Sequences are ordered lists of elements

Definition: A sequence is a function from the set of integers, either set $\{0,1,2,3, \ldots\}$ or set $\{1,2,3,4, .$.$\} , to$ a set S . We use the notation a_{n} to denote the image of the integer $n . a_{n}$ is called a term of the sequence.

Examples:

- $1,3,5,7,9,11$

A sequence with 6 terms

- A second example can be described as the sequence $\left\{a_{n}\right\}$ where $a_{n}=1 / n$
$1,1 / 2,1 / 3,1 / 4,1 / 5, \ldots \quad$ An infinite sequence

What makes sequences so special?

Question: Aren't sequences just sets?

Answer: The elements of a sequence are members of a set, but a sequence is ordered, a set is not.

Question: How are sequences different from ordered n-tuples?

Answer: An ordered n -tuple is ordered, but always contains n elements. Sequences can be infinite!

Some special sequences

Geometric progressions are sequences of the form \{arn\} where a and r are real numbers $a, a r, a r^{2}, \ldots, a r^{n}$.
Note: a geometric progression is a discrete analogue of the exponential function $f(x)=a r^{x}$.

Examples:

- $1,1 / 2,1 / 4,1 / 8,1 / 16, \ldots$

$$
a=1, r=1 / 2
$$

- $1,-1,1,-1,1,-1, \ldots$
$a=1, r=-1$
- $\left\{d_{n}\right\}$ where $d_{n}=6^{*}(1 / 3)^{n}$ in terms of $d_{0}, d_{1}, d_{2}, d_{3} \ldots$

$$
6,2,2 / 3,2 / 9,2 / 27, \ldots a=6 \text { and } r=1 / 3
$$

Arithmetic progressions are sequences of the form
$\{a+n d\}$ where a (initial term) and d (common difference) are real numbers. a, a+d, a+2d,, a+nd,....

Examples:

- $2,4,6,8,10, \ldots$
$a=2, d=2$
- -10, -15, -20, -25, ...
$a=-10, d=-5$

Note: a geometric progression is a discrete analogue of the linear function $f(x)=d x+a$.

Sometimes we need to figure out the formula for a sequence given only a few terms

Questions to ask yourself:

1. Are there runs of the same value?
2. Are terms obtained by multiplying the previous value by a particular amount? (Possible geometric sequence)
3. Are terms obtained by adding a particular amount to the previous value? (Possible arithmetic sequence)
4. Are terms obtained by combining previous terms in a certain way?
5. Are there cycles amongst terms?

What are the formulas for these sequences?

Problem 1: 1, 5, 9, 13, 17, ... ??????

Problem 2: 1, 3, 9, 27, 81, ... ?????
Problem 3: 2, 3, 3, 5, 5, 5, 7, 7, 7, 7, 11, 11, 11, 11, 11, ... ??????????
Problem 4: 1, 1, 2, 3, 5, 8, 13, 21, 34, ... ???????

What are the formulas for these sequences?

Problem 1: 1, 5, 9, 13, 17, ...

- Arithmetic sequence with $a=1, d=4$

Problem 2: 1, 3, 9, 27, 81, ...

- Geometric sequence with $a=1, r=3$

Problem 3: 2, 3, 3, 5, 5, 5, 7, 7, 7, 7, 11, 11, 11, 11, 11, ...

- Sequence in which the $n^{\text {th }}$ prime number is listed n times

Problem 4: 1, 1, 2, 3, 5, 8, 13, 21, 34, ...

- Each term is the sum of the two previous terms

This is called the Fibonacci sequence.

Sometimes we want to find the sum of the terms

 in a sequenceSummation notation lets us compactly represent the sum of terms $a_{m}+a_{m+1}+\ldots+a_{n}$

Example: $\sum_{1 \leq i \leq 5} i^{2}=1+4+9+16+25=55$

The usual laws of arithmetic still apply

路$\sum_{j=1}^{n}\left(a x_{j}+b y_{h}-c z_{j}\right)=@ \sum_{j=1}^{n} x_{j}+b \sum_{j=1}^{n} y_{j}-c \sum_{j=1}^{n} z_{j}$

Constant factors can be pulled out of the summation

A summation over a sum (or difference) can be split into a sum (or difference) of smaller summations

Example:

- $\sum_{1 \leq j \leq 3}\left(4 j+j^{2}\right)=(4+1)+(8+4)+(12+9)=38$
- $4 \Sigma_{1 \leq j \leq 3} j+\sum_{1 \leq j \leq 3} j^{2}=4(1+2+3)+(1+4+9)=38$

Example sums

Example: Express the sum of the first 50 terms of the sequence $1 / n^{2}$ for $n=1,2,3, \ldots$

Answer: $\sum_{j=1}^{50} \frac{1}{j^{2}}$
Example: What is the value of $\sum_{k=4}^{8}(-1)^{k}$
Answer: $\sum_{k=4}^{8}(-1)^{k}=(-1)^{4}+(-1)^{5}+(-1)^{6}+(-1)^{7}+(-1)^{8}$

$$
\begin{aligned}
& =1+(-1)+1+(-1)+1 \\
& =1
\end{aligned}
$$

We can also compute the summation of the elements of some set

Example: Compute $\sum_{s \in\{0,2,4,6\}}(s+2)$
Answer: $(0+2)+(2+2)+(4+2)+(6+2)=20$
Example: Let $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}+1$. Compute $\sum_{s \in\{1,3,5,7\}} f(s)$
Answer: $f(1)+f(3)+f(5)+f(7)=2+28+126+344=500$

Sometimes it is helpful to shift the index of a summation

This is particularly useful when combining two or more summations. For example:

$$
\begin{aligned}
S & =\sum_{j=1}^{10} j^{2}+\sum_{k=2}^{11}(2 k-1) \\
& =\sum_{j=1}^{10} j^{2}+\sum_{j=1}^{10}(2(j+1)-1) \\
10 & \begin{array}{l}
\text { Need to } \mathbf{~}=\mathbf{k}-\mathbf{1} \\
\text { add } 1 \text { to } \\
\text { each } \mathbf{j}
\end{array}
\end{aligned}
$$

Summations can be nested within one another

Often, you'll see this when analyzing nested loops within a program (i.e., CS 1502)

Example: Compute $\sum_{j=1}^{4} \sum_{k=1}^{3}(j k)$
Expand inner sum

Solution: $\sum_{j=1}^{4} \sum_{k=1}^{3}(j k)=\sum_{j=1}^{4}(j+2 j+3 j)$
Simplify if possible

Expand outer sum

Computing the sum of a geometric series by hand is time consuming...

Would you really want to calculate $\sum_{j=0}^{20}\left(6 \times 2^{j}\right)$ by hand?
Fortunately, we have a closed-form solution for computing the sum of a geometric series:

$$
\sum_{j=0}^{n} a r^{j}= \begin{cases}\frac{a r^{n+1}-a}{r-1} & \text { if } r \neq 1 \\ (n+1) a & \text { if } r=1\end{cases}
$$

$$
\text { So, } \sum_{j=0}^{20}\left(6 \times 2^{j}\right)=\frac{6 \times 2^{21}-6}{2-1}=12,582,906
$$

There are other closed form summations that you should know

Sum	Closed Form
$\sum_{j=1}^{n} j$	$\frac{n(n+1)}{2}$
$\sum_{j=1}^{n} j^{2}$	$\frac{n(n+1)(2 n+1)}{6}$
$\sum_{j=1}^{n} j^{3}$	$\frac{n^{2}(n+1)^{2}}{4}$

We can use the notion of sequences to analyze the cardinality of infinite sets

Definition: Two sets A and B have the same cardinality if and only if there is a one-to-one correspondence from A to B.

Definition: A finite set or a set that has the same cardinality as the natural numbers is called countable. A set that is not countable is called uncountable.

Implication: Any sequence $\left\{a_{n}\right\}$ ranging over the natural numbers is countable.

Show that the set of even positive integers is countable

Proof \#1 (Graphical): We have the following 1-to-1 correspondence between the natural numbers and the even positive integers:

So, the even positive integers are countable. \square

Proof \#2: We can define the even positive integers as the sequence $\{2 k\}$ for all $k \in N$, so it has the same cardinality as N , and is thus countable. \square

Is the set of all rational numbers countable?

Perhaps surprisingly, yes!

This yields the sequence $1 / 1,1 / 2,2 / 1,3 / 1,1 / 3, \ldots$, so the set of rational numbers is countable. \quad.

Is the set of real numbers countable?

No, it is not. We can prove this using a proof method called diagonalization, invented by Georg Cantor.

Proof: Assume that the set of real numbers is countable. Then the subset of real numbers between 0 and 1 is also countable, by definition. This implies that the real numbers can be listed in some order, say, r1, r2, r3

Let the decimal representation these numbers be:

$$
\begin{aligned}
& \mathrm{r} 1=0 . \mathrm{d}_{11} \mathrm{~d}_{12} \mathrm{~d}_{13} \mathrm{~d}_{14} \cdots \\
& \mathrm{r} 2=0 . \mathrm{d}_{21} \mathrm{~d}_{22} \mathrm{~d}_{23} \mathrm{~d}_{24} \cdot \\
& \mathrm{r} 3=0 . \mathrm{d}_{31} \mathrm{~d}_{32} \mathrm{~d}_{33} \mathrm{~d}_{34} \cdot \cdots
\end{aligned}
$$

Where $\mathrm{d}_{\mathrm{ij}} \in\{0,1,2,3,4,5,6,7,8,9\} \forall \mathrm{i}, \mathrm{j}$

Proof (continued)

Now, form a new decimal number $\mathrm{r}=0 . \mathrm{d}_{1} \mathrm{~d}_{2} \mathrm{~d}_{3} \ldots$ where $\mathrm{d}_{\mathrm{i}}=0$ if $\mathrm{d}_{\mathrm{ij}}=$ 1 , and $\mathrm{d}_{\mathrm{i}}=1$ otherwise.

Example:

$$
\begin{aligned}
& r_{1}=0.123456 \ldots \\
& r_{2}=0.234524 \ldots \\
& r_{3}=0.631234 \ldots \\
& \ldots \\
& r=0.010 \ldots
\end{aligned}
$$

Note that the $i^{\text {th }}$ decimal place of r differs from the $i^{\text {th }}$ decimal place of each r_{i}, by construction. Thus r is not included in the list of all real numbers between 0 and 1 . This is a contradiction of the assumption that all real numbers between 0 and 1 could be listed. Thus, not all real numbers can be listed, and \mathbf{R} is uncountable. -

