformulation constructed with respect to a subset Z leads to a strong

relaxation of BiMIPd. Next, we take advantage of this observation and develop a decomposition

algorithm to solve BiMIPd. In our exposition, we select ΣZ (and its relaxations) as the platform

to describe the algorithm development while point out that the whole algorithm strategy works

well for alternative reformulations Σd
Z and ΣI

Z.

5 Solving Bilevel MIP Problem by A Decomposition Algorithm

5.1 A Decomposition Algorithm and Computational Complexity

All the results in Section 4, including the single-level equivalent reformulations, the strong relax-

ations and the associated lower bounds, provide us a basis to design a dynamic solution procedure

for BiMIPd. In particular, by expanding Z and ΣZ, a tighter relaxation and a stronger lower

bound will be available, which also help us find a better feasible solution and a smaller upper

bound for BiMIPd. To this end, we adopt and extend a recent column-and-constraint generation

method, a master-subproblem computing framework initially developed for two-stage robust op-

timization problem [53], to solve BiMIPd. Basically, consider a given (upper-level) solution x∗.

By solving the subproblem, which is the lower-level problem, we derive an optimal (y∗, z∗). As

(x∗,y∗, z∗) is a feasible solution, its value, fx∗+gy∗+hz∗, provides an upper bound to BiMIPd.

Then, we update the set Z by including z∗ and expand our master problem ΣZ. Solving the aug-

mented master problem leads to a new x∗, as well as a stronger lower bound, for a new iteration.

We anticipate that, by iteratively solving those master and subproblems, lower and upper bounds

converge to the optimal value.

Let UB and LB be the upper and lower bounds respectively, l be the iteration index and ε

be the optimality tolerance. Next, we provide the implementation details.

The Column-and-Constraint Generation Algorithm for Bilevel MIP

1. Set LB = −∞, UB = +∞, and l = 0.
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2. Solve the following master problem

MP : Θ∗ = min fx + gy0 + hz0 (40)

s.t. (13− 14)

wy0 + vz0 ≥ vzj + wyj , 1 ≤ j ≤ l (41)

Pyj ≤ R−Kx−Nzj , Ptπj ≥ wt, 1 ≤ j ≤ l (42)

yj ⊥ (Ptπj −wt), πj ⊥ (R−Kx−Nzj −Pyj), 1 ≤ j ≤ l (43)

yj ∈ Rnc
+ , πj ∈ Rn1

+ , 1 ≤ j ≤ l. (44)

Derive an optimal solution (x∗,y0∗, z0∗,y1∗, . . . ,yl∗, π1∗, . . . , πl∗), and update LB = Θ∗.

3. If UB − LB ≤ ε, return UB and the corresponding (incumbent) solution. Terminate.

Otherwise, go to Step 4.

4. Solve the following lower-level problem for given x∗, which serves as the first subproblem.

θ(x∗) = max{wy + vz : Py + Nz ≤ R−Kx∗,y ∈ Rnc
+ , z ∈ Znd

+ }.

Then, compute the next one, which is the second subproblem.

Θo(x
∗) = min{gy + hz : wy + vz ≥ θ(x∗),Py + Nz ≤ R−Kx∗,y ∈ Rnc

+ , z ∈ Znd
+ }.

Derive an optimal solution (y∗, z∗), and update UB = min{UB, fx∗ + Θo(x
∗)}.

5. Set zl+1 = z∗, create variables (yl+1, πl+1), and add the following constraints

wy0 + vz0 ≥ vzl+1 + wyl+1,

Pyl+1 ≤ R−Kx−Nzl+1, Ptπl+1 ≥ wt,

yl+1 ⊥ (Ptπl+1 −wt), πl+1 ⊥ (R−Kx−Nzl+1 −Pyl+1),

yl+1 ∈ Rnc
+ , πl+1 ∈ Rn1

+

to MP. Set l = l + 1, and go to Step 2. �
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We point out that the second subproblem in Step 4 is generally necessary. Note that the lower-

level problem may have multiple optimal solutions for x∗. By computing the second subproblem,

which is constructed by the lexicographic method, we will be able to select an optimal solution

that is in favor of the upper-level DM, a reflection of the optimistic consideration. Nevertheless,

for structured interdiction problems or formulation in the form of (11), because upper-level and

lower-level DMs are of opposite interest, computing the second subproblem is not needed. Next,

we show that this algorithm converges in finite iterations.

Proposition 8. Let ε = 0 and assume that Z is finite. The presented column-and-constraint

generation algorithm converges to the optimal value of BiMIPd within O(|Z|) iterations.

Proof. Clearly, it is sufficient to show that a repeated z∗ leads to LB = UB. Assume that the

current iteration index is l1, (x∗,y0∗, z0∗) is obtained in Step 2 with LB < UB, and z∗ is obtained

in Step 4. We further assume that z∗ was also derived in some previous iteration l0(< l1).

Because UB − LB > 0, as in Step 5, MP will be augmented with a set of new variables and

constraints associated with z∗(= zl1+1). Nevertheless, as those variables and constraints are same

as those created and included in iteration l0, the augmentation essentially does not change MP .

So, it yields the same optimal value in iteration l1 + 1 as that of iteration l1. Hence, LB does not

change when the algorithm proceeds from iteration l1 to l1 + 1.

In the following, we show that LB ≥ UB in iteration l1 + 1. Note that zl1+1 = z∗.

LB = fx∗ + gy0∗ + hz0∗

= fx∗ + min{gy0 + hz0 : (13− 14), (41− 44),x = x∗}

≥ fx∗ + min{gy0 + hz0 : Py0 + Nz0 ≤ R−Kx∗, wy0 + vz0 ≥ vzl1+1 + wyl1+1,

Pyl1+1 ≤ R−Kx∗ −Nzl1+1, Ptπl1+1 ≥ wt,

yl1+1 ⊥ (Ptπl1+1 −wt), πl1+1 ⊥ (R−Kx∗ −Nzl1+1 −Pyl1+1),

z0 ∈ Znd
+ , y0,yl1+1 ∈ Rnc

+ , πl1+1 ∈ Rn1
+ }

≥ fx∗ + min{gy0 + hz0 : Py0 + Nz0 ≤ R−Kx∗,wy0 + vz0 ≥ θ(x∗), y0 ∈ Rnc
+ , z0 ∈ Znd

+ }

= fx∗ + Θo(x
∗)

The second inequality follows from the fact that zl1+1 is optimal to θ(x∗) and constraints from
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KKT conditions ensure that vzl1+1 + wyl1+1 = θ(x∗). Then, in Step 3, it is easy to see that

LB ≥ UB, which terminates the whole algorithm.

We mention that the actual implementation of the algorithm does not depend on the cardi-

nality of Z, which could be infinite. Provided that a finite optimal solution exists, the algorithm

will converge to an optimal solution through finite iterations. Indeed, as shown in Section 6, the

algorithm often leads to an optimal solution within a small number of iterations, which could

be drastically less than the cardinality of Z. In addition to the convergence and computational

complexity, we observe that the whole solution scheme, including single-level equivalent reformu-

lations, has several features that distinguish itself from existing methods.

Remarks:

(i) First, the underlying mathematical basis of the solution scheme is our single-level equivalent

reformulations, which are very simple. They just involve KKT conditions (and strong duality) and

an enumeration of possible discrete values. There is no any sophisticated mathematical theory or

concepts, or complicated algorithm operations. The decomposition structure simply reflects the

bilevel logic, which does not involve any subjective design or customization. Due to such simple

structure and its connection to KKT conditions (and strong duality), we believe that the solution

scheme provides a fundamental platform to solve bilevel MIP problems.

(ii) Second, the complete decomposition algorithm is easy to implement. Again, master problem

MP is an MIP with complementarity constraints, which can be converted into a regular MIP by

the technique in (8). Hence, both master problem and subproblem can basically be computed by

any popular MIP solver, which is conveniently accessible to many researchers and practitioners

in practice. Certainly, algorithms or packages [28, 29, 23] specializing in mathematical program

with complementarity constraints could bring more computational advantages.

(iii) The decomposition algorithm is an open and flexible framework that supports further im-

provements. As an example, we can make use of domain knowledge to develop fast heuristic pro-

cedures for better upper bounds, and take advantage of non-trivial z identified by those heuristics

to derive better lower bounds and therefore to reduce the needed iterations. Also, one bottleneck

of this method is to solve master problem MP, which grows with iterations and demonstrates a

dual block angular structure. Hence, instead of using off-the-shelf solvers, it would be beneficial

to develop customized algorithms to make use of such structure for fast computing. Next, we
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present a computationally efficient enhancement approach to strengthen master problem MP,

whose validity is straightforward.

Proposition 9. Let ŷ and π̂ represent the primal and dual variables of the lower-level LP corre-

sponding to (x, z0). The master problem MP in Step 2 can be augmented as the following MPaug

problem.

MPaug : Θ∗ = min fx + gy0 + hz0 (45)

s.t. (13− 14), (41− 44)

wy0 + vz0 ≥ vz0 + wŷ (46)

Pŷ ≤ R−Kx−Nz0, Ptπ̂ ≥ wt (47)

ŷ ⊥ (Ptπ̂ −wt), π̂ ⊥ (R−Kx−Nz0 −Pŷ) (48)

ŷ ∈ Rnc
+ , π̂ ∈ Rn1

+ . (49)

It has a larger optimal value and therefore produces a stronger lower bound than those of MP. �

It is worth mentioning that, given that both x and z0 are variables, MPaug includes some lower

bound information that is parametric not only to x but also to z0. As shown in (46), although z0

might not reflect the optimal response from the lower-level DM towards x, it provides, through ŷ

and π̂, an effective lower bound support to wy0 +vz0 which might not be available from any fixed

z1, . . . , zl. Indeed, we observe in numerical study that the benefit of this enhancement strategy

could be very significant. Note that for instance without continuous variable in its lower-level

problem, this enhancement strategy is basically ineffective, given that the artificial continuous

variables in its extended formulation are penalized with big-M to remove its impact.

In the following subsection, we illustrate our solution scheme using Example 1.

5.2 An Illustration on Example 1

We continue to solve the instance in Example 1 to build a basic understanding on our solution

scheme.

Example 1. (continue:)

To make the bilevel MIP formulation in (17) with the relatively complete response property, we
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introduce continuous variables (ỹ1, ỹ2, ỹ3, ỹ4) as in (24) for constraints in the lower-level problem.

We have

min
(x,z0)∈Z2

+

−x− 10z0

−25x+ 20z0 ≤ 30, x+ 2z0 ≤ 10, 2x− z0 ≤ 15, 2x+ 10z0 ≥ 15,

−z0 ≥ max{−z −M
4∑
i=1

ỹi : −25x+ 20z ≤ 30 + ỹ1, x+ 2z ≤ 10 + ỹ2,

2x− z ≤ 15 + ỹ3, 2x+ 10z ≥ 15 + ỹ4, z ∈ Z+, ỹi ∈ R+, i = 1, . . . , 4}.

Next, we provide the detailed algorithm progress over iterations with bound information plot-

ted in Figure 3. In our numerical study, big-M is set to 10, 000 and the computation platform is

described in Section 6.

Iteration l = 0: Solving MP, which actually is high point problem, we have (x∗, z0∗) = (2, 4), and

LB = −42. Given x = 2, solving subproblems, we have z∗ = 2 and UB = −22.

Iteration l = 1: Solving MP , we have (x∗, z0∗) = (6, 2), and LB = −26. Given x = 6, solving

subproblems, we have z∗ = 1 and UB = min{−22,−16} = −22.

Iteration l = 2: Solving MP, we have (x∗, z0∗) = (2, 2) and LB = −22. Because LB = UB, it

terminates with an optimal solution (x∗, z∗) = (2, 2), which, according to [37], is optimal to the

original bilevel MIP problem in (16) (and its equivalence (17) ).

Figure 3: LB & UB vs. Iterations

25



6 Preliminary Computational Study

In this section, we present a preliminary numerical study on random bilevel MIP instances to

evaluate our solution method. Our computational study is made through C++ on a PC desktop

(with a single processor at 3GHz and 3.25 G memory), with IBM ILOG CPLEX 12.4 as the MIP

solver. We set the optimality tolerance of master problem and the whole algorithm to 0.5%, and

those of subproblems to 0.1%, and the computational time limit to 3,600 seconds.

Our random instances are generated according to following specifications. (1) All instances

have 20 integer variables in total. Those integer variables are split for the upper-level DM and

the lower-level DM. We consider two combinations, i.e., 15 + 5 and 10 + 10. (2) Three types of

instances are included: a) Upper-level variables, i.e., x, are binary. The lower-level problem has

5 continuous variables. b) Upper-level variables are nonnegative integer variables (bounded by

30). The lower-level problem has 5 continuous variables. c) Upper-level variables are nonnegative

integer variables (bounded by 30). The lower-level problem has no continuous variables. (3) Two

objective functions are introduced such that one for the upper-level DM, and one for the lower-

level DM, where the latter one only involves lower-level variables. (4) As in [37, 22], the lower-level

DM is subject to all constraints. Three different sizes are considered: 10, 20 or 30 constraints

respectively. Coefficients are randomly chosen in the range of [-50, 50]. (5) To ensure the relatively

complete response property, each constraint is associated with an artificial variable whose big-M

coefficient is set to 10,000, which is also used for linearizing complementarity constraints.

Overall, there are 18 different combinations. For each of them, we randomly generate 10

instances, with 18× 10=180 instances in total. We then compute them using the presented

solution scheme, including reformulations and the decomposition method. Except for instances

with pure IP in the lower-level, the enhancement strategy presented in Proposition 9 is adopted.

For instances with x being binary, the strong duality based reformulation, as shown in Section

4.3, is employed. Both modifications can lead to a clear reduction in computational time over

the standard implementation. Indeed, for the difficult instances that demand for a larger number

of iterations in the standard implementation, our enhancement strategy can reduce up to 90%

iterations and computational time. The overall computational results, which are averages of 10

random instances of every combination, are reported in Table 1.

From Table 1, we note that:
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Table 1: Numerical Study on General Instances
Type # of Const. # Int. Var.(up) # Int. Var.(low) Iter. Time (s) Gap (%)

Bilevel (x Binary) MIP

10
15 5 2.3 4.19
10 10 2.8 9.92

20
15 5 2.3 4.07
10 10 2.5 5.68

30
15 5 2.2 13.25
10 10 2.5 15.14

Bilevel General MIP

10
15 5 2.2 2.68
10 10 3.5 427.7 0.3

20
15 5 2.3 14.59
10 10 2.6 39.01

30
15 5 2.2 13.79
10 10 2.5 37.09

Bilevel Pure IP

10
15 5 3.2 0.23
10 10 67.1 1065.41 3.4

20
15 5 5.9 1.62
10 10 56.7 1094.55 3.0

30
15 5 24.7 361.15 1.9
10 10 55.6 1095.06 10.5

(i) Our solution method demonstrates a very strong capability, especially for those with an

MIP problem in the lower-level. Comparing to existing computational study on similar in-

stances [22, 37], a significant reduction in computational time or optimality gap can be observed.

Certainly, due to different computation facilities, such comparison may not be fair. It is worth

pointing out that an optimal solution can often be derived after a couple of iterations within

the column-and-constraint generation algorithm. Those small numbers indicate that our method

could compute bilevel MIP by solving just several (single-level) MIP problems (with complemen-

tarity constraints). We believe that such observation strongly confirms the effectiveness of our

solution approach and its distinct advantages over existing methods.

(ii) As we expect, discrete variables in the lower-level clearly increase the computational burden,

especially for those bilevel pure IP problems. Nevertheless, continuous variables and correspond-

ing constraints in the lower-level MIP could be very helpful. When the number of constraints

increases, the number of iterations or computational time actually do not have a clear increase.

One explanation is that the rich primal and dual information from KKT conditions (or strong

duality) helps the algorithm quickly identify critical values for discrete lower-level variables and

hence leads to a fast convergence. This observation suggests that the presented algorithm proba-

bly is scalable to deal with practical instances.

(iii) Bilevel pure integer programming problem is very difficult to compute. Unlike the situation
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where computing those with mixed variables in the lower-level only needs a couple of iterations,

it is often the case that a much larger number of iterations is incurred and a nontrivial gap exists

before time limit. Such result is probably mainly due to the lack of support from KKT conditions.

Hence, we believe that advanced Branch-and-Bound methods and other strategies are necessary

for further improvement, which are our next research tasks.

We mention that a structured interdiction problem, which arises from power system research

and includes binary variables in both levels [21], is solved by a multi-start Benders decomposition

based heuristic method in [21]. By using the column-and-constraint generation method through

the strong duality based reformulation [54], exact solutions generally can be obtained within a

marginal computational time, compared to that Benders decomposition based heuristic. Also,

a similar power grid protection problem [14, 51] is computed by a Branch-and-Bound method

developed for bilevel MIP problem in [50], which produces an optimal solution with more than

100 seconds. Indeed, by directly applying the column-and-constraint generation method [52], we

note that it can be computed within 2 seconds after a couple of iterations. Those comparisons,

together with observations in Table 1, support that the presented solution approach is a very

promising and general method to compute the challenging bilevel MIPs. Certainly, sophisticated

enhancement strategies should be studied, evaluated and implemented to further strengthen its

capacity as a practical tool.

7 Conclusions

In this paper, we study the challenging bilevel MIP problem and present a novel computing scheme

based on reformulations and decomposition strategies. Note that it has several features that dis-

tinguish itself from existing methods: (1) The set of single-level reformulations provide a standard

platform that is friendly to perform analytical study and build insights. (2) The decomposition

algorithm based on column-and-constraint generation method can minimize the impact of enu-

meration and lends itself to a high computational efficiency. (3) The whole scheme can be easily

implemented using popular MIP solvers, without involving any complicated algorithm operations

or procedures. Indeed, it is probably the first algorithm that does not depend on customized

Branch-and-Bound techniques to solve general bilevel MIP problems. Together with its superior

computational performance over existing methods, we believe that this solution method makes
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an important progress in addressing the “unsolved” bilevel MIP problem.

We mention that this computing scheme provides a foundation to develop more efficient solu-

tion methods. As discussed in Section 5, future research directions include designing fast heuristics

for better lower and upper bounds and developing customized algorithms to explore the struc-

ture of master problem MP (and MPaug) for fast computing. In addition, we observe that this

computing scheme may not yield exact solutions in reasonable time, especially for instances with

pure integer programs as their lower-level problems. Hence, enhancement strategies specializing in

discrete structures, such as advanced Branch-and-Bound techniques and strong valid inequalities,

should be investigated and integrated in the future study.
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