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Abstract The essential structure of the mixed–integer programming formulation for chance–constrained
program (CCP) with stochastic right–hand side is the intersection of multiple mixing sets with a 0 − 1
knapsack. To improve our computational capacity on CCP, an underlying substructure, the (single) mixing
set with a 0 − 1 knapsack, has received substantial attentions recently. In this study, we first present a
family of strong inequalities that subsumes known facet-defining ones for that single mixing set. Due to the
flexibility of our generalized inequalities, we develop a new separation heuristic that has a complexity much
less than existing one and guarantees generated cutting planes are facet–defining for the polyhedron of CCP.
Then, we study lifting and superadditive lifting on knapsack cover inequalities, and provide an implementable
procedure on deriving another family of strong inequalities for the single mixing set. Finally, different from
the traditional approach that aggregates original constraints to investigate polyhedral implications due to
their interactions, we propose a novel blending procedure that produces strong valid inequalities for CCP by
integrating those derived from individual mixing sets. We show that, under certain conditions, they are the
first type of facet-defining inequalities describing intersection of multiple mixing sets, and design an efficient
separation heuristic for implementation. In the computational experiments, we perform a systematic study
and illustrate the efficiency of the proposed inequalities on solving chance constrained static probabilistic
lot-sizing problems.
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1 Introduction

Chance constraints appear in optimization formulations of many important applications that model service
levels, risk measures, or reliability requirements. When the randomness occurs only at the right–hand side
vector, the chance–constrained program with joint probabilistic constraints (CCP) can be formulated as
follows

min cTx

s.t. y = Ax

P {y ≥ h(ω)} ≥ 1− τ
x ∈ X ⊆ Rm1 × Zm2 ,y ∈ Rd+

where X is a polyhedron, d and m are positive integers with m = m1 +m2 for other two positive integers m1

and m2, ω is a random scenario in the probability space Ω, x is an m–dimensional decision variable, A is a
d×m matrix, h(ω) is a d–dimensional column random vector, c is an m–dimensional cost vector, and τ is a
threshold probability with 0 ≤ τ ≤ 1. The major challenge in solving the CCP is that the feasible region may
not be represented by a convex (or quasiconvex) function and is typically difficult to evaluate. For contin-
uously distributed random variables, many researches focus on the identification of conditions under which
the feasible set defined by the chance constraint is convex. Prékopa [38] shows that the feasible region can
be represented by quasiconvex functions if h is quasiconvex and ω has a logconcave probability distribution.
Henrion [19] and Henrion and Strugarek [21] show that a joint chance constraint in certain forms defines a
convex set. Hanasusanto et al. [18] study the distributionally robust chance constrained program and provide
tight conditions when it is conic representable. Efficient methods for computing the gradients and the value
of multivariate continuous distributions are proposed, see [20,46,45] for Gaussian, Student’s and lognormal
distributions. A widely applied approach is approximating the chance constraint with a more tractable func-
tion if the convexity of the feasible region is not verifiable. Many approximations have been proposed, e.g.,
the quadratic approximation [6], the conditional value-at-risk approximation [40], the Bernstein approxima-
tion [36] and Monte Carlo simulations [10,23]. Luedtke et al. [32] propose a sample approximation approach
to substitute the underlying continuous distribution by a finite sample and reformulate it as a mixed-integer
programming problem. Thus, algorithms based on cutting planes for mixed-integer reformulations are avail-
able [32,25,31]. Recently, the cutting plan approach is extended to multi-stage chance–constrained programs
and multivariate risk constraints, e.g., valid inequalities for the deterministic equivalent formulation in [54],
strong feasibility and optimality cuts for decomposition algorithms in [30,31,50,53], and cuts generation for
multivariate conditional value-at-risk or second-order stochastic dominance in [26] are developed. For joint
chance constraints with discrete distribution, A disjunctive programming reformulation for CCP is studied
in [43] by using the concept of p-level efficient points (pLEPs) [37]. A bundle method for energy problem
is proposed by [48]. The challenges of this approach lies on the enumeration of the pLEPs. Dentcheva et
al. [11] use pLEPs to obtain various reformulations and derive valid bounds for the objective value. Beraldi
and Ruszczyński [8] propose a branch-and-bound algorithm based on the enumeration of pLEPs, see also
[41]. Lejeune and Noyan [28] generate pLEPs by solving a series of increasingly tighter outer approximations
with several other algorithmic techniques. Lejeune [27] introduces Boolean reformulation framework, which
is extended recently for nonlinear chance constraints [29]. Another study on nonlinear chance constraints is in
[2]. Kogan and Lejeune [24] propose a Boolean method to solve CCP where the elements of the multirow ran-
dom technology matrix follow a joint probability distribution. Many applications on the chance–constrained
program are studied in literature, such as probabilistic lot-sizing [8,54], health care [7,44], probabilistic set
covering [9,42], hydro reservoir management [47] and logistic [12].

In this paper, we consider a mixed–integer programming (MIP) reformulation of chance–constrained
program. Suppose Ω has finitely many realizations, i.e., Ω = {ω1, ω2, . . . , ωn} and πi is the probability
associated with ωi, ∀i ∈ {1, . . . , n}. Let hri be the r-th component of h(ωi). As described in [25,32], we can
assume hri ≥ 0 without loss of generality. Throughout, we denote [i, j] ≡ {r ∈ Z : i ≤ r ≤ j}. A deterministic
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equivalent formulation of the chance–constrained program is (see also [1,25,32])

min cTx

s.t. y = Ax

yr ≥ hri(1− zi) ∀r ∈ [1, d], i ∈ [1, n] (1)
n∑
i=1

πizi ≤ τ (2)

x ∈ X ⊆ Rm1 × Zm2

z ∈ {0, 1}n,y ∈ Rd+

where zi = 0 indicates that y ≥ h(ω) is satisfied when ω = ωi and zi = 1 otherwise. The constraints (1) and
(2) define the key substructure of this MIP reformulation, i.e., the polyhedron of CCP

Q =

{
(y, z) ∈ Rd+ × {0, 1}n :

n∑
i=1

πizi ≤ τ, yr ≥ hri(1− zi), r ∈ [1, d], i ∈ [1, n]

}
.

For r ∈ [1, d], we have a mixing set with 0− 1 knapsack

Qr =

{
(yr, z) ∈ R+ × {0, 1}n :

n∑
i=1

πizi ≤ τ, yr ≥ hri(1− zi), i ∈ [1, n]

}
.

By dropping the index r, we redefine the mixing set with 0− 1 knapsack as

K =

{
(y, z) ∈ R+ × {0, 1}n :

n∑
i=1

πizi ≤ τ, y ≥ hi(1− zi), i ∈ [1, n]

}
.

Importantly, the study of the polyhedron of CCP is fundamental for solving chance–constrained programs
efficiently. Most literature focuses on its substructure the set K. Since our contributions include studies on
the set Q and K, we give literature review on both sets in following subsections.

1.1 Mixing set with 0− 1 knapsack

Observe that the set K consists of a mixing set, introduced by Günlük and Pochet [17] on general integer
variables. The mixing set was extensively studied in varying degrees of generality by many authors in [3,16,
39,34,55,56] and its convex hull can be described by the so–called star inequalities in [3].

Without loss of generality, we can assume h1 ≥ h2 ≥ · · · ≥ hn ≥ 0 in the set K. As in [1,25,32], we
introduce two parameters ν and p. The parameter ν is defined such that

ν∑
i=1

πi ≤ τ and

ν+1∑
i=1

πi > τ.

As noted by [32], we have y ≥ hν+1 and the set K can be strengthened as follows{
(y, z) ∈ R+ × {0, 1}ν :

n∑
i=1

πizi ≤ τ, y + (hi − hν+1)zi ≥ hi, i ∈ [1, ν]

}
. (3)

Indeed, by using y + (hi − hν+1)zi ≥ hi in (3) to replace (1), we obtain a new formulation of CCP with a
tighter LP relaxation and less constraints. Let {〈1〉, 〈2〉, . . . , 〈n〉} be a permutation of set [1, n] with

π〈1〉 ≤ π〈2〉 ≤ · · · ≤ π〈n〉.
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The parameter p is defined such that

p∑
i=1

π〈i〉 ≤ τ and

p+1∑
i=1

π〈i〉 > τ.

Note that in the case of equal probabilities, i.e., πi = 1/n ∀i ∈ [1, n], the knapsack constraint reduces to the
following cardinality constraint

n∑
i=1

zi ≤ p

and p = ν. Luedtke et al. [32] applied the star inequality in [3] to the strengthened star inequality (which is
stated as Theorem 1 in [25])

y +

a∑
j=1

(htj − htj+1)ztj ≥ ht1 ∀T = {t1, . . . , ta} ⊆ [1, ν] (4)

where t1 < · · · < ta and hta+1
= hν+1, and showed that it is facet–defining for K when t1 = 1. This result

was generalized in [25] and [1] where more facet–defining inequalities were introduced for mixing set with
either cardinality constraint or general knapsack. Luedtke et al. [32] and Küçükyavuz [25] also performed
numerical studies for their proposed inequalities to evaluate the computational impact on solving lot-sizing
based CCP instances.

1.2 Polyhedron of CCP

The polyhedron of CCP, i.e., Q, was initially studied in [25]. When the 0 − 1 knapsack in the set Q is just
a cardinality constraint, the author in [25] developed so–called TL inequalities and showed that they are
facet–defining for both K and Q. We actually find that this result could be significantly generalized to any
facet–defining inequalities as follows.

Proposition 1 (i) If an inequality is valid and facet-defining for Qr for some r ∈ [1, d], then the inequality
is valid and facet-defining for Q; moreover, (ii) if an inequality is valid and facet-defining for ∩r∈DQr for a
set D ⊆ [1, d], then the inequality is valid and facet-defining for Q.

Proof We omit the proof since it is the same as the last paragraph of the proof for Theorem 4 in [25]. �

Clearly, this proposition implies that the study of the single set K (i.e., a single Qr) provides a crucial
polyhedral description to the set Q. However, it can only bring us inequalities with at most one nonzero
coefficient of yr for some r ∈ [1, d]. As illustrated by a numerical example in [25], non-trivial inequalities for
the polyhedron of CCP with d = 2, which are not obtainable from its single mixing subset Q1 or Q2, can
be obtained by studying an aggregation of Q1 and Q2. Specifically, it involves selecting two scalars β1, β2,
setting y = β1y1 + β2y2, and obtaining a new set

Q′ =

{
(y, z) ∈ R+ × {0, 1}n :

n∑
i=1

πizi ≤ τ, y ≥ (β1h1i + β2h2i)(1− zi) ∀i ∈ [1, n]

}
.

Then, all the results on the set K can be readily applied to Q′. Nevertheless, no analytical study has been
done and the effectiveness of this combining approach is either theoretically or computationally unknown.
For example, we do not know if this approach will derive any facet–defining inequalities of Q.
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1.3 Main contributions and outline

Our main contributions are in both theory and computation, and presented in each of the following sections
in details. Here we summarize our contributions as follows,

• In Section 2, we derive a new family of inequalities for the mixing set with general 0− 1 knapsack, which
subsumes all known facet-defining inequalities proposed in [1,25,32] as special cases. Due to the flexibility
of our generalized inequalities, we are able to develop a new separation heuristic different from those in
[1,25], which has a much less complexity and is guaranteed to identify the strongest (i.e., facet–defining)
cutting planes for the polyhedron of CCP.

• In Section 3, we present another large family of inequalities by performing lifting and superadditive
lifting procedures on cover inequalities of 0 − 1 knapsack. Noting that all existing valid inequalities
(including our results in Section 2) are based on star inequalities for the basic mixing set, our results
are the first type of valid inequalities with a different structure. Unlike a characterization on parameters
of valid inequalities derived in [1] for K, our inequalities are explicit and constructive, which provide an
implementable procedure to identify strong inequalities to strengthen the polyhedral description and to
improve our solution capacity of CCP.

• In Section 4, we introduce a novel blending approach to study Q such that, instead of combining original
formulation, we are blending facet–defining inequalities of Qr for r ∈ [1, d]. Especially, we are able to
show when the resulting inequalities are facet–defining for Q. To the best of our knowledge, they are
the first group of facet–defining inequalities capturing interactions among multiple mixing sets. We also
develop a very effective separation heuristic that can find violated facet–defining blending inequalities.

• In Section 5, we fully test the strengthened star inequality, TL inequalities (as described in [25]) and
our three families of inequalities. We show that our inequalities outperform other known inequalities in
the literature and substantially improve a commercial solver’s ability to solve large static probabilistic
lot-sizing problems.

The last section concludes the paper.

2 Strong inequalities derived from mixing set

On the top of the classical mixing inequality, a family of strong inequalities was developed in [32] for the set
K when the knapsack constraint was replaced by a cardinality constraint. Then, Küçükyavuz [25] generalized
that result for the cardinality constrained mixing set and extended those inequalities as valid ones for K.
Recently, Abdi et al. [1] provided a characterization of valid inequalities for K, and explicitly developed a set
of facet-defining inequalities for K under some special conditions. In the following, we present a large family
of strong inequalities for K, and derive sufficient conditions under which our proposed inequalities are facet-
defining. In order to understand the connections to existing research on K, we provide a detailed analysis
and numerical examples to show that explicit strong inequalities or facet-defining inequalities developed in
[1,25] are either dominated or subsumed by ours. Due to the flexibility of our inequalities, we can further
present a separation heuristic which can identify potential facet–defining inequalities with a computational
complexity less than those of [1,25].

Theorem 1 For m ∈ [1, ν] and q ∈ [0, p−m], we define

• a set T = {t1, . . . , ta} ⊆ [1,m] with t1 < . . . < ta;

• a set L with a permutation ΠL = {l1, . . . , lq};

• a sequence of integers sj ∈ [0, ν −m+ 1] such that 0 ≤ s1 ≤ · · · ≤ sq ≤ sq+1 = ν −m+ 1.

If L ⊆ [m+ s1 + 1, n] with lj ≥ m+ min{1 + sj , sj+1} and

m+sj∑
i=1

πi +

q∑
i=j

πki > τ ∀j ∈ [1, q]
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where {k1, . . . , kq} is a permutation of L with πk1 ≥ · · · ≥ πkq , we have the following inequality

y +

a∑
j=1

(htj − htj+1
)ztj +

q∑
j=1

δj(1− zlj ) ≥ ht1 (5)

that is valid for K, where ta+1 = m+ s1 and

δj =


hm+s1 − hm+s2 j = 1

max

δj−1, hm+s1 − hm+sj+1
−

∑
i∈[1,j−1] and li≥m+min{1+sj ,sj+1}

δi

 j ∈ [2, q].
(6)

Proof It is clear that if y ≥ ht1 , the inequality (5) is trivially satisfied. If y ≥ hti for some i = 2, . . . , a + 1
and y < htj for all j ∈ [1, i− 1], then we must have ztj = 1 for all j ∈ [1, i− 1]. Thus,

y +

a∑
j=1

(htj − htj+1
)ztj ≥ hti +

i−1∑
j=1

(htj − htj+1
)

= ht1 ≥ ht1 −
q∑
j=1

δj(1− zlj )

and inequality (5) is satisfied when y ≥ hta+1
= hm+s1 . Therefore, we assume that y < hm+s1 , which implies

ztj = 1 ∀j = 1, . . . , a and
a∑
j=1

(htj − htj+1
)ztj = ht1 − hm+s1

in the rest of proof.
If q = 0, we have m + s1 = m + ν − m + 1 = ν + 1. Such case is trivial because y ≥ hν+1 and the

resulting inequality is the strengthened star inequality. It is sufficient to consider q ≥ 1. Because y ≥ hν+1

and sq+1 = ν−m+1, we must have hm+si′ > y ≥ hm+si′+1
for some i′ = 1, . . . , q. Without loss of generality,

we assume that si′+1 ≥ si′+1, i.e., m+min{1+si′ , si′+1} = m+1+si′ . Thus, zj = 1 for all j = 1, . . . ,m+si′ ,
which implies

m+si′∑
i=1

πi +

n∑
i=m+si′+1

πizi ≤ τ (7)

from the knapsack inequality, and we have

q∑
j=1

δj(1− zlj ) =
∑

j∈[1,q] and lj≥m+si′+1

δj(1− zlj )

=

q∑
j=i′+1

δj(1− zlj ) +
∑

j∈[1,i′] and lj≥m+si′+1

δj(1− zlj )

=

q∑
j=i′+1

δj +
∑

j∈[1,i′] and lj≥m+si′+1

δj −
q∑

j=i′+1

δjzlj −
∑

j∈[1,i′] and lj≥m+si′+1

δizlj . (8)

The first equality holds because zj = 1 ∀j ∈ [1,m+ si′ ]. The second equality holds because

lj ≥

{
m+ sj + 1 ≥ m+ si′ + 1,

m+ sj+1 ≥ m+ si′+1 ≥ m+ si′ + 1
∀j ∈ [i′ + 1, q].
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Next, we show that
q∑
j=1

zlj ≤ q − i′ (9)

by introducing a contradiction. Suppose
∑q
j=1 zlj ≥ q − i′ + 1. We have

τ ≥
m+si′∑
i=1

πi +

n∑
i=m+si′+1

πizi (10)

≥
m+si′∑
i=1

πi +
∑

j∈[1,q] and lj≥m+si′+1

πljzlj

≥
m+si′∑
i=1

πi +

q∑
j=i′

πljzlj +
∑

j∈[1,i′] and lj≥m+si′+1

πljzlj (11)

≥
m+si′∑
i=1

πi +

q∑
j=i′

πkj > τ (12)

where inequality (10) is just (7). Inequality (11) holds because

lj ≥

{
m+ sj + 1 ≥ m+ si′ + 1,

m+ sj+1 ≥ m+ si′+1 ≥ m+ si′ + 1
∀j ∈ [i′, q].

Inequality (12) holds because
∑q
j=1 zlj ≥ q − i′ + 1 and πk1 ≥ · · · ≥ πkq .

Given the contradiction introduced by (10)–(12), we have that (9) holds. Note that δ1 ≤ · · · ≤ δq+1 is
monotonic. With (9), we get

q∑
j=i′+1

δj ≥
q∑

j=i′+1

δjzlj +
∑

j∈[1,i′] and lj≥m+si′+1

δjzlj .

Then from (8), we have

q∑
j=1

δj(1− zlj ) =

q∑
j=i′+1

δj +
∑

j∈[1,i′] and lj≥m+si′+1

δj −
q∑

j=i′+1

δjzlj −
∑

j∈[1,i′] and lj≥m+si′+1

δjzlj

≥
∑

j∈[1,i′] and lj≥m+si′+1

δj

≥ δi′ +
∑

j∈[1,i′−1] and lj≥m+si′+1

δj ≥ hm+s1 − hm+si′+1
.

The last inequality holds because of the definition of δi′ . Therefore, we have

y +

a∑
j=1

(htj − htj+1)ztj +

q∑
j=1

δj(1− zlj )

≥ hm+si′+1
+ ht1 − hm+s1 + hm+s1 − hm+si′+1

≥ ht1 .

�

Next, we give necessary condition that (5) is facet–defining for K.
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Proposition 2 If (5) is facet–defining for K, then we have t1 = 1 and

m+sj−1∑
i=1

πi +

q∑
i=j

πki ≤ τ ∀j ∈ [1, q] with sj ≥ 1. (13)

Proof Note that the inequality (5) is uniquely determined by a triple (T,ΠL, s). We will denote (5) as the
triple (T,ΠL, s) in the proof. First, we will prove the necessary condition that t1 = 1. Given a (T,ΠL, s) with
t1 > 1. We can have (T ′,ΠL, s) with T ′ = T ∪ {1}, i.e.,

y + (h1 − ht1)z1 +

a∑
j=1

(htj − htj+1)ztj +

q∑
j=1

δj(1− zlj ) ≥ h1

which implies

(h1 − ht1)(z1 − 1) + y +

a∑
j=1

(htj − htj+1
)ztj +

q∑
j=1

δj(1− zlj ) ≥ ht1 .

As (h1 − ht1)(z1 − 1) ≤ 0, The (T ′,ΠL, s) is at least as strong as the (T,ΠL, s) inequality.
Suppose the condition (13) does not hold for a (T,ΠL, s) with coefficient δj ∀j ∈ [1, q] and i′ ∈ [1, q] is

the first index that the condition (13) does not hold. Thus, we have

m+si′−1∑
i=1

πi +

q∑
i=i′

πki > τ but

m+si′−1−1∑
i=1

πi +

q∑
i=i′

πki ≤ τ

which implies that si′−1 < si′ . We can define a triple (T,ΠL, s
′) such that s′j = sj ∀j ∈ [1, q] − {i} and

s′i′ = si′ − 1. Note that s′ is still a monotonic sequence as s. It is clear that we have δ′j ≤ δj ∀j ∈ [1, q] where
δ′j is the coefficient for (T,ΠL, s

′). So (T,ΠL, s
′) inequality is at least as strong as the (T,ΠL, s) inequality.

�

Corollary 1 Let q = p−m and sj = min{j, ν −m+ 1} ∀j ∈ [1, q], we have valid inequalities

y +

a∑
j=1

(htj − htj+1)ztj +

p−m∑
j=1

δj(1− zlj ) ≥ ht1 (14)

where

δj =


hm+1 − hm+min{ν−m+1,2} j = 1

max

δj−1, hm+1 − hm+min{ν−m+1,j+1} −
∑

i∈[1,j−1] and li≥m+1+min{ν−m+1,j}

δi

 j ∈ [2, q].

Proof Because the definition of p in Section 1 implies that the summation of any p+1 many πi’s for i ∈ [1, n]
is strictly greater than τ , we have the following result for any permutation {k1, . . . , kq} of L

m+sj∑
i=1

πi +

q∑
i=j

πki ≥



m+j∑
i=1

πi +

p−m∑
i=j

πki

m+(ν−m+1)∑
i=1

πi +

p−m∑
i=j

πki

> τ ∀j ∈ [1, q].

Apparently s1 = min{1, ν −m+ 1} = 1 since m ∈ [1, ν]. Therefore, the expected result follows. �



A Polyhedral Study on Chance Constrained Program with Random Right-Hand Side 9

Remark 1 (i) Corollary 1 is equivalent to Theorem 3 in [25] when the knapsack constraint is reduced to a
cardinality constraint. In such case, we have p = ν and sj = min{j, p−m+ 1} = j ∀j ∈ [1, p−m].
(ii) Corollary 1 improves Theorem 6 in [25], which is the main result in [25] for general K. Note that

{i ∈ [1, j − 1] : li ≥ m+ 1 + min{ν −m+ 1, j}} ⊇ {i ∈ [1, j − 1] : li ≥ m+ 1 + j}

and δjs are all positive. Hence, inequality (14) is at least as strong as the one in [25].
(iii) We note that the choice of sj in Corollary 1 does not need to satisfy (13). If it is the case, (14) could
be dominated by (5), which is demonstrated in an example adopted from [25].

Example 1 (Example 1 in [25]) Let h = (40, 38, 34, 31, 26, 16, 8, 4, 2, 1) for n = 10, and π1 = · · · = π4 = τ/4
and π5 = · · · = π10 = τ/6 with τ = 0.5. It is easy to check that ν = 4 and p = 6. As showed in [25], inequality
(14) with m = 1, t1 = 1 and ΠL = {4, 6, 7, 8, 9} gives

y + (h1 − h2)z1 + (h2 − h3)(1− z4) + (h2 − h3)(1− z6) + (h2 − h5 − δ2)(1− z7)

+ (h2 − h5 − δ2)(1− z8) + (h2 − h5 − δ2)(1− z9) ≥ h1

or specifically,

y + 2z1 + 4(1− z4) + 4(1− z6) + 8(1− z7) + 8(1− z8) + 8(1− z9) ≥ 40 (15)

where δ2 = h2 − h3 is the coefficient for term (1− z6). This inequality, nevertheless, is not facet–defining as
it is dominated by

y + (h1 − h2)z1 + (h2 − h3)(1− z4) + (h2 − h3)(1− z7) + (h2 − h5 − δ2)(1− z8) ≥ h1 (16)

or specifically,

y + 2z1 + 4(1− z4) + 4(1− z7) + 8(1− z8) ≥ 40

which is valid and facet-defining. According to Theorem 1, inequality (16) can be generated by letting m = 1,
ΠL = {4, 7, 8} with q = 3. So {k1, k2, k3} = {4, 7, 8} as well since π4 ≥ π7 ≥ π8. It is easy to see that we can
choose (s1, s2, s3) = (1, 2, 3) because, for j ∈ [1, q] = [1, 3], we have

m+sj∑
i=1

πi +

q∑
i=j

πki =


2
4τ + 1

4τ + 2
6τ = 13

12τ when j = 1
3
4τ + 2

6τ = 13
12τ when j = 2

τ + 1
6τ = 7

6τ when j = 3

> τ.

Because of Proposition 2, we make the following assumption to have stronger inequalities (5).

Assumption 1 In Theorem 1, we always choose sj ∀j ∈ [1, q + 1] such that

m+sj−1∑
i=1

πi +

q∑
i=j

πki ≤ τ ∀j ∈ [1, q].

Next, we provide sufficient conditions that guarantee (5) to be facet-defining for K.

Theorem 2 The inequality (5) is facet–defining for K if t1 = 1, πl1 ≥ · · · ≥ πlq , and

q∑
i=1

πli + πj ≤ τ ∀j /∈ T ∪ L. (17)
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Proof The proof is similar to that of Theorem 4 in [25]. However, since our inequality (5) is more general,
we give a self–contained proof. First, let y0 = h1, vector z0 with z0

j = 1 if j ∈ L and z0
j = 0 otherwise. Next,

for each j /∈ (T ∪ L), we have point (yj , zj) = (y0, z0 + ej), where ej is an n dimensional unit vector with
jth component equal to 1. The point is feasible because of (17).

For each j ∈ [1, a], let ytj = htj+1
, z

tj
i = 1 if i ∈ [1, tj+1 − 1] ∪ L and z

tj
i = 0 otherwise. The point is

feasible because of the condition

tj+1−1∑
i=1

πi +

q∑
i=1

πli ≤
m+s1−1∑
i=1

πi +

q∑
i=1

πli ≤ τ.

For j ∈ [1, q], first we let yl1 = hm+s2 and

z
lj
i = 1 ∀i ∈ [1,m+ s2 − 1] ∪ {l2, . . . , lq+1} and z

lj
i = 0 otherwise.

The point is feasible because of Assumption 1. Then, for j ∈ [2, q + 1], if

δj = hm+s1 − hm+sj −
∑

i∈[1,j−1] and li≥m+1+sj

δi,

let ylj = hm+sj+1
and

z
lj
i = 1 ∀i ∈ [1,m+ sj+1 − 1] ∪ {lj+1, . . . , lq+1} and z

lj
i = 0 otherwise.

If δj = δj−1, we let
(ylj , zlj ) = (ylj−1 , zlj−1 + elj−1

− elj ).

Note that πlj ≥ πlj−1 . In either case, the point is feasible because of Assumption 1. These n + 1 points on
the face defined by inequality (5) are affinely independent. �

In the following, we consider an implementation strategy of this type of strong inequalities in our numerical
study.

Corollary 2 When |L|= 1, the inequality (5) in Theorem 1 is facet-defining if t1 = 1, and

πl1 + πj ≤ τ ∀j ∈ [1, n] \ {l1}.

Next we will provide a separation algorithm for implementing Corollary 2.

Separation Heuristic We always set t1 = 1. Let z∗ be a fraction solution and we keep an ordered list of
the elements in {i ∈ [ν + 1, n] : z∗i = 1, πi + πj ≤ τ, ∀j ∈ [1, n] \ {i}}, denoted as Ω, in decreasing order of
πi. We choose the first element in the list to be in the set L, i.e., L = {l1} where l1 = argmaxi{πi : i ∈ Ω}.
We let

m+ s1 = min

{
j :

j∑
i=1

πi + πl1 > τ, j ∈ [1, ν]

}
which can be found in O(ν). Then, the best choice of the set T in the inequality (5) can be found by solving
a shortest path problem from the source 1 to the sink m + s1 on a directed acyclic graph with vertices
{1, . . . ,m + s1} (see Section 3.1 in [25]) and the complexity is O(ν2). The coefficient δ1 = hm+s1 − hν+1.
Note that z∗l1 = 1 and shortest path algorithm is used to find the best choice of the set T . Therefore, our
separation algorithm can find the most violated inequality in the form of Corollary 2, which is facet–defining
for Q, in O(ν2).

Note that the separation algorithm in [25] is O(p4) without guarantee of finding facet–defining inequalities
of Q. Abdi et al. [1] mentioned that the same separation algorithm can be applied in their case without
providing computational evaluation.
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As mentioned, a set of facet–defining inequalities for K was developed in Theorem 14 of [1]. In the
following, we analyze the connection between those facet–defining inequalities and results in Theorem 1 and
2. In particular, we show that they are subsumed as special cases of (5).

Corollary 3 Let M be a positive integer, ai = Mπi ∀i ∈ [1, n] and µ = Mτ . The inequality (5) in Theorem
1 is valid for K if

• ai = 1 ∀i ∈ L and q = µ−
∑m
i=1 ai is an integer;

• s1 = 1 and m+ sj = m(j − 1) + 1 ∀j ∈ [2, q];

• lj > m(j) ∀j ∈ [1, q]

where m(j) = max
{
k : j ≥

∑k
i=1 ai −

∑m
i=1 ai

}
. The inequality is facet-defining if t1 = 1 and aj ≤

∑m
i=1 ai

∀j ∈ [1, n] \ L.

It is not difficult to verify that Corollary 3 is equivalent to Theorem 14 in [1]. So, before providing a proof
to this result, we make a few remarks on the applicability of Corollary 3 (equivalently, Theorem 14 of [1]).

Remark 2 (i) The condition that ai = 1 ∀i ∈ L requires that πi ∀i ∈ L are equal, which is a very special case
of the knapsack constraint of K. For example, Corollary 3 cannot explain (15) (derived in [25]) or (16)
because π4 6= π6. Note however that Corollary 1 or Theorem 6 in [25] is able to generate explicit valid
inequalities for a general K. Hence, different from the understanding made in [1], we cannot conclude
that Corollary 3 subsumes Corollary 1 or Theorem 6 in [25].

(ii) The condition that q = µ −
∑m
i=1 ai is an integer is very restrictive. Actually, Corollary 3 cannot

describe any inequalities in Example 1 with m = 1. Since we need to have ai = 1 ∀i ∈ L, we have either
L ⊆ {1, . . . , 4} with M = 8 or L ⊆ {5, . . . , 10} with M = 12. If L ⊆ {1, . . . , 4}, q = M(τ − π1) = 3.
So, we must have L = {2, 3, 4}. However, lj > m(j) = j + 1 implies that the choice of L is not viable. If
L ⊆ {5, . . . , 10}, q = M(τ − π1) = 4.5, which is not an integer. So, there is no valid L satisfying those
conditions.

(iii) Corollary 3 could fail to provide any inequalities other than strengthened star inequalities. Consider an
example with n = 8, π1 = . . . = π3 = τ/3, and π4 = . . . = π8 = τ/5 where τ = 0.5. Since we need to
have ai = 1 ∀i ∈ L, we have either L ⊆ {1, . . . , 3} with M = 6 or L ⊆ {4, . . . , 8} with M = 10. Suppose
m < ν = 3. To have that q = µ −

∑m
i=1 ai is an integer, we can only set L ⊆ {1, . . . , 3} with M = 6. If

m = 1 or 2, it is easy to check that m(j) = j +m, which implies that a viable choice of L with lj > m(j)
does not exist. So, m = ν, i.e., the only set of inequalities Corollary 3 implies is the strengthened star
inequalities.

(iv) Comparing to Corollary 3, we mention that Theorem 1 has no such limitations but includes it as a
special case. Therefore, Theorem 1 generalizes one of the main theorems in [1]. Note also that Corollary
3 does not imply Corollary 2 because q = 1

πl1
(τ −

∑m
i=1 πi) might not be an integer.

Proof Note that ∀j ∈ [1, q], lj > m(j) implies lj ≥ m+ sj+1, and

sj = m(j − 1)−m+ 1 = argmax
s

{
m+s∑
i=1

ai −
m∑
i=1

ai ≤ j − 1

}
+ 1 = argmin

s

{
m+s∑
i=1

ai −
m∑
i=1

ai > j − 1

}
.
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For any j ∈ [1, q], we have

m+sj∑
i=1

πi +

q∑
i=j

πki =
1

M

m+sj∑
i=1

ai +

q∑
i=j

aki


=

1

M

(
m+sj∑
i=1

ai + q − j + 1

)
(18)

=
1

M

(
m+sj∑
i=1

ai −
m∑
i=1

ai + µ− j + 1

)

>
1

M
(Mτ) > τ

where (18) holds because ai = 1 ∀i ∈ L. By Theorem 1, the inequality (1) is valid for K. Since

µ = q +

m∑
i=1

ai =
∑
i∈L

ai +

m∑
i=1

ai ≥
∑
i∈L

ai + aj ∀j ∈ [1, n]/L,

(17) holds if we divided it by M . Thus, Theorem 2 implies (1) is facet–defining. �

3 Strong inequalities derived from lifting

In Section 2, although a large number facet-defining inequalities subsuming those identified in [1,25,32] are
proposed for K, they are not sufficient to define its convex hull. For instance, we observe that the following
inequalities are facet-defining for the set in Example 1, which, nevertheless, cannot be derived based on
Theorem 1.

1

3
z1 −

1

3
z2 + z3 + z4 + z5 + z7 + z8 + z9 ≤ 4 +

1

3
(y − 40) +

8

3
(1− z10)

1

3
z1 −

1

3
z2 + z3 + z4 + z5 + z6 + z7 + z9 ≤ 4 +

1

3
(y − 40) +

8

3
(1− z10) (19)

1

3
z1 −

1

3
z2 + z3 + z4 + z6 + z7 + z8 + z9 ≤ 4 +

1

3
(y − 40) +

8

3
(1− z5).

Indeed, as pointed out by Abdi and Fukasawa [1], set K has abundant polyhedral structure and many of
its valid inequalities are related to 0− 1 knapsack polyhedron. They further presented a characterization of
all valid inequalities of K. Yet, from our understanding, such result does not have explicit representation for
implementation, unless a general purpose solver is called for separation. To advance our understanding on K
as well as our solution capacity for chance–constrained problem, we directly make use of the cover inequality
of 0−1 knapsack polyhedron and develop lifting techniques with consideration of mixing inequalities to derive
valid inequalities. As demonstrated at the end of this section, inequalities in (19) can be simply obtained
using this approach. We mention that, the family of inequalities obtained through this approach is, to the
best of our knowledge, the first type that has a different structure from those of all star inequality based
ones, including those in [1,25,32], as well as ours presented in Section 2.

For m ∈ [1, ν], let N0 = [1,m− 1] and N1 = {l1, . . . , lq} ⊆ [ν + 2, n] with cardinality q such that

m∑
i=1

πi +
∑
i∈N1

πi ≤ τ and

m+1∑
i=1

πi +
∑
i∈N1

πi > τ. (20)
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We consider a restricted 0− 1 knapsack polytope S(N0, N1), where

S(N0, N1) =

{
z ∈ {0, 1}n :

n∑
i=1

πizi ≤ τ, zi = 0 ∀i ∈ N0 and zi = 1 ∀i ∈ N1

}
.

Let τ ′ = τ −
∑
i∈N1

πi. Then, for set N̂ = [1, n] \ (N0 ∪ N1), we assume that a cover C is available with
respect to τ ′ and a lifted cover inequality (LCI) is derived as the following∑

i∈E
αizi ≤ |C|−1 (21)

with αi > 0 ∀i ∈ E ⊆ N̂ and αi = 0 ∀i ∈ N̂ \ E.
We then define the following function with set W ⊆ E and scalar β ≤

∑m
i=1 πi.

G(W,β) = max
∑
i∈W

αizi

s.t.
∑
i∈W

πizi ≤ τ ′ − β, zi ∈ {0, 1} ∀i ∈W.

The function G is well defined because of (20). Note that the lifting function of (21) can be defined as

|C|−1−G(E, β). Let ρ̄ = G
(
E,
∑m−1
i=1 πi

)
−G (E \ {m},

∑m
i=1 πi)− αm, which is nonnegative noting that

an optimal solution of G (E \ {m},
∑m
i=1 πi), together with zm = 1, is just feasible to G

(
E,
∑m−1
i=1 πi

)
.

Theorem 3 Let m ∈ [1, ν] and N1 ⊆ [ν+2, n]. Suppose a superadditive function Φ(β) exists and 0 ≤ Φ(β) ≤
|C|−1−G(E, β). If hm > hm+1 and 0 ≤ ρ ≤ ρ̄, then the inequality

m−1∑
i=1

φizi +
∑
i∈E

αizi ≤ |C|−1 +
ρ

hm − hm+1
(y − h1) (22)

is valid for the set K(N1) = K ∩ {z ∈ {0, 1}n : zi = 1 ∀i ∈ N1}, where

φi = Φ(πi) +
ρ

hm − hm+1
(hi+1 − hi) ∀i = 1, . . . ,m− 1. (23)

Proof By the definition of K(N1), we can fix zi = 1 ∀i ∈ N1 for the rest of proof. Note that y ≥ hm+1 in
the set K(N1), because of condition (20). Next, we consider all three situations based on the value of y.

First, if y ≥ h1, we assume that zi = 1 ∀i ∈ Q ⊆ [1,m − 1] and zi = 0 ∀i ∈ [1,m − 1] \ Q for a set Q.
Then the knapsack constraint in K(N1) becomes∑

i∈E
πizi ≤ τ ′ −

∑
i∈Q

πi

and we have
m−1∑
i=1

φizi +
∑
i∈E

αizi ≤
∑
i∈Q

Φ(πi) +
∑
i∈E

αizi

≤ Φ

∑
i∈Q

πi

+
∑
i∈E

αizi

≤ Φ

∑
i∈Q

πi

+G

E,∑
i∈Q

πi

 ≤ |C|−1

≤ |C|−1 +
ρ

hm − hm+1
(y − h1)
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where the first inequality holds because φi ≤ Φ(πi).
Second, if ht−1 > y ≥ ht for some t = 2, . . . ,m. We must have zi = 1 ∀i ∈ [1, t− 1], and also assume that

zi = 1 ∀i ∈ Q ⊆ [t,m− 1] and zi = 0 ∀i ∈ [1,m− 1] \Q for a set Q. Then the knapsack constraint in K(N1)
becomes ∑

i∈E
πizi ≤ τ ′ −

t−1∑
i=1

πi −
∑
i∈Q

πi

and we get

m−1∑
i=1

φizi +
∑
i∈E

αizi =

t−1∑
i=1

φi +

m−1∑
i=t

φizi +
∑
i∈E

αizi

≤
t−1∑
i=1

Φ(πi) +
ρ

hm − hm+1
(ht − h1) +

∑
i∈Q

Φ(πi) +
∑
i∈E

αizi

≤ Φ

t−1∑
i=1

πi +
∑
i∈Q

πi

+
ρ

hm − hm+1
(ht − h1) +

∑
i∈E

αizi

≤ Φ

t−1∑
i=1

πi +
∑
i∈Q

πi

+
ρ

hm − hm+1
(ht − h1) +G

E, t−1∑
i=1

πi +
∑
i∈Q

πi


≤ |C|−1 +

ρ

hm − hm+1
(y − h1).

Otherwise, hm > y ≥ hm+1 and zi = 1 ∀i ∈ [1,m]. So, we get

m−1∑
i=1

φizi +
∑
i∈E

αizi =

m−1∑
i=1

φi + αm +
∑

i∈E\{m}

αizi

≤
m−1∑
i=1

Φ(πi) +
ρ

hm − hm+1
(hm − h1) + αm +

∑
i∈E\{m}

αizi

= Φ

(
m−1∑
i=1

πi

)
+

ρ

hm − hm+1
(hm+1 − h1) + ρ+ αm +

∑
i∈E\{m}

αizi

≤ Φ

(
m−1∑
i=1

πi

)
+

ρ

hm − hm+1
(hm+1 − h1) +G

(
E,

m−1∑
i=1

πi

)
(24)

≤ |C|−1 +
ρ

hm − hm+1
(hm+1 − h1)

≤ |C|−1 +
ρ

hm − hm+1
(y − h1)

where the inequality (24) holds because of the definition of G.
With analysis on all three cases, it can be seen that the inequality (22) is valid for the set K(N1). �

Remark 3 (i) LCI in (21) can be easily obtained through the sequential lifting algorithm in [52]. Note that
αi are positive integers for i ∈ E, and G(E, β) (also the lifting function |C|−1−G(E, β)) will be a staircase
function [13]. Then, a dynamic program algorithm can be used to analytically describe the lifting function,
whose superadditive approximation Φ(β) can be constructed using the approximation method developed
in [15].
(ii) To support our example at the end of this section and to make this paper self–contained, we next
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provide a valid superadditive approximation for the lifting function |C|−1 −G(E, β). Our intention here is
for demonstration, rather than deriving the strongest but complicated ones, i.e., maximal and non-dominated
approximations, which certainly is a future research direction. Assume step lengths of lifting function are
p0, . . . , p|C|−1. We sort them from large to small to obtain a permutation (pa0 , . . . , pa|C|−1

). Then, by [15],
the following function is a valid superadditive approximation.

Φ(β) =

{
0 if 0 ≤ β < pa0
h if

∑h−1
k=0 pak ≤ β <

∑h
k=0 pak , h = 1, . . . , |C|−1.

Note that when ρ̄ = ρ = 0, (22) reduces to an LCI of 0−1 knapsack set S(∅, N1). Then performing exact
lifting with respect to variables fixed at 1 provides us a valid inequality for both S(∅, ∅) and K . It actually
corresponds the observation made in [1] that facet-defining inequalities of S(∅, ∅) are also facet-defining for
K. To study more interesting interactions between mixing set and 0−1 knapsack set, we next limit ourselves
to the case that ρ > 0 in Theorem 3 and investigate lifting (22) sequentially with respect to variables zi
∀i ∈ N1 in the order of {l1, . . . , lq}. Suppose we already have lifting coefficients for zl1 , . . . , zlr−1

such that

m−1∑
i=1

αizi +
∑
i∈E

αizi ≤ |C|−1 +
ρ

hm − hm+1
(y − h1) +

r−1∑
j=1

δlj (1− zlj ) (25)

is valid for the set K∩ {z ∈ {0, 1}n : zi = 1 ∀i ∈ {lr, . . . , lq}}, and we are lifting inequality (25) with respect
to variable zlr . By denoting the lifting coefficient as δlr , we have

Proposition 3 The lifting coefficient δlr can be defined as

δlr =

r−1∑
j=1

δlj +
ρ

hm − hm+1
h1 − |C|−1 + max

t∈[1,ηr+1]

{
∆t,r −

ρ

hm − hm+1
ht

}
(26)

where

ηr = max
{
j :

j∑
i=1

πi ≤ τ ′ +
r∑
i=1

πli

}
and ∆t,r for t ∈ [1, ηr + 1] are arbitrary scalars satisfying

∆t,r ≥
t−1∑
i=1

αi + max
∑

i∈E∪[t,m−1]

αizi +

r−1∑
j=1

δljzlj

s.t.
∑

i∈[t,n]−N1

πizi +

r−1∑
j=1

πljzlj ≤ τ ′ +
r∑
j=1

πlj −
t−1∑
i=1

πi (27)

zi ∈ {0, 1} ∀i ∈ [t, n] \ {lr, . . . , lq}.

Proof It is sufficient to show that

m−1∑
i=1

αizi +
∑
i∈E

αizi ≤ |C|−1 +
ρ

hm − hm+1
(y − h1) +

r∑
j=1

δlj (1− zlj ) (28)

is valid for the set K ∩ {z ∈ {0, 1}n : zi = 1 ∀i ∈ {lr+1, . . . , lq} and zlr = 0}.
Suppose ht−1 > y ≥ ht for some t ∈ [1, ν + 1], where we denote h0 as +∞. It implies that zj = 1

∀j ∈ [1, t− 1] ([1, t− 1] = ∅ when t = 1). Then we note that the knapsack constraint in K becomes

∑
i∈[t,n]−N1

πizi +

r−1∑
j=1

πljzlj ≤ τ ′ +
r∑
j=1

πlj −
t−1∑
i=1

πi
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and we have

m−1∑
i=1

αizi +
∑
i∈E

αizi +

r∑
j=1

δljzlj =

t−1∑
i=1

αi +
∑

i∈E∪[t,m−1]

αizi +

r−1∑
j=1

δljzlj ≤ ∆t,r.

The definition of δlr in (26) implies that

δlr ≥
r−1∑
j=1

δlj +
ρ

hm − hm+1
h1 − |C|−1 + ∆t,r −

ρ

hm − hm+1
ht

⇒ ∆t,r ≤ |C|−1 +
ρ

hm − hm+1
(ht − h1) +

r−1∑
j=1

δlj

⇒ ∆t,r ≤ |C|−1 +
ρ

hm − hm+1
(y − h1) +

r−1∑
j=1

δlj .

So the inequality (28) holds. �

Therefore, by summarizing Theorem 3 together with Proposition 3, we get

Theorem 4 If hm > hm+1, then, for any ρ ≤ ρ, the inequality

m−1∑
i=1

φizi +
∑
i∈E

αizi ≤ |C|−1 +
ρ

hm − hm+1
(y − h1) +

q∑
j=1

δlj (1− zlj ) (29)

is valid for K, where φi ∀i ∈ N0 are defined in (23) and δi ∀i ∈ N1 are given by lifting procedure in (26).

Remark 4 Given that knapsack cover inequalities have been intensively implemented in commercial solvers,
we point it out that they can be readily strengthened by Theorem 4. Although the computation of (26) is
a little bit involved, we can address this issue by computing LP relaxations of (27) with a simple greedy
algorithm.

Example 1 (cont.) We suppose general probabilities as shown previously, where ν = 4. Letm = 3,N0 = {1, 2}
and N1 = {10}. Note that the condition (20) holds. So, we have set S(N0, N1) that includes a knapsack as
follows,

τ

4
z3 +

τ

4
z4 +

τ

6
z5 +

τ

6
z6 +

τ

6
z7 +

τ

6
z8 +

τ

6
z9 ≤ τ −

τ

6
.

The set {3, 4, 5, 6, 8} gives a minimal cover for this 0− 1 knapsack and we have the minimal cover inequality

z3 + z4 + z5 + z6 + z8 ≤ 4.

By lifting the cover inequality with respect to variable z9, we have

z3 + z4 + z5 + z6 + z8 + z9 ≤ 4.

For its lifting function, we note that all step lengths are τ
6 . According to the superadditive function presented

in Remark 3, that lifting function is naturally superadditive. Therefore, Theorem 3 gives the following
inequality (

1 +
1

h3 − h4
(h2 − h1)

)
z1 +

(
1− 1

h3 − h4
(h3 − h2)

)
z2 + z3

+ z4 + z5 + z6 + z8 + z9 ≤ 4 +
1

h3 − h4
(y − h1),
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or specifically
1

3
z1 −

1

3
z2 + z3 + z4 + z5 + z6 + z8 + z9 ≤ 4 +

1

3
(y − h1), (30)

which is valid for the set K ∩
{
z ∈ {0, 1}10 : z10 = 1

}
. Then, by lifting inequality (30) with respect to z10,

we get

∆t1 =



1 when t = 1

1 when t = 2

1 when t = 3

1 when t = 4
8
3 when t = 5.

So δ1 = 8/3 and we have the valid inequality

1

3
z1 −

1

3
z2 + z3 + z4 + z5 + z6 + z8 + z9 ≤ 4 +

1

3
(y − 40) +

8

3
(1− z10)

for K, which is the first inequality in the list (19). Similar procedures can produce other inequalities in the
list.

Implementation Because we cannot access the cover inequality generating procedure in commercial solvers,
we added (29) into the initial formulation in our numerical study. Specifically, we let N1 = ∅, i.e., m = ν, cover
C be obtained by Algorithm 1 in the following and E be an extended cover of C. Since αi = 1 ∀i ∈ E, the
value of ρ̄ can be obtained easily and we set ρ = ρ̄. Then the inequalities (29) can be derived from Theorem
3 for Qr ∀r ∈ [1, d]. Overall, we could include up to d lifting inequalities into the initial formulation.

Algorithm 1 Find cover C
1: Sort πi ∀i ∈ 1, . . . , n such that π〈1〉 ≤ · · · ≤ π〈n〉
2: C← ∅
3: for j = 1 to n do
4: if 〈j〉 ≥ ν then
5: C← C ∪ {〈j〉}
6: if

∑
i∈C πi > τ then break

7: for j = 1 to |C| do
8: if

∑
i∈C−{j} πi > τ then

9: C← C \ {j}
10: else
11: break

4 Intersection of multiple mixing sets with knapsack

Up to now, we focus on deriving strong valid inequalities for a single mixing set with a 0-1 knapsack constraint,
i.e., K, which, according to Proposition 1, are crucial to understand the polyhedron Q of CCP. It is clear
that such types of inequalities are not sufficient to describe Q. Hence, in this section, we investigate the
intersection of multiple mixing sets with knapsack constraint by developing valid inequalities that explicitly
capture their interactions, i.e., valid inequalities with nonzero coefficients of multiple yrs, where r ∈ [1, d].

Given existing algebraic derivations of valid inequalities for K, one direct approach to study Q is to
aggregate multiple mixing sets (with assigned weights) into a single mixing set and derive valid inequalities
from that aggregation, which definitely are valid for Q. Using a numerical example, [25] illustrated that
such strategy could lead to a new valid inequality that cannot be obtained from each individual mixing set.
Nevertheless, observing that there is no systematical study on this approach, it remains unknown that: (i)
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how to select appropriate weights to generate a significant aggregation carrying rich interactive information
among mixing sets; and (ii) what is the strength of inequalities obtained from that aggregation with respect
to Q. In this section, instead of aggregating original constraints, we propose a novel blending procedure
that allows us to aggregate derived strong inequalities from individual mixing sets into a strong one for
the polyhedron Q. Moreover, a set of sufficient conditions is derived, which ensures the resulting blending
inequality is facet-defining. It is worth mentioning that it is the first type of facet-defining inequalities for
the intersection of multiple mixing sets.

Apparently, in the study of Q, it is not valid to assume hr1 ≥ · · · ≥ hrn for all r ∈ [1, d] without loss of
generality. So, we keep subscript r and for each r ∈ [1, d], we define a 1− 1 mapping 〈·〉r on [1, n] such that

hr〈1〉r ≥ hr〈2〉r ≥ · · · ≥ hr〈n〉r .

We also use the notation that 〈X〉r = {〈i〉r : ∀i ∈ X} for any set X ⊆ [1, n]. For each Qr, we define νr such
that

νr∑
i=1

π〈i〉r ≤ τ but

νr+1∑
i=1

π〈i〉r > τ.

Note that the value p is independent of index r, since it is based on the monotonic order of all πi’s.

Definition 1 Given θ ∈ [1, n], for each r ∈ [1, d], let mr ∈ [1, νr] and qr ∈ [0, p−mr], we define

• a set Tr = {tr1, tr2, . . . , trar} ⊆ {1, . . . ,mr} with tr1 < tr2 < · · · < trar ;

• a set Lr with a permutation ΠLr = {lr1, lr2, . . . , lr,qr} and lr1 = θ;

• a sequence of integers srj ∈ [0, νr −mr + 1] ∀j ∈ [1, q + 1] such that

– Lr ⊆ {mr + sr1 + 1, . . . , n} with lrj ≥ mr + min{srj + 1, sr,j+1};
– 0 ≤ sr1 ≤ · · · ≤ sqr+1 = νr −mr + 1; and

–
mr+srj∑
i=1

π〈i〉r +

qr∑
i=j

π〈kri〉r > τ ∀j (31)

where {kr1, . . . , krqr} is a permutation of set Lr with π〈kr1〉r ≥ · · · ≥ π〈krqr 〉r ;

• an expression

Ir = yr +

ar∑
j=1

(hr〈trj〉r − hr〈tr,j+1〉r )z〈trj〉r +

qr∑
j=1

δrj(1− z〈lrj〉r )

where

δrj =


hr,〈mr+sr1〉r − hr,〈mr+sr2〉r j = 1

max

δr,j−1, hr,〈mr+sr1〉r − hr,〈mr+sr,j+1〉r −
∑

i:i<j and lri≥mr+min{1+srj ,sr,j+1}

δri

 j ∈ [2, qr].

When the sets 〈Lr〉r \ {θ} ∀r ∈ [1, d] are mutually disjoint, we define the blending inequality as∑
r∈[1,d]

1

δr1
Ir − (1− zθ) ≥

∑
r∈[1,d]

1

δr1
hr〈tr1〉r . (32)

Next, we give a necessary condition that the blending inequality is valid for Q.



A Polyhedral Study on Chance Constrained Program with Random Right-Hand Side 19

Theorem 5 The blending inequality is valid for Q if∑
i∈

⋃
r∈[1,d]〈[1,mr+sr1]〉r

πi > τ. (33)

Proof Consider a single mixing set Qr for a given r ∈ [1, d]. We can assume 〈i〉r = i ∀i ∈ [1, n] without loss
of generality. Thus, the next inequality is exactly the inequality (5) for Qr

Ir ≥ hr〈tr1〉r . (34)

Since Qr ⊇ Q, the inequality (34) is valid for Q. Next, we show that for some u ∈ [1, d], Iu − δu1(1− zθ) ≥
hu〈tu1〉u is valid for Qu.

Because of the condition (33), we claim that there exists some u ∈ [1, d] such that yu ≥ hu,mu+su1 .
Suppose the claim is not true. Then we have yr < hr,mr+sr1 for all r ∈ [1, d]. It implies that zi = 1
∀i ∈ 〈[1,mr + sr1]〉r, r ∈ [1, d], which violates the knapsack constraint because of (33).

Then, for that particular u, we assume yu ≥ hu,mu+su1
. Because we are considering single mixing set,

without loss of generality, we can assume 〈i〉u = i ∀i ∈ [1, n] and write the inequality Iu−δu1(1−zθ) ≥ hu〈tu1〉u
explicitly as follows,

yu +

au∑
j=1

(hutuj
− hutu,j+1

)ztuj
+

qu∑
j=2

δuj(1− zluj
) ≥ hutu1

.

To simplify the notation, we can drop subscript u and have inequality

y +
a∑
j=1

(htj − htj+1
)ztj +

q∑
j=2

δj(1− zlj ) ≥ ht1 .

Because of the assumption that yu ≥ hu,mu+su1 , we need to show that the above inequality is valid when
y ≥ hm+s1 , which is already proved in the first paragraph of the proof for Theorem 1. Now, we have
Iu − δu1(1− zθ) ≥ hu〈tu1〉u is valid for Qu, i.e., valid for Q.

Together with (34) for any r ∈ [1, d] \ {u}, we get∑
r∈[1,d]

1

δr1
Ir − (1− zθ) =

∑
r∈[1,d]−{u}

1

δr1
Ir +

1

δu1
Iu − (1− zθ)

≥
∑

r∈[1,d]−{u}

1

δr1
hrtr1 +

1

δu1
hutu1

=
∑
r∈[1,d]

1

δr1
hrtr1 .

Therefore, the blending inequality is valid for Q. �

When all the scenarios have equal probabilities, the condition that the blending inequality is valid follows
immediately after Theorem 5.

Corollary 4 Suppose all the scenarios have equal probabilities, then the blending inequality is valid for Q if∣∣∣∣∣∣
⋃

r∈[1,d]

〈[1,mr + 1]〉r

∣∣∣∣∣∣ > p. (35)

In the next theorem, we show that the blending inequality is facet–defining under certain conditions.

Theorem 6 Suppose all scenarios have equal probabilities, d = 2 and (35) is satisfied. The blending inequal-
ity is facet-defining for Q if, ∀r ∈ {1, 2}, the sets 〈Tr〉r, 〈Lr〉r \ {θ} are mutually disjoint, tr1 = 1 and we
have

1. 〈1〉1 /∈ 〈[1,m2]〉2
⋃
〈L2〉2, 〈1〉2 /∈ 〈[1,m1]〉1

⋃
〈L1〉1;
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2. 〈L1〉1 \ {θ} ( 〈[1,m2]〉2, 〈L2〉2 \ {θ} ( 〈[1,m1]〉1.

Proof To show that the blending inequality is facet–defining for conv(Q), we give n+2 affinely independent
points. The idea is that we can always set yr = hr〈1〉r and enumerate extreme points as in the proof of
Theorem 2 for yr̄ because of condition 1.

First, we let y0
1 = h1〈1〉1 , y

0
2 = h2〈1〉2 , and z0

j = 1 if j ∈ 〈L1〉1
⋃
〈L2〉2. Note that

〈L1〉1 ∪ 〈L2〉2 ( 〈L1〉1 ∪ 〈[1,m1]〉1 ∪ {θ} = 〈L1〉1 ∪ 〈[1,m1]〉1. (36)

So, |〈L1〉1
⋃
〈L2〉2|≤ |〈L1〉1 ∪ 〈[1,m1]〉1|= p and the point is feasible.

Next, for each j /∈ 〈T1 ∪ L1〉1
⋃
〈T2 ∪ L2〉2, we consider the point (yj , zj) = (y0, z0 + ej). For each

t1j ∈ {t11, . . . , t1a1}, we let y
t2j
2 = h2〈1〉2 , y

t1j
1 = h1t1,j+1

, z
t1j
i = 1 if i ∈ 〈[1, t1,j+1 − 1]〉1 ∪ 〈L1〉1 ∪ 〈L2〉2 and

0 otherwise. The point is feasible because (36) implies

|〈[1, t1,j+1 − 1]〉1 ∪ 〈L1〉1 ∪ 〈L2〉2| ≤ |〈L1〉1 ∪ 〈[1,m1]〉1| = p.

Due to the symmetry, we have similar way to get points for each t2j ∈ {t21, . . . , t2a2} by letting y
t1j
1 = h1〈1〉1 .

Let yl111 = h1〈1〉1 , yl212 = hm2+2, zl21i = 1 if i ∈ 〈[1,m2 + 1]〉2 and zl21l2i = 1 for i > 1, and 0 otherwise. The
point is feasible because of condition 2. For each j ∈ [2, p−m2] if δ2j = δ2,j−1, we have

(yl2j , zl2j ) = (yl2,j−1 , zl2,j−1 + el2,j−1
− el2j ),

otherwise we have that y
l1j
1 = h1〈1〉1 , y

l2j
2 = hm2+1+j , z

l2j
i = 1 if i ∈ 〈[1,m + j]〉2 and z

l2j
l2i

= 1 for i > j,
and 0 otherwise. Thus, we get points for each l2j ∈ {l21, . . . , l2,p−m2

}. Due to the symmetry, we can also get
points for each l1j ∈ {l11, . . . , l1,p−m1}.

Note that 〈T1〉1, 〈T2〉1, 〈L1〉1, 〈L2〉2 are mutually disjoint except 〈L1〉1 ∩ 〈L2〉2 = {θ}. So, we get totally
n+ 2 points on the face defined by blending inequality and they are affinely independent. �

We next give a numerical example to illustrate Theorem 6.

Example 2 Let n = 6 and p = 3. Suppose we have equal probabilities for all scenarios and

(h11, . . . , h16) = (28, 25, 15, 8, 5, 3) and (h21, . . . , h26) = (2, 5, 6, 8, 17, 10)

The inequality (5) implies that

y1 + 3z1 + 10(1− z3) + 17(1− z6) ≥ 28 is valid for Q1 with m1 = 1

y2 + 9z5 + 2(1− z3) ≥ 17 is valid for Q2 with m2 = 2

Let θ = 3. We have

• 〈1〉1 = 1 /∈ {5, 6}
⋃
{3} = 〈[1,m2]〉2

⋃
〈L2〉2;

• 〈1〉2 = 5 /∈ {1}
⋃
{3, 6} = 〈[1,m1]〉1

⋃
〈L1〉1;

• 〈L1〉1 \ {θ} = {3, 6} \ {3} ⊆ {5, 6} = 〈[1,m2]〉2;

• 〈L2〉2 \ {θ} = {3} \ {3} ⊆ {1} = 〈[1,m1]〉1.

Thus, the conditions in Theorem 6 are satisfied and we have a blending inequality

y1 + 5y2 + 3z1 + 45z5 + 10(1− z3) + 17(1− z6) ≥ 113

which is valid and facet–defining for Q.

Next, we give a special case of Theorem 6 and show how to use it as our separation algorithm.

Corollary 5 Suppose all scenarios have equal probabilities and d = 2. If L1 = L2 = {θ} for some θ ∈ [1, n],
then the blending inequality is valid and facet-defining for Q if following conditions hold
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Table 1 Joint probability mass function of ω = (ω1, ω2)

Scenario 1 2 3 4 5 6 7 8 9
ω1 0.75 0.5 0.5 0.25 0.25 0.25 0 0 0
ω2 1.25 1.5 1.25 1.75 1.5 1.25 2 1.5 1.25
Probability 0.2 0.14 0.06 0.06 0.06 0.3 0.04 0.04 0.1

• θ ∈ 〈[p+ 1, n]〉1
⋂
〈[p+ 1, n]〉2;

• 〈T1〉1 ∩ 〈T2〉2 = ∅;

• 〈1〉1 /∈ 〈[1, p]〉2
⋃
{θ}; and

• 〈1〉2 /∈ 〈[1, p]〉1
⋃
{θ}.

Proof Because 〈1〉1 /∈ 〈[1, p]〉2
⋃
{θ}, condition (35) holds, which implies that the blending inequality is valid.

It is easy to check that all conditions in Theorem 6 are satisfied. Therefore, the blending inequality is valid
and facet–defining for Q. �

Separation Heuristic First, we collect a set R consisting of pairs (r1, r2) where r1 6= r2 ∈ [1, d], 〈1〉r1 /∈
〈[1, p]〉r2 and 〈1〉r2 /∈ 〈[1, p]〉r1 . Suppose z∗ is a fraction solution. For each pair (r1, r2) ∈ R, let θ =
argmaxi{πi : z∗i = 1, i ∈ 〈[p+1, n]〉r1

⋂
〈[p+1, n]〉r2}. Next, we find the set T1 by solving a shortest path prob-

lem from the source 〈1〉r1 to the sink 〈p−1〉r1 on a directed acyclic graph with vertices 〈{1, . . . , p−1}〉r1 and
edges (〈i〉r1 , 〈j〉r1), 1 ≤ i < j ≤ p−1. Finally, the set T2 is obtained by solving another shortest path problem
from the source 〈1〉r2 to the sink 〈p− 1〉r2 on a directed acyclic graph with vertices 〈{1, . . . , p− 1}〉r2 \ 〈T1〉r1
and edges (〈i〉r2 , 〈j〉r2), 1 ≤ i < j ≤ p − 1 but 〈i〉r2 , 〈j〉r2 /∈ 〈T 〉r1 . Following Corollary 5, all violated
inequalities found by this separation algorithm are facet–defining for Q.

At the end of this section, we adopt an example from [25] to show that our blending inequalities are
stronger than those generated from a single mixing set, which is obtained by combining original formulation.

Example 3 (Example 2 in [25]) We have the chance–constrained program

min x1 + x2

s.t. P

{
2x1 − x2 ≥ ω1

x1 + 2x2 ≥ ω2

}
≥ 0.6 = 1− τ

x1, x2 ≥ 0

where ω1 and ω2 are dependent random variables with joint probability density function given in Table 1.
The optimal solution is (x, y) = (0.55, 0.35, 0.75, 1.25) with objective value 0.9.

For this example, we have τ = 0.4, d = 2, p = 6, ν1 = 3 and ν2 = 5. Let y1 = 2x1−x2 and y2 = x1 + 2x2.
Then the mixing set reformulation is

y1 + 0.75z1 ≥ 0.75 y2 + 2.00z7 ≥ 2.00

y1 + 0.50z2 ≥ 0.50 y2 + 1.75z4 ≥ 1.75

y1 + 0.50z3 ≥ 0.50 y2 + 1.50z2 ≥ 1.50

y1 + 0.25z4 ≥ 0.25 y2 + 1.50z5 ≥ 1.50

y1 + 0.25z5 ≥ 0.25 y2 + 1.50z8 ≥ 1.50

y1 + 0.25z6 ≥ 0.25 y2 + 1.25z1 ≥ 1.25

...
...

9∑
i=1

πizi ≤ 0.4 = τ
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and the tighter formulation (3) in [32] is

y1 + 0.50z1 ≥ 0.75 y2 + 0.75z7 ≥ 2.00

y1 + 0.25z2 ≥ 0.50 y2 + 0.50z4 ≥ 1.75

y1 + 0.25z3 ≥ 0.50 y2 + 0.25z2 ≥ 1.50

y1 ≥ 0.25 y2 + 0.25z5 ≥ 1.50

y2 + 0.25z8 ≥ 1.50

... y2 ≥ 1.25

...
9∑
i=1

πizi ≤ 0.4 = τ.

The initial linear programming (LP) relaxation solution by using tight formulation (3) is

(x, y) = (0.49, 0.38, 0.60, 1.25).

In [25], the author proposed 3 inequalities in the form of (14), which were generated for y1 and y2, respectively.
Then the author combined two mixing sets with y1 and y2 (with equal weights), and derived a valid inequality
y1 + y2 ≥ 2 from that aggregation. Augmented with those inequalities, the updated LP relaxation has a
solution with optimal (x, y).

For this example, based on our previously presented theorems, we are able to develop several new facet-
defining inequalities. First, we have facet–defining inequality

y2 + 0.25z2 + 0.25z4 + 0.25z7 ≥ 2 (37)

which is a strengthened star inequality in [32] and also a special case of inequality (5). Then, we have another
facet–defining inequality

z2 + z4 + z6 ≤ 2 + 4(y1 − 0.75) + (1− z7) (38)

which is derived from lifting by fixing z7 = 1 and letting m = 2. Note that, with these choices, we have a
minimal cover inequality

z2 + z4 + z6 ≤ 2.

From Theorem 3, we can easily calculate ρ = 1 and Φ(π1) = Φ(0.2) = 1. So we have

z2 + z4 + z6 ≤ 2 + 4(y1 − 0.75)

which is valid when z7 = 1. By performing lifting procedure on variable z7, we can derive inequality (38).
Indeed, by summing (37) and 0.25×(38), we have a valid inequality y1+y2 ≥ 2+0.25z6. Because it dominates
the inequality y1+y2 ≥ 2, the latter one clearly is not facet–defining. Instead, the blending inequality proposed
in this section gives a facet-defining inequality

y1 + y2 + 0.25z1 + 0.5z7 + 0.25(1− z9) ≥ 2.75 (39)

by blending following two inequalities as in (32)

y1 + 0.25z1 + 0.25(1− z9) ≥ 0.75 (40)

y2 + 0.5z7 + 0.25(1− z9) ≥ 2 (41)

where (40) and (41) are facet–defining inequalities for two individual mixing sets respectively, and can be
derived by (5).
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5 Computational study

In order to investigate the computational advantages of the proposed strong inequalities, we implement them
as cutting planes within professional solver CPLEX’s branch-and-bound process, i.e., an implementation of
of branch-and-cut (B&C) algorithm. In particular, the CALLABLE libraries of CPLEX 12.6.1 are called for
adding user defined cuts and a single thread with traditional branch-and-bound search method is adopted.
All tests are subject to 3,600 CPU seconds time limit. If no optimal solution is obtained within the time
limit, then the optimality gap will be reported. Because it is often the case that a very large number of
user defined cuts will be generated, we activate the purging option (which is the default option as well) in
CPLEX to allow ineffective ones to be removed by CPLEX. The complete computational study is carried
out on the Texas Tech High Performance Computing Center’s node based system, where each node contains
two Westmere 2.8 GHz 6-core processors with 24 GB main memory [22].

Our numerical study data sets consist of a set of difficult and large instances of the static probabilistic
lot-sizing (SPLS) model as described in [54] with d periods, n scenarios and service level 1 − τ . Let xt be
the decision variable of ordering quantity in period t, Iit be the inventory level at the end of period t under
scenario i, and wt be binary variables to indicate order setup. The natural deterministic equivalent of SPLS
model is

max

d∑
t=1

n∑
i=1

πi(ctxt + hitIit + gtwt)

s.t. yt =

t∑
j=1

xj t ∈ {1, . . . , d}

yt ≥ Dit(1− zi) t ∈ {1, . . . , d}, i ∈ {1, . . . , n}
Iit ≥ yt −Dit t ∈ {1, . . . , d}, i ∈ {1, . . . , n}
0 ≤ xt ≤Mtwt t ∈ {1, . . . , d}
n∑
i=1

πizi ≤ τ

Ii,t ≥ 0, zi, wt ∈ {0, 1} t ∈ {1, . . . , d}, i ∈ {1, . . . , n}

where Dit is the cumulative demand until period t under scenario i, ct and gt are the variable and fixed
costs of ordering, hit is the variable holding cost in period t under scenario i, and Mt is the order capacity in
period t. As mentioned in Section 1, this natural formulation can be easily strengthened by using (3), which
has a tighter LP relaxation and less constraints. Hence, the reformulation (3) is applied on those instances
to build our testing platform for both CPLEX and B&C algorithms.

We assume that the demands are i.i.d. across periods. In any time period, the demand follows a normal
distribution with mean 100 and standard deviation 40, i.e., Normal(100,40), and we set demand to 0 if a
negative number is generated (denoted as Normal+(100,40)). Then, the cumulative demand Di1 is generated
from Normal+(100,40), and Dit is generated by adding an i.i.d. random number from Normal+(100,40) to
Di,t−1 ∀t ∈ [2, d]. The variable production costs are generated from a uniform distribution between 1 and
5 and inventory holding costs are generated from an uniform distribution between 1 and 2. The fixed costs
follow a discrete uniform distribution between 900 and 1000. We set the order capacity Mt = 500.

5.1 Computational results of instances with general probabilities

To generate instances with scenarios of general probabilities, we first assign every scenario a random number
from a discrete uniform distribution between 1 and 99, and then normalize those numbers by dividing their
total summation to obtain probabilities for all scenarios. By varying values of d, n and τ , 45 instances
with different sizes are produced. Those random instances are tested by our implementations of the following
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computing methods. Observing that adding cuts at every node of branch–and–bound tree is rather ineffective,
our implementations mainly focus on cut generation at the root node.

• CPX indicates the default CPLEX with traditional B&C in single thread mode;
• Mix indicates a B&C algorithm by adding strengthened star inequalities [3,32] at every node of

branch–and–bound tree;
• MixR indicates a B&C algorithm by adding strengthened star inequalities [3,32] at the root node

only;
• TL indicates a B&C algorithm by adding TL inequalities (using the separation algorithm described

in [25]) at every node of the B&C tree;
• TLR indicates a B&C algorithm by adding TL inequalities (using the separation algorithm described

in [25]) at the root node only;
• LF indicates applying the algorithm MixR on an updated formulation with lifting cover inequalities

(see Section 3 for implementation details);
• GMixR indicates a B&C algorithm by adding new inequalities (5) (using the separation algorithm

presented in Section 2) at the root node only.

The detailed computational results of each algorithm are presented in two tables, i.e., Table 5–6, due to
space limitation. To evaluate the overall performance of those algorithms and gain a general understanding,
a summary is presented in Table 2, where we report the number of instances solved to the optimality
(column Solved), the number of unsolved instances (column Unsolved), the average gap before termination
among unsolved instances (column Avg. Gap (Unsolved)), and the average number of user defined cuts
added before termination but after CPLEX purging (column Avg. Cuts). Given that B&C algorithms have
different behaviors and almost all of them (excluding TL) are actually able to solve instances that are solved
by CPLEX, we benchmark their performances against CPLEX on those instances to have a fair comparison
basis. Hence, in Table 2, we also report algorithms’ data on those instances, specifically, the average CPU
seconds (column Avg. Time (CPX Solved)), the ratio of the average CPU seconds between CPLEX and a

B&C algorithm (column CPX Time
B&C Time

), the average number of nodes explored (column Avg. Nodes (CPX

Solved)), and the ratio of the average number of nodes explored between CPLEX and a B&C algorithm

(column CPX Nodes
B&C Nodes

).

Table 2 Summarized Results of Computing Lot-Sizing Instances with General Probabilities

Solved Unsolved Avg. Gap Avg. Cuts Avg. Time CPX Time Avg. Nodes CPX Nodes
(Unsolved) (CPX Solved) (CPX Solved) B&C Time (CPX Solved) B&C Nodes

CPX 22 23 1.66% 0.0 1068.4 1.0 80961.1 1.0
Mix 34 11 2.14% 10968.5 864.7 1.2 8957.4 9.0
MixR 38 7 1.60% 219.0 578.9 1.8 30071.8 2.7
TL 6 39 5.42% 27509.0 NA NA NA NA
TLR 22 23 1.90% 33.8 1465.6 0.7 80944.1 1.0
LF 39 6 1.58% 212.6 434.8 2.5 22999.1 3.5
GMixR 40 5 1.12% 216.2 325.3 3.3 19473.7 4.2

Based on Table 2, a few non-trivial observations can be made. First, as mentioned, adding cuts at every
node of the whole branch–and–bound tree is not an effective strategy. As demonstrated in Mix and TL, an
extremely large number of cuts are generated, which drastically increase the complexity of SPLS formulation.
Such situation is especially severe in TL. Note that SPLS only has d+1 non-sparse constraints, i.e., the first
set of constraints and the 0–1 knapsack. Nevertheless, the average number of generated TL inequalities, which
are non-sparse, is almost twenty–seven thousands. Comparing to the performances of their two corresponding
variants, i.e., MixR and TLR, we can clearly see the benefits of adding cuts in a less frequent fashion.

Second, among all implemented computing methods, our GMixR and LF provide the most significant
computational improvements and perform much better than CPLEX. Note that only 22 of 45 instances can
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be solved to optimality by CPLEX, while LF and GMixR can solve 39 and 40 instances, respectively. In
addition, GMixR and LF, on instances solved by CPLEX, have the best computation speed (are faster by
2.5 and 3.3 times, respectively) with the smaller numbers of branch-and-bound nodes (roughly 28% and 24%
of CPLEX nodes, respectively). Also, for those that cannot be solved to optimality, the average gaps before
termination in GMixR and LF are the least ones. For the efficacy of GMixR, we believe that it is mainly due
to the fact that the separation algorithm based on Corollary 2 leads to facet–defining cuts for the polyhedron
of CCP. As the strengthened star inequalities are also facet–defining cuts for the polyhedron of CCP, results
of GMixR and MixR show that they are all practically useful and the former has more computationally
advantages. For LF, we think the lifted inequalities largely capture the non-trivial interactions between
mixing set and the 0–1 knapsack. Their strong performance suggests that a more sophisticated separation
algorithm is worth further exploring.

Third, although TL inequalities are theoretically valid and strong, they are less effective than the strength-
ened star inequalities in computation. One explanation is that, as shown in Corollary 1 and Example 1, TL
inequalities are usually weak for CCP instances with general probabilities. Another interesting observation
is that TL has much more user defined cuts than Mix, while the root node implementation variant TLR
has much less cuts than the corresponding MixR. One possibility is that we allow CPLEX to purge user
defined cuts if they are deemed weak, CPLEX may decide to purge a high proportion of TL cuts and start
branching very soon.

5.2 Computational results of instances with equal probabilities

In Section 4, we develop a new technique to blend strong inequalities (5) derived from individual mixing
sets into a strong one for CCP. In particular, we show that blending inequality could be facet–defining when
scenarios have equal probabilities. In order to computationally evaluate this new type of inequalities, we
generate 45 instances with equal probabilities (by simply setting scenario probabilities as 1

n ) and compute
them by the following computing methods.

• CPX indicates the default CPLEX with transitional branch–and–bound in single thread mode;
• Mix indicates a branch–and–cut algorithm by adding strengthened star inequalities at every node of

branch–and–bound tree;
• Mix100 indicates a branch–and–cut algorithm by adding strengthened star inequalities at every 100 nodes

of branch–and–bound tree;
• BL indicates a branch–and–cut algorithm by adding blending inequalities at the root node and

strengthened star inequalities at every 100 nodes of the branch–and–bound tree.

The Mix100 is implemented due to the observation made from Table 2 that adding cuts at every node
of the whole branch-and-bound tree is not effective. With some preliminary tests, we find that adding
strengthened star inequalities at every 100 nodes of branch–and–bound tree gives the best result in general.
Then, on top of the Mix100, we develop BL algorithm by adding blending inequalities at the root node.
Similar to the organization of Section 5.1, the detailed computational results are presented in Table 7 and a
summary is presented in Table 3.

Table 3 Summarized Results of Computing Lot-Sizing Instances with Equal Probabilities

Solved Unsolved Avg. Gap Avg. Cuts Avg. Time CPX Time Avg. Nodes CPX Nodes
(Unsolved) (CPX Solved) (CPX Solved) B&C Time (CPX Solved) B&C Nodes

CPX 23 22 1.87% 0.0 1705.5 1.0 109190.3 1
Mix 33 12 2.67% 12142.5 958.9 1.8 10297.0 10.6
Mix100 37 8 1.72% 2273.9 597.0 2.9 13522.4 8.1
BL 44 1 0.60% 1960.1 381.4 4.5 10503.3 10.4
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Based on the performances of CPLEX and Mix in Table 2 and Table 3, we first note that the instances
with equal probabilities are not necessarily easier than the instances with general probabilities. It is different
from the observation made in [32], but reasonable since p ≥ ν (or p ≥ νr ∀r ∈ [1, d]) and hence the instances
with equal probabilities usually have much larger problem size in the reformulation (3).

Regarding the effectiveness of B&C methods, we observe that BL completely dominates other algorithms
by optimally computing almost all instances (44 out of 45 instances) and demonstrating much fast computa-
tional speed (as 4.5×CPLEX). We believe that such strong performance shows that the generated blending
cuts, which capture the interactive information among mixing sets and are facet–defining for CCP, have a
great computational advantage over existing strong inequalities derived from single mixing sets. The ratio of
the average number of nodes between CPLEX and BL supports our understanding. Note that BL generally
has 13% less user defined cuts than Mix100 while it explores 23% less nodes in the branch-and-bound trees
than Mix100.

6 Conclusion and future research

In this paper, we study the polyhedral structure of chance–constrained program with stochastic right–hand
side, which is computationally very challenging. We develop three families of strong inequalities from different
perspectives. Following the tradition that considers a single mixing set with a 0−1 knapsack, our first family
of inequalities of that set dominates or subsumes all explicit inequalities described in [1,25,32]. Our second
family of inequalities builds a direct link between a single mixing set and 0− 1 knapsack through lifting and
superadditive lifting with respect to cover inequality. In order to analyzing the interactions among multiple
mixing sets, we design a novel technique to integrate facet–defining inequalities derived from individual
mixing sets, which leads to our third family of inequalities, i.e., blending inequalities. Finally, we implement
all three families of strong inequalities and test them on random instances of static probabilistic lot–sizing
problem. Through benchmarking with a professional MIP solver and existing cutting plane methods, we
observe significant computational improvements can be achieved by all those proposed inequalities, especially
by the newly developed blending inequalities.

There are three directions, we believe, that deserve further studies. The first one is to develop more
general and effective separation algorithms. Note that cutting planes generated in our current numerical
study is just a small proportion of our first family of strong inequalities. So, more powerful separation
algorithms will allow us to make good use of that large family of strong inequalities. Another one is to develop
stronger superadditive lifting functions and better lifting techniques. For example, our current superadditive
approximation scheme is adopted from existing research, which probably is not the best one. A deeper
study on the lifting function should help us develop tighter valid approximations for stronger cutting planes.
Finally, given the outstanding computational performance of blending inequalities, this technique should be
fully investigated and we will extend it for other similar models.
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A Notations

Table 4 presents our key notations, their definitions and the first usage place. Note that many notations are reused in Section
4 (especially in Definition 1) with an additional subscript r because we extend our results in Section 2 to multiple mixing sets.

B Computational Tables for Instances with General Probabilities

The column d×n× τ indicates that the instance has d periods and n scenarios with service level 1− τ . For a given combination
of d, n, τ , we solve 5 instances. In all tables, we compare the percentage of root node gap (column %RootGap), the number
of branch–and–cut tree nodes explored (column Nodes), and CPU time in second on solving the instance to the optimality
(column Time (%Endgap)). We indicate the instance that could not be solved within one hour with T(gap), where gap, in
parenthesis, is the percentage gap between the best lower bound and the best integer solution found in the search tree when
the time limit is reached. We also report the number of user cuts added (column Cuts) after purging. Due to the page size
restriction, we partition the results into two tables as in Table 5 and 6.

C Computational Tables for Instances with Equal Probabilities

We keep the same table format as in Appendix B. For a given combination of d, n, τ , we solve 5 instances.
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Table 4 Key notations used in this paper

Type Notation Definition Introduced in

Parameters

n number of scenarios (dimension of z variable) Section 1
d dimension of y variable (number of periods in lot-sizing

model)
Section 1

hri, hi right hand side of chance constraints with r ∈ [1, d], i ∈ [1, n] Section 1
m dimension of x variable Section 1
τ the threshold probability for chance constraint Section 1
ωi a scenario in a set of finitely many realizations with i ∈ [1, n] Section 1
πi the probability associated with ωi Section 1

ν
ν∑
i=1

πi ≤ τ and

ν+1∑
i=1

πi > τ with h1 ≥ h2 ≥ · · · ≥ hn Section 1

p

p∑
i=1

π〈i〉 ≤ τ and

p+1∑
i=1

π〈i〉 > τ where {〈1〉, 〈2〉, . . . , 〈n〉} is a

permutation of the set [1, n] with π〈1〉 ≤ π〈2〉 ≤ · · · ≤ π〈n〉.
Note p = ν in the case of equal probabilities

Section 1

m an arbitrary scalar in [1, ν] Theorem 1 and 3
a cardinality of set T Theorem 1
q cardinality of set L Theorem 1
δ∗ coefficient of the term (1− z∗) for proposed inequalities Theorem 1 and 3
M,ai, µ,m only used in Corollary 3 to match notations in Theorem 14

in [1]
Corollary 3

ρ a scalar related to lifting coefficient Theorem 3
ρ̄ a upper bound of obtaining feasible ρ Section 3
αi coefficients of an arbitrary lifted cover inequality for i ∈ E Section 3
τ ′ = τ −

∑
i∈N1

πi updated threshold probability after z vari-
ables fixed

Section 3

Polyhedron

K,Qr a mixing set with 0− 1 knapsack Section 1
Q polyhedron of CCP Section 1
S(N0, N1) projected set for lifting procedure Section 3
K(N1) projected set for lifting procedure Theorem 3

Index sets

T = {t1, . . . , ta} ⊆ [1,m] Theorem 1
L ⊆ [1, n] \ T Theorem 1
{s1, . . . , sq+1} a sequence of integers such that 0 ≤ s1 ≤ · · · ≤ sq ≤ sq+1 =

ν −m+ 1
Theorem 1

ΠL = {l1, . . . , lq}, an arbitrary permutation of set L with lj ≥
m+ min{1 + sj , sj+1}

Theorem 1

{k1, . . . , kq} a permutation of set L based on probability πki Theorem 1
N0, N1 the set of z variables fixed at 0 or 1 respectively Section 3

N̂ = [1, n] \ (N0 ∪N1) Section 3
C cover Section 3
E variables zi ∀i ∈ E have nonzero coefficient in a lifted cover

inequality
Section 3

Lifting functions
G(W,β) where W ⊆ E and β ≤

∑m
i=1 πi Section 3

Φ(β) for lifting coefficients φi Theorem 3
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Table 5 Static probabilistic lot–sizing problem with general probabilities (cuts on every node)

d× n× τ %RootGap Nodes Time (%Endgap) Cuts
CPX Mix TL CPX Mix TL CPX Mix TL Mix TL

30× 300× 0.2 12.89 12.97 11.90 42667 1472 1885 493 323 T(5.87) 9566 44235
12.64 12.91 11.67 42295 2635 13914 573 619 T(4.41) 14758 40042
13.52 14.79 15.58 129237 6537 8803 2446 1253 T(5.42) 13104 40881
13.28 10.67 13.74 108929 3265 5103 1433 915 T(5.56) 15950 40929
10.06 13.30 13.26 20672 1295 6153 226 233 T(3.44) 7926 39937

30× 300× 0.25 16.58 16.52 16.61 119828 4494 27855 2022 1663 T(4.26) 18743 29973
17.60 15.33 16.72 165600 5101 6022 T(0.47) 2027 T(6.5) 22006 28915
12.74 16.04 14.70 144137 4788 5261 2253 2880 T(5.82) 28180 36505
12.21 13.65 11.52 82373 7554 2808 930 1385 T(6.23) 12317 41126
14.06 13.79 13.41 63613 3040 1899 1191 1129 T(6.85) 15587 42442

30× 400× 0.2 12.47 12.58 11.06 116158 3404 3589 1765 928 T(4.59) 13472 29113
20.90 17.32 15.06 164404 3246 2371 T(0.66) 1343 T(8.44) 16116 43727
14.74 13.27 13.30 213110 3197 11140 T(0.85) 1326 T(5.81) 18949 35557
10.15 9.33 11.02 164548 1744 2327 1831 634 T(5.26) 12995 38621
12.02 13.18 14.24 100968 2584 1987 1345 1097 T(6.74) 19420 37002

30× 400× 0.25 13.77 13.51 13.66 136077 1375 1887 T(0.57) 852 T(5.9) 12759 39507
11.80 14.03 14.85 91600 3050 1337 T(0.61) T(2.39) T(7.5) 27890 36893
11.43 12.03 11.79 117300 2588 1003 T(1.41) T(2.31) T(6.19) 26575 31546
15.73 21.15 16.12 82502 3379 2985 T(3.08) 2153 T(8.06) 17688 42711
19.55 19.11 16.42 103810 2846 2000 T(2.51) T(2.15) T(8.83) 27901 39520

40× 400× 0.1 17.66 13.96 9.33 81267 6172 23300 1206 507 T(2.7) 7591 31354
9.74 10.71 8.56 36124 3625 45453 472 267 T(1.8) 5988 28524

12.17 11.92 11.09 81150 10969 57600 855 794 T(0.97) 8106 16858
10.40 13.70 13.09 40383 11830 23322 501 837 T(2.11) 7169 34188
12.49 10.52 14.96 40123 4625 23565 518 275 962 6594 6093

40× 400× 0.15 14.68 16.66 11.77 87227 8766 21167 T(1.76) 1474 T(3.68) 12091 26988
16.19 19.15 13.87 131435 8222 44299 T(1.83) 1584 T(3.63) 14904 24704
12.35 13.51 11.50 118690 17492 21604 T(1.23) 2761 T(4.67) 17575 32079
14.83 17.15 15.56 100350 13919 9946 T(1.42) 2184 T(5.46) 14086 27822
12.49 21.96 14.87 93400 17402 10298 T(2.26) T(1.57) T(6.38) 16683 38790

40× 500× 0.1 15.33 11.31 14.86 150900 19504 11399 T(0.34) T(0.86) T(4.2) 16296 31822
12.64 9.91 12.76 115200 15580 10953 T(1.41) T(1.29) T(5.7) 22261 39487
13.25 16.15 13.31 137300 8474 21125 T(0.74) 1531 T(3.59) 15160 32950
13.07 13.02 10.23 157900 14466 10593 T(1.96) T(1.28) T(4.71) 20375 32937
19.03 14.00 12.18 153900 29846 25474 T(1.06) 3510 T(3.67) 14761 29732

40× 500× 0.15 18.00 18.14 19.68 84737 5080 2884 T(2.75) T(2.38) T(6.86) 20350 38996
16.94 14.32 13.41 82100 5427 2950 T(2.43) T(2.29) T(6.78) 23158 33970
17.29 14.91 12.49 90885 6665 6490 T(2.75) T(2.08) T(6.85) 22109 36647
11.97 15.87 15.12 76884 6575 2900 T(4.45) T(4.98) T(8.73) 23662 37875
11.57 11.93 14.56 114678 12517 2434 T(1.58) 3570 T(7.15) 17821 37627

50× 500× 0.05 8.76 9.01 16.5 117935 42897 134256 1048 1031 3014 5643 2767
9.64 9.91 10.67 89165 27431 100910 876 730 1769 5392 2173
9.35 9.78 8.42 87896 24922 52688 783 833 1687 4352 5890

13.81 7.21 8.86 33591 8999 36866 323 224 1280 3401 7592
8.7 7.38 7.74 38084 12780 32574 414 467 1396 5052 8952
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Table 6 Static probabilistic lot–sizing problem with general probabilities (cuts on root node)
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Table 7 Static probabilistic lot–sizing problem with equal probabilities

d× n× τ %RootGap Nodes Time (%Endgap) Cuts
CPX Mix Mix100 BL CPX Mix Mix100 BL CPX Mix Mix100 BL Mix Mix100 BL

30× 300× 0.2 12.34 11.51 11.51 9.31 33621 695 2452 1325 362 87 86 58 4619 1125 770
12.56 12.06 12.06 11.99 65932 2402 4255 3172 827 506 230 122 10080 1944 1143
17.89 17.5 17.5 25.35 77859 2101 5990 4101 871 679 475 221 13875 2212 1853
14.09 18.03 18.03 18.2 81532 4023 4998 3666 1012 977 315 203 14790 2425 1368
13.05 14.1 14.1 13.39 66282 3917 3998 3611 1352 976 253 183 15927 1871 1927

30× 300× 0.25 15.09 13.5 13.5 12.27 118859 3656 8230 5549 T(1.51) 1527 849 494 17157 3519 2406
15.76 16.12 16.12 13.16 117627 2294 4242 3275 1498 1222 409 291 17088 2353 2454
17.86 17.3 17.3 17.04 89386 2695 4986 2194 1402 1232 423 216 18575 2694 2209
15.52 16.1 16.1 14.73 76442 2368 4815 3819 965 1111 552 325 17440 2199 1922
13.84 15.12 15.12 24.63 148971 2676 3820 3782 3048 1320 360 306 16643 2617 2934

30× 400× 0.2 13.98 14.06 14.06 12.41 182865 3364 5507 4768 T(0.16) 1928 723 491 21185 3897 2689
16.1 15.09 15.09 16.61 218740 7589 23316 10360 T(2.06) T(1.35) 3591 1423 23274 7014 4759

12.43 14.22 14.22 18.49 108940 5447 5969 4062 2259 2718 780 472 24391 3657 2997
13.74 21.5 21.5 17.33 176128 4237 6513 4045 2629 T(1.54) 920 460 27310 4085 3195
15.63 15.64 15.64 14.07 137539 5980 10183 5688 T(0.39) 2820 1069 752 17202 3377 3179

30× 400× 0.25 18.09 17.99 17.99 15.39 109445 1949 4874 4263 T(1.93) T(3.73) 1384 818 25542 4631 3393
22.75 21.64 21.64 16.83 119700 1419 7371 7158 T(1.9) T(4.73) T(1.6) 2195 31299 9066 6467
18.72 16.69 16.69 20.68 61919 1553 10228 6130 T(2.67) T(4.88) T(1.1) 1907 31162 7961 4884
13.42 13.43 13.43 19.66 140255 3757 9424 5700 T(0.6) T(0.26) 1546 1005 22064 4784 5163
18.77 14.27 14.27 20.49 122025 2855 13764 14914 T(3.16) T(5.43) T(1.82) 3492 26825 8435 6270

40× 400× 0.1 14.49 12.98 12.98 14.05 63612 6857 10716 7443 791 616 561 349 9113 2412 1862
13.68 9.25 9.25 8.94 139619 10274 10846 9650 2266 589 464 321 7054 1405 1653
13.1 13.21 13.21 11.72 242727 18461 30759 27243 2626 1302 1216 789 9255 2267 1917
8.56 11.8 11.8 11.09 66765 7759 8434 6500 1072 432 325 185 6753 1379 1149

11.97 9.41 9.41 11.11 53415 7130 10553 8610 735 593 455 297 9973 1724 1817
40× 400× 0.15 11.22 9.06 9.06 11.55 88000 8165 14667 11080 T(1.93) 2089 1646 1166 16865 4272 3569

13.06 12.57 12.57 12.57 146900 9410 11368 10312 T(0.88) 1199 1150 919 8988 2664 1908
10.01 10.94 10.94 11.42 75643 4491 6838 4542 T(0.7) 760 724 429 10359 2169 1892
16.42 14.05 14.05 14.08 98085 9604 14618 9392 T(1.67) 2552 2062 1023 17229 4401 3430
13.27 15.17 15.17 12.59 137367 3023 8870 5542 3571 401 790 365 6583 2299 1337

40× 500× 0.1 10.84 11.92 11.92 9.94 68922 4309 8625 6944 1241 435 572 441 8271 1956 2235
12.1 16.97 16.97 16.18 123100 25255 33523 25734 T(2.46) 3548 3123 1837 15494 4916 4236

17.32 16.39 16.39 14.21 103300 18722 21244 14675 T(1.5) 2128 1464 889 12094 3456 3052
11.97 12.05 12.05 13.38 162388 5486 10629 7743 3516 992 760 458 12954 2715 2399
11.1 15.58 15.58 13.93 158352 11341 15501 11404 3408 1324 1076 762 11444 3349 3031

40× 500× 0.15 13.7 11.13 11.13 13.53 59100 4686 15395 17573 T(3.3) T(2.51) T(0.77) 3370 26263 6646 5161
11.01 15.68 15.68 13.6 85159 8200 15618 14867 T(2.16) 3380 T(1.49) 3256 20233 6277 6142
14.78 13.54 13.54 14.05 86000 4148 11774 12999 T(4.26) T(1.81) T(2.71) 3322 23851 8537 6815
14.84 12.68 12.68 14.47 61500 4830 13565 13311 T(2.85) T(2.38) T(2.5) 2212 25767 8242 6360
16.12 14.41 14.41 14.28 74055 4759 14081 15076 T(3.57) T(2.65) T(1.83) T(0.6) 25001 7574 7107

50× 500× 0.05 9.32 8.81 8.81 8.87 258300 52328 78169 68635 T(0.62) 1546 1513 1298 7570 2570 2802
6.56 8.87 8.87 7.22 96793 52032 63185 43864 808 1298 1028 553 4159 1505 1410

11.94 8.64 8.64 10.5 156259 23492 35908 27037 1645 690 599 431 5209 1679 1391
10.31 10.26 10.26 7.0 122437 53810 44951 42543 1322 1595 1083 965 7772 2427 2110
8.01 11.16 11.16 13.54 298400 91452 144381 132669 T(0.89) T(0.80) 3501 2612 8300 2807 3110


