Sequences are ordered lists of elements

Definition: A sequence is a function from the set of integers, either set $\{0,1,2,3,...\}$ or set $\{1,2,3,4,..\}$, to a set S. We use the notation a_n to denote the image of the integer n. a_n is called a term of the sequence.

Examples:

- 1, 3, 5, 7, 9, 11
 A sequence with 6 terms
- A second example can be described as the sequence {a_n} where a_n = 1/n

1, 1/2, 1/3, 1/4, 1/5, ... An infinite sequence

What makes sequences so special?

Question: Aren't sequences just sets?

Answer: The elements of a sequence are members of a set, but a sequence is ordered, a set is not.

Question: How are sequences different from ordered n-tuples?

Answer: An ordered n-tuple is ordered, but always contains n elements. Sequences can be infinite!

Some special sequences

Geometric progressions are sequences of the form $\{ar^n\}$ where *a* and *r* are real numbers a, ar, ar²,..., arⁿ.

Note: a geometric progression is a discrete analogue of the exponential function $f(x) = ar^{x}$.

Examples:

- 1, 1/2, 1/4, 1/8, 1/16, ... a = 1, r = 1/2
- 1, -1, 1, -1, 1, -1, ... a = 1, r = -1

• {d_n} where $d_n = 6^*(1/3)^n$ in terms of d_o, d_1, d_2, d_3 ... 6,2,2/3, 2/9,2/27, a=6 and r=1/3

Arithmetic progressions are sequences of the form $\{a + nd\}$ where a(initial term) and d(common difference) are real numbers. a, a+d, a+2d,, a+nd,....

Examples:

- 2, 4, 6, 8, 10, ...
 a = 2, d = 2
- -10, -15, -20, -25, ... a = -10, d = -5

Note: a geometric progression is a discrete analogue of the linear function f(x) = dx+a.

Sometimes we need to figure out the formula for a sequence given only a few terms

Questions to ask yourself:

- 1. Are there runs of the same value?
- 2. Are terms obtained by multiplying the previous value by a particular amount? (Possible geometric sequence)
- 3. Are terms obtained by adding a particular amount to the previous value? (Possible arithmetic sequence)
- 4. Are terms obtained by combining previous terms in a certain way?
- 5. Are there cycles amongst terms?

Problem 1: 1, 5, 9, 13, 17, ... ??????

Problem 2: 1, 3, 9, 27, 81, ... ?????

Problem 3: 2, 3, 3, 5, 5, 5, 7, 7, 7, 7, 11, 11, 11, 11, 11, 11, ... ?????????

Problem 4: 1, 1, 2, 3, 5, 8, 13, 21, 34, ... ???????

What are the formulas for these sequences?

Problem 1: 1, 5, 9, 13, 17, ...

• Arithmetic sequence with a = 1, d = 4

Problem 2: 1, 3, 9, 27, 81, ...

• Geometric sequence with a = 1, r = 3

Problem 3: 2, 3, 3, 5, 5, 5, 7, 7, 7, 7, 11, 11, 11, 11, 11, ...

• Sequence in which the *n*th prime number is listed *n* times

Problem 4: 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

Each term is the sum of the two previous terms

This is called the Fibonacci sequence.

Sometimes we want to find the sum of the terms in a sequence

Summation notation lets us compactly represent the sum of terms $a_m + a_{m+1} + ... + a_n$

Example: $\sum_{1 \le i \le 5} i^2 = 1 + 4 + 9 + 16 + 25 = 55$

The usual laws of arithmetic still apply

A summation over a sum (or difference) can be split into a sum (or difference) of smaller summations

Example:

•
$$\sum_{1 \le j \le 3} (4j + j^2) = (4+1) + (8+4) + (12+9) = 38$$

•
$$4\sum_{1 \le j \le 3} j + \sum_{1 \le j \le 3} j^2 = 4(1+2+3) + (1+4+9) = 38$$

Example sums

Example: Express the sum of the first 50 terms of the sequence $1/n^2$ for n = 1, 2, 3, ...

Answer: $\sum_{j=1}^{50} rac{1}{j^2}$

Example: What is the value of

$$\sum_{k=4}^{8} (-1)^k$$

o

Answer:
$$\sum_{k=4}^{8} (-1)^{k} = (-1)^{4} + (-1)^{5} + (-1)^{6} + (-1)^{7} + (-1)^{8}$$
$$= 1 + (-1) + 1 + (-1) + 1$$
$$= 1$$

We can also compute the summation of the elements of some set

Example: Compute
$$\sum_{s \in \{0,2,4,6\}} (s+2)$$

Answer:
$$(0 + 2) + (2 + 2) + (4 + 2) + (6 + 2) = 20$$

Example: Let $f(x) = x^3 + 1$. Compute $\sum_{s \in \{1,3,5,7\}} f(s)$

Answer: f(1) + f(3) + f(5) + f(7) = 2 + 28 + 126 + 344 = 500

Sometimes it is helpful to shift the index of a summation

This is particularly useful when combining two or more summations. For example:

$$S = \sum_{j=1}^{10} j^2 + \sum_{k=2}^{11} (2k-1)$$
 Let $j = k - 1$

$$= \sum_{j=1}^{10} j^2 + \sum_{j=1}^{10} (2(j+1)-1)$$
 Need to
add 1 to
each j

$$= \sum_{j=1}^{10} (j^2 + 2(j+1) - 1)$$

$$= \sum_{j=1}^{10} (j^2 + 2j + 1)$$

$$= \sum_{j=1}^{10} (j + 1)^2$$

Summations can be nested within one another

Often, you'll see this when analyzing nested loops within a program (i.e., CS 1502)

Computing the sum of a geometric series by hand is time consuming...

Would you really want to calculate $\sum_{j=0}^{20} (6 \times 2^j)$ by hand?

Fortunately, we have a closed-form solution for computing the sum of a geometric series:

$$\sum_{j=0}^{n} ar^{j} = \begin{cases} \frac{ar^{n+1}-a}{r-1} & \text{if } r \neq 1\\ (n+1)a & \text{if } r = 1 \end{cases}$$

So,
$$\sum_{j=0}^{20} (6 \times 2^j) = \frac{6 \times 2^{21} - 6}{2 - 1} = 12,582,906$$

There are other closed form summations that you should know

We can use the notion of sequences to analyze the cardinality of infinite sets

Definition: Two sets A and B have the same cardinality if and only if there is a one-to-one correspondence from A to B.

Definition: A finite set or a set that has the same cardinality as the natural numbers is called countable. A set that is not countable is called uncountable.

Implication: Any sequence $\{a_n\}$ ranging over the natural numbers is countable.

Show that the set of even positive integers is countable

Proof #1 (Graphical): We have the following 1-to-1 correspondence between the natural numbers and the even positive integers:

1	2	3	4	5	6	7	8	9	10	
\uparrow										
2	4	6	8	10	12	14	16	18	20	

So, the even positive integers are countable. \square

Proof #2: We can define the even positive integers as the sequence $\{2k\}$ for all $k \in \mathbb{N}$, so it has the same cardinality as \mathbb{N} , and is thus countable. \Box

Is the set of all rational numbers countable?

This yields the sequence 1/1, 1/2, 2/1, 3/1, 1/3, ..., so the set of rational numbers is countable. \Box

Is the set of real numbers countable?

No, it is not. We can prove this using a proof method called diagonalization, invented by Georg Cantor.

Proof: Assume that the set of real numbers is countable. Then the subset of real numbers between 0 and 1 is also countable, by definition. This implies that the real numbers can be listed in some order, say, r1, r2, r3

Let the decimal representation these numbers be:

$$r1 = 0.d_{11}d_{12}d_{13}d_{14}...$$

$$r2 = 0.d_{21}d_{22}d_{23}d_{24}...$$

$$r3 = 0.d_{31}d_{32}d_{33}d_{34}...$$

...

Where $d_{ij} \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \forall i, j$

Proof (continued)

Now, form a new decimal number $r=0.d_1d_2d_3...$ where $d_i = 0$ if $d_{ii} = 1$, and $d_i=1$ otherwise.

Example: $r_1 = 0.123456...$ $r_2 = 0.234524...$ $r_3 = 0.631234...$...r = 0.010...

Note that the i^{th} decimal place of r differs from the i^{th} decimal place of each r_i , by construction. Thus r is not included in the list of all real numbers between 0 and 1. This is a contradiction of the assumption that all real numbers between 0 and 1 could be listed. Thus, not all real numbers can be listed, and **R** is uncountable. \Box