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Probability of an Event 
    We first study Pierre-Simon Laplace’s classical theory of probability, 

which he introduced in the 18th century,  when he analyzed games of 
chance. 

 We first define these key terms: 
 An experiment is a procedure that yields one of a given set of possible 

outcomes. 
 The sample space of the experiment is the set of possible outcomes. 
 An event is a subset of the sample space. 
 

 Here is how Laplace defined the probability of an event: 
     Definition: If S is a finite sample space of equally likely outcomes, and 

E is an event, that is, a subset of S, then the probability of E is                   
p(E) = |E|/|S|. 

 For every event E, we have 0 ≤ p(E)  ≤ 1. This follows directly from the 
definition because 0 ≤ p(E) = |E|/|S| ≤ |S|/|S| ≤ 1, since 0 ≤ |E| ≤ |S|. 
 
 

 
 

Pierre-Simon Laplace 
  (1749-1827) 



Applying Laplace’s Definition 
   Example: An urn contains four blue balls and five red 

balls. What is the probability that a ball chosen from 
the urn is blue? 

    Example: What is the probability that when two dice 
are rolled, the sum of the numbers on the two dice is 
7? 

     



Applying Laplace’s Definition 
   Example: An urn contains four blue balls and five red balls. 

What is the probability that a ball chosen from the urn is 
blue? 

   Solution:  The probability that the ball is chosen is 4/9 
since there are nine possible outcomes, and four of these 
produce a blue ball. 

   Example: What is the probability that when two dice are 
rolled, the sum of the numbers on the two dice is 7? 

    Solution:  By the product rule there are 62 = 36 possible 
outcomes. Six of these sum to 7. Hence, the probability of 
obtaining a 7 is 6/36 = 1/6.  



Applying Laplace’s Definition 
     Examples: 
    In a lottery, a player wins a large prize when they pick 

four digits that match, in correct order, four digits 
selected by a random mechanical process. What is the 
probability that a player wins the  prize?  
 

     A smaller prize is won if only three digits are 
matched. What is the probability that a player wins the 
small prize? 

      



Applying Laplace’s Definition 
 Examples:  
      In a lottery, a player wins a large prize when they pick four digits that match, in 

correct order, four digits selected by a random mechanical process. What is the 
probability that a player wins the  prize?  

     Solution: By the product rule there are 104 = 10,000 ways to pick four digits.  
 Since there is only 1 way to pick the correct digits, the probability of winning 

the large prize is 1/10,000 = 0.0001. 
 

     A smaller prize is won if only three digits are matched. What is the probability 
that a player wins the small prize? 

     Solution: If exactly three digits are matched, one of the four digits must be 
incorrect and the other three digits must be correct. For the digit that is 
incorrect, there are 9 possible choices. Hence, by the sum rule, there a total of 
36 possible ways to choose four digits that match exactly three of the winning 
four digits. The probability of winning the small price is 36/10,000 = 9/2500 = 
0.0036. 



Applying Laplace’s Definition 
   Example: There are many lotteries that award prizes 

to people who correctly choose a set of six numbers out 
of the first n positive integers, where n is usually 
between 30 and 60. What is the probability that a 
person picks the correct six numbers out of 40? 

    



Applying Laplace’s Definition 
Example: There are many lotteries that award prizes to 

people who correctly choose a set of six numbers out of the 
first n positive integers, where n is usually between 30 and 
60. What is the probability that a person picks the correct 
six numbers out of 40? 

   Solution: The number of ways to choose six numbers out 
of 40 is  

           C(40,6) = 40!/(34!6!) = 3,838,380. 
   Hence, the probability of picking a winning combination is 

1/ 3,838,380 ≈ 0.00000026. 
    Can you work out the probability of winning the lottery with 

the biggest prize where you live? 
 



Applying Laplace’s Definition 
   Example: What is the probability that the numbers 

11, 4, 17, 39, and 23 are drawn in that order from a bin 
with 50 balls labeled with the numbers 1,2, …, 50 if  
a) The ball selected is not returned to the bin. 
b) The ball selected is returned to the bin before the next 

ball is selected. 
     



Applying Laplace’s Definition 
Example: What is the probability that the numbers 11, 4, 17, 

39, and 23 are drawn in that order from a bin with 50 balls 
labeled with the numbers 1,2, …, 50 if  
a) The ball selected is not returned to the bin. 
b) The ball selected is returned to the bin before the next ball 

is selected. 
    Solution: Use the product rule in each case. 

a)    Sampling without replacement: The probability is 
1/254,251,200 since there are 50 ∙49 ∙47 ∙46 = 254,251,200 
ways to choose the five balls. 

b)    Sampling with replacement: The probability is                       
1/505 = 1/312,500,000 since 505 = 312,500,000. 

 



The Probability of Complements 
and Unions of Events 
   Theorem 1: Let E be an event in sample space S. The 

probability of the event     = S − E, the complementary 
event of E, is given by 
 
 

   Proof: Using the fact that |   | = |S| − |E|,  
 
 



The Probability of Complements 
and Unions of Events 
   Example: A sequence of 10 bits is chosen randomly. 

What is the probability that at least one of these bits is 
0? 
 



The Probability of Complements 
and Unions of Events 
 Example: A sequence of 10 bits is chosen randomly. 

What is the probability that at least one of these bits is 
0? 

   Solution: Let E be the event that at least one of the 10 
bits is 0. Then     is the event that all of the bits are 1s. 
The size of the sample space S is 210. Hence, 



The Probability of Complements 
and Unions of Events 
   Theorem 2: Let E1 and E2  be events in the  sample 

space S. Then 
 
   Proof: Given the inclusion-exclusion formula from 

Section 2.2, |A ∪ B| = |A| + | B| − |A ∩ B|,  it follows 
that 



   Example: What is the probability that a positive 
integer selected at random from the set of positive 
integers not exceeding 100 is divisible by either 2 or 5? 

 

The Probability of Complements 
and Unions of Events 



The Probability of Complements 
and Unions of Events 
Example: What is the probability that a positive integer 

selected at random from the set of positive integers 
not exceeding 100 is divisible by either 2 or 5? 

   Solution: Let E1  be the event that  the integer is 
divisible by  2 and E2  be the event that it is divisible 5? 
Then the event that the integer is divisible by 2 or 5 is 
E1 ∪ E2 and E1 ∩ E2  is the  event that it is divisible by 2 
and 5.  

   It follows that:  
            p(E1 ∪ E2) = p(E1) + p(E2) – p(E1 ∩ E2) 
                             = 50/100 + 20/100 − 10/100 = 3/5. 

 



Monty Hall Puzzle 
   Example: You are asked to select one of the three 

doors to open.  There is a large prize behind one of the 
doors and if you select that door, you win the prize. 
After you select a door, the game show host opens one 
of the other doors (which he knows is not the winning 
door). The prize is not behind the door and he gives 
you the opportunity to switch your selection. Should 
you switch?  

 
 
     

1 3 2 



Monty Hall Puzzle 
 Example: You are asked to select one of the three doors to open.  

There is a large prize behind one of the doors and if you select 
that door, you win the prize. After you select a door, the game 
show host opens one of the other doors (which he knows is not 
the winning door). The prize is not behind the door and he gives 
you the opportunity to switch your selection. Should you switch?  

 
 
    Solution: You should switch. The probability that your initial 

pick is correct is 1/3. This is the same whether or not you switch 
doors. But since the game show host always opens a door that 
does not have the prize, if you switch the probability of winning 
will be 2/3, because you win if your initial pick was not the 
correct door and the probability your initial pick was wrong is 
2/3. 

(This is a notoriously confusing problem that has been the subject of much 
discussion . Do a web search to see why!) 
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Section Summary 
 Assigning Probabilities 
 Probabilities of Complements and Unions of Events 
 Conditional Probability  
 Independence 
 Bernoulli Trials and the Binomial Distribution 
 Random Variables 
 The Birthday Problem 
 Monte Carlo Algorithms 
 The Probabilistic Method (not currently included in 

the overheads) 



Assigning Probabilities 
   Laplace’s definition from the previous section, assumes that 

all outcomes are equally likely. Now we introduce a more 
general definition of probabilities that avoids this 
restriction. 

 Let S be a sample space of an experiment with a finite 
number of outcomes. We assign a probability p(s) to each 
outcome s, so that: 

i.         0 ≤ p(s) ≤ 1 for each s ∈ S 
 
ii.    

 
 The function p from the set of all outcomes of the sample 

space S is called a probability distribution. 
 



Assigning Probabilities 
   Example: What probabilities should we assign to the 

outcomes H(heads) and T (tails) when a fair coin is 
flipped? What probabilities should be assigned to 
these outcomes when the coin is biased so that heads 
comes up twice as often as tails? 

     



Assigning Probabilities 
Example: What probabilities should we assign to the 

outcomes H(heads) and T (tails) when a fair coin is 
flipped? What probabilities should be assigned to 
these outcomes when the coin is biased so that heads 
comes up twice as often as tails? 

    Solution:    We have p(H) = 2p(T). 
    Because p(H) + p(T) = 1, it follows that 
               2p(T) + p(T) = 3p(T) = 1. 
    Hence, p(T) = 1/3  and  p(H) = 2/3.  

 



Uniform Distribution 
   Definition: Suppose that S is a set with n elements. 

The uniform distribution assigns the probability 1/n to 
each element of S. (Note that we could have used 
Laplace’s definition here.) 

   Example: Consider again the coin flipping example, 
but with a fair coin. Now p(H) = p(T) = 1/2.  



Probability of an Event 
   Definition: The probability of the event E is the sum 

of the probabilities of the outcomes in E. 
 
 
 
 
 

 Note that now no assumption is being made about the 
distribution.   



Example 
   Example: Suppose that a die is biased so that 3 

appears twice as often as each other number, but that 
the other five outcomes are equally likely. What is the 
probability that an odd number appears when we roll 
this die? 



Example 
   Example: Suppose that a die is biased so that 3 

appears twice as often as each other number, but that 
the other five outcomes are equally likely. What is the 
probability that an odd number appears when we roll 
this die? 

   Solution: We want the probability of the event               
E = {1,2,3}. We have p(3) = 2/7 and  

      p(1) = p(2) = p(4) = p(5) = p(6) = 1/7. 
    Hence, p(E) =  p(1) + p(3) + p(5) =  
                                     1/7 + 2/7 + 1/7 = 4/7. 

 



Probabilities of Complements and 
Unions  of Events 
 Complements:                                  still holds. Since 

each outcome is in either E or      , but not both,      
 
 

 Unions: 
      also still holds under the new definition.  



Combinations of Events 
   Theorem: If E1, E2, … is a sequence of pairwise disjoint 

events in a sample space S, then 

see Exercises 36 and 37 for the proof 



Conditional Probability 
    Definition: Let E and F be events with p(F) > 0. The conditional 

probability of E given F, denoted by P(E|F), is defined as: 
 
 

    Example: A bit string of length four is generated at random so 
that each of the 16 bit strings of length 4 is equally likely. What 
is the probability that it contains at least two consecutive 0s, 
given that its first bit is a 0? 

    Solution: Let E be the event that the bit string contains at least 
two consecutive 0s, and F be the event that the first bit is a 0.  
 Since E ⋂ F = {0000, 0001, 0010, 0011, 0100}, p(E⋂F)=5/16. 
 Because 8 bit strings of length 4 start with a 0, p(F) = 8/16= ½. 

    Hence, 
 

 



Conditional Probability 
   Example: What is the conditional probability that a 

family with two children has two boys, given that they 
have at least one boy. Assume that each of the 
possibilities BB, BG, GB, and GG is equally likely where 
B represents a boy and G represents a girl. 

    



Conditional Probability 
   Example: What is the conditional probability that a 

family with two children has two boys, given that they 
have at least one boy. Assume that each of the 
possibilities BB, BG, GB, and GG is equally likely where 
B represents a boy and G represents a girl. 

   Solution: Let E be the event that the family has two 
boys and let  F be the event that the family has at least 
one boy. Then E = {BB}, F = {BB, BG, GB}, and                                               
E ⋂ F = {BB}. 
 It follows that p(F) = 3/4 and  p(E⋂F)=1/4. 

   Hence,  
 



Independence 
    Definition: The events E and F are independent if and only if    
        
                            
    Example: Suppose E is the event that a randomly generated bit string 

of length four begins with a 1 and F is the event that this bit string 
contains an even number of 1s. Are E and F independent if the 16 bit 
strings of length four are equally likely?  

    Solution: There are eight bit strings of length four that begin with a 1, 
and eight bit strings of length four that contain an even number of 1s. 
 Since the number of bit strings of length 4 is 16, 
 
                                       
 Since E⋂F = {1111, 1100, 1010, 1001}, p(E⋂F) = 4/16=1/4. 

    We conclude that E and F are independent, because  
                      p(E⋂F) =1/4 = (½) (½)= p(E) p(F)  

 
 

p(E⋂F) = p(E)p(F). 

p(E) = p(F) = 8/16 = ½.  



Independence 
   Example: Assume  (as in the previous example) that 

each of the four ways a family can have two children 
(BB, GG, BG,GB) is equally likely. Are the events E, that 
a family with two children has two boys, and F, that a 
family with two children has at least one boy, 
independent? 

    



Independence 
   Example: Assume  (as in the previous example) that 

each of the four ways a family can have two children 
(BB, GG, BG,GB) is equally likely. Are the events E, that 
a family with two children has two boys, and F, that a 
family with two children has at least one boy, 
independent? 

   Solution: Because E = {BB}, p(E) = 1/4.  We saw 
previously that that p(F) = 3/4 and  p(E⋂F)=1/4. The 
events  E and F are not independent since 

              p(E) p(F) = 3/16 ≠ 1/4= p(E⋂F) . 
 



Pairwise and Mutual Independence 
   Definition: The events E1, E2, …, En are pairwise 

independent if and only if  p(Ei⋂Ej) = p(Ei) p(Ej) for all 
pairs i and j with i ≤ j ≤ n. 

 
   The events are mutually independent if 

 
    whenever ij, j = 1,2,…., m, are integers with  
             1 ≤ i1  < i2 <∙∙∙ < im ≤ n    and m ≥ 2. 



Bernoulli Trials  

James Bernoulli 
(1854 – 1705) 

   Definition: Suppose an experiment can have only two 
possible outcomes, e.g., the flipping of a coin or the 
random generation of a bit.  
 Each performance of the experiment is called a Bernoulli trial.  
 One outcome is called a success and the other a failure.  
 If p is the probability of success and q the probability of 

failure, then p + q = 1.  
 Many problems involve determining the probability of k 

successes when an experiment consists of n mutually 
independent Bernoulli trials. 

     



Bernoulli Trials  
 
   Example: A coin is biased so that the probability of heads 

is 2/3. What is the probability that exactly four heads 
occur when the coin is flipped seven times? 

    Solution:  There are 27  = 128 possible outcomes. The 
number of ways four of the seven flips can be heads is 
C(7,4). The probability of each of the outcomes is 
(2/3)4(1/3)3   since the seven flips are independent. 
Hence, the probability that exactly four heads occur is    

              C(7,4) (2/3)4(1/3)3 =  (35∙ 16)/ 27 =  560/ 2187. 



Probability of k Successes in n 
Independent Bernoulli Trials. 
    Theorem 2: The probability of exactly k successes in n independent 

Bernoulli trials, with probability of success p and probability of failure 
q = 1 − p, is 

                        C(n,k)pkqn−k. 
     Proof: The outcome of n Bernoulli trials is an n-tuple (t1,t2,…,tn), 

where each is ti either S (success) or F (failure). The probability of each 
outcome of n trials consisting of k successes and k − 1 failures (in any 
order) is pkqn−k. Because there are C(n,k) n-tuples of Ss and Fs that 
contain exactly k Ss, the probability of k successes is C(n,k)pkqn−k. 

 
 We denote by b(k:n,p) the probability of k successes in n  independent 

Bernoulli trials with p the probability of success. Viewed as a function 
of k, b(k:n,p) is the binomial distribution. By Theorem 2, 

                           b(k:n,p) = C(n,k)pkqn−k. 



Random Variables 
   Definition: A random variable is a function from the 

sample space of an experiment to the set of real numbers. 
That is, a random variable assigns a real number to each 
possible outcome. 

 
 A random variable is a function. It is not a variable, and it is 

not random!  
 In the late 1940s W. Feller and J.L. Doob flipped a coin to 

see whether both would use “random variable” or the more 
fitting “chance variable.” Unfortunately, Feller won and the 
term “random variable” has been used ever since. 



Random Variables 
    Definition: The distribution of a random variable X on a sample 

space S is the set of pairs (r, p(X = r)) for all r ∊ X(S), where p(X = 
r) is the probability that X takes the value r.  

 
    Example: Suppose that a coin is flipped three times. Let X(t) be 

the random variable that equals the number of heads that appear 
when t is the outcome. Then X(t) takes on the following values: 
X(HHH) = 3, X(TTT) = 0, 
X(HHT) = X(HTH) = X(THH) = 2, 
X(TTH) = X(THT) = X(HTT) = 1. 

    Each of the eight possible outcomes has probability 1/8. So, the 
distribution of X(t) is p(X = 3) = 1/8, p(X = 2) = 3/8,                           
p(X = 1) = 3/8, and p(X = 0) = 1/8. 

 



The Famous Birthday Problem 
 The puzzle of finding the number of people needed in a room to ensure that the 

probability of at least two of them having the same birthday is more than ½ has a 
surprising answer,  which we now find. 

 
       Solution: We assume that all birthdays are equally likely and that there are 366 days in the year. 

First, we find the probability pn that at least two of n people have different birthdays.   
 
       Now, imagine the people entering the room one by one.  The probability that at least two have the 

same birthday  is 1− pn . 
 The probability that the birthday of the second person is different from that of the first is 

365/366. 
 The probability that the birthday of the third person is different from the other two, when these 

have two different birthdays, is  364/366. 
 In general, the probability that the jth person has a birthday different from the birthdays of those 

already in the room, assuming that these people all have different birthdays,                                           
is  (366 − (j − 1))/366 = (367 − j)/366. 

 Hence, pn = (365/366)(364/366)∙∙∙ (367 − n)/366. 
 Therefore , 1− pn = 1−(365/366)(364/366)∙∙∙ (367 − n)/366. 

      Checking various values for n with computation help tells us that for n = 22, 1− pn ≈ 0.457, and for n 
= 23, 1− pn ≈ 0.506.  Consequently, a minimum number of 23 people are needed so that that the 
probability that at least two of them have the same birthday is greater than 1/2. 

 
 
 



Monte Carlo Algorithms 
 Algorithms that make random choices at one or more steps 

are called probabilistic algorithms. 
 Monte Carlo algorithms  are probabilistic algorithms used 

to answer decision problems, which are problems that 
either have “true” or “false” as their answer.   
 A Monte Carlo algorithm consists of  a sequence of tests. For 

each test the algorithm responds “true” or ‘unknown.’  
 If the response is “true,” the algorithm terminates with the  

answer is “true.”   
 After running a specified  sequence of tests where every step 

yields “unknown”, the algorithm outputs “false.” 
 The idea is that the probability of the algorithm incorrectly 

outputting “false” should be very small as long as a sufficient 
number of tests are performed.  



Probabilistic Primality Testing 
 Probabilistic  primality testing (see Example 16 in text) is an example of a 

Monte Carlo algorithm, which  is used to  find large primes to generate the 
encryption keys for RSA cryptography (as discussed in Chapter 4).  
 An integer n greater than 1 can be shown to be composite (i.e., not prime) if it 

fails  a particular test  (Miller’s test),  using a random integer b with 1 < b < n as 
the base. But if n passes Miller’s test for a particular base b, it may either be 
prime or composite. The probability that a composite integer passes n Miller’s 
test is for a random b, is less that ¼.  

 So failing the test,  is the “true” response in a Monte Carlo algorithm, and 
passing the test is “unknown.” 

 If the test is performed k times (choosing a random integer b each time) and 
the  number n passes Miller’s test at every iteration, then the probability that it 
is composite is less than (1/4)k.  So for a sufficiently, large k, the probability that 
n is composite even though it has passed all k iterations of Miller’s test  is small. 
For example, with 10 iterations, the probability that n is composite is less than 
1 in 1,000,000. 



Section 7.3 



Section Summary 
 Bayes’ Theorem 
 Generalized Bayes’ Theorem 
 Bayesian Spam Filters 
 A.I. Applications (optional, not currently included in 

the overheads) 



Motivation for Bayes’ Theorem 
 Bayes’ theorem allows us to use probability to answer 

questions such as the following: 
 Given that someone tests positive for having a particular 

disease, what is the probability that they actually do 
have the disease? 

 Given that someone tests negative for the disease, what 
is the probability, that in fact they do have the disease? 

 Bayes’ theorem has applications to medicine, law, 
artificial intelligence, engineering, and many diverse 
other areas. 

 



Bayes’ Theorem 
    Bayes’ Theorem: Suppose that E and F are events from a sample 

space S such that p(E)≠ 0 and p(F) ≠ 0. Then: 
 
 
 

    Example: We have two boxes. The first box contains two green 
balls and seven red balls. The second contains four green balls 
and three red balls. Bob selects one of the boxes at random. Then 
he selects a ball from that box at random.  If he has a red ball, 
what is the probability that he selected a ball from the first box. 
 Let E be the event that Bob has chosen a red ball and F be the event 

that Bob has chosen the first box. 
 By Bayes’ theorem the probability  that Bob has picked the first box 

is: 

Thomas Bayes 
(1702-1761) 



Derivation of Bayes’ Theorem 
 Recall the definition of the conditional probability 

p(E|F): 
 
 
 

 From this definition, it follows that: 
 

                                                , 

                                                                               continued → 



Derivation of Bayes’ Theorem 
  
On the last slide we showed that 

                                                                               continued → 

, 

, 

Solving for p(E|F) and  for p(F|E) tells us that 

Equating the two formulas 
for p(E F) shows that 



Derivation of Bayes’ Theorem 
   On the last slide we 

showed that: 

Note that   

Hence,  

   since   

    because                                                                     
      and                                                                    

By the definition of conditional probability,   



Applying Bayes’ Theorem  
   Example: Suppose that one person in 100,000 has a 

particular  disease. There is a test for the disease that 
gives a positive result 99% of the time when given to 
someone with the disease. When given to someone 
without the disease, 99.5% of the time it gives a 
negative result. Find 
a) the probability that a person who test positive has the 

disease. 
b) the probability that a person who test negative does 

not have the disease. 
 Should someone who tests positive be worried? 
 



Applying Bayes’ Theorem  
   Solution: Let D be the event that the person has the 

disease, and E be the event that this person tests 
positive. We need to compute p(D|E) from p(D), 
p(E|D), p( E |    ),  p(   ). 

So, don’t worry too much, if your test 
for this disease comes back positive. 

Can you use this formula 
to explain why the 
resulting probability is 
surprisingly small? 



Applying Bayes’ Theorem  
 What if the result is negative? 

 
 

 
 
 
 

 
 

 So, it is extremely unlikely you have the disease if you test 
negative. 

 
 
 
 
 
 
 
 

So, the probability you 
have the disease if you 
test negative is 
 
  
 
 
 



Generalized Bayes’ Theorem 
   Generalized Bayes’ Theorem: Suppose that E is an 

event from a sample space S and that F1, F2, …, Fn are 
mutually exclusive events such that 
 

    Assume that p(E) ≠ 0 for i = 1, 2, …, n. Then  

Exercise 17 asks for the proof. 



Bayesian Spam Filters 
 How do we develop a tool for determining whether an 

email is likely to be spam? 
 If we have an initial set  B of  spam messages and set G of 

non-spam messages.  We can use this information along 
with Bayes’ law to predict the probability that a new email 
message is spam. 

  We look at a particular word w, and count the number of 
times that it occurs in B and in G; nB(w) and nG(w).  
 Estimated probability that  an email containing w is spam:                 

p(w) = nB(w)/|B|    
 Estimated probability  that an email containing w is spam:                

q(w) = nG(w)/|G| 
 

continued → 



Bayesian Spam Filters 
 Let S be the event that the message is spam, and E be 

the event that the message contains the word w.  
 Using Bayes’ Rule,  

 
Assuming that it is 
equally likely that an 
arbitrary message is 
spam and is not 
spam; i.e., p(S) = ½. 

Note: If we have data on the 
frequency of spam messages, 
we can obtain a better 
estimate for p(s).  
(See Exercise 22.) 

Using our 
empirical 
estimates of  
p(E | S) and 
 p(E |S). 

r(w) estimates the probability that the 
message is spam. We can class the message 
as spam if r(w) is above a threshold. 



Bayesian Spam Filters  
   Example: We find that the word “Rolex” occurs in 250 

out of 2000 spam messages and occurs in 5 out of 1000 
non-spam messages. Estimate the probability that an 
incoming message is spam. Suppose our threshold for 
rejecting the email is 0.9. 

    Solution: p(Rolex) = 250/2000 =.0125 and                
q(Rolex) = 5/1000 = 0.005. 

We class the message as spam and 
reject the email! 



Bayesian Spam Filters using Multiple Words 
 Accuracy can be improved by considering more than 

one word as evidence.  
 Consider the case where E1 and E2 denote the events 

that the message contains the words w1 and w2 
respectively. 

 We make the simplifying assumption that the events 
are independent. And again we assume that p(S) = ½.  
 

 



Bayesian Spam Filters using Multiple Words 
    Example: We have 2000 spam messages and 1000 non-spam 

messages. The word “stock” occurs 400 times in the spam messages 
and 60 times in the non-spam. The word “undervalued” occurs in 200 
spam messages and 25 non-spam.   

 
    Solution:  p(stock)  = 400/2000 = .2, q(stock) = 60/1000=.06,  
    p(undervalued) = 200/2000 = .1, q(undervalued) = 25/1000 = .025 

If our threshold is .9, we class the message as spam and reject it.  



Bayesian Spam Filters using Multiple Words 
 In general, the more words we consider, the more 

accurate the spam filter. With the independence 
assumption if we consider k words: 
 

We can further improve the filter by considering pairs of words 
as a single block or certain types of strings.  



Section 6.4 



Section Summary 
 Expected Value 
 Linearity of Expectations 
 Average-Case Computational Complexity 
 Geometric Distribution 
 Independent Random Variables 
 Variance 
 Chebyshev’s Inequality 



Expected Value 
   Definition: The expected value (or expectation or mean) of 

the random variable X(s) on the sample space S is equal to 
 
 
 
    Example-Expected Value of a Die: Let X be the number 

that comes up when a fair die is rolled. What is the 
expected value of X? 

    Solution: The random variable X takes the values 1, 2, 3, 4, 
5, or 6. Each has probability 1/6. It follows that 



Expected Value 
   Theorem 1: If X is a random variable and p(X = r) is the 

probability that X = r, so that 
                                                                then 

 
 
   Proof: Suppose that X is a random variable with range X(S) 

and let p(X = r) be the probability that X takes the value r. 
Consequently, p(X = r) is the sum of the probabilities of the 
outcomes s such that X(s) = r. Hence, 

  



Expected Value 
   Theorem 2: The expected number of successes when n 

mutually independent Bernoulli trials are performed, 
where, the probability of success on each trial, p = np. 

   Proof: Let X be the random variable equal to the 
number of success in n trials. By Theorem 2 of section 
7.2, p(X = k) = C(n,k)pkqn−k.  Hence,  
 

                                                     by Theorem 1 

continued  →  



Expected Value 
                                                  
 

                                                                                                    from previous page 
 
                                                                                                                                 
                                                                                                    by Theorem 2 in Section 7.2 
          
 
                                                                                                    by Exercise 21 in Section 6.4 
 
               
                                                                                                    factoring np from each term 
 
 
                                                                                                     shifting index of summation with j = k −  1 
 
                                                                                                       by the binomial theom 
 
                                                                                                       because p + q = 1 
 
    We see that the expected number of successes in n mutually independent Bernoulli trials is np.     



Linearity of Expectations 
   The following theorem tells us that expected values are 

linear. For example, the expected value of the sum of 
random variables is the sum of their expected values.  

 
   Theorem 3: If Xi, i = 1, 2, …,n with n a positive integer, are 

random variables on S, and if a and b are real numbers, 
then  

        (i) E(X1 + X2 + …. + Xn) = E(X1 )+ E(X2) + …. + E(Xn) 
        (ii) E(aX + b) = aE(X) + b. 

  
                 see the text for the proof 
 



Linearity of Expectations 
     Expected Value in the Hatcheck Problem: A new employee started a job checking 

hats, but forgot to put the claim check numbers on the hats. So, the n customers just 
receive a random hat from those remaining. What is the expected number of hat 
returned correctly? 

     Solution: Let X be the random variable that equals the number of people who receive the 
correct hat. Note that  X = X1 + X2 + ∙∙∙ + Xn,  

     where Xi = 1 if the ith person receives the hat and Xi = 0 otherwise.  
 Because it is equally likely that the checker returns any of the hats to the ith person, it 

follows that the probability that the ith person receives the correct hat is 1/n. 
Consequently (by Theorem 1), for all I 
 

            E(Xi) = 1 ∙p(Xi = 1) + 0 ∙p(Xi = 0) = 1 ∙ 1/n + 0 = 1/n . 
 
 By the linearity of expectations (Theorem 3), it follows that: 

 
             E(X )= E(X1) + E(X2) +  ∙∙∙  + E(Xn) = n ∙ 1/n – 1. 
 

     Consequently, the average number of people who receive the correct hat is exactly 1. ( 
Surprisingly, this answer remains the same no matter how many people have checked 
their hats!) 



Linearity of Expectations 
      Expected Number of Inversions in a Permutation: The ordered pair (i,j) is an inversion in a 

permutation of the first n positive integers if  i < j, but j precedes i in the permutation.  
      Example: There are six inversions in the permutation of 3,5, 1, 4, 2 
                                     (1, 3), (1, 5), (2, 3), (2, 4), (2, 5), (4, 5). 
      Find the average number of inversions in a random permutation of the first n integers. 
 
      Solution:  Let Ii,j be the random variable on the set of all permutations of the first n positive integers 

with Ii,j = 1 if (i,j) is an inversion of the permutation and Ii,j = 0 otherwise. If X is the random variable 
equal to the number of inversions in the permutation, then 

  
      
 Since it is equally likely for i to precede j in a randomly chosen permutation as it is for j to precede i, we 

have:  E(Ii,j) = 1 ∙p(Ii ,j = 1) + 0 ∙p(Ii,j = 0) = 1 ∙ 1/2 + 0 = ½, for all (i,j) . 
      
 Because there are           pairs i and j with 1 ≤  i  < j ≤ n, by the linearity of expectations (Theorem 3), we 

have: 
                

 
 

      Consequently,  it follows that there is an average of  n(n  −1)/4 inversions in a random permutation of 
the first n positive integers. 



Average-Case Computational 
Complexity 
The average-case computational complexity 
of an algorithm can be found by computing the  
expected value of a random variable. 
 Let the sample space of an experiment be the set of 

possible inputs aj, j = 1, 2, …,n, and let the random variable 
X be the assignment to aj of the number of operations used 
by the algorithm when given aj as input. 

 Assign a probability p(aj) to each possible input value  aj. 
 The expected value of X is the average-case computational 

complexity of the algorithm. 
  
 



Average-Case Complexity of Linear 
Search 
What is the average-case complexity of linear search 
(described in Chapter 3) if the probability that x is in the 
list is p and it is equally likely that x is any of the n 
elements of the list?  
 
 
 
 

procedure linear search(x: integer,  a1, a2, …,an: distinct integers) 
i := 1 
while (i ≤ n and x ≠ ai) 
      i := i + 1 
      if i ≤ n then location := i 
           else location := 0 
return location{location is the subscript of the term that equals 

x, or is 0 if x is not found} 

continued  →  



Average-Case Complexity of Linear 
Search  
     Solution: There are n + 1 possible types of input: one type for each of the n 

numbers on the list and one additional type for the numbers not on the list. 
     Recall that:  

 2i + 1 comparisons are needed if x equals the ith element of the list. 
 2n + 2 comparisons are used if x is not on the list.  

     The probability that x equals ai is p/n and the probability that x is not in the list 
is q = 1− p. The average-case case computational complexity of the linear search 
algorithm is: 

 
 
      
    
 
       
          
                   

                  E =  3p/n + 5p/n + … + (2n + 1)p/n + (2n + 2)q 
                      =  (p/n)( 3 + 5 + …. + (2n + 1)) + (2n + 2)q 
                      =  (p/n)((n + 1)2 − 1) + (2n + 2)q  (Example 2 from Section 5.1) 
                      =  p(n + 2) + (2n + 2)q. 

•  When x is guaranteed to be in the list, p = 1, q = 0, so that E = n + 2. 
•  When p is ½ and q = ½, then E = (n + 2)/2 + n + 1 = (3n + 4) /2. 
•  When p is ¾  and  q = ¼  then E = (n + 2)/4 + (n + 1)/2 = (5n + 8) /4. 
• When x is guaranteed  not to be in the list, p = 0 and  q = 1, then E = 2n + 2. 



Average-Case Complexity of 
Insertion Sort 
 What is the average number of comparisons used by 

insertion sort from Chapter 3) to sort n distinct 
elements? procedure insertion sort 

                  (a1,…,an: reals  with n ≥ 2) 
     for j := 2 to n 
         i := 1 
         while aj > ai 
              i := i + 1 
          m := aj 
          for k := 0 to j  − i − 1 
               aj-k := aj-k-1 
           ai := m 
{Now a1,…,an is in increasing order} 
     

•  At step i for                  
i = 2, ….,n, insertion 
sort inserts the ith 
element in the 
original list into the 
correct position in 
the sorted list of the 
first i -1 elements. 

continued  →  



Average-Case Complexity of 
Insertion Sort  
   Solution: Let X be the random variable equal to the 

number of comparisons used by insertion sort to sort a list 
of a1, a2, …., an distinct elements.  E(X) is the average 
number of comparisons. 
 Let Xi be the random variable equal to the number of comparisons 

used to insert ai into the proper position after the first i −1 elements 
a1, a2, …., ai-1 have been sorted.  

 Since X = X2 + X3 + ∙∙∙  +  Xn, 
      E(X) = E(X2 + X3 + ∙∙∙  + Xn) = E(X2) + E(X3) + ∙∙∙ + E(Xn). 

 To find E(Xi) for i = 2,3,…,n, let pj(k) be the probability that the 
largest of the first j elements in the list occurs at the kth position, 
that is, max(a1, a2, …., aj ) = ak, where 1 ≤ k ≤ j. 

 Assume  uniform distribution;  pj(k) = 1/j . 
 Then Xi(k) = k.  

 
 continued  →  



Average-Case Complexity of 
Insertion Sort  
 Since ai could be inserted into any of the first i 

positions 
 
 
 It follows that 

 
 
 

 Hence, the average-case complexity is         . 
 



The Geometric Distribution 
   Definition 2:  A random variable X has geometric 

distribution with parameter p if p(X = k) = (1 − p)k-1p for k 
= 1,2,3,…, where p is a real number with 0 ≤ p ≤  1. 

   Theorem 4: If the random variable X has the geometric 
distribution with parameter p, then E(X) = 1/p. 

   Example:  Suppose the probability that a coin comes up 
tails is p. What is the expected number of flips until this 
coin comes up tails? 
 The sample space is {T, HT, HHT, HHHT, HHHHT, …}. 
 Let X be the random variable equal to the number of flips in 

an element of the sample space; X(T) = 1, X(HT) = 2,          
X(HHT) = 3, etc.  

 By Theorem 4, E(X) = 1/p. 
 

 

see text for full details  



Independent Random Variables 
   Definition 3: The random variables X and Y on a 

sample space S are independent if 
         p(X = r1 and Y = r2) = p(X = r1)∙ p(Y = r2). 
 
   Theorem 5:  If X and Y are independent variables on a 

sample space S, then E(XY) = E(X)E(Y). 
 

see text for the proof  



Variance 
     

     Deviation: The deviation of X at s ∊ S is X(s) − E(X), the difference between the 
value of X and the mean of X. 

 
    Definition 4: Let X be a random variable on the sample space S. The variance 

of X, denoted by V(X) is  
           
 
     That is V(X) is the weighted average of the square of the deviation of X. The 

standard deviation of X, denoted by σ(X) is defined to be              
 
     Theorem 6: If X is a random variable on a sample space S, then                           

V(X) = E(X2) − E(X)2. 
        
 
    Corollary 1: If X is a random variable on a sample space S and E(X) = μ , then  

V(X) = E((X −μ)2).   
 
 
 

see text for the proof   

see text for the proof.  



Variance 
     Example: What is the variance of the random variable X, where X(t) = 1 if a 

Bernoulli trial is a success and X(t) = 0 if it is a failure, where p is the 
probability of success and q is the probability of failure? 

 
     Solution: Because X takes only the values 0 and 1, it follows that X2(t) = X(t). 

Hence,  
 
 
 

       Variance of the Value of a Die: What is the variance of a random variable X, 
where X is the number that comes up when a fair die is rolled? 

 
      Solution: We have V(X) = E(X2) − E(X)2 .  In an earlier example, we saw that 

E(X) = 7/2. Note that 
 
                      E(X2) = 1/6(12 + 22 + 32 +42 + 52 + 62) = 91/6. 
 
      We conclude that 
       
 
 
 
 
       
              
 
    
 
      

V(X) = E(X2) − E(X)2 = p − p2 = p(1 − p) = pq. 



Variance 
     
     Bienaymé‘s Formula:  If X and Y are two independent random variables on a sample 

space S, then V(X + Y) = V(X) + V(Y). Furthermore, if Xi, i = 1,2, …,n, with n a positive 
integer, are pairwise independent random variables on S, then 

 
                V(X1 + X2 + ∙∙∙  + Xn) = V(X1) + V(X2) + ∙∙∙  + V(Xn). 
 
 
     Example: Find the variance of the number of successes when n independent Bernoulli 

trials are performed, where on each trial, p is the probability of success and q is the 
probability of failure.  

 
     Solution: Let Xi  be the random variable with Xi ((t1, t2, …., tn)) = 1 if trial ti is a success 

and Xi ((t1, t2, …., tn)) = 0 if it is a failure. Let    X = X2 + X3 + …. Xn.  Then X counts the 
number of successes in the n trials.   
 By Bienaymé ‘s Formula, it follows that  V(X)= V(X1) + V(X2) + ∙∙∙  + V(Xn).  
 By the previous example ,V(Xi) = pq for   i = 1,2, …,n.  

      Hence, V(X) = npq. 
      

Irenée-Jules Bienaymé  
(1796-1878) 

see text for the proof  



Chebyshev’s Inequality 
     
      Chebyschev’s Inequality:  Let X be a  random variable on a sample space S  

with probability function p. If r is a positive real number, then 
 
                p(|X(s) −  E(X)| ≥ r ) ≤ V(X)/r2. 
 
     Example: Suppose that X is a random variable that counts the number of tails 

when a fair coin is tossed n times. Note that X is the number of successes when 
n independent Bernoulli trials, each with probability of success ½ are done. 
Hence, (by Theorem 2)  E(X) = n/2 and (by Example 18) V(X) = n/4. 

 
      By Chebyschev’s inequality with r = √n,  
 
                   p(|X(s) − n/2  | ≥ √n ) ≤ (n/4 )(√n )2 = ¼. 
 
      This means that the probability that the number of tails that come up on n 

tosses deviates from the mean , n/2, by more than √n  is no larger than ¼. 
           

Pafnuty Lvovich Chebyshev  
(1821-1894) 

see text for the proof  
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