Chimeric Antigen Receptor-Modified T Cells for Treatment of
Acute Lymphoblastic Leukemia

Zachary Eidman and Kayla Ruslavage

Acute Lymphoblastic Leukemia

Leukemia is a type of cancer that affects the blood and bone marrow of the body by turning immature blood cells into cancer cells. Acute lymphoblastic leukemia (ALL) is a particularly aggressive type of leukemia found in both kids and adults. ALL makes up about 25% of annual cancer diagnoses in patients under fifteen. ALL is a result from an overproduction of underdeveloped white blood cells by leukemia stem cells in the blood marrow.

An abnormal amount of these cells in the blood causes suppression of normal function of other cells in the blood (Figure 1). Because leukemia spreads through the bloodstream rather than centralizing in one location, conventional tumor and radiation therapy are not possible. Chemotherapy and stem cell transplantation, the two most common treatment options for ALL, last for at least two years, can have harmful side effects such as hair loss and weakening of the immune system, and have low cure rates. A better treatment for fighting ALL is chimeric antigen receptor-modified (CAR) T cell therapy.

Current Clinical Trials

Having shown significant promise in animal testing, CAR T cell therapy moved onto human clinical trials in 2014. At the University of Pennsylvania, a trial of anti-CD19 T cells on patients with ALL proved extremely successful. In the thirty patients aged five to sixty, this CAR T cell treatment, known as Eliana, showed a complete remission rate of 89%, one month after infusion of the modified cells. When following the patients for an additional two years post-treatment, an overall survival rate of 78% was recorded. Although this survival rate is not significantly more than the 70% overall survival rate of ALL patients, this trial has shown promising results for CAR T cell therapy in fighting ALL. Future CAR T cell technology aims to fight other types of cancer by identifying and targeting antigens of other cancers (Table 1).

Chimeric antigen receptor-modified T cell therapy functions by modifying a patient’s T cells, causing the cells to express receptors that bind to specific antigens on foreign cells. Researchers have used this promising new technology to fight acute lymphoblastic leukemia by modifying T cells to express anti-CD19 receptors on their surfaces. Cells that express CD19 (an antigen found on the surface of all ALL cells) are then targeted by these modified T cells, causing the T cells to latch onto the cancer. This T cell then inhibits a natural immune response, which kills and removes the unhealthy cell from the body. In a typical CAR T cell treatment, a patient’s T cells are extracted and sent to a lab for manipulation. At the lab, the T cells are modified using a genetically engineered lentivirus, which inserts genes into the host’s T cell DNA, causing them to express CARs. From there, these T cells are reintroduced to a patient intravenously, where they then fight cancer cells naturally (Figure 3).

Table 1. This table lists various cancer types and the corresponding antigen expressed on the surface of the cancerous cells.

Mechanism for CD19 CAR T Cell Therapy

With novel medical technologies, safety is a top priority. As CAR T cell therapy progresses, researchers need to work on reducing side effects such as cytokine release syndrome (CRS), which is a harmful inflammatory disease. CRS can range from fever to death, so finding a solution to this side effect is crucial.

One of the biggest concerns pertaining to the sustainability of CAR T cell therapy is its availability to patients. Only 16 states have facilities to administer this treatment, which is an issue because patients must maintain within 2 hours from a treatment center for 4 months after the procedure.

Future of CAR T Cell Technology

In the future, there is hope that CAR T cell therapy will continue to be safer and more successful in patients suffering from ALL. One way that researchers have begun improving this treatment is by performing the procedure in vivo (in the body). This method of performing CAR T cell therapy, if successful, would be far more beneficial than the current in vitro (in the lab) approach. In vivo therapy research aims to create nanoparticles that can be injected into the body, manipulating T cells already present in the body to express CARs. This therapy would eliminate the time consuming and expensive task of removing a patient’s T cells and manipulating them in a lab, effectively eliminating the middle man.

Acknowledgements

We would like to thank our conference co-chair, Ashley Martise, for her help throughout this project. We would also like to thank Barbara Edelman for her help with editing and revising our paper. In addition, we would like to acknowledge Beth Newborg and Dan Budny for their work in arranging the conference and giving us guidelines for all of the writing assignments.