Today's Topics

Integers and division

- The division algorithm
- Modular arithmetic
- Applications of modular arithmetic

What is number theory?

Number theory is the branch of mathematics that explores the integers and their properties.

Number theory has many applications within computer science, including:

- Organizing data
- Encrypting sensitive data
- Developing error correcting codes
- Generating "random" numbers
- •••

We will only scratch the surface...

The notion of divisibility is one of the most basic properties of the integers

Definition: If a and b are integers and $a \neq 0$, we say that a divides b if there is an integer c such that b = ac. We write $a \mid b$ to say that a divides b, and $a \mid b$ to say that a divides b, and $a \mid b$ to say that a does not divide b.

Mathematically: $a \mid b \leftrightarrow \exists c \in \mathbb{Z}$ (b = ac)

Note: If a | b, then
a is called a factor of b
b is called a multiple of a

We've been using the notion of divisibility all along! • $E = \{x \mid x = 2k \land k \in Z\}$

Division examples

Examples:

- Does 4 | 16?
- Does 3 | 11?
- Does 7 | 42?

Question: Let *n* and *d* be two positive integers. How many positive integers not exceeding *n* are divisible by *d*?

Division examples

Examples:

- Does 4 | 16? Yes, 16 = 4 × 4
- Does 3 | 11? integer

No, because 11/3 is not an

Does 7 | 42? Yes, 42 = 7 × 6

- **Question:** Let *n* and *d* be two positive integers. How many positive integers not exceeding *n* are divisible by *d*?
- Answer: We want to count the number of integers of the form dk that are less than n. That is, we want to know the number of integers k with $0 \le dk \le n$, or $0 \le k \le n/d$. Therefore, there are $\lfloor n/d \rfloor$ positive integers not exceeding n that are divisible by d.

Important properties of divisibility

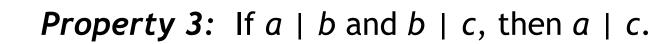
Property 1: If $a \mid b$ and $a \mid c$, then $a \mid (b + c)$

Proof: If $a \mid b$ and $a \mid c$, then there exist integers jand k such that b = aj and c = ak. Hence, b + c = aj+ ak = a(j + k). Thus, $a \mid (b + c)$.

Property 2: If $a \mid b$, then $a \mid bc$ for all integers c.

Proof: If a | b, then this is some integer j such that b = aj. Multiplying both sides by c gives us bc = ajc, so by definition, a | bc.

One more property



Proof: If a | b and b | c, then there exist integers j and k such that b = aj and c = bk. By substitution, we have that c = ajk, so a | c.

Division algorithm

Theorem: Let *a* be an integer and let *d* be a positive integer. There are unique integers *q* and *r*, with $0 \le r < d$, such that a = dq + r.

For historical reasons, the above theorem is called the division algorithm, even though it isn't an algorithm!

Terminology: Given *a* = *dq* + *r*

- d is called the divisor
- *q* is called the quotient
- r is called the remainder
- *q* = a div d
- *r* = a mod d

Examples

Question: What are the quotient and remainder when 123 is divided by 23?

Question: What are the quotient and remainder when -11 is divided by 3?

Examples

Question: What are the quotient and remainder when 123 is divided by 23?

Answer: We have that $123 = 23 \times 5 + 8$. So the quotient is 123 div 23 = 5, and the remainder is 123 mod 23 = 8. Question: What are the quotient and remainder when -11 is divided by 3?

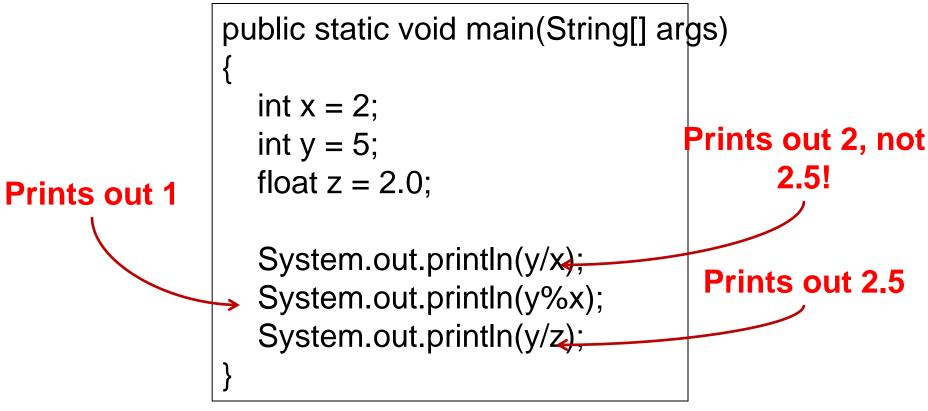
Answer: Since $-11 = 3 \times -4 + 1$, we have that the quotient is -11 and the remainder is 1.

Recall that since the remainder must be positive, $3 \times -3 - 2$ is not a valid use of the division theorem!

Many programming languages use the **div** and **mod** operations

For example, in Java, C, and C++

- / corresponds to **div** when used on integer arguments
- % corresponds to mod



This can be a source of many errors, so be careful in your future classes!

Group work!

Problem 1: Does

- 1. 12 | 144
- 2. 4 | 67
- 3. 9 | 81

Problem 2: What are the quotient and remainder when

- 1. 64 is divided by 8
- 2. 42 is divided by 11
- 3. 23 is divided by 7
- 4. -23 is divided by 7

Sometimes, we care only about the remainder of an integer after it is divided by some other integer

Example: What time will it be 22 hours from now?

Answer: If it is 1pm now, it will be (13 + 22) mod 24 = 35 mod 24 = 11 am in 22 hours.

Since remainders can be so important, they have their own special notation!

Definition: If a and b are integers and m is a positive integer, we say that a is congruent to b modulo m if $m \mid (a - b)$. We write this as $a \equiv b \mod m$.

Note: $a \equiv b \mod m$ iff $a \mod m = b \mod m$.

Examples:

- Is 17 congruent to 5 modulo 6?
- Is 24 congruent to 14 modulo 6?

Since remainders can be so important, they have their own special notation!

Definition: If a and b are integers and m is a positive integer, we say that a is congruent to b modulo m if $m \mid (a - b)$. We write this as $a \equiv b \mod m$.

Note: $a \equiv b \mod m$ iff $a \mod m = b \mod m$.

Examples:

- Is 17 congruent to 5 modulo 6? Yes, since 6 | (17 5)
- Is 24 congruent to 14 modulo 6? No, since 6 | (24 14)

Properties of congruencies

Theorem: Let m be a positive integer. The integers a and b are congruent modulo m iff there is an integer k such that a = b + km.

Theorem: Let *m* be a positive integer. If $a \equiv b \pmod{m}$ and $c \equiv d \pmod{m}$, then

- $(a + c) \equiv (b + d) \pmod{m}$
- $ac \equiv bd \pmod{m}$

Congruencies have many applications within computer science

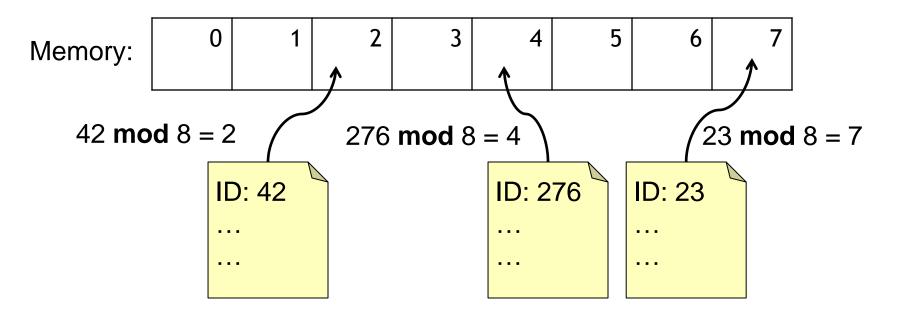
Today we'll look at three:

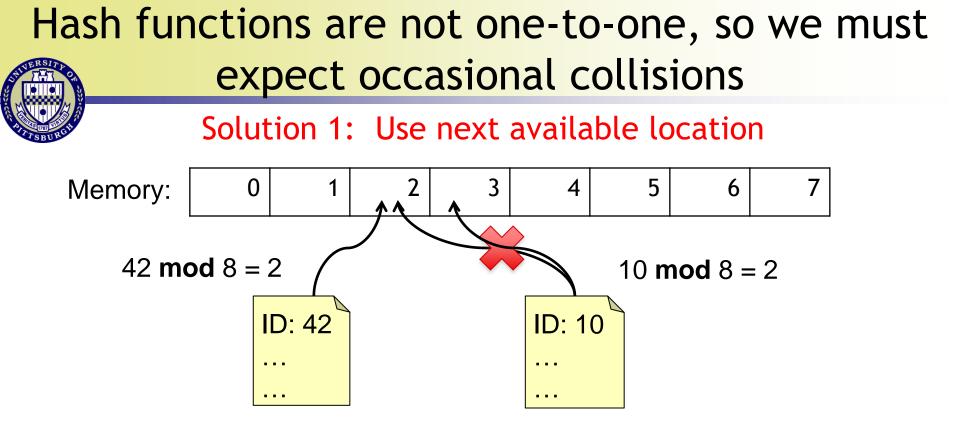
- 1. Hash functions
- 2. The generation of pseudorandom numbers
- 3. Cryptography

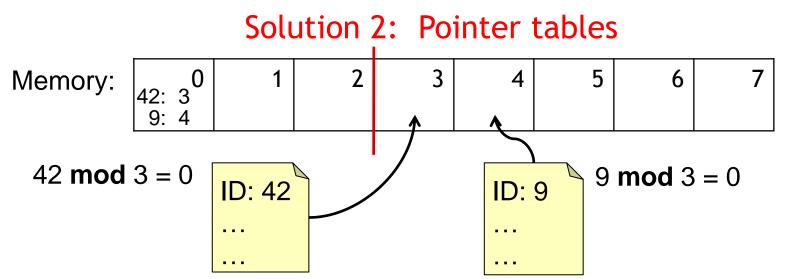
Hash functions allow us to quickly and efficiently locate data

Problem: Given a large collection of records, how can we find the one we want quickly?

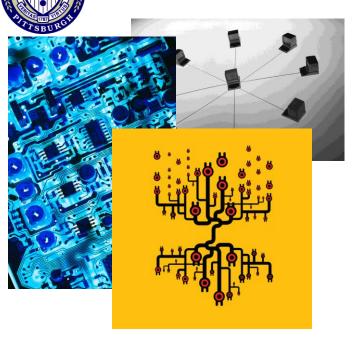
Solution: Apply a hash function that determines the storage location of the record based on the record's ID. A common hash function is $h(k) = k \mod n$, where *n* is the number of available storage locations.





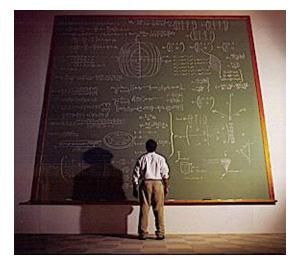


Many areas of computer science rely on the ability to generate pseudorandom numbers



Hardware, software, and network simulation

Security



Coding algorithms

Network protocols

Congruencies can be used to generate pseudorandom sequences

- A modulus *m*
- A multiplier a
- An increment c
- A seed x_0

Step 2: Apply the following

•
$$x_{n+1} = (ax_n + c) \mod m$$

Example: m = 9, a = 7, c = 4, $x_0 = 3$ • $x_1 = 7x_0 + 4 \mod 9 = 7 \times 3 + 4 \mod 9 = 25 \mod 9 = 7$ • $x_2 = 7x_1 + 4 \mod 9 = 7 \times 7 + 4 \mod 9 = 53 \mod 9 = 8$ • $x_3 = 7x_2 + 4 \mod 9 = 7 \times 8 + 4 \mod 9 = 60 \mod 9 = 6$ • $x_4 = 7x_3 + 4 \mod 9 = 7 \times 6 + 4 \mod 9 = 46 \mod 9 = 1$ • $x_5 = 7x_4 + 4 \mod 9 = 7 \times 1 + 4 \mod 9 = 11 \mod 9 = 2$ • ...

The field of cryptography makes heavy use of number theory and congruencies

Cryptography is the study of secret messages

Uses of cryptography:

- Protecting medical records
- Storing and transmitting military secrets
- Secure web browsing

Congruencies are used in cryptosystems from antiquity, as well as in modern-day algorithms

Since modern algorithms require quite a bit of sophistication to discuss, we'll examine an ancient cryptosystem

The Caesar cipher is based on congruencies

STATES AND THE REAL PROPERTY OF THE REAL PROPERTY O

To encode a message using the Caesar cipher:

- Choose a shift index s
- Convert each letter A-Z into a number 0-25
- Compute *f*(*p*) = *p* + *s* **mod** 26

Example: Let *s* = 9. Encode "ATTACK".

- ATTACK = 0 19 19 0 2 11
- f(0) = 9, f(19) = 2, f(2) = 11, f(11) = 20
- Encrypted message: 9 2 2 9 11 20 = JCCJLU

Decryption involves using the inverse function

That is, $f^{-1}(p) = p - s \mod 26$

Example: Assume that *s* = 3. Decrypt the message "VHWVHDW".

- VHWVHDW = 20 7 22 20 7 3 22
- $f^{-1}(20) = 17$, $f^{-1}(7) = 4$, $f^{-1}(22) = 19$, $f^{-1}(3) = 0$
- Decrypted result: 17 4 19 17 4 0 19 = RETREAT

Group work!

Problem 1:

- 1. Is 4 congruent to 8 mod 3?
- 2. Is 45 congruent to 12 mod 9?
- 3. Is 21 congruent to 28 mod 7?

Problem 2: The message"RS GPEWW RIBX XYRWHEC" was encrypted with the Caesar cipher using *s* = 4. Decrypt it.

Final thoughts

- Number theory is the study of integers and their properties
- Divisibility, modular arithmetic, and congruency are used throughout computer science

Next time:

Prime numbers, GCDs, integer representation (Section 3.5)