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In a paper published shortly before his death, Neugebauer reviewed the transmission 
of the standard Babylonian value for the mean synodic month (hereafter: M).1 He 
restricted his attention to this value for M and did not consider its derivation from 
the observational record. In other articles and books that he wrote over the years 
Neugebauer discussed a variety of values for M, but he did not gather these data 
together in one place. Recently, I argued that the Babylonian values for the lengths 
of the various months could have been derived from relatively crude observations 
by simple counting and arithmetic manipulation. The only value for which I was 
unable to fi nd a simple derivation was the standard length of the mean synodic month, 
although I came upon a method that yielded a value close to it.2 I believe that this 
gap in the argument can now be fi lled by a much more plausible conjecture, based 
in part on information that has just come to my attention.

In this paper I will focus on a few selected values for M that occur in sources 
prior to A.D. 1500, starting with the Babylonians. In general, the precision of the 
parameters far exceeds their accuracy, but I will ignore problems of accuracy and 
report the evidence to the number of sexagesimal places given in the texts themselves 
(or that otherwise seems appropriate). For purposes of this discussion, it may be 
useful to distinguish ‘ghosts’ from ‘phantoms’: by a ‘ghost’ I simply mean a value 
unintended by the author that is ascribed to him as a result of a copyist’s error or, 
in modern times, a printer’s error; by a ‘phantom’ I mean a value correctly derived 
from rounded data that yields an unintended value. Both ghosts and phantoms may 
occur in ancient and modern literature. As a rule, I have tried to avoid both ghosts 
and phantoms, but for an example of a phantom, see Appendix 1.

The standard Babylonian value for M is 29;31,50,8,20d and it is associated with 
System B where it appears in the form 29d 191;0,50uš (uš correspond to time-degrees: 
360uš = 1d).3 In medieval texts, it is also given equivalently as 29d 12;44,3,20h and 
29d 12h 793p (where ‘p’ stands for ‘parts’, and 1080p = 1h). This value is close to 
what one would get from taking the 18-year period of 223 synodic months (called 
the Saros) to be 6585;20d, for 6585;20d/223 = 29;31,50,18,...d.4 Another attested 
Babylonian value for the Saros of 223 months is 6585;19,20d which yields M = 
29;31,50,8,4,...d.5 Since the same tablet has the standard value for M, it could be 
argued that 6585;19,20d was curtailed from 6585;19,20,58,...d = 223 · 29;31,50,8,20d, 
i.e., that M = 29;31,50,8,4,...d is a phantom. But before reaching this conclusion, 
further discussion is needed (see below).

In a Babylonian text recently discovered by John Steele (BM 45861), there is a 
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zigzag scheme that, he argued, represents the excess of the Saros over 6585 days, 
measured in uš.6 This suggests that one should consider the length of 223 months 
(the Saros) as the primary datum rather than the length of 1 month that was probably 
derived from it. Moreover, the surplus over 6585d should be considered in the fi rst 
instance in uš, rather than in sexagesimal fractions of a day. In fact, the Babylonians 
recorded the time of eclipses in uš (before or after sunrise or sunset) and, in the early 
period (c. –750 to c. –570), these times were given in units of 5uš. Hence, 6585;20d 
should be recast as 6585d 120uš. There are good reasons to believe that the Babylo-
nians had begun a systematic record of eclipse observations in –746, although the 
early years are poorly represented in the extant documents.7

The Babylonian scheme is deceptively simple. This zigzag has the following 
characteristics (see the dashed line in Figure 1): its period is 18 lines, each step (i.e., 
the line-by-line difference) is 5uš, the minimum is 95uš, the maximum is 140uš, the 
amplitude (i.e., the difference between maximum and minimum) is 45uš or 9 · 5uš, 
and the mean value is 117;30uš (= 0;19,35d) which implies that M = 29;31,50,12,...d. 
In Figure 1, this zigzag is compared to what one fi nds by modern computation for 
a set of eclipse possibilities with the following conditions. In each Saros of 223 
months there are 38 eclipse possibilities, and to each of them is assigned the length 
of the following 223 months in excess over 6585 days. If the eclipse possibilities are 

The variation of the Saros length for the odd numbered eclipse possibilities, beginning with the 
lunar eclipse of –746 Feb. 6. The solid line gives the excess of the Saros length over 6585 days 
measured in uš associated with the odd numbered eclipse possibilities, and the dashed line represents 
the zigzag function on the Babylonian tablet, BM 45861. Courtesy of J. M. Steele.

FIG. 1. 
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assigned an indexing number, they form two sets of 19 eclipse possibilities (one set 
with odd numbers, and the other with even numbers). If these two sets are separated, 
the resulting graphs are similar to one another, i.e., the curve for one set is very nearly 
the refl ection of the other about the mean value. The function displayed as a solid 
line in Figure 1 is for the odd-numbered set of 19 eclipse possibilities in a series of 
Saroi, beginning in –746 and extending for about 200 years. The period of 18 for the 
zigzag seems to have been chosen for arithmetic simplicity, instead of the accurate 
value of 19 corresponding to half the number of eclipse possibilities, and Steele has 
not determined how the Babylonians took account of this discrepancy. Despite all 
the indications of arithmetic simplicity and ‘nice’ numbers, the graph of the zigzag 
function is very close to the recomputed data. Steele remarks that about 100 years of 
data would have been suffi cient to determine the parameters for the zigzag function 
and, as he also notes, the recomputed data indicate that the minimum of the zigzag is 
reasonably good whereas the maximum is a little too high, perhaps to maintain the 
simplicity of the amplitude. In units of 5uš, a maximum of 135uš looks like a better value 
than the attested 140uš, and it yields a mean value of 115uš or M = 29;31,50,5,...d. 

The zigzag scheme, even as modifi ed, yields a length of the mean synodic month 
that is close to the standard value, but not identical to it. I then realized that to arrive 
at ‘8’ in the third sexagesimal place, one would need a mean value of about 116uš 
(which cannot be derived directly from a minimum and a maximum expressed in 
units of 5uš). Such a value might arise, however, if one decided that a maximum of 
135uš was slightly too low and that a maximum of 140uš was too high (keeping the 
minimum at 95uš). The decision in favour of 116uš as the mean value is not explained 
by this argument, but the choice would have been limited to the interval between 
115uš and 117;30uš. Taking 116uš as the mean value, 223 · M = 6585;19,20d, and M = 
29;31,50,8,4,...d. (To get the standard value for M exactly, one would need an excess 
over 6585d of 116;5,50uš.) Note that this value for the Saros, 6585;19,20d, appears 
in a Babylonian text where we thought it might be a result of rounding, but here 
it seems to be a plausible number in its own right. To be sure, the text in which it 
appears was written long after the early stages in the development of System B, and 
so it is not clear if its occurrence there provides relevant historical data. Also, Britton 
has argued (in a personal communication) that the fourth sexagesimal place (‘20’ 
in the standard value) was chosen by the Babylonians for arithmetic convenience 
in the scheme used in System B, and that it is suffi cient to account for the ‘8’ in the 
third place. The derivation proposed here can only be considered ‘possible’ for there 
is no textual evidence that directly supports it. On the other hand, the Babylonians 
never derive their parameters explicitly, and one is left with possibilities of varying 
degrees of plausibility, to be judged by their compatibility with the interests of the 
Babylonians and the results they achieved. Further, it seems more likely that the 
Babylonians did not directly seek mean values by averaging lots of data; rather, 
they probably focused their attention on minimum and maximum values that occur 
in relatively short time intervals from which they derived the mean.8

In the Almagest, Ptolemy gives the Babylonian value for M, 29;31,50,8,20d, and 
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associates it with a cycle of about 345 years: 4267m = 126007d 1h.9 In fact, 4267 · 
29;31,50,8,20d ≈ 126007d 1;5h. Aaboe and others have noticed that Copernicus has 
M = 29;31,50,8,9,20d which results from dividing 126007d 1h by 4267m, the two 
values given in the Almagest.10 The variant, 29;31,50,8,9,20d, already appeared in 
al-Hajjaj’s Arabic translation of the Almagest in the ninth century and then in many 
medieval texts in Arabic, Hebrew, and Latin.11 So, in his Yesod colam, Isaac Israeli 
(c. 1310) reports the value 29;31,50,8,9,20d as that of Hipparchus cited by Ptolemy, 
and al-Biruni (d. c. 1050) cites the value 29;31,50,8,9,20,13d.12 Ibn Yunus (c. 1000) 
and al-Bitruji (c. 1200) have 29;31,50,8,9,24d and, as Neugebauer noted, this variant 
also appears in some Ethiopic texts.13 It would seem that the variant 29;31,50,8,9,20d 
was a phantom in the ninth century in the sense that it was ascribed to Ptolemy who 
did not intend it, particularly if it resulted from a rounding of 1;5h to 1h in the length 
of 4267 months.

The mean synodic month continued to serve as a fundamental astronomical param-
eter in the Middle Ages. Although a great variety of values are recorded in this period, 
we will discuss only a few of those that occur in Arabic, Hebrew, and Latin texts. 
The origins of these values are diverse but, as far as I can determine, there is only 
one case where the value is derived from specifi c observational data. 

In contrast to the value for M that ultimately came from Babylon, some 
medieval authors depended on Hindu sources. Of particular interest is the value, 
29d 12;44,2,17,21,12h (= 29;31,50,5,43,23d), supposedly based on observations 
but suspiciously close to Hindu values, that al-Biruni ascribes to the Banu Musa 
(ninth century).14 Yacqub ibn Tariq (eighth century), as reported by al-Biruni, 
gives the correlation that 57,753,300,000 revolutions of the Moon take place in 
1,577,916,450,000d and in 4,320,000,000 revolutions of the Sun, which implies that M 
= 29;31,50,5,43,24,...d (= 29 189005/356222

d, according to al-Biruni), and these numbers 
derive from the Brahmasphutasiddhanta [BSS] of Brahmagupta (seventh century).15 
Ibn al-Muthanna (tenth century) ascribes to Ptolemy the value 29;31,50,5,44,33d 
that clearly belongs to the Indian tradition and al-Hashimi (late ninth century) has a 
similar value, 29;31,50,5,43,33d, which is also ascribed to Ptolemy.16 

The Jewish tradition for M presents a number of problems. The value for M in 
the Jewish calendar is 29d 12h 793p, and it is equivalent to the standard value for M. 
The earliest source is a passage in the Babylonian Talmud that ascribes a value of 
M to Rabban Gamaliel (second century) of 29½ days and º hour and 73 parts (it is 
generally assumed that in this text ‘part’ means what it does in later treatments of 
the Jewish calendar where 1080p = 1h):

Our Rabbis taught: Once the heavens were covered with clouds and the likeness 
of the moon was seen on the twenty-ninth of the month. The public were minded 
to declare New Moon, and the Beth din [court] wanted to sanctify it, but Rabban 
Gamaliel said to them: I have it on the authority of the house of my father’s father 
that the renewal of the moon takes place after not less than twenty-nine days and 
a half and two-thirds of an hour and seventy-three parts.17
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The earliest evidence for the standard value in the form, 29d 12h 793p, comes from 
an Arabic text by al-Khwarizmi (ninth century) discussed by Kennedy.18 It is also 
reported by al-Biruni, and then by such Jewish scholars as Ibn Ezra, Bar Hiyya, and 
Maimonides, all of whom lived in the twelfth century.19 Two early Jewish sources 
have ºh and 73p and they have been called into question as possibly corrupt due to later 
interventions, but the arguments are not persuasive;20 note that they do not present 
M in the same form as in the later tradition. The unit called a ‘part’ (Heb. heleq) 
is peculiar and Neugebauer argued that it represents the Babylonian unit called še 
(barleycorn), used in the theory of lunar latitude, where 180 še = 1 cubit of 2;30°.21 
Since an hour corresponds to 15°, we can set 6 cubits = 1h, and then 1080 še = 1h 
(as in the Jewish calendar). The problem is that for measuring time the Babylonians 
generally used uš (time-degrees) and beru (double-hours or 30°). Although seasonal 
hours are found in some Babylonian texts, I am not aware of any equinoctial hours.22 
So the use of equinoctial hours seems to point to a Greek source. Moreover, there is 
a word for barleycorn in Hebrew, and a unit called a barleycorn (shacira) was still 
used in Arabic for linear measurement in Iraq in the ninth century.23 In the Jewish 
tradition, ‘part’ as a unit of time only appears in calendrical contexts.24 

Levi ben Gerson (d. 1344), also known as Gersonides, cites the traditional 
Jewish value both as 29;31,50,8,20d and 29d 12h 793p, and contrasts it with the 
value 29;31,50,8,9,20d that he ascribes to Ptolemy and Hipparchus, presumably 
based on the Hebrew version of the Almagest that, in turn, was based on the Arabic 
version of al-Hajjaj.25 He then determined a new value based on two lunar eclipses, 
one observed by Ptolemy and one that he observed himself (see Appendix 2): 
29;31,50,7,54,25,3,32d.26 Levi’s value for M was adopted, with slight modifi cation, 
by Jacob ben David Bonjorn (fourteenth century) in his eclipse tables that were 
composed in Hebrew and then translated into Latin and Catalan. From the cycle he 
introduced, namely, that 11324d 23;34,11h corresponds to 383;30 synodic months, it 
follows that M = 29;31,50,7,53,39,49d.27 It is likely that in deriving his cycle Bonjorn 
rounded (or curtailed) Levi’s value for M, or intermediate computations based on 
it, for the difference between Bonjorn’s value and Levi’s only accumulates to about 
0;0,2h in 383;30 months or about 31 years.

The daily motion in lunar elongation from the Sun that appears in the Parisian 
version of the Alfonsine Tables (c. 1320), namely 12;11,26,41,37,51,50,39°/d, implies 
that M = 29;31,50,7,37,27,8,25d which is close to Levi’s value but, as usual, there is 
no indication of the way it was determined.28 The Parisian version of the Alfonsine 
Tables was already in place when Levi derived his value for M, but there is no evi-
dence to suggest that he was aware of the work by his Parisian contemporaries. On 
the other hand, in the Toledan Tables that were widely diffused in medieval Europe, 
the table for syzygies is based on Ptolemy’s value for M, 29;31,50,8,20d.29

The data are summarised in Appendix 3, and it is readily seen that the standard 
Babylonian (System B) value was by no means universally accepted in the Middle 
Ages. As far as I can determine, Levi ben Gerson provides the earliest explicit deriva-
tion of a value for M from the circumstances of observed eclipses. 



70 Bernard R. Goldstein

APPENDIX 1

In Ptolemy’s Planetary hypotheses, Book 1,30 we fi nd the correlation: 
 8523 trop. yrs = 8528y + 277;20,24d = 105416m (where 1y = 365d). 
As Neugebauer noticed, it follows that 
 M = 29;31,50,8,48,...d = [(8528 · 365) + 277;20,24]d/105416m 
which is otherwise unattested.31 Is this an unintended value (i.e., a “phantom”)? It 
seems to be the result of rounding, for:
  (29;31,50,8,20d · 105416m)/365;14,48d = 8522;59,57,... trop. yrs 
 ≈ 8523 trop. yrs.
Curiously, Ptolemy himself transforms the number of tropical years into a number 
of days (with two places of sexagesimal fractions) and this leads to a false sense of 
accuracy. Ptolemy should have said that 105416 synodic months are approximately 
equal to 8523 tropical years, and left it at that.

APPENDIX 2

Given the times of eclipse-middle of two lunar eclipses, M may be determined from 
the corresponding mean oppositions. This procedure requires the following correc-
tions: (1) a correction for the time difference between the two places of observation; 
(2) corrections for the equation of time; (3) a small correction for the difference 
between eclipse-middle and true opposition; and (4) a correction of the time interval 
from true opposition to mean opposition that, in turn, depends on the solar and lunar 
anomalies. Condition (4) can be ignored only if there is a return in both solar and 
lunar anomaly (as noted by Ptolemy in Almagest, iv.2). Levi ben Gerson’s Astronomy, 
Chapter 82, illustrates this procedure.32

Levi cites two lunar eclipses, separated by 14854 synodic months: one observed by 
Ptolemy (20/21 Oct. 134: Goldstine no. 14035) and one that he observed himself (2/3 
Oct. 1335: Goldstine no. 28889).33 Note that this is not a period of return for lunar 
anomaly: Ptolemy gives the lunar anomaly at the time of the eclipse he observed as 
64;38°, and Levi gives the lunar anomaly at the time of his eclipse as 143;31°.34 Levi 
indicates that the time difference between Alexandria and Orange (where he lived) 
is 1;56h, based on Ibn Ezra’s claim that Montpellier is 2;16h to the west of Jerusalem 
together with the assumptions that Jerusalem is 0;20h east of Alexandria and that 
Orange and Montpellier lie on the same meridian, very nearly.35 Levi takes the time 
interval between the two eclipses to be 1201 Eg. yrs + 282d + 6;35h, and then adds 
a correction of 3;24h to yield the time interval between the corresponding two mean 
oppositions: 438647;24,57,30d (= 1201 Eg. yrs + 282d + 9;59h).

Levi appeals to Ptolemy’s observation of a lunar eclipse in Almagest, iv.6, and 
reports that the mean solar longitude was Libra 26;42° with a solar equation of 
–1;32° or a true longitude of Libra 25;10°; whereas the mean longitude of the Moon 
was Aries 29;30°, i.e., the mean elongation was 182;48°. Levi then gives the time of 
eclipse-middle since the epoch of Era Nabonassar as 881 Eg. yrs + 91d + 10;30h after 
mean noon (taking the equation of time to be –0;30h). Levi’s own eclipse took place, 
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he tells us, on 2 Oct. 1335, 15;9h after mean noon in Orange, or 2083 Eg. yrs + 8d + 
17;5h after mean noon in Alexandria, since the epoch of Era Nabonassar (taking into 
account the time difference between Orange and Alexandria). Hence the time interval 
between the two eclipses is 1201 Eg. yrs + 282d + 6;35h. The mean elongation at the 
time of the Levi’s eclipse was 181;4,18° (with Heb.; Latin: 181;14,18°); hence the 
difference in elongation between the two eclipses is 1;43,42° (= 182;48° – 181;4,18°). 
The correction, 3;24h, was probably computed from the following equation: 
 ∆t = ∆η/(vm – vs)        (1)           
where ∆t is the correction in time corresponding to ∆η, the difference in elongation, 
and vm and vs are the mean motions of the Moon and Sun, respectively. Then, sub-
stituting ∆η = 1;43,42°, vm = 0;32,56°/h, and vs = 0;2,28°/h, it follows that
 ∆t = ∆η/(vm – vs) = 1;43,42°/0;30,28°/h ≈ 3;24h.  (2)

Levi’s tables 40–43 are not invoked here, but they yield the interval to be added 
to mean opposition in order to obtain the time of true opposition.36 With Oct. 2 and 
anomaly 143;31° (for Levi’s eclipse), I compute 2;27h (= 9;6h + 0;35h + 15;48h + 
0;58h – 24h); and with Oct. 20 and anomaly 64;38° (for Ptolemy’s eclipse), I compute 
5;39h (= 9;37h + 0;39h + 19;1h + 0;22h – 24h). Therefore, the difference, 5;39h – 2;27h 
= 3;12h (i.e., m2 = t2 – 2;27h, and m1 = t1 – 5;39h; hence, m2 – m1 = t2 – t1 – 2;27h + 
5;39h, where m and t are the times of mean and true opposition, respectively), which 
is close to the value in the text. 

If 438647;24,57,30d corresponds to 14854 synodic months then, according to 
Levi, M = 29;31,50,7,54,25,3,32d. Accurately, this division yields M = 29;31,50,7,
54,25,3,35,...d.37 

APPENDIX 3

Mean Synodic Month  Source

29;31,50,5,43,23d Banu Musa
 5,43,24,... Brahmagupta, BSS; Yacqub ibn Tariq
 5,43,33 al-Hashimi
 5,44,33 Ibn al-Muthanna

 7,37,27,8,25 Alfonsine Tables (Paris)
 7,53,39,49 Bonjorn
 7,54,25,3,32 Levi ben Gerson

 8,4,...* ACT, No. 210, line 10
 8,9,20 al-Hajjaj, Copernicus, etc.
 8,9,20,13 al-Biruni
 8,9,24 Ibn Yunus, al-Bitruji
 8,20  System B, Ptolemy (Alm.), Jewish cal., etc.
 8,48,...* Ptolemy (Plan. hyp.)

 18,... Geminus

*phantom?
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