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The art of logic
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Chapter 1

Grammar

After some preliminary grammatical considerations in this chapter, we collect the
material on truth-functional logic in chapter 2; the material on quantifiers and iden-
tity in chapter 3 (proofs), chapter 5 (symbolization), and chapter 6 (semantics);
some applications in chapter 7 (logical theory, arithmetic, set theory), and a discus-
sion of definitions in chapter 8. Chapter 13 is an unfulfilled promise of a discussion
of the chief theorems about modern logic.

1A Logical Grammar

Rigorous logic ought to begin with rigorous grammar; otherwise bungle is almost
certain. Here by a “logical” grammar we mean one of the sort that guides the
thinking of most logicians; such a grammar is a more or less language-independent
family of grammatical categories and rules clearly deriving from preoccupation
with formal systems but with at least prospective applications to natural languages.
A logical grammar is accordingly one which is particularly simple, rigorous, and
tidy, one which suppresses irregular or nonuniform or hard to handle details (hence
differentiating itself from a “linguistic” grammar whether of the MIT type or an-
other), one which idealizes its subject matter, and one which by ignoring as much
as possible leads us (perhaps wrongly) to the feeling of “Aha; that’s what’s really
going on!” Among such logical grammars we think a certain one lies at the back
of most logicians’ heads. Our task is to make it explicit, not in order to criticize
it—indeed though it would be dangerous to suppose it eternally ordained, we think
very well of it—but because only when it is brought forth in all clarity can we sen-
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1A. Logical Grammar 3

sibly discuss how it ought to be applied. The version here presented derives from
Curry and Feys (1958) and Curry (1963).

Of course here and hereafter application of any logical grammar will be far more
straightforward and indisputable in the case of formal languages than in the case
of English; for in the case of the former, possession of a tidy grammar is one of
the design criteria. But English is like Topsy, and we should expect a fit only with
a “properly understood” or “preprocessed” English—the preprocessing to remove,
of course the hard cases. So read on with charity.

1A.1 Sentence and term

“Logical grammar,” as we understand it, begins with three fundamental grammat-
ical categories: the “sentence,” the “term,” and the “functor.” The first two are
taken as primitive notions, hence undefined; but we can say enough to make it
clear enough how we plan to apply these categories to English and to the usual
formal languages.

By a sentence is meant a declarative sentence in pretty much the sense of tradi-
tional grammar, thus excluding—for expository convenience—interrogatives and
imperatives. A sentence is of a sort to express the content of an assertion or of
a conjecture, and so on. Semantically, a sentence is of a kind to be true or false,
although typically its truth or falsity will be relative to various items cooked up
by linguists and logicians. Examples: The truth or falsity of “It is a dog” often
depends on what the speaker is pointing at, and that of the symbolic sentence “Fx”
depends on how “F” is interpreted and on the value assigned to “x.”

Traditional grammar gives us less help in articulating the concept of a term, al-
though the paradigm cases of both traditional nouns and logical terms are proper
names such as “Wilhelm Ackermann.”

Some more examples of terms from English:
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Terms What some linguists call them

Wilhelm Ackermann proper noun
the present king of France noun phrase

your father’s mustache noun phrase
triangularity (abstract) noun

Tom’s tallness (abstract) noun phrase
that snow is white that clause; factive nominal;

nominalized sentence
what John said factive nominal; nominalized sentence

his going gerund; nominalized sentence
he pronoun

We add some further examples from formal languages.

Terms What some logicians call them

3+4 closed term
x variable

3+x open term
{x: x is odd} set abstract

ιxFx definite description

What the logical grammarians contrast with these are so-called “common nouns”
such as “horse,” as well as plural noun phrases such as “Mary and Tom.” And
although we take the category of terms to be grammatical, it is helpful to heighten
the contrast by a semantic remark: The terms on our list purport—at least in con-
text or when fully interpreted (“assigned a value”)—to denote some single entity,
while “horse” and “Mary and Tom” do not. Perhaps the common noun is the most
important English grammatical category not represented anywhere in logical gram-
mar. Contemporary logicians (including us) uniformly torture sentences containing
common nouns, such as “A horse is a mammal,” into either “The-set-of-horses is
included in the-set-of-mammals” or “For-anything-you-name, if it is-a-horse then
it is-a-mammal,” where the role of the common noun “horse” is played by either
the term (our sense) “the-set-of-horses” or the predicate (see below) “ is-a-horse.”

Exercise 1 (Logical-grammar terms)
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Taking “term” in the sense given to it by logical grammar, give several fresh ex-
amples of terms, trying to make them as diverse as possible. Include both English
examples and formal examples—perhaps even an example from advanced mathe-
matics.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

1A.2 Functors

So much for sentence and term.1 By a functor is meant a way of transforming
a given ordered list of grammatical entities (i.e., a list the members of which are
terms, sentences, or functors) into a grammatical entity (i.e., into either a term,
a sentence, or a functor). That is to say, a functor is a function—a grammatical
function—taking as inputs (arguments) lists of items from one or more grammati-
cal categories and yielding uniquely as output (value) an item of some grammatical
category. For each functor, as for any function, there is defined its domain, that is,
the set of its input lists and its range, which is the set of its outputs.

For our limited purposes, however, we can give a definition of a functor which,
while not as accurate as the foregoing, is both easier to understand and adequate
for our needs:

1A-1 DEFINITION. (Functor)

A functor is a pattern of words with (ordered) blanks, such that when the blanks
are filled with (input) any of terms, sentences, or functors, the result (output) is
itself either a term, sentence or functor.2

We wish henceforth to ignore the cases in which functors are used as either inputs
or outputs. For this reason, we define an “elementary functor.”

1A-2 DEFINITION. (Elementary functor)

An elementary functor is a functor such that either all of its inputs are terms or all
of its inputs are sentences; and whose output is either a term or a sentence.

1There is in fact a little more to say about terms, but you will understand it more easily if we
delay saying it until after introducing the idea of a functor.

2This is the first official (numbered and displayed) definition in this book. Don’t bother contin-
uing your study of logic unless you commit yourself to memorizing each and every such definition.
Naturally learning how to use these definitions is essential as well; but you cannot learn how to use
them unless you first memorize them.
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Hence, “input-output analysis” leads us to expect four kinds of elementary func-
tors, depending exclusively on whether the inputs are terms or sentences, and
whether the outputs are terms or sentences. The following is intended as a defi-
nition of “operator,” “predicate,” “connective,” and “subnector.”

1A-3 DEFINITION. (Four kinds of elementary functor)

Inputs Output Name Examples

Terms Term Operator + ; ’s father
Terms Sentence Predicate < ; is nice
Sentences Sentence Connective and ; John wonders if
Sentences Term Subnector “ ” ; that

For example, the table tells us that a predicate is a pattern of words with blanks
such that when the blanks are filled with terms, the result is a sentence.

Exercise 2 (Kinds of elementary functors)

1. Write out a definition of each of “operator,” “connective,” and “subnector”
that is parallel to the foregoing definition of “predicate.”

2. Use an example of each of the four, filling its blanks with short and simple
words.

3. Give a couple of examples such that the output of some functor is used as
the input of a different functor.

We will discuss these in class.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

Here are some more examples.

Connectives
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and ; both and ; ( & ) ( ∧ ).

or ; either or ; ( ∨ ).

if then ; if ; only if ; only if , ; ( → ).

if and only if ; ( ↔ ).

it is not the case that ; ∼ .

The above are often studied in logic; the following, however, are also connectives
by our definition.

John believes (knows, wishes) that ; it is possible (necessary, certain) that
; that implies (entails) that ; if snow is red then either or if Tom is

tall then .

We note in passing that in English an expression can often have an analysis supple-
mentary to the one given above; for example, English allows us to fill the blanks of
“ and ” with the terms “Mary” and “Tom,” obtaining “Mary and Tom,” which
is a plural noun phrase and hence not a creature of logical grammar. We there-
fore only intend that our English examples have at least the analysis we give them,
without excluding others.

Predicates. hit ; John hit ; ( = ); was the first person to notice that
’s mother had stolen the pen of from .

Operators. 2 (i.e., the square operator); the sister of .

Subnectors. The probability that ; the desire that .

Note that we can sort functors by how many blanks they contain; a predicate with
two blanks is called a two-place predicate, and so forth. Negation is a one-place
connective.

Reflection on sentences, terms, and functors leads us to reinstate an old distinction
among expressions.

1A-4 DEFINITION. (Categorematic vs. syncategorematic expressions)

• A categorematic expression is an expression in logical grammar such as a
sentence or a term that can be the input or output of a functor, but is not itself
used only in making up functors.
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• A syncategorematic expression is an expression in logical grammar such as
“and” or “+” or “(” that is used only to help in making up a functor. In
other words, a syncategorematic expression serves only as part of a pattern
of words with blanks.

It is often said that categorematic expressions have their meaning “in isolation” (or
have independent meaning) whereas syncategorematic expressions have meaning
only “in context.” This will be true enough for the symbolic language that you
will be learning in these notes, but it is dangerous to take it as a “deep” thought
about natural language. The reason is this: The very idea of “meaning in isolation”
seems to slip out of reach when applied to something as essentially social as natural
language. In any event, (1) we will be applying the distinction only within the
confines of logical grammar, and (2) we won’t be needing it for a while.

1A.3 English quantifiers and English quantifier terms

English quantifier terms. In English many terms are constructed by applying
an English quantifier such as “each” or “at least one” to a common noun phrase;
for example, “each person wearing a brown hat” or “at least one giant firecracker.”
We know that in the logical grammar of English these are terms because they go
in exactly the same blanks as any more standard term such as a proper name like
“Jackie” or a variable such as “x.” To give but one example, if you can put “Jackie”
into the blank of “ went out,” then you can also insert “each person wearing a
brown hat” into the same blank:

Each person wearing a brown hat went out.

English quantifiers and quantifier terms are important to English because they are a
principal way in which English expresses “quantificational propositions.” For this
reason, it is all the more important to be aware that typical formal languages (such
as the one we shall be mastering) do not express “quantificational propositions” in
this way. They instead use the variable-binding connectives “∀x” and “∃x.” For
example, instead of “Each person wearing a brown hat went out,” one would have
something like

∀x(x is a person wearing a brown hat→ x went out).

We will later study this matter in detail; see §5A and §10A. For now, simply file
away three facts: (1) Both English and typical formal languages have some terms
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that—like proper names—purport to denote a single entity. (2) English includes
quantifier terms, but typical formal languages do not. (3) English uses quantifier
terms to help express “quantificational propositions,” whereas typical formal lan-
guages accomplish that end by means of variable-binding connectives such as “∀x”
and “∃x.” (Note relevant to a coming exercise: In a subsequent section, §10A.3, we
will learn that “the” is an English quantifier and that “the golden mountain” counts
as an English quantifier term.)

Refined grammatical analysis. The above grammatical analysis given in terms
of input-output is gross; it can, however, be usefully refined without alteration of
the spirit of the enterprise by dividing the set of terms into categories, and stat-
ing, for each blank in a predicate or operator, and for each result of a subnector
or operator, to what category the term belongs. This is particularly useful when
introducing new technical terms.

We give a few examples, where we take the following as categories of terms: num-
ber-terms (they name numbers), physical-object-terms (they name physical ob-
jects), sentence-terms (they name sentences), proposition-terms (they name propo-
sitions), person-terms (they name persons).3

• “ < ” is a number-predicate; i.e., inputs must be number terms. “ + ”
is a number-operator; both inputs and outputs must be number-terms.

• “ has the same mass as ” is a physical-object predicate; the input terms
must be physical-object-terms. “The mass of (in grams)” is a physical-
object-to-number-operator; the input must be a physical-object-term, while
the output is a number-term.

• Most logicians use “ is true” as a sentence-predicate; the input must be a
sentence-term, i.e., a term naming a sentence. Some logicians use “ is true”
as a proposition-predicate, where the input must be a name of a proposition.
Most logicians use “ implies ” as a sentence-predicate. (What does this
mean?)

• “The probability that ” is a number-subnector; the output is a number-term.
3A sentence is a piece of language. A proposition is an abstract entity that is, in some sense,

the “meaning” of a sentence. The term “proposition” is philosophical jargon whose meaning varies
from philosopher to philosopher. The only thing you need to know just now, however, is that some
philosophers take “that-clauses” to name propositions, so that, for example, the sentence “Dick runs”
has, as its meaning in some sense, the proposition that Dick runs.
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• “ believes ” is a predicate that requires person-terms in its first blank, and
proposition-terms in its second blank. (“ believes that ” is a non-element-
ary functor. Why?)

Exercise 3 (Logical grammar)

1. Identify each of the following as a (plain) term (t), English quantifier term
(Eqt), sentence (s), operator (o), predicate (p), connective (c), subnector
(sub), or none of these (none).

(a) Sam

(b) each quick brown fox

(c) the quick brown fox

(d) ’s teacher

(e) jumped over the lazy brown
dog

(f) →
(g) Where is Mary?

(h) snow is puce↔
(i) if then both and

(j) “ ”

(k) is true

(l) John’s hope that

(m) it is true

(n) All are mortal

(o) play baseball

2. The following is a quote from these notes. List all the terms (whether plain
terms or English quantifier terms) and functors (stating which kind) you can
find, but if there are many, stop after a few.

From at least one theoretical point of view, identity is just an-
other two-place predicate, but the practice of the art of logic finds
identity indispensable.

3. Considering the “refined grammatical analysis” above, which of the follow-
ing make grammatical sense? Assume that “Jack” is a physical-object term,
and that “Mary” is both a physical-object term and a person term. Explain
your answers as best you can.

(a) The mass of Jack (in grams) < 4.

(b) 3+4 has the same mass as 4+3.

(c) Jack has the same mass as the mass of Mary (in grams).
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(d) The mass of Mary (in grams) < the probability that Mary believes that
3+4=4+3.

4. Optional (skippable). Alter each of the following to make it grammatically
correct while retaining the meaning it would ordinarily be taken to have.

(a) Snow is white is a long sentence

(b) Snow is white implies that snow is colored

(c) If “snow is white” then “snow is colored”

(d) If what Tarski said, then snow is white.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

1B Some symbolism

Each branch of logic is distinguished by

• its grammar,

• its proof theory,

• its semantics,

• its applications.

As indicated in Figure 1.1, symbolic logic has grammar as its foundation; each of
the other parts depends on first specifying the grammar of the symbolic language
at issue. We throw out the bare bones of our grammar, and indicate what counts as
practical mastery thereof.

We introduce some standard symbolism for logical ideas that come from several
parts of logical grammar in the sense of §1A. Our idea is to introduce the grammar
of the symbolism, while postponing learning about semantics and proof theory and
applications. Be reassured that when we turn to those later tasks, we will take them
up piecemeal. Only in this section on grammar do we lay out everything all at
once.

Quantifiers are an important part of logic. Although we do not study the logic of
symbolic quantifiers and their variables until a later chapter, we want to be able to
start writing them now and then. Until we introduce quantifiers as a topic of study
in chapter 3, however, when we use quantifiers to say something, we will always
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ApplicationsSemantics Proof theory

Grammar

Figure 1.1: Four fundamental parts of any symbolic logic

say the same thing in English (or “middle English,” as we soon say). The aim is
to accustom you to seeing and reading quantifiers and variables of quantification
without prematurely forcing you to master their use. Here is the notation that we
shall use.

1B-1 SYMBOLISM. (Quantifiers)

We use “∀” for “universal quantification” and “∃” for “existential quantification.”
These are always used with variables such as “x,” “X1,” “A1,” and so on, in such a
way that for example “∀x” is to be read “for every x,” and “∃x” is to be read “there
is an x such that.” In logical grammar, “∀x ” and “∃x ” are connectives: In each
case the blank must be filled by a sentence, and then the result is a sentence. Thus,
“∀x(if x is a cat then x is a mammal)” is read (in a language that we sometimes
call “middle English”) as “for every x, if x is a cat then x is a mammal”; and
“∃x(x is a cat and x has claws)” is read “there is an x such that x is a cat and x
has claws.” The sentence that goes into the blank of “∀x ” will almost certainly
contain an occurrence of “x.” The variables that are used with symbolic quantifiers
(or in middle English) are “variables of quantification.”

Later, especially in Convention 1B-19 and Convention 1B-20 we state two conven-
tions governing our use of variables in these notes.

1B-2 SYMBOLISM. (Variables, constants, parameters)

In our jargon, a variable is always a variable of quantification, to be used with
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explicit symbolic or middle-English quantifiers. The contrast is with constants.
We shall be dealing with constants associated with various types in logical gram-
mar: Individual constants, operator constants, predicate constants, and connective
constants will be foremost. A constant always has in each use a definite meaning.
Constants in logic have two roles. In one role the constant has a meaning that is
fixed by previous (human) use. But sometimes we want to have available a con-
stant that we just assume has a fixed denotation, without saying exactly what it
is. Sometimes such constants are called parameters, to distinguish them from both
variables of quantification and constants that have a fixed predetermined meaning.
Parameters are often used to express generality without the help of explicit univer-
sal quantification. Other times—and often by us—they are used for toy examples.

Here is a summary.

Variables (of quantification). To be used with explicit symbolic quantifiers or
with quantificational idioms in middle English.

Constants. Can be associated with any type in logical grammar. They always have
a meaning that is assumed to be fixed in each use. They have two roles.

1. A constant can be used with a meaning fixed by previous usage. This
includes the case where we introduce a new constant accompanied by
an explanation of its meaning. Occasionally we call these “real” con-
stants.

2. Parameters, in contrast, are constants that we just assume (“pretend”
is not quite right) have a fixed meaning, without saying exactly what it
is, either to help express generality (without explicit universal quantifi-
cation) or as auxiliaries of one kind or another or just as examples.

Parameters work so well as examples in learning logic because logic itself makes
no distinction between “real” constants and parameters. Their grammar, proof
theory, and semantics are identical. The only difference lies in how we think about
them. That is why we almost always speak of just “constants” without distinguish-
ing the “real” ones from the parameters.

1B-3 REMARK. (Middle English)

In these notes we very often use single letters with English quantifier expressions,
saying, for example,
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For every A, if A is a sentence then A is either true or false.

The difficulty is that the displayed sentence is neither correct English (English itself
has no variables) nor correct symbolism (“for all” is not part of our symbolic lan-
guage).4 Therefore we call the (eminently useful) language containing the quoted
sentence middle English. So we could and should call “A” in the quoted sentence
a “middle English variable of quantification” in contrast to a “symbolic variable of
quantification.” Instead, however, we almost always just ignore the topic.

1B-4 SYMBOLISM. (Individual constants)

An individual constant is an “atomic” singular term (no complex structure of inter-
est to logic) that is not used as a variable of quantification. To say that an individual
constant is an individual constant is to say that it can go into the blanks of pred-
icates and operators. To say that an individual constant is an individual constant
is to say that it cannot be used quantificationally with ∀ or ∃. An individual con-
stant has in each use a definite denotation. Symbols such as “0” and “1” and “Fred
Fitch” may be taken as individual constants.

Individual constants, like all constants, have two roles. One role is like that of the
examples just cited, whose denotation is fixed by previous use (by we humans).
We shall be introducing a variety of them for our special logical purposes; for
example, we shall be introducing “T” and “F” as individual constants respectively
denoting the two truth values Truth and Falsity. But sometimes we want to have
available an individual constant that we just assume has a fixed denotation, without
saying exactly what it is; these individual constants can therefore also be called
“parameters” in order to distinguish them from both variables of quantification
and “real” individual constants that have a fixed predetermined meaning. When
we want to make up some new individual constants to use as parameters, we use
letters “a,” “b,” and “c,” and so on; we will need to assume an unending (infinite)
supply of individual parameters, created perhaps by numerical subscripting.

1B-5 SYMBOLISM. (Operator constants and operators)

An expression is an operator constant if it is used in just one way: in connec-
tion with blanks and (perhaps) parentheses to make up an operator. Therefore an

4Furthermore, there is no English part of speech that suits all occurrences of “A” in the displayed
sentence. An English common noun must come after “every,” and an English singular term must
come before “is.”
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operator constant is syncategorematic, Definition 1A-4. In particular, no operator
constant can be put into the blanks of any elementary functor. The symbol “+” is
an operator constant and “( + )” is its associated operator. We shall be intro-
ducing some important operators in our study of logic; for example, “V al( )” is
an operator whose blank is restricted to (not sentences but) sentence-terms (that
is, terms that denote sentences), and will be introduced with the reading “the truth
value of .”

In practice, when “f( )” is a “real” operator, it will usually be a “Kind 1 to Kind
2” sort of operator, with its inputs restricted to terms that denote entities of Kind 1,
and with its outputs always denoting entities of Kind 2. For example, “V al(‘ ’)”
is a sentence-to-truth-value operator.

When we want to make up some new operators to use as parameters, we use “f”
and “g” and the like for operator constants, saying on each occasion how many
blanks are presupposed, and where they go. Usually we write the blanks after the
operator constant, with or without parentheses: “f ” or “f( )” or “g( , )” or the
like, whereas in the case of “real” operator constants, we let the blanks fall where
they may. Operator parameters are almost always of the most general kind: They
form anything-to-anything operators.

1B-6 SYMBOLISM. (Terms and closed terms)

A term is constructed from individual constants (either “real” constants or param-
eters) and variables of quantification by means of operators, for example, “g(f(a)+
0).” A term can be atomic (that is, an individual constant or a variable) or complex.
A closed term or variable-free term is a term that does not contain a variable of
quantification.

1B-7 CONVENTION. (t for terms)

We use “t” as a variable ranging over terms. Thus, any use of “t” carries the pre-
supposition that t is a term.

1B-8 SYMBOLISM. (Predicate constants and predicates)

An expression is a predicate constant if it is used in just one way: in connection
with blanks and (perhaps) parentheses to make up a predicate. Therefore a pred-
icate constant is syncategorematic, Definition 1A-4. In particular, no predicate
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constant can be put into the blanks of any elementary functor. For example, “=” is
a predicate constant since “( = )” is a predicate; and you will see numerous fur-
ther examples. For predicate parameters, we use “F” and “G” and the like, saying
on each occasion how many blanks are presupposed, and where they go. Usu-
ally we write the blanks after the predicate parameter, with or without parentheses:
“F ” or “F( )” or “G( , )” or the like, whereas in the case of “real” predicate
constants, we let the blanks fall where they may.5

A predication is defined as the result of applying a predicate to an appropriate
sequence of terms, so that a predication is a special kind of sentence. For example,
“(3+5) is greater than 7” and “Fab” are predications.

1B-9 SYMBOLISM. (Identity predicate)

Identity is perhaps the most important predicate in logic. The identity predicate
“ = ” expresses the simple-minded relation that holds only between each thing
and itself. An identity sentence t1 = t2 is to be read in English as “t1 is identical
to t2.” Since a given pair of terms t1 and t2 might or might not denote the same
thing, it always makes sense to ask whether or not t1 = t2. For example, 2+2 = 4
(two names for the one thing), but 2+3 6=4 (two names, two things). From time to
time we use “t1 6=t2” as the negation of t1 = t2. We shall state some logical rules
for identity just as soon as we can, in §3D, where rules for it are introduced.

1B-10 SYMBOLISM. (Sets: two predicates and an operator)

A set is a collection that has members (unless of course it doesn’t). The set of even
numbers contains infinitely many members. The set of integers between three and
five has just one member. The set of numbers between three and three is empty (it
has no members). Three pieces of notation (and a convention) come in right away.

• When we wish to say that something is a set, we just say so: “ is a set” is
a predicate. (The predicate constant is “is a set.”)

• Set membership is a predicate that as logicians we should not like to do with-
out. We use “∈” as the predicate constant for set membership; the predicate
is “ ∈ ,” to be read (from left to right) as “ is a member of the set .”
The left blank is unrestricted, but the right blank should be restricted to terms
that denote sets.

5Curry calls “=,” for example, an “infix,” which means that the predicate constant goes in the
middle of its blanks. Others are called “prefixes” or “suffixes.”
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• We use the notations “{ },” “{ , },” “{ , , },” etc. as operators whose
inputs are terms (e.g. individual constants), and whose output is a term that
denotes a set that contains exactly the things denoted by its inputs. For ex-
ample, “{a, b}” is read “the set containing just a and b.” Thus, the following
are invariably true:

a∈{a}
b∈{a, b}

Whether “c∈{a, b}” is true depends, however, on what “c” denotes; it’s
true iff either c = a or c = b. We’ll come back to this after we have in hand
enough logical machinery to do so with profit.

1B-11 CONVENTION. (X, Y, Z for sets)

Convention: We use “X,” “Y,” and “Z” as variables or parameters ranging over sets.

This means three things. (1) In any context in which we use e.g. “X,” the informa-
tion that X is a set is automatically presupposed. (2) Whenever we say “For all X
. . . ,” we intend “For all X, if X is a set, then . . . .” (3) Whenever we say “For some
X .. . ,” we intend “For some X, X is a set and . . . .”

1B-12 SYMBOLISM. (Truth-functional connectives)

An expression is a connective constant if it is used in just one way: in connection
with blanks and (perhaps) parentheses to make up a connective. Therefore a con-
nective constant is syncategorematic, Definition 1A-4. In particular, no connective
constant (except ⊥, which takes zero arguments) can be put into the blanks of any
elementary functor. We introduce six connective constants: →, ∨, ↔, ∼, &, and
⊥, which help us to symbolize some connectives of English. They are all, in a
sense to be explained, “truth functional.” The six symbolic connectives and their
English readings are as follows:



18 Notes on the art of logic

Symbolic English
connective connective

( →. . .) if then . . .
( ∨ . . .) or . . .
( ↔. . .) if and only if . . .
∼ . . . it’s not true that . . .

( &. . .) and . . .
⊥ standard logical

falsehood; absurdity

Four can be seen to be two-place, while one is one-place, and one is 0-place. The
sentence ⊥ will count as Very False; we do not add it for theory, but because it is
practically useful to have it available, as we will see.

The connective constants and the connectives each have names, as follows:

Constant Name of constant Name of connective
→ Arrow Conditional
∨ Wedge Disjunction
↔ Double arrow Biconditional
∼ Curl Negation
& Ampersand Conjunction
⊥ Bottom falsum, absurdity

1B-13 SYMBOLISM. (Individual variables)

We have introduced constants of the types of individuals, operators, predicates, and
connectives. We shall be using “real” constants of all of these types, and—for all
but the connectives—we shall also be dealing with some parameters (without any
definite meaning fixed by previous usage).

Note, however, that operator and predicate and connective constants are syncate-
gorematic. As a companion decision, we will not be introducing variables of quan-
tification except for the type of individuals. There will be no operator or predicate
or connective variables of quantification (to be bound by a quantifier). It is this
feature of the logic that we are studying that chiefly earns it the title “first order
logic.” To introduce quantified variables of the type of operators or predicates or
connectives counts as proceeding to a “higher order logic,” something that we do
not do in these notes.6 All of our variables are therefore of the type of individuals.

6Example. Higher order logic permits writing “∀F(Fa↔Fb)” in order to say that individuals a
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1B-14 SYMBOLISM. (Sentence and closed sentence)

We know that terms are made from individual constants and variables by means of
operators. We know that predications are made from terms by means of predicates.
Finally, sentences are made from predications by means of (symbolic) quantifiers
and the six listed truth-functional connectives. A sentence is closed if every vari-
able of quantification that it may contain occurs in the scope of an explicit quantifier
that uses that variable.

1B-15 CONVENTION. (A, B, C for sentences; G for sets of sentences)

• We use “A” or “B” and “C” as parameters or variables ranging over sen-
tences.

• We use “G” and “H” as parameters or variables ranging over sets of sen-
tences.

1B-16 CONFUSION. (Use and mention)

Experience teaches that when we wish to speak about the very language that we
wish to use, confusion is unavoidable. Therefore do not hold either yourself or
us to blame if the following sounds like double talk. (You are not responsible for
understanding it. But try.)

When we use the symbolic language that we are introducing (including illustrative
uses), we use e.g. “A” as being a sentence and we use e.g. “ → ” as a connective,
with sentences to be put into its blanks. When, however, we talk about the symbolic
language, we use e.g. “A” as a term rather than a sentence—a term that denotes a
sentence. In this case, the pattern “ → ” is an operator, a “sentence-to-sentence
operator,” that takes names of sentences in its blanks and outputs the name of a
sentence. Context tends to resolve the ambiguity between these two cases.

For certain purposes, it is good to think of the grammar of our symbolic language
“inductively” as follows. (See also §2A.1.)

and b have exactly the same properties (this is discussed in §6G). This sentence is not part of first
order logic. (There is more to say about this, but not at this stage.)
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1B-17 SYMBOLISM. (Inductive explanation of “term”)

Base clause for terms. Each individual constant and variable is a term.

Inductive clauses for terms. For each operator, if the blanks of the operator are
filled with terms, the result is a term.

1B-18 SYMBOLISM. (Inductive explanation of “sentence”)

Base clause for sentences. Each predication is a sentence.

Inductive clause for sentences. The result of putting a sentence into the blanks
of either one of the symbolic quantifiers or into the blanks of one of the six truth-
functional connectives is a sentence.

The similarity is obvious: In inductive explanations, the “base” clause gets you
started, and the “inductive clauses” tell you how to carry on.

There is, however, more to grammar than the base and inductive clauses. Typically
an inductive grammatical explanation will add a so-called “closure clause” saying
that nothing is of the given grammatical type (e.g., term or sentence) unless it is
so in virtue of one of the base or inductive clauses. Furthermore, “no ambigu-
ity” is an essential part of logical grammar: If you are given any expression, it is
uniquely determined (1) whether it is a term or sentence (never both), (2) whether
it is “atomic” (in the sense of coming in by a base clause) or rather results from
applying some functor, and (3) if it comes by a functor, it is uniquely determined
by which functor it comes, and to which arguments the functor has been applied.
These important features of logical grammar we will just take for granted.

Before summarizing, we call attention to two almost indispensable conventions
governing our use of variables in these notes.

1B-19 CONVENTION. (Variables of limited range)

In many places in these notes we announce that by convention we are using a
certain letter or group of letters as variables that range over some specified set of
entities. So far we have laid down Convention 1B-11 for the use of “X” (etc.) to
range over sets, Convention 1B-15 for the use of “A” (etc.) to range over sentences
and the use of “G” to range over sets of sentences, and Convention 1B-7 for the use
of “t” to range over terms; and there are further examples in the offing. In every
such case we intend the following.
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1. Every use of the restricted letter involves a presupposition that what the letter
denotes is of the appropriate sort.

2. When a restricted letter is used with a universal quantifier, the meaning is
that all entities of the appropriate sort satisfy the condition at issue.

3. When a restricted letter is used with an existential quantifier, the meaning is
that some entity of the appropriate sort satisfies the condition at issue.

1B-20 CONVENTION. (Dropping outermost quantifiers)

We often drop outermost universal quantifiers. (This convention applies only to
outermost and only to universal quantifiers.) For example, the first line of Exam-
ples 2B-16 on p. 40 is

A, B �TF A&B.

By application of the present convention, we should restore outermost universal
quantifiers, giving

For all A and for all B: A, B �TF A&B.

Now by application of Convention 1B-19 just above, and noting that we have de-
clared that “A” and “B” range over sentences, we come to the “full” meaning,
namely,

For all A and for all B, if A is a sentence and B is a sentence, then A, B
�TF A&B.

As you can see, the conventions governing the use of variables of restricted range
together with the convention permitting us to drop outermost universal quantifiers
make for perspicuity by eliminating an overdose of henscratches.

1B-21 SYMBOLISM. (Summary)

These are the key ideas of the symbolism that we have introduced in this section.

Quantifiers. ∀x (“for all x” in middle English) and ∃x (“for some x” in middle
English). See Symbolism 1B-1.
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Variables, constants, and parameters. See Symbolism 1B-2.

Variables of limited range. See Conventions 1B-7, 1B-11, 1B-15, and 1B-19.

Dropping outermost quantifiers. See Convention 1B-20.

Individual constants (including parameters). Individual parameters are a, b, c,
and so on. See Symbolism 1B-4.

Operator constants (including parameters) and operators. Operator parame-
ters are f, g, and so on. See Symbolism 1B-5.

Terms and closed terms. See Symbolism 1B-6.

Predicate constants (including parameters) and predicates. Predicate parame-
ters are F, G, H, and so on. See Symbolism 1B-8.

Identity predicate. See Symbolism 1B-9.

Sets. Two predicates (“ is a set” and “ ∈ ”) and a family of anything-to-set
operators (“{ },” “{ , },” and so on). See Symbolism 1B-10.

Truth-functional connective constants and connectives. See Symbolism 1B-12.

Individual variables. See Symbolism 1B-13

Sentences and closed sentences. See Symbolism 1B-14

Variables of restricted range.7 So far introduced:

• t for terms.

• X, Y, Z for sets.

• A, B, C for sentences.

• G, H for set of sentences.

Other letters used in special ways.

• x, y, z for individual variables of quantification (general purpose).

• a, b, c for individual constants (general purpose).

• f, g, h for operator constants.
7In a few cases, restricted letters are used in other ways—without, we think, confusion.



1B. Some symbolism 23

• F, G, H for predicate constants.

Exercise 4 (English into symbols)

Symbol-English dictionary: Let j=Jack, Y = the set of cats, f(v)= the father of v,
and let T(v1, v2)↔ (v1 is taller than v2). Put the following into notation.

1. Jack is a member of the set of cats and the set of cats is a set.

2. Jack is taller than his father.

3. Jack’s father is a member of the set of cats if and only if Jack’s father is not
a member of the set of cats.

4. If the father of Jack is identical to Jack then Jack is identical to the father of
Jack.

5. The set containing just Jack and the father of Jack is a set.

6. If x belongs to the set containing just Jack and his father, then either x is
identical to Jack or x is identical to the father of Jack.

7. For every x, x is identical to x.

8. There is an x such that x is identical to Jack.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

Exercise 5 (Symbols into English)

Using the same “dictionary” as for Exercise 4, put the following into English.

1. j= f(j)→∼(Y is a set)

2. j∈Y∨Y∈Y

3. ∀x(x∈Y→ x∈Y)

4. ∼T(f(j), f(j))

5. {j, f(j)}
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /



Chapter 2

The art of the logic of
truth-functional connectives

In this chapter we study the logic of the six truth-functional connectives that we
have listed in Symbolism 1B-12. Sometimes we call this “TF-logic,” and we also
use “TF” in other contexts as an indicator that we are restricting attention to a small
(but important) branch of logic.

2A Grammar of truth-functional logic

Recall that each branch of logic has its grammar, its semantics, its proof theory, and
its applications. Almost all of our work will be on semantics and proof theory; and
we will find that it is proof theory that occupies our chief attention in this chapter.
Here, however, we spend a little time—as little as possible—on grammar.

2A.1 Bare bones of the grammar of truth-functional logic

To study the logic of the six truth-functional connectives, we need very little in the
way of grammatical background. That is to say, the grammar can be as rich as you
like, as long as you keep separate track of the special six. One thing is certain: (1)
There is a set of sentences, (2) there are the six listed connectives, and (3) there is a
set of TF-atoms. (Read “TF-atom” as “truth-functionally atomic sentence.”) There
are two ways to organize our thought using (1)–(3).

24



2A. Grammar of truth-functional logic 25

• Sometimes it is good to take the notion of (3) “TF-atom” and (2) “listed
connective” as primitive, and to define (1) “sentence” in terms of these. This
is often the procedure in creating a formal language to be studied.

• The second way takes the notion of (1) “sentence” as primitive (i.e., as a
given) along side of (2) “listed connective,” and defines (3) “TF-atom” in
terms of these. This is the best way to think when taking the apparatus as
a grammar of an existing language, for example English, or our language
including operators, predicates, and quantifiers.

The following summarizes the relations between (1), (2), and (3) that must hold on
either approach.

2A-1 EXPLANATION. (Basic grammar)

Sentences. There is a collection or set of sentences.1 (Later we let Sent= the set of
all sentences.) We do not define “sentence,” nor shall we be entirely specific about
what counts as a sentence, although we always pretend that the matter is definite
enough. Imagine that at least some sentences are bits of English, and others are
more symbolic. And feel free to vary exactly what counts as a sentence from
context to context.

Base clause. ⊥ and each TF-atom is a sentence.2

Inductive clauses. A grammar is imposed on these sentences by means of the six
listed connectives. Since, aside from⊥, connectives make new sentences out of old
ones, there is an inductive clause for each connective, as follows. Suppose that A
and B are sentences taken as inputs; then the following outputs are also sentences:

(A→B) (A↔ B) (A&B) (A∨B) ∼A

Closure clause. That’s all the sentences there are; nothing counts as a sentence
unless it does so in virtue of one of the above clauses.

1More logicians say “formula” (or sometimes “well-formed formula” or “wff”) than say “sen-
tence,” reserving “sentence” for those expressions that are not only sentential, but also have no free
variables of quantification. Our minority usage is designed to emphasize the crucial similarities be-
tween English and an artificial language that are revealed by the considerations of logical grammar
such as are sketched in §1A .

2If “sentence” is taken as primitive and “TF-atom” is defined, this paragraph turns out to be a
provable “fact.”
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No ambiguity. Furthermore, we write down explicitly something that you never
thought to doubt: If you are given any sentence, it is uniquely determined (1)
whether or not it is a TF-atom, and if it is not a TF-atom, (2) which of the six
kinds you have and (3) what the inputs were. These clauses say that the grammar
of our language is unambiguous. Each sentence has a “unique decomposition” in
terms of the six connectives, right down to TF-atoms; and about these we have no
information whatsoever.

Not all sentences come by inductive clauses.

2A-2 DEFINITION. (TF-atom)

Any sentence that does not come by an inductive clause is a “TF-atom.” That is,
a TF-atom is any sentence that is not subject to “decomposition” by means of one
of the six inductive clauses for the connectives. To repeat: A is a TF-atom just in
case A is a sentence, but does not have any of the six forms listed as part of the
inductive clause.3

In still other words (words that you can profitably learn by heart), A is a TF-atom
iff A is a sentence, but does not have one of the six privileged forms A1→A2, A1
∨A2, A1 &A2, A1↔A2, ∼A1, or ⊥.

It is good philosophy to keep in mind how negative is the idea of a TF-“atom.” You
should also keep in mind to what an enormous extent “atomicity” is relative to a
particular grammar. It is bad philosophy to forget either of these things.

Sometimes, as in application to English, a TF-atom may be long and complicated—
as long as its outermost complication does not arise from one of our six listed
connectives. At other times, as in constructing a toy language, it is good to envision
the TF-atoms as very short, perhaps single letters such as “p” or “q.” In the latter
case, TF-atoms are sometimes called “sentence letters” or “proposition letters.” In
any case, every TF-atom is itself a sentence, every sentence is either a TF-atom or
comes by one of the inductive clauses, and there is no overlap between TF-atoms
and sentences that arise out of one of the inductive clauses.

For example, if p is a sentence in virtue of being an TF-atom, then p&p is a
sentence in virtue of one of the inductive clauses.

3If “TF-atom” is taken as primitive and “sentence” is defined, this paragraph turns out to be a
provable “fact.”
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For example, suppose p is a TF-atom, and the only one. Then p is a sentence. So
by the inductive clause∼p is also a sentence. So (p & ∼p) must also be a sentence
(by a second use of the inductive clause).

Also, “→(∼” is not a sentence, by the closure clause; since it is not a TF-atom (the
only one was given as p), nor is it admissible by any inductive clause.

Sometimes it is convenient to introduce a name for a particular set. At this point
all we have to go on is the grammar just described in Explanation 2A-1, and the
chief sets there of which at present we want names are the set of sentences and the
set of TF-atoms. We use “Sent” and “TF-atom” respectively.

2A-3 DEFINITION. (Sent and TF-atom)

• Sent =df the set that contains all and only the sentences in the sense of §2A.1.
Therefore, in our usage, A∈Sent iff A is a sentence.4

• TF-atom =df the set that contains all and only the TF-atoms in the sense of
§2A.1. Therefore, in our usage, A∈TF-atom iff A is a TF-atom.

Recall that a TF-atom is simply any sentence that does not arise by using one of
our six listed connectives.

2A.2 Practical mastery

You will have mastered the art of the grammar of truth-functional logic if:

1. You can create bona fide sentences. (This is part of “speaker competence.”)

2. You can tell a sentence when you see one, and have some feel for why it is a
sentence. (This is part of “hearer competence.”)

3. You can tell when a candidate fails to be a sentence, and say something as to
why it fails.

4“ =df ” is grammatically a predicate; it has exactly the same meaning as the standard identity
predicate “ = .” We use it instead of the standard identity to signal the reader that the identity in
question is intended as a definition. In exact analogy, “ ↔df ” is grammatically a connective with
exactly the same meaning as the standard truth-functional equivalence “ ↔ ,” except that it signals
an intended definition.
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4. You can figure out the “structure” of a given sentence in terms of TF-atoms
and the connectives. There is a fair amount of useful grammatical jargon
to this purpose, e.g., a sentence A→B is a “conditional” with A as its “an-
tecedent” and B as its “consequent,” but we suppose that you have learned
it elsewhere.

5. You can manage substitution: Given a TF-atom p and a sentence ( . . . p . . . )
that contains some occurrence(s) of p, if you are also given a sentence A,
then you can write down the result ( . . .A . . . ) of substituting A for every
occurrence of p in ( . . . p . . . ). Furthermore, you can tell when a candidate
is not the result of substituting A for every occurrence of a TF-atom p in
( . . . p . . . ), and say something as to why.

6. You can manage replacement: Given a sentence A and a sentence ( . . .A . . . )
containing a specified occurrence of A, if you are also given a sentence B,
then you can write down the result ( . . .B . . . ) of replacing that occurrence
of A by B. Furthermore, you can tell when a candidate is not the result
of replacing some specified occurrence of A in ( . . .A . . . ) by B, and say
something as to why.

Exercise 6 (Grammar of truth functional logic)

These trivial exercises are provided just to slow you down.

1. Make up a small stock of TF-atoms. (Lower case letters like p and q are
common choices. You may, however, also let one or more of your TF-atoms
be English.) Then make up some sentences, using each of the connectives at
least once.

Example. My TF-atoms are p and q and “London is large.” One example
sentence: (p→ (p & London is large)),

Keep your chosen TF-atoms for the rest of this exercise.

2. Now pretend you are a hearer, and exhibit part of hearer competence: Say
something vague as to why one of your sentences is in fact a sentence.

Example. p and q are sentences by the base clause. So p&q is a sentence
by the inductive clause for conjunction. So ∼(p&q) is a sentence by the
inductive clause for negation.
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3. Make up a couple of more or less interesting examples of non-sentences,
using symbols; and explain what is wrong with each. (Don’t try too hard for
precision.)

Example. “&→” isn’t a TF-atom, nor does it come from other sentences by
any of the inductive clauses. So it isn’t a sentence.

4. Skippable (because you don’t really have enough to go on). Show you un-
derstand substitution by giving and explaining an example.

5. Skippable (ditto). Show you understand replacement by giving and explain-
ing an example.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

2B Rough semantics of truth-functional logic

We are going to say enough about some of the key semantic concepts of truth-
functional logic in order to get on in a practical way. We assume that you can do
truth tables, so that here we are largely just introducing our own jargon. These
concepts are absolutely essential to our further progress. Here is a check-list; do
not proceed without being certain that you can explain each.

2B-1 CHECK-LIST FOR MASTERY. (Basic semantic ideas)

• Truth values T and F.

• Truth-value-of operator, V al(A).

• Truth-functional connective.

• Truth (two concepts of).

• Interpretation (generic account).

• TF (truth-value) interpretation and usage of i.

• Relativized truth-value-of operator, V ali(A).
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2B.1 Basic semantic ideas

Truth values. There are two truth values, Truth or T, and Falsity or F. Henceforth
“T” and “F” are parts of our technical vocabulary.5 We say very little about T
and F, except that we can be sure that T 6=F. Observe that {T, F}, which has two
members, counts as a name of the set of truth values.

Truth-value-of operator. We think of each sentence as having a truth value ac-
cording as it is true or false. This leads us to introduce a truth-value-of operator,
namely, V al( ): When A is a sentence, V al(A) is the truth value of A. Natu-
rally V al(A)=T iff A is true, and V al(A)=F iff A is not true. Our usage makes
“V al( )” a “sentence-to-truth-value” operator: Put the name of a sentence in the
blank, and you have a name of a truth value. You can even say this symbolically:
A∈Sent→ V al(A)∈{T, F}.

Truth-functional connective. The simplest part of the art of logic involves truth-
functional connectives only. What are they? We first give a metaphorical account
and then an “official” definition; it is part of the art of logic to begin to appreciate
the difference so as to be able to value both without confusing them.

2B-2 METAPHORICAL DEFINITION. (Truth-functional connective)

A connective is truth functional if for every pattern of “inputs” (we use this term
for the sentences filling the blanks), the truth value of the “output” (we use this
term for the result of filling in the blanks with sentences) is entirely determined by
the truth value of the inputs.

For example, the connective & is truth-functional because V al(A&B) “de-
pends entirely on” (note the metaphor) V al(A) and V al(B).

In non-metaphorical language, we can give a definition based on our “input-output”
analysis of the nature of connectives:

2B-3 DEFINITION. (Truth-functional connective)

A connective is truth functional ↔df it is not true that there are two patterns of
inputs that are alike in truth values, while the respective outputs are different in
truth value.

5We use each of “T” and “F” in more than one way; let us know if this turns out to confuse you
(we don’t think that it will).
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For example, to say that ∼ is truth-functional is to say that there is no pair of
sentences A and B such that V al(A) = V al(B), while V al(∼A) 6=V al(∼B).

This second form, Definition 2B-3, is most useful when establishing non-truth-
functionality. That is, by the second form of the definition, we can see that to show
that a connective is not truth functional, it is required that we produce two patterns
of inputs that are alike in truth values while the respective outputs are different in
truth values.

2B-4 EXAMPLE. (Truth functionality)

Consider the connective,

In 1066, William the Conqueror knew that .

To show that this connective is not truth functional, we must produce two inputs
with like truth values that nevertheless give different results when put in the blank.

Try 1. First input=“2+2=5,” second input=“England is west across the Channel
from Normandy.” This will not work, because the input sentences have dif-
ferent truth values: V al(“2+2=5”) 6=V al(“England is just west across the
Channel from Normandy”).math envir.

Try 2. First input=“2+2=5,” second input=“England is east of Normandy.” This
is O.K. on the side of the inputs: They do have like truth values (both are
false): V al(“2+2=5”)=V al(“England is to the east of Normandy”)=F.
But it still won’t work to show that our connective is non-truth-functional,
since the two outputs are, alas, also the same in truth value: Both “In 1066,
William the Conqueror knew that 2+2=5” and “In 1066, William the Con-
queror knew that England is to the east of Normandy” are false: V al(“In
1066, William the Conqueror knew that 2+2=5”)=V al(In 1066, William
the Conqueror knew that England is to the east of Normandy”) = F. Indeed,
since no one can know (as opposed to merely believe) falsehoods, not even
in 1066, no pair of false inputs will work!6

6That is, if two inputs of this connective are alike in being false, then regardless of how they may
differ, the outputs will also be alike in being false. Should we then call our connective “semi-truth-
functional” since at least sometimes knowing the truth value of the input is enough for knowing the
truth value of the output? No, we shouldn’t—it’s too much bother.



32 Notes on the art of logic

Try 3. First input=“2+2=4,” second input=“Channel waters are two parts hy-
drogen and one part oxygen (H2O).” These inputs are indeed alike in truth
value: V al(“2+2=4”)=V al(“Channel waters are two parts hydrogen and
one part oxygen (H2O)”)=T. Furthermore, the respective results, “In 1066,
William the Conqueror knew that 2+2=4” and “In 1066, William the Con-
queror knew that Channel waters are two parts hydrogen and one part oxy-
gen” are different in truth value: V al(“In 1066, William the Conqueror knew
that 2+2=4”) 6= V al(“In 1066, William the Conqueror knew that Channel
waters are two parts hydrogen and one part oxygen”). “In 1066, William
the Conqueror knew that 2+2=4” is (doubtless) true, whereas “In 1066,
William the Conqueror knew that Channel waters are two parts hydrogen
and one part oxygen” is (doubtless) false. So on Try 3, we have succeeded
in showing that our connective is not truth functional, according to our
non-metaphorical Definition 2B-3 of “truth-functional connective” based on
“input-output analysis.”

Exercise 7 (Semantics of truth functional logic)

1. Show that the connective “most folks today believe that ” is not truth func-
tional. Be sure that your demonstration relies explicitly on Definition 2B-3
of “truth functional connective” based on “input-output” analysis.

2. Now show that “most folks today believe that it’s false that ” is also not
truth functional.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

In contrast to many English connectives, each of the six connectives introduced
in §2A.1 is truth-functional by our decision or convention: In each case, the truth
value of the output depends entirely on the truth values of the inputs because we
say so. How this dependence works is conveniently expressed in the following
table.

2B-5 CONVENTION. (Truth tables)

We agree to use the following six connectives as truth functional in accord with the
following table.
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A B A&B A∨B A→B A↔B ∼A ⊥
T T T T T T F F
T F F T F F F F
F T F T T F T F
F F F F T T T F

Exercise 8 (A truth-value computation)

1. Let A and B and C be sentences. Suppose V al(A) = T and V al(B) = T and
V al(C) = F. Compute V al((A&∼B)∨ (∼A→C))

2. That’s enough of that.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

So some connectives of English are not truth functional, and all of our symbolic
connectives are truth functional. Two questions remain. (1) Are such English
connectives as “if then ,” “ and ,” and “ or ” truth functional? (2) Are there
any symbolic connectives that are not truth functional? These questions are left for
your deliberation. (Hint: (1) No; but philosophers differ in their opinions on this
matter. (2) Yes. Everyone agrees.)

Truth (two concepts of) There are two concepts of truth of use in semantics. The
first is the ordinary or garden-variety or “absolute” or “non-relativized version,”
according to which it is meaningful to say directly of a sentence that it is, or isn’t,
true. Let the sentence be “England is just west across the channel from Normandy.”
That sentence is just plain outright true, without the need to “relativize” its truth to
anything.7 In our jargon (see Explanation 2A-1), we may say that V al(“England
is just west across the channel from Normandy”)=T.

Of use in semantics is also a relativized notion of truth. What we relativize truth
to, in semantics, is: an “interpretation.”

7Sort of. The statement in the text represents an idealization of the inescapably sloppy facts of
English. One of the lessons of logic is that without idealization there is no theory of anything.
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Interpretation We do not give a sharp definition of the general notion of inter-
pretation.

2B-6 ROUGH IDEA. (Interpretation)

The idea of an interpretation is that it assigns some kind of “meaning” (including
a truth value as a degenerate sort of meaning) to each non-logical part of each
sentence. So an interpretation always gives enough information to determine the
truth value of each sentence; and this is its essential nature.

In our usage, we will always let an interpretation be a function i of some sort,
reading “i( )” as “the interpretation of .”

Although we give only a rough idea of the general notion of interpretation, we
do give a sharp definition of a “truth-value interpretation” or “truth-functional in-
terpretation” or, as we will say, “TF interpretation.” Note how the semantic idea
of a “TF interpretation” depends on the grammatical idea of a “TF-atom”; that’s
critical.

2B-7 DEFINITION. (TF interpretations)

• i is a TF interpretation (or truth-value interpretation) ↔df i is a function
from the set of TF-atoms into the set of truth values such that for every TF-
atom A, i(A)∈{T, F}. In symbols: ∀A[A∈TF-atom→ i(A)∈{T, F}].

• Thus, ∀i[i is a TF interpretation→ ∀A[A∈TF-atom→ i(A)∈{T, F}]].

2B-8 CONVENTION. (i for TF interpretations)

We use i as a variable or parameter ranging over TF interpretations.

So “i( )” is a “TF-atom-to-truth-value” operator.8 A TF interpretation is therefore
an assignment of a truth value to each sentence not having one of the six privi-
leged forms: A&B, A∨B, A→B, A↔B, ∼A, ⊥. In our grammatical jargon, a

8But i is an individual parameter or variable, not an operator parameter or variable, since by
Symbolism 1B-5 the latter is syncategorematic and so can be used only to make up an operator.
Were i only an operator parameter or variable, we could not extract it for consideration apart from its
operator, using it categorematically as we do when we say to which sets i belongs, or as we do when
we use it with a quantifier.
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sentence not having one of these forms is a “TF-atom.” So, in other words, a TF
interpretation assigns a truth value to each TF-atom. You can then see that a TF
interpretation satisfies the generic requirement on an interpretation: A TF interpre-
tation gives us enough information to compute the truth value of every sentence.
Just use the usual truth-tables.

The “geometrical correlate” of a (single) TF interpretation i is a (single) row of a
truth-table. For that is exactly what such a row does—it assigns a truth value to
each “atomic” sentence (in the so-called “reference columns” on the left), as in the
following example.

2B-9 EXAMPLE. (A truth table)

TF-interp: p q (p&q)∨∼p
i1: T T T
i2: T F F
i3: F T T
i4: F F T

Keep this picture firmly in mind. As you know, the fundamental truth-concept for
truth-tables relativizes truth to row: Given a sentence such as (p&q)∨∼p, you
mark it as T or F in a particular row such as that marked i2. Relativized “truth-
value-of” works the same way: The truth value of A is relativized to (depends on)
a TF interpretation.

2B-10 NOTATION. (V ali(A))

• “V ali(A)” is to be read “the truth value of A on i.”

• “V ali(A)=T” may be read “A is true on i,” which is short for “the truth
value of A on i is T.”

• “V ali(A)=F” may be read “A is false (or not true) on i,” which is short for
“the truth value of A on i is F.”

This interpretation-dependent idea is fundamental to truth-functional semantics.
Theoretically speaking, it is a sharply defined idea, and here we pedantically record
the essentials of its definition.
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2B-11 DEFINITION. (V ali(A))

• V ali(A) = F iff V ali(A) 6=T (bivalence).

• If A is a TF-atom, then V ali(A) = T iff i(A) = T.

• V ali(A&B) = T iff V ali(A) = T and V ali(B) = T.

• V ali(A∨B) = T iff V ali(A) = T or V ali(B) = T.

• V ali(A→B) = T iff V ali(A) 6=T or V ali(B) = T.

• V ali(A↔B) = T iff V ali(A) = V ali(B).

• V ali(∼A) = T iff V ali(A) 6=T.

• V ali(⊥) 6=T.

You really do not need to study or use this definition in the immediate future,
although later we feel free to refer back to it when wanted. If you keep in mind
that a TF interpretation i is like a row of a truth-table, you cannot go wrong.

Observe that now it makes no sense to ask for the truth value of, say, “p&q” out-
right; we can only ask for its truth value relative to some TF interpretation—relative
to some row of the truth-table. We care about whether V ali(p&q)=T or not,
where the role of i is essential. The following example works out how you can
begin with a truth-table picture and make out of it a series of statements involving
i(p) and V ali(A).

2B-12 EXAMPLE. (Use of i(p) and V ali(A))

As we said, each TF interpretation corresponds to a row in a truth table. Let us
indicate this by borrowing the labeling of the rows of the truth table displayed in
Example 2B-9; and at the same time, we will add further sentences to the right of
the vertical line.

TF-interp.: p q p q p&q ∼p (p&q)∨∼p
i1: T T T T T F T
i2: T F T F F F F
i3: F T F T F T T
i4: F F F F F T T



2B. Rough semantics of truth-functional logic 37

The following statements convey in symbols the same information that is repre-
sented in the first and third lines:

• i1(p) = T, i1(q) = T, V ali1(p) = T, V ali1(q) = T, V ali1(p&q) = T,
V ali1(∼p) = F, V ali1((p&q)∨∼p) = T.

• i3(p) = F, i3(q) = T, V ali3(p) = F, V ali3(q) = T, V ali3(p&q) = F,
V ali3(∼p) = T, V ali3((p&q)∨∼p) = T.

In the picture, the TF-atoms all occur on the left of the double vertical. The var-
ious interpretations in tell you which truth value has been assigned to each such
TF-atom. The picture has all the relevant sentences (whether simple or complex)
written to the right of the double vertical; and for each sentence A, V alin(A) tells
you the truth value that A has based on the truth values assigned by in to each of
the TF-atoms that A contains.

Exercise 9 (Truth tables)

1. Do for the second and fourth rows (i2 and i4) of the truth table displayed
in Example 2B-12 what is done, just below that truth table, for the first and
third rows.

2. Let p and q be all the TF-atoms. (In symbols from Definition 2A-3 and Sym-
bolism 1B-10, TF-atom={p, q}.) Now consider the following sentences:

∼(p ∨q), ((p &q) →p) ∨∼q, ⊥→∼(p ↔p)

Make a “truth table” that shows the truth values of these sentences on each
TF interpretation (that is, assignment of truth values to p and q). (If you do
not know how to do this, consult almost any elementary logic text.)

3. Your truth table should have four rows. Thinking of each row as a TF in-
terpretation, give each a name, say i1, i2, i3, and i4. Now write down half a
dozen statements each having the form

V al ( )= ,

where, to make sense, the subscript on V al should be the name of one of
your rows (i.e., one of i1, etc.); the second blank should be filled with the
name of one of three sentences mentioned above, and the third blank should
be filled with the name of a truth value.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /



38 Notes on the art of logic

2B.2 Defined semantic concepts: tautology, etc.

In terms of the (two-place) operator V al ( ) that carries the idea of truth rela-
tivized to TF interpretations, we can define several crucial semantic concepts.

2B-13 CHECK-LIST FOR MASTERY. (Defined semantic concepts)

• Tautological implication; A1, . . ., An �TF B.

• Tautological equivalence; A ≈TF B.

• Tautology;�TF A.

• Truth-functional falsifiability; 2TF A

• Truth-functional inconsistency; A1, . . ., An �TF.

• Truth-functional consistency; A1, . . ., An 2TF.

We will give each in pretty-much-English, in middle English, and then symboli-
cally. These will be easier to read if we use our conventions governing the use of
certain letters: A, B, and C are sentences, and G is a set of sentences, by Con-
vention 1B-15; i is a TF interpretation by Convention 2B-8; and by Convention
1B-20, any variables not already bound to explicit quantifiers are to be interpreted
as bound on the very-most outside of the entire display. Here, then, are the defini-
tions, accompanied by important examples.

Tautological implication. Although it is not the simplest, far and away the most
important concept for logic is tautological implication. Be certain to learn the
definition of this concept.

2B-14 DEFINITION. (Tautological implication and G �TF A)

We supply alternative ways of saying exactly the same thing; any one can count as
a definition of “tautological implication.”

1. Where G is a set of sentences and A is a sentence, G tautologically implies
A↔df on every TF interpretation in which every member of G is true, so is
A.
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2. Abbreviative definition: G �TF A↔df G tautologically implies A.

3. In other words, G �TF A↔df for every TF interpretation i [if (for every sen-
tence B, if B∈G then V ali(B)=T) then V ali(A)=T].

4. That is to say, G �TF A↔df ∀i[∀B[B∈G→V ali(B) = T]→V ali(A)=T].

5. Therefore, G �TF A iff there is no TF interpretation in which all of the mem-
bers of G are true and A is not.

6. That is, G�TF A iff it is false that there is a TF interpretation i such that (both
for all B [if B∈G then V ali(B)=T] and V ali(A) 6=T).

Pay particular attention to the structure of the right side of the definition, noting the
scope of each quantifier.

Because for instance {A, A→B} is a set (Symbolism 1B-10), the grammar of
tautological implication and the double turnstile allows us to write the truth that

{A, A→B}�TF B

This says that no matter the interpretation i, if every member of the set {A, A→B}
is true on i, then so is B. The curly braces make this a little hard to read. It is
therefore usual to drop the curly braces on the left of the double turnstile, writing
simply

A, A→B�TF B.

We promote this into a full-fledged convention.

2B-15 CONVENTION. (Dropping curly braces)

Instead of

{A1, . . ., An}�TF B,

one may drop the curly braces, writing instead simply

A1, . . ., An �TF B.

In the same spirit we write the English “A1, . . ., An tautologically implies B,” omit-
ting the curly braces.

This convention is used heavily from now on.
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The following is a list of useful tautological implications. They have no special
logical status aside from historically proven usefulness. More or less standard
names are indicated, and should be memorized.9 In the names with “int” and
“elim,” int= introduction and elim = elimination, for historical reasons explained
later.

2B-16 EXAMPLES. (Tautological implication and G �TF A)

A, B �TF A&B Conjunction, Conj., &int
A&B �TF A Simplification, Simp., &elim
A&B �TF B Simplification, Simp., &elim

A �TF A∨B Addition, Add., ∨int
B �TF A∨B Addition, Add., ∨int

A∨B, ∼A �TF B Disjunctive Syllogism, DS
A∨B, ∼B �TF A Disjunctive Syllogism, DS
∼A∨B, A �TF B Disjunctive Syllogism, DS
A∨∼B, B �TF A Disjunctive Syllogism, DS

A∨B, A→C, B→C �TF C Constructive Dilemma, Dil.
A→B, A �TF B Modus Ponens, MP,→elim

A→B, ∼B �TF ∼A Modus Tollens, MT
A→∼B, B �TF ∼A Modus Tollens, MT
∼A→B, ∼B �TF A Modus Tollens, MT
∼A→∼B, B �TF A Modus Tollens, MT
A→B, B→C �TF A→C Hypothetical Syllogism, HS
A↔B, B↔C �TF A↔C Biconditional syllogism, BCS

A↔B, A �TF B Modus ponens for the bi-
conditional, MPBC,↔elim

A↔B, B �TF A Modus ponens for the bi-
conditional, MPBC,↔elim

A↔B, ∼A �TF ∼B Modus tollens for the bi-
conditional, MTBC

A↔B, ∼B �TF ∼A Modus tollens for the bi-
conditional, MTBC

A, ∼A �TF B ex absurdum quodlibet, XAQ, ∼elim
A, ∼A �TF ⊥ ⊥ int
⊥ �TF A ⊥ elim

9The reservation “more or less standard” signals that in some cases, for convenience, we have
extended the meaning of a standard name by allowing it to apply to cases that are like the standard
cases except for a “built in” double negation. For example, “disjunctive syllogism” standardly applies
only to the first two of the four cases we list.
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Observe, then, that you have two jobs to carry out in connection with tautological
implication: (1) You must learn what it means (you must memorize Definition
2B-14), and (2) you must learn the listed Examples 2B-16.

Tautological equivalence. The next important concept is tautological equiva-
lence.

2B-17 DEFINITION. (Tautological equivalence and ≈TF)

Again we offer the definition in several equivalent forms.

1. Two sentences A and B are tautologically equivalent ↔df A and B have
exactly the same truth values on every TF interpretation.

2. Abbreviative definition:

A≈TF B↔df A and B are tautologically equivalent.

3. That is, A≈TF B↔df for every TF interpretation i, V ali(A)=V ali(B).

4. In other words, A≈TF B↔df ∀i[V ali(A) = V ali(B)].

The following is a list of useful tautological equivalences; standard names are in-
dicated, and should be memorized.
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2B-18 EXAMPLES. (Tautological equivalence)

A ≈TF A&A Duplication, Dup.
A ≈TF A∨A Duplication, Dup.

A&B ≈TF B&A Commutation, Comm.
A∨B ≈TF B∨A Commutation, Comm.
A↔B ≈TF B↔A Commutation, Comm.

A&(B&C) ≈TF (A&B)&C Association, Assoc.
A∨ (B∨C) ≈TF (A∨B)∨C Association, Assoc.
A&(B∨C) ≈TF (A&B)∨ (A&C) Distribution, Dist.
A∨ (B&C) ≈TF (A∨B)&(A∨C) Distribution, Dist.

A→(B→C) ≈TF (A&B)→C Exportation, Exp.
A↔B ≈TF (A→B)&(B→A) Biconditional Exchange, BE
A→B ≈TF ∼B→∼A Contraposition, Contrap.
A→B ≈TF ∼A∨B Conditional Exchange, CE
∼A→B ≈TF A∨B Conditional Exchange, CE

A ≈TF A&(A∨B) Absorption
A ≈TF A∨ (A&B) Absorption

The entries for Absorption are useless in proofs, but have the following philosophi-
cal point: It is difficult or impossible to base a theory of what a sentence is “about”
by considering any feature common to all its tautological equivalents.

Here is an additional list of tautological equivalents that are also especially impor-
tant. They all involve negated compounds.

2B-19 EXAMPLES. (Removing outermost negations)

∼(A&B) ≈TF ∼A∨∼B De Morgan’s, DeM, ∼&
∼(A∨B) ≈TF ∼A&∼B De Morgan’s, DeM, ∼∨
∼(A→B) ≈TF A&∼B Negated Conditional, NCond, ∼→
∼(A↔B) ≈TF ∼A↔B Negated Biconditional, NBC, ∼↔
∼(A↔B) ≈TF A↔∼B Negated Biconditional, NBC, ∼↔
∼∼A ≈TF A Double Negation, DN, ∼∼

As the title indicates, it is good to think of these equivalences as driving negations
from the outside to the inside, insofar as that is possible.

Tautology and truth-functional falsifiability. Much simpler but also of much
less use is the notion of a tautology.
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2B-20 DEFINITION. (Tautology and �TF A)

As before, we say the same thing in different ways.

1. A is a tautology↔df A is a sentence that is true on every TF interpretation.

2. Abbreviative definition: �TF A↔df A is a tautology.

3. That is, �TF A↔df for every i, V ali(A)=T.

4. That is, �TF A↔df ∀i[V ali(A)=T].

With regard to each of the above displays, it is none too early for you to begin to
observe the following: Each occurrence of “A” is implicitly bound to an outermost
universal quantifier. That is, each of the displays should be interpreted as beginning
with “For any sentence A.” In contrast, the quantifier “for every i” or “∀i” is not
and cannot be omitted since it is not outermost; it must be made explicit. That is
to say, it must be made explicit that to be a tautology is to be true on every TF
interpretation; the “every” cannot be dropped.

Definition 2B-20 of “tautology” is important for our work—although not as impor-
tant as tautological implication and tautological equivalence—and should be both
understood and memorized. The following is a list of tautologies, of which only
the first is of much use; standard names are indicated, and should be memorized.

2B-21 EXAMPLES. (Tautology)

�TF A∨∼A Excluded middle
�TF ∼(A&∼A) Noncontradiction
�TF A→A Identity
�TF A↔A Identity
�TF ∼⊥ Negated ⊥, Truth, ∼⊥ int

Any sentence that is not a tautology is truth-functionally falsifiable.

2B-22 DEFINITION. (TF-falsifiability)

A is TF-falsifiable (or truth-functionally falsifiable) ↔df A is not a tautology. In
symbols:

A is TF-falsifiable↔df 2TF A.

Here “2TF A” is intended as merely the negation of�TF A.
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Truth-functional inconsistency and consistency. The following also plays a
useful role in logic.

2B-23 DEFINITION. (Truth-functional inconsistency and G �TF )

All of the following say the same thing.

1. For any sentence A, A is truth-functionally inconsistent ↔df A is false on
every TF interpretation.

2. Abbreviative definition: A �TF ↔df A is truth-functionally inconsistent.

3. That is, A is truth-functionally inconsistent↔df for every TF interpretation
i, V ali(A) 6=T.

4. In other words, A is truth-functionally inconsistent↔df ∀i[V ali(A) 6=T].

5. Furthermore, for any set G of sentences, G is truth-functionally inconsistent
↔df on every TF interpretation, at least one member of the set G is false.
That is, there is no TF interpretation on which each member of the set G is
true.

6. Abbreviative definition: G �TF ↔df G is truth-functionally inconsistent.

7. In other words, G �TF ↔df for every TF interpretation i [there is a sentence
A such that [A∈G and V ali(A) 6=T]].

8. That is, G �TF ↔df ∀i∃A[A∈G &V ali(A) 6=T].

2B-24 EXAMPLES. (Truth-functional inconsistency and G �TF )

A&∼A�TF Explicit contradiction
A, ∼A�TF Explicit contradiction
⊥ �TF Absurdity

Go back and look at Definition 2B-14(5) of tautological implication. Notice that
if in fact there is no interpretation in which all the members of G are true, then of
course there is no interpretation in which all the members of G are true and B is not.
Therefore, if the set G is truth-functionally inconsistent, then it will tautologically
imply each and every arbitrary B. By definition. That is:

For every G and A, if G �TF then G �TF A.
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When G is truth-functionally inconsistent, one has G �TF A quite regardless of the
nature of A. There is a little philosophy here. Most logicians associate “tauto-
logical implication” with “good argument” or “valid argument”—i.e., with the
arguments we ought to use. They do this because tautological implication satis-
fies the logician’s promise: Never to lead you from truth to error (safety in all
things). Other logicians complain that some tautological implications are not good
arguments because of an absence of relevance between premisses and conclusion.
These complaints are more than elementary and we cannot pursue them.10 But
you should understand that what leaves room for the complaints is the nontrivial
step to be taken from the descriptive concept of “tautological implication” to the
normative concept of a good or valid argument.

There is one more concept to be defined: truth-functional consistency.

2B-25 DEFINITION. (Truth-functional consistency and 2TF)

The following are intended as equivalent ways of defining TF-consistency of a
single sentence A and of a set of sentences G.

1. For any sentence A, A is TF-consistent or truth-functionally consistent↔df

A is not TF-inconsistent.

In symbols:

A is TF-consistent↔df A 2TF .

2. Therefore, A 2TF iff there is a TF interpretation i such that V ali(A)=T.

3. In other words, A 2TF iff ∃i[V ali(A)=T].

4. Furthermore, if G is a set of sentences, then the set G is truth-functionally
consistent↔df G 2TF .

5. Accordingly, G is TF-consistent iff there is at least one TF interpretation
on which every sentence in the set G is true. That is, there is some TF
interpretation on which every member of G is true.

6. Therefore, G is TF-consistent iff there is a TF interpretation i such that for
every sentence A, if A∈G then V ali(A) = T.

10If you are interested, see Entailment: the logic of relevance and necessity, with volume 1 by A.
R. Anderson and N. Belnap (1976) and volume 2 by A. R. Anderson, N. Belnap, and J. M. Dunn
(1992), Princeton University Press.
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Figure 2.1: Semantic square of opposition for TF concepts

7. That is, G 2TF iff ∃i∀A[A∈G→V ali(A) = T].

Observe that from (5) on, there are two quantifiers in the definiens (right side). You
need eventually to get them straight: To say that a set G is consistent is to say
that there is a single TF interpretation on which they are all true together. It does
not say merely that for each member of G there is a (different) TF interpretation
on which it is individually true.11 For example, {p, ∼p} is not consistent even
though there is (at least) one TF interpretation that makes p true and a different
TF interpretation making ∼p true. Let us add that we may use “G 2TF A” for “G
does not tautologically imply A” and “A 6≈TF B” for “A and B are not tautologically
equivalent.”

It helps to understand the foursome of tautology, inconsistency, consistency, and
falsifiability by means of what the medieval logicians called a “square of opposi-
tion” as illustrated in Figure 2.1.

We will be using the double turnstile and the double squiggle almost immediately,
and you need to be able to read these notations. The next exercise asks you to write
them a little, but apart from that, you will be asked only to read these notations. You
will not be asked to work with�TF and ≈TF until §7A.

11With embarrassment we report that even after working entirely through these notes, some stu-
dents confuse these two ideas. Try not to be one of them.
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2B-26 REVIEW. (“Positive” TF semantic concepts)

You can use the following list to check your understanding. You should know the
definition of each of the listed examples.

1. Tautological implication: expressed with “A1, . . . An �TF B.” See p. 38.

2. Tautological equivalence: expressed with “A ≈TF B.” See p. 41.

3. Tautology: expressed with “�TF A.” See p. 43.

4. Truth-functionally inconsistent sentence: expressed with “A�TF.” See p. 44.

5. Truth-functionally inconsistent set: expressed with “A1, . . . An �TF.” See p.
44.

Exercise 10 (Tautological implication, etc.)

These exercises involve important memory-work. It will be easy if you have al-
ready mastered an elementary logic text such as Klenk (2002), as mentioned in the
Preface. If you have not already mastered such a text, now is the time to do so: Go
back to such a text and do all the exercises! Otherwise, this book will be a waste
of your time.

1. Pick one each of the listed tautologies (Examples 2B-21), tautological impli-
cations (Examples 2B-16), truth-functional inconsistencies (Examples 2B-
24), and tautological equivalences (Examples 2B-18). For each one you pick,
show by a truth table that it is what is claimed.

2. For each of the “positive” semantic TF properties or relations listed in Re-
view 2B-26, (1) give one example that is not on any of the lists, and also (2)
give one counterexample (i.e., something that does not have the property, or
in the case of a relation, a pair of items that do not stand in the relation). Use
sentences built from p and q.

3. Write down all the tautologies and all the tautological implications and all the
truth-functional inconsistencies and all the tautological equivalences from
the four lists Examples 2B-21, Examples 2B-16, Examples 2B-24, and Ex-
amples 2B-18. Then supply their names without peeking. Check this your-
self. Do not hand in your work; however, if you are not prepared to certify to
your instructor that you have completed this memory task, please abandon
trying to learn the material of these notes.
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4. Write down all the names. Then supply the principles without peeking.
Check this yourself. Do not hand in your work; however, if you are not
prepared to certify to your instructor that you have completed this memory
task, please abandon trying to learn the material of these notes.

5. Optional (skippable). We have used the double turnstile in three ways: with
something only on its right (expressing tautologyhood), with something only
on its left (expressing truth-functional inconsistency), and with something on
both sides (expressing tautological implication). Furthermore, what is on the
left could be either a sentence or a set of sentences. Can you think of any
principles that relate any of these usages one to the other? Example: For
every sentence A, �TF A iff ∼A �TF .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

2C Proof theory for truth-functional logic

We outline a proof system for truth-functional logic that combines ideas from the
“method of subordinate proofs” of Fitch (1952) with ideas from Suppes (1957),
adding a thought or two borrowed elsewhere. The aim has been to provide a useful
system, one which is applicable to the analysis of interesting arguments. The style
of presentation will presume that you have had some prior experience with some
system of formal logic; that is, although we won’t leave anything out, we shall be
brief.

2C-1 CONVENTION. (Fi as system name)

Occasionally, when we need a name for the system, we call it “Fi” (for “Fitch”)—
keeping the same name even when we gradually add to the system.

This section gives the rules in prose and pictures or examples, but certainly the
blackboard will be needed for elaboration.

2C-2 CHECK-LIST FOR MASTERY. (First items to learn)

• Rule of hypothesis (hyp)

• Subproof and scope
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• Rule of reiteration (reit)

• Availability

• Wholesale rule TI

• Wholesale rule TE

• Rule for negated compounds

• Wholesale rule Taut

• Conditional proof (CP)

• Fitch proof (proof in Fi)

• Hypothetical vs. categorical proof

• ADF procedure

• Reductio (RAA⊥ )

2C.1 The structure of inference: hyp and reit

The first two rules define the very structure of inference itself, as described by
Fitch. Sometimes these two are called “structural rules.”

2C-3 RULE. (Rule of hypothesis (hyp))

At any stage, a new set of hypotheses may be made. Notation: Start a new vertical
line, and list the one or more hypotheses to its right, giving “hyp” as reason. Enter
a short horizontal line under the last of the one or more hypotheses. As alternative
notation for the reason, a hypothesis could be marked “P” for “premiss” or “assp”
for “assumption”; the logical idea is the same. Pictures:

Single hypothesis: · ·
· ·
· ·
n A hyp



50 Notes on the art of logic

Three hypotheses: · ·
· ·
· ·
n A1 hyp

n+1 A2 hyp
n+2 A3 hyp

The horizontal line helps the eye in seeing what is a hypothesis. The vertical line
gives the scope of the newly entered hypotheses. It signifies that the hypotheses
are merely supposed true, and not stated outright as true. What is proved in this
scope is proved under those hypotheses, not “outright.”

2C-4 DEFINITION. (Subproof and scope)

A vertical line, with all its hypotheses and other steps, is called a subordinate proof,
or subproof. The vertical line represents the scope of the hypotheses. Here is an
example of the use of hyp.

1 (A&B)→C hyp
2 B hyp
· · ·
· · ·
· · ·

10 (∼C∨∼B) hyp
11 · ·
12 · ·
13 · ·
14 · ·
15 · ·
16 · ·
17 · last line of proof

The rule of hyp was used three times: at lines 1, 2, and 10. The scope of the
hypotheses at steps 1 and 2 extends through line 17 (the end of the proof). The
scope of line 10 extends through line 14. Then it stops. It is critical that lines
beyond 14 are not within the scope of the hypothesis at line 10.
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The figure 10–14 counts as a subproof. The entire proof 1–17 also counts as a
subproof. As you can see, one subproof can contain another subproof.

The rule of hypothesis is crucial to logic; without it, informative proofs would be
impossible. We must be able to suppose whatever we like and whenever we like.
It is also essential that we not pretend our supposals are assertions. We must mark
them carefully as hypotheses, and we must with equal care indicate their scopes.

2C-5 RULE. (Reiteration (reit))

You can reiterate or repeat a formula into a subordinate proof (but never out of one).
Notation: Write the formula, giving “reit” plus the line number of the repeated step.

Picture:

· ·
· ·
j B
· ·
· ·
k A hyp
· ·
· ·
n B j, reit

We don’t use this rule much, because instead we obtain the effect of it by the
definition of availability, as follows.

2C-6 DEFINITION. (Availability)

A step is available at a line in a subproof if (1) it is above that line and (2) it is either
already in that subproof, or could have been obtained in that subproof by (possibly
repeated) reiteration. In other words, an available step occurs both above, and also
either on the same vertical line, or on a vertical line to the left of, the given subproof
line.

Definition 2C-6 is used in the statement of the rules TI and TE below.
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Here is an example illustrating various possibilities of availability and nonavail-
ability at The Sstep Under Consideration.

·
Available
·

Available hyp
·

Not hyp
·
Not
·

Available
·

Available hyp
·
Available
·

Not hyp
·
Not
·

The Step Under Consideration

·
Not
·

Not
·
Not

Exercise 11 (Availability)

In the following example, which steps are available at the step marked The Step

Under Consideration? Do this exercise without peeking at the previous example, then
check it yourself (do not hand in your work).
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·
1
·

2 hyp
·

3 hyp
·
4
·

5
·

6 hyp
·
7
·

8 hyp
·
9

·
The Step Under Consideration

·
10
·

11
·
12

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

2C.2 Wholesale rules: TI, TE, and Taut

The following “wholesale rules” TI, TE, and Taut use the concept of availability in
order to enable you to make great logical leaps (if you wish to do so).

2C-7 RULE. (Tautological implication (TI))

Let A1, . . . , An �TF B in the sense of Definition 2B-14 on p. 38. Let steps A1, . . . ,
An be “available” at a given line in a given subproof. Then B can be written at that
line in that subproof, giving as reason, TI, together with the line numbers of the
premisses A1, . . . , An. Add (or substitute) the name of the particular tautological
implication if it is one of those listed in Examples 2B-16 on p. 40.
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Instead of giving you a general picture, here is an example of a proof involving
some uses of TI.

1 (A→B)&E hyp
2 (∼C∨∼E)&A hyp
3 ∼C 1, 2 TI
4 B 1, 2 TI
5 B&∼C 3, 4 TI
6 E 1, TI

You may not be able to see right off that each of the above “TI” annotations is
correct. You can, however, see that each of the cited premisses is “available,” and
for the rest, just do a little truth table.12 Here is another example.

1 A∨B hyp
2 ∼A hyp
3 C hyp
4 B 1, 2 TI (DS)
5 B&C 3, 4 TI (Conj)
6 B∨∼∼B 4, TI (Add, or ∨int)

In all of your exercises, try to write a standard name if there is one. This prac-
tice will help you learn. Drop the “TI” if your writing hand becomes weary. For
example, line 4 could be annotated as just “1, 2 DS.”

2C-8 RULE. (Tautological equivalence (TE))

Let A and B be tautologically equivalent in the sense of Definition 2B-17 on p. 41.
Let ( . . .A . . . ) be a sentence containing A, and let it be “available” at a given line
in a given subproof. Then ( . . .B . . . ) can be written at that line in that subproof,
giving as reason, TE, together with the line number of the premiss ( . . .A . . . ). Add
(or substitute) the name of the particular tautological equivalence if it was listed in
Examples 2B-18 on p. 42.

12It is critical that you can check by truth tables whether or not the cited premisses really do
tautologically imply the desired conclusion. This checkability is essential to our taking TI as a
legitimate rule.
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Note: Given a sentence ( . . .A . . . ) said to contain A as a part (or indeed as the
whole), by ( . . .B . . . ) we mean the result of replacing A in ( . . .A . . . ) by B, leav-
ing everything else as it was. (We mentioned this idea of replacement in §2A.2(6)
on p. 28.) Here is an example of the use of TE.

1 A&(B→C) hyp
·
·

n A&(∼C→∼B) 1, TE

As we have emphasized by the list Examples 2B-19 headed “Removing outermost
negations,” it is logically important that there is a TE for ∼A, whenever A is a
complex formula. This TE permits removing that outermost negation—usually by
driving it inwards. It is convenient to refer to this group of special cases of TE as
“the Rule for Negated Compounds.”

2C-9 DEFINITION. (Rule for negated compounds)

An application of the rule TE is considered also as an application of the rule for
negated compounds if the particular tautological equivalence applied is contained
in Examples 2B-19 on p. 42.

There is a final rule based on truth-table ideas.

2C-10 RULE. (Tautology (Taut))

If �TF A in the sense of Definition 2B-20 on p. 43, then A can be entered at any
line of any subproof. As reason, just write Taut. Add (or substitute) the name of
the particular tautology from Examples 2B-21 on p. 43 if it has one and you know
it.

Remark: This rule is hardly ever useful. The following, however, is an example of
the use of Taut.

· ·
· ·
· ·
j B hyp
· ·
· ·
n A∨∼A Taut
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Note that on line n, no previous lines are mentioned. A tautology needs no pre-
misses, and it is a confusion to suggest otherwise.

So far, in addition to the structural rules hyp and reit, we have the rules TI, TE (in-
cluding the rule for outermost negations as a special case), and Taut. You can prove
a lot with these rules, and they become powerful tools when used in conjunction
with other logical equipment; but proofs using only these rules tend to be a waste
of time. Therefore, we insert here only a brief exercise asking you to annotate with
the names that you have learned.

Exercise 12 (TI, TE, Taut)

Annotate the following proofs. Include the name of the particular TI, TE, or Taut
if it is one of those with a name. But note that some steps represent “nameless”
applications of TI, TE, or Taut.

1.

1 A→((B∨∼B)→C) hyp
2 ∼∼A
3 (B∨∼B)→C
4 B∨∼B
5 C&C
6 C&A
7 ∼(∼C∨∼A)
8 (A&(B∨∼B))→C

2.

1 (B∨∼A)∨C
2 ∼(D→B)&∼C
3 B∨∼A
4 D&∼B
5 A→B
6 ∼A&D
7 ∼(∼∼D→A)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

2C.3 Conditional proof (CP)

The following rule is powerful.

2C-11 RULE. (Conditional proof (CP))

Let a proof have as one of its items a subproof, with hypotheses A1, . . . , An and
last step B. Then (A1 & . . . &An)→B may be written as the next step, the vertical
line of the subproof stopping just above (A1 &.. .&An)→B.

As reason, write→int or CP, together with “j–n,” where j is the number of the first,
and n of the last, step of the subproof. As a special case, the subproof can have a
single hypothesis A and last step B; then the conclusion is just A→B. Tricky point:
The last line can be the first line (that is, the subproof can have just one line).
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Picture.

· ·
· ·
j A hyp
· ·
· ·
· ·
n B

n+1 A→B j–n CP

Example.

1 A→(B∨E) hyp
2 ∼E hyp
3 A hyp (for CP)
4 B∨E 1, 3 MP
5 B 2, 4 DS
6 A→B 3–5 CP

Exercise 13 (CP exercises)

Complete and supply all justifications. Note that we have used a few dots in place
of left parentheses, per Church’s convention as described in §9A. (Don’t use any
“wholesale” rules.”)

1.

1 P hyp
2 Q
3 P 1, reit
4 Q→P
5 P→.Q→P

2.

1 P hyp
2 (P&Q)→R
3 Q
4 2, Exp
5 1, 4 MP
6 3, 5 MP
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3.

1 P→Q
2 R∨∼Q hyp
3
4
5
6
7 P→R

4.

A→((B∨B)→C)
B

A→C
CP

5.

A→B
B→C

A→.D→C

Note, for (6), that
�TF P→.Q→P.

6.

A→.(P→.Q→P)→R

R→S→.A→S
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

2C.4 Fitch proofs, both hypothetical and categorical

Before offering additional exercises on CP, we introduce a little more jargon and a
point of ethics.

2C-12 DEFINITION. (Fitch proof, hypothetical and categorical)

A Fitch proof (Fi-proof or a proof in Fi) is a construction each line of which is in
accord with the rules. (Because we are going to be adding rules as we go along, we
consider this statement to have an “open texture” until we give the “final” definition
of an Fi proof at the end of this chapter, §2C.9.) It is required that the last line of
the proof exhibit a sentence on the outermost vertical line of the proof. There are
two sorts of Fitch proofs, depending on whether or not there are hypotheses on the
outermost vertical line of the proof.
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• A proof in Fi may leave the sentence on the last line of the outermost vertical—
its conclusion—within the scope of one or more hypotheses; such a proof is
hypothetical. In other words, the outermost vertical line of a hypothetical
proof of A will begin with some hypotheses and will end with A.

• In contrast, a categorical proof in Fi of A is a proof of a conclusion A
whose outermost vertical line does not begin with any hypotheses. In other
words, a proof proves A categorically iff in that proof, A is not within the
scope of any hypothesis.13

To give a hypothetical proof of A in the system Fi that we have so far developed is
to prove that the hypotheses tautologically imply A. To give a categorical proof of
A in the system Fi that we have so far developed is to prove that A is a tautology.
Here is the very cheapest possible example of a categorical proof.

1 A hyp
2 A→A 1–1, CP

Not only is the above proof categorical—since its last step does not lie in the scope
of any hypothesis, but it also illustrates the tricky part of the definition of CP (Rule
2C-11 on p. 56): The last line of the subproof is also the first line.

2C-13 COMMUNICATIVE CONVENTION. (Standards of politesse)

In proofs designed for communication rather than for discovery or self-conviction,
one should only use obvious tautologies for Taut, or obvious tautological implica-
tions for TI, or obvious tautological equivalences for TE. What counts as “obvious”
is a matter of taste, and can vary from context to context, and from time to time.

2C.5 Conditional proof—pictures and exercises

CP is a failsafe rule: If there is any way at all of proving a conditional, you can
do so by using CP. So how do you use conditional proof in order to prove a con-
ditional? We are going to introduce a variety of rules in addition to CP that make

13This way of speaking presupposes that categorical proofs have a kind of “extra” vertical line
on the very outside, a line with no hypotheses. It is much better to begin the construction of every
categorical proof by drawing this vertical (with of course no hypotheses at its top). Let us mention,
however, that such a line isn’t strictly speaking a “scope marker,” just because there are no hypotheses
at its top. The use of the “extra” line on paper is to guide the eye in lining things up in a readable
way.
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reference to subproofs. The following advice on the order of doing things applies
equally to all of them.

2C-14 ADVICE. (Rules involving subproofs: ADF)

You have decided to obtain a step A by a rule that involves subproofs. Just for a
name, let us call the method we are about to suggest the ADF method: Annotate,
Draw, Fill in. It goes as follows. .

Before you start, there is always something or other already written at the top of
your paper, and you have already written A toward the bottom of your paper as a
goal to be proved.

1. Annotate. The very first thing you do is annotate your goal sentence A
with the name of the rule that you are going to apply, e.g. CP. You do this
first so that you do not later become confused. You are, in effect, providing
a presumptive justification for your goal sentence.

2. Draw. There is some vertical space between what is already at the top of
your paper and your goal A , which is located toward the bottom. The rule
by which you plan to obtain A , for example CP, requires one or more sub-
proofs as premiss(es). Draw the vertical line(s) needed as scope-marker(s)
for these subproofs. In order to avoid becoming confused, use up all the
space. Therefore your scope marker(s) will run from immediately below
the steps already written at the top of your paper, and will stop exactly just
before your goal A . Do this completely before moving on to the third step.

3. Fill in. Next, you execute the last part of the ADF method: You fill in both
the top and the bottom of the scope-marker(s) you have just drawn.

(a) Fill in the first line of the new subproof with the proper sentence (if, as
in the case of CP, one is required), and also with the justification, often
“hyp.”

(b) Fill in the last line of the new subproof with whatever new goal is
appropriate, and also annotate that last line with a question mark, ?, to
indicate that you have work left to do in order to obtain your new goal
(a subgoal).

Carry out these three steps in the order indicated: (1)First annotate your given
goal with the rule you plan to use. Then (2) draw your scope-marker(s). Finally
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(3) fill in both the top and the bottom of the newly drawn scope-marker(s). By
doing things in this order you will avoid substantial confusion.

Let us turn to CP specifically. Suppose A and B are any sentences, perhaps com-
plex, and suppose you want to derive a conditional, A→B:

Given: ·
·
· (last of already derived steps)

A→B ?

What you do in this situation is to “get set to use conditional proof” as follows.
You write:

·
·
· (last of already derived steps)

A hyp (or P)

B ?
A→B /? CP (or→I)

[Cross out the question-mark that was on A→B]

Study this pair of pictures. Taken together as signifying a transition from one
stage of your proving to the next stage, they are a good guide to good logic. This
picture, however, combines all three steps. Advice 2C-14 says that it is best first
to annotate your conclusion with “CP,” and second to draw the scope-marker all
the way from top to bottom (!), and third to fill in the top and bottom of the new
scope-marker, with the appropriate “hyp” at the top and the appropriate new goal
at the bottom. Do get in the habit of carrying out these steps in the order ADF.
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Note that the inserted vertical line begins immediately under the last step for which
you already have a justification, and ends immediately above the questioned A→B.
This is good policy to avoid mistakes. What will you do next? You will note that B
is questioned, and you will attack the “subgoal” of deriving B (which, remember,
may itself be complex).

As the picture indicates, it is a matter of working both ends against the middle: As
in working a maze, you have to keep one eye on the “entrance” (available already-
derived steps) and the other on the “exit” (the questioned conclusion).

Exercise 14 (Conditional proof)

To test your understanding of conditional proof, and how it is used with other rules,
annotate the following proofs, and fill in any missing steps. An example is almost
completely annotated for you.

1 A hyp
2 (A&B)→(C∨∼A) hyp
3 B hyp
4 A&B 1, 3 TI (&int)
5 C∨∼A
6 C 1, 5 DS
7 B→C 3–6 CP (or→int)

1.

1 A→(B→C)
2 A&B
3 B→C
4 C
5 (A&B)→C

2.

1 (A&B)→C
2 A
3 B
4 A&B
5 C
6 B→C
7 A→(B→C)

3.

1 (A&B)→C
2
3 ∼(A&B)
4 ∼A∨∼B
5
6 (A&∼C)→∼B

4.

1 A→(B∨C)
2 A&∼B
3 B∨C
4 C
5

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /
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Exercise 15 (More conditional proof)

Up to (9) the problems are exceedingly simple and easy; they should be done in
order to help you be sure you know how to construct subproofs. (If you find these
troublesome, ask immediately for one-on-one instruction. It helps!) Most illustrate
important principles of “pure” logic. Here and below, if the problem involves a trio
of dots ( ∴ ), supply a hypothetical proof. If the problem exhibits a single formula,
supply a categorical proof. For these problems, use only the following rules: hyp,
reit, MP, CP, Simp, and Conj.

Problems from (10) onward go better if you mix the above-listed rules with whole-
sale rules, either TI rules or TE rules, (but do be polite, 2C-13).

1. A→B ∴ (C→A)→(C→B)

2. A→(B→C) ∴ B→(A→C)

3. A→(B→A). (Don’t forget reit; a
categorical proof is wanted.)

4. A→(A→B) ∴ A→B.

5. A ∴ (A→(A→B))→B

6. S→P, Q→R ∴ (P→(S→Q))
→(S→R)

7. P→(Q→R) ∴ (P&Q)→R

8. ((P&Q)→R)→ (P→(Q→R))

9. If the enemy is fully prepared, we
had better increase our strength.
If we had better increase our
strength, we must conserve our
natural resources. Therefore, if
the enemy is fully prepared, we
must conserve our natural
resources. (Use P, I, R.)

10. (∼A∨∼B)→∼C ∴ C→A

11. (A→B)→C, A→∼(E∨F), E∨B
∴ A→C

12. F↔∼(Z&Y), ∼(G∨Z)→∼H,
∼(F&H)∨Y ∴ F→(H→G)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

2C.6 Reductio ad absurdum (RAA⊥ )

A second powerful rule is a form of reductio ad absurdum. In fact RAA⊥ is a
failsafe rule for proving negations: If you can prove a negation ∼A in any way at
all, you can always prove it using RAA⊥ . For this version of reductio, we rely on
the presence in our language of the so-called “propositional constant,” ⊥, for ab-
surdity. Its interpretation is as a horrible falsehood, what in German is sometimes
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called das Absurd, “the absurd.” (Recall from Convention 2B-5 that the table for⊥
has an “F” in every row.) It is so false that the only way to get it as a conclusion is
by that special and curious case of TI in which the premisses are themselves truth-
functionally inconsistent. Since every inference with truth-functionally inconsis-
tent premisses is an instance of TI, so is the special case in which the conclusion is
awful ⊥. In symbols, we are saying that if

A1, . . ., An �TF

then

A1, . . ., An �TF ⊥ .

(The special case of TI in which we derive ⊥ from explicitly contradictory steps A
and ∼A we called “⊥ introduction” or “⊥ I”; see Examples 2B-16 on p. 40.) Now
the rule RAA⊥ can be stated.

2C-15 RULE. (Reductio ad absurdum (RAA⊥ ))

Let a proof have as one of its items a subproof with hypothesis A [variant: ∼A] and
last step ⊥. Then ∼A [variant: A] can be written as the next step, the vertical line
of the subproof stopping just above ∼A [or, on the variant, A]. As reason, write
RAA⊥ , together with “m–n,” where m is the number of the first, and n of the last,
step of the proof. You are to be reminded that the only way to obtain ⊥ is via a
truth-functionally inconsistent set, which is precisely why the hypothesis A [or, on
the variant, ∼A] is said to be “reduced to absurdity.”

Picture of RAA⊥ , both regular and variant forms.

· ·
· ·
j A hyp
· ·
· ·
· ·
n ⊥

n+1 ∼A j–n, RAA⊥ [regular]

· ·
· ·
j ∼A hyp
· ·
· ·
· ·
n ⊥

n+1 A j–n, RAA⊥
[variant]
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Though it is good for you to observe the difference between the regular and variant
forms, there is no need for you to mention it in your exercises unless specially
asked to do so. Here is an example of the use of RAA⊥ .

1 ∼A hyp
2 A&B hyp (for RAA⊥ )
3 ⊥ 1–2, TI
4 ∼(A&B) 2–3, RAA⊥

Exercise 16 (RAA⊥ exercises)

Complete and fully annotate the following, in each case using RAA⊥ at least once.

1.

1 A
2 ∼B

∼(A→B)

2.

1 ∼A→B
2 ∼B

A
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

How does one use reductio proofs? Suppose first that A is any sentence, perhaps
complex, and suppose that, at a certain stage, you are trying to derive ∼A.

·
·
· (last of already derived steps)

∼A ?
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What you do in this situation is to “get set to use RAA⊥ ” as follows, using ADF
as in Advice 2C-14. You write as follows.

·
·
· (last of already derived steps)

A hyp

⊥ ?
∼A /? RAA⊥

[Cross out the question-mark that was on ∼A]

For the best time-order in which to carry out “getting set to use RAA⊥ ,” use ADF,
Advice 2C-14: First annotate the desired conclusion with “RAA⊥ ,” second draw
your scope marker to use up the entire space, and third fill in both the top (the hyp)
and the bottom (⊥) as appropriate.

Note that the inserted vertical line begins immediately under the last step for which
you already have a justification, and ends immediately above the questioned ∼A.

What will you do next? You will note that ⊥ is questioned, and you will attack the
“subgoal” of deriving ⊥. Recalling the awful truth table for ⊥ you will also recall
that there is in general only one way of deriving it: by TI from an available set of
truth-functionally inconsistent steps. These steps can include the new hypothesis,
A, as well as any already derived available steps. There is an example to be anno-
tated in the exercise below, but first observe that there is a variant form of RAA⊥ .
Suppose you are trying to derive some perhaps complex sentence, A, and have run
out of other ideas:

Given:



2C. Proof theory for truth-functional logic 67

·
·
· (last of already derived steps)

A ?

As a last resort, you can try to obtain A by the variant form of RAA⊥ :

You write:

·
·
· (last of already derived steps)
∼A hyp (or P)

⊥ ?
A /? RAA⊥ [Cross out the question-mark that was on A.]

Proofs using this variant form are less “constructive” than those that avoid it, since
A just pops up out of nowhere; but sometimes use of this form is essential.

Exercise 17 (RAA⊥ )

Annotate the following proofs.

1.
1 ⊥ hyp
2 A 2.

1 A hyp
2 ∼A hyp
3 ⊥
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3.

1 A→(B→C) hyp
2 ∼C hyp
3 A&B
4 A
5 B→C
6 C
7 ⊥
8 ∼(A&B)

4.

1 ∼A→∼B hyp
2 B&C hyp
3 ∼A
4 ∼B
5 ⊥
6 A

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

Exercise 18 (More RAA⊥ )

In proving the following, use RAA⊥ (regular or variant) in each problem.

1. ⊥ ∴ A

2. A ∴ ∼(∼A&B)

3. ∼B, B∨C, ∼A→∼C ∴ A

4. A&∼B ∴ ∼(A→B)

5. ∼(A→B) ∴ A&∼B

6. A∨ (A→B) [Huh?]

7. P→S, S→∼(B&D), ∼B→T,
∼(D→T) ∴ ∼P

8. (A→B)→(∼C→D), ∼(C∨E),
(A∨F)→B ∴ D

9. A→(B→(C&D)), C→(E→(H
&I)), F→∼I ∴ (A&B)→(A
→(F→∼E))

10. If the laws of mathematics refer
to reality, they are not certain.
Hence, if they are certain, they do
not refer to reality. (Use R. C)

11. If forces A and B are equal and
are the sole forces acting on point
p, the resultant force R will be
either nil, or will have the
direction of the bisector of the
angle between A and B. But R
does not have this direction. If R
is nil, then A and B are equal and
directly opposed. Hence, if A
and B are equal but not directly
opposed, then they are not the
sole forces acting on p. (Use E,
S, N, D, O.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

We close this discussion by noting that sometimes—but not often—it is more con-
venient to use a form of RAA that does not involve ⊥.
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2C-16 RULE. (RAA)

Here is a picture of RAA (sans ⊥), in both its regular and variant forms:14

· ·
· ·
j A hyp
· ·
· ·
k B
· ·
· ·
n ∼B

n+1 ∼A j–n, RAA [regular]

· ·
· ·
j ∼A hyp
· ·
· ·
k B
· ·
· ·
n ∼B

n+1 A j–n, RAA
[variant]

RAA has to be interchangeable with RAA⊥ for the following conclusive reason:
If you have ⊥ in a subproof, you can always get a contradictory pair B and ∼B
by ⊥elim, p. 40. And if you have two contradictory sentences B and ∼B, you
can always get ⊥ by ⊥int. Our giving RAA⊥ primacy of place is for a low-level
practical reason: With plain RAA you have nothing definite to put at the bottom
of the subproof as a new subgoal, since you don’t really know exactly what you
are looking for. But with RAA⊥ , you can always write ⊥ as your new subgoal.
Therefore, although you may use RAA as part of any Fitch proof, we won’t provide
any exercises or problems that require its use, and you can if you wish ignore it
entirely. (Oh, well: As a part of Exercise 18, prove (4) twice, the second time by
using RAA instead of RAA⊥.)

2C.7 Case argument (CA) and biconditional proof (BCP)

The following rules are useful additions, as we find out in §2C.8.

2C-17 CHECK-LIST FOR MASTERY. (Two more rules)

• Case argument

• Biconditional proof
14Note that in contrast to e.g. Klenk (2002), you do not need to conjoin the contradictory steps to

form B&∼B. Conjunction really has nothing to do with it.
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Case argument. Case argument (CA) is a failsafe rule for application to a dis-
junction A∨B as premiss (repeat: as premiss). The key is that you are going
somewhere, that is, you have a desired conclusion, say C. The rule says that you
can obtain this conclusion from three premisses: the disjunction A∨B, a subproof
with hypothesis A and last step C, and a subproof with hypothesis B and last step
C.

2C-18 RULE. (Case argument (CA))

· ·
· ·
j A∨B
· ·
· ·
k A hyp
· ·
· ·

k′ C ?

m B hyp
· ·
· ·

m′ C ?
C j, k–k′, m–m′ CA

The confusing point is that the desired conclusion C occurs three times: once
where you want it, but also separately as the last step of each of the two subproofs.
None of these occurrences is redundant. Because the rule CA is failsafe, it is worth
getting clear on exactly how it goes.

Observe in particular that unlike CP and RAA⊥ , the rule CA requires setting up
two subproofs.15 That means that when you annotate the conclusion C, you must
refer to three premisses: the disjunction and each of the two subproofs. When you
“get set to use CA,” fill up the entire available space with the two subproofs.

Go back and look at Advice 2C-14 on p. 60: use the ADF method. First annotate
the conclusion C with “CA.” Second draw your two subproofs, using up all of the
available space.16 Third fill out the top of each subproof (with the respective ap-
propriate hypothesis) and the bottom of each subproof (with identical occurrences

15But CA has three premisses: two subproofs and the disjunction.
16Well, it is important to leave one line of space between the two subproofs so that there is no

mistake as to which sentences belong to which subproofs.
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of the desired conclusion C). Do all three ADF steps before doing anything else.
Study the following example.

1 A∨B
2 A hyp
3 B∨A 2, Add

4 B hyp
5 B∨A 4, Add
6 B∨A 1, 2–3, 4–5 CA

Don’t go further until you can carry out the following exercise.

Exercise 19 (Case argument)

Annotate the first two, and use Case Argument to prove the rest.

1.

1 (A&B)∨ (A&C) hyp
2 A&B
3 A

4 A&C
5 A
6 A

2.

1 A∨B hyp
2 ∼A hyp
3 A
4 ∼A
5 ⊥
6 B

7 B
8 B
9 B

3. (A&B)∨ (A&C)
∴ A&(B∨C)

4. (A→B)∨ (C→B) ∴ (A&C)→B

5. ∼A∨∼B ∴ ∼(A&B)

6. A→B, ∼B∨∼C ∴ ∼A∨∼B)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

Biconditional proof. To prove a biconditional it is always possible and usually
convenient to use the rule of Biconditional Proof or BCP or↔int, which says that
you can prove A↔B from two subproofs: one with hypothesis A and last step B,
and the other with hypothesis B and last step A. BCP is a failsafe rule.
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2C-19 RULE. (Biconditional proof)

· ·
· ·
j A hyp
· ·
· ·

j′ B

k B hyp
· ·
· ·

k′ A
A↔B j–j′, k–k′, BCP (or↔int)

BCP is a two-premiss rule, where each premiss is itself a subproof. BCP is evi-
dently a “double-barreled CP.” The time-order in getting set to use BCP is exactly
analogous to that for CP and RAA⊥ and CA, namely, ADF in accord with Advice
2C-14 on p. 60: First annotate the desired conclusion as “BCP,” second draw the
two required subproofs in such a way as to use up all the available space, and third
fill in the respective tops and bottoms of the two subproofs as required. Leave no
step untaken. Here is an example of a categorical proof using BCP.

1 A&B hyp
2 A 1, Simp
3 B 1, Simp
4 B&A 2, 3 Conj

5 B&A hyp
6 A 5, Simp
7 B 5, Simp
8 A&B 6, 7 Conj
9 (A&B)↔ (B&A) 1–4, 5–8, BCP (or↔int)

It seems easy to see the point of the rule BCP: In order to establish that A↔B, you
must establish that you can obtain each from the other.

Do not proceed without carrying out the following exercise.
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Exercise 20 (Biconditional proof)

Annotate the first two proofs and use biconditional proof to prove the rest.

1.

1 C→A
2 B&C hyp
3 A
4 B
5 C
6 B→C

7 B→C
8 C
9 A

10 A↔(B→C)

2.

1 A&B hyp
2 A
3 B

4 B
5 A
6 A↔B

3. A→((A↔B)↔B)

4. C ∴ (A∨B)↔
((C→B)∨ (C→A))

5. ∼A&∼B ∴ A↔B
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

2C.8 Some good strategies for truth functional logic

In constructing proofs in system Fi of Fitch proofs (Convention 2C-1), always
remember that you are working from both ends towards the middle. You must work
stereoscopically, keeping one eye on the premisses you have that are available, and
the other eye on the conclusions to which you wish to move.

Make a habit of putting a question mark on any conclusion for which you do not
yet have a reason. (You should at any stage already have a reason for each of your
premisses, and perhaps for some of your conclusions.)

Divide, then, the steps you have so far written down into those towards the top—
your premisses—and those towards the bottom that are questioned—your desired
conclusions. Then use the following strategies. Pay particular attention to those
marked failsafe, since these have the feature that if the problem can be solved at
all, then it can (not must) be solved by using the indicated failsafe strategy.

2C-20 STRATEGIES. (For conclusions (questioned items) at bottom)

When desired (not yet obtained) conclusion (bearing a question mark) is:
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A&B. Try to prove A and B separately, and then use Conj, that is, &int.
Your subgoals should be written as follows: Annotate your goal A&B with
“Conj.” In the empty space at your disposal, write B ? just above A&B; and
write A ? about half way up your blank space. (The question mark on A is
essential to remind you that A is a subgoal, not a premiss.) Failsafe.

A∨B. In some cases you will see that either A or B is easily available, and so you
can use Addition, that is, ∨ int. (This procedure is not failsafe!) Otherwise,
it is always failsafe and usually efficient to rely on the fact that disjunctions
and conditionals are “exchangeable.” assume ∼A and try to obtain B. Then,
as an intermediate step, derive ∼A→B by CP. Then obtain the desired A∨
B by Conditional Exchange.

A→B. It is always failsafe and usually efficient to try to obtain B from A, and
then use CP, that is,→int.

A↔B. Try to obtain each of A and B from the other, and then use BCP, that is,
↔int. Failsafe.

∼A. If A is complex, obtain from an equivalent formula with negation “driven
inward” by the appropriate “Rule for Negated Compounds.” If A is simple,
try RAA⊥ (regular version): Assume A and try to derive ⊥. Both proce-
dures are failsafe.

A. If nothing else works, try RAA⊥ in the variant version: Assume ∼A and
try to reason to ⊥. This is in principle failsafe, but should be avoided unless
absolutely necessary, since if you use this rule much your proofs will often
involve long redundant detours.

⊥. Look for a contradiction among all the available steps, and use⊥int. Failsafe.

2C-21 STRATEGIES. (For premisses (already justified items) at top)

When among the premisses (item has already been given a definite reason) you
have

A&B. Derive A and B separately by Simp, that is, &elim—or anyhow look
around to see how A or B or both can be used. Failsafe.
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A→B. Look for a modus ponens (A) or a modus tollens (∼B). Sometimes you
need to generate A as something you want to prove (at the bottom, with a
question mark). This procedure is not failsafe.17

A↔B. Look for an MPBC (A or B) or an MTBC (∼A or ∼B). Not failsafe.

A∨B. Look for a disjunctive syllogism: a ∼A, a ∼B, or anyhow a formula
differing from one of A or B by one negation. This will often work, but it
is not failsafe. Suppose the “look for DS” doesn’t work. Then consider that
you not only have A∨B as a premiss; you also have a desired conclusion,
say C. Get set to derive C from each of A and B, and use Case argument,
CA. Failsafe.

∼A. If A is complex, “drive negation inward” by a Rule for Negated Com-
pounds. Failsafe. If A is simple, hope for the best.

⊥. It doesn’t often happen that you have awful ⊥ as a premiss. If you do,
you can take yourself to have solved your problem, whatever it is; for any
(every) desired conclusion is obtainable from ⊥ by ⊥elim (Examples 2B-16
on p. 40). Failsafe.

We are about to ask you to practice using these strategies, namely, in Exercise 21
on p. 78. In preparation for this exercise, we insert some extended advice and we
run through an example.

2C-22 EXERCISE ADVICE. (Strategies for truth-functional logic)

In each exercise problem, please imagine that the single letters stand for perhaps
extremely complex sentences. The sentences listed to the left of ∴ stand for items
that are available to you. The sentence given at the right of the ∴ stands for an
item that you are trying to prove. Then for a given problem in Exercise 21, you
should do the following.

• Draw a vertical “subproof” line. Go down perhaps a half page.

• Write the available items at its top.

• Number them.
17There is a failsafe procedure for A→B as premiss, but it leads to uninformative and even weird

proofs.
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• Draw a short horizontal line under them.

• Write the item to be proved at the very bottom of the vertical line.

• Write a question mark after it to show that it is something that you wish to
prove (rather than something that is available).

• Now start applying as many strategies as you can think of. Do not expect to
be able to complete the proof. You will be left with one or more items still
marked with a question mark indicating that they are still “to be proved.”

For example, suppose that you are given the problem, (A→B)→C, B ∴ C. When
you write it down, it looks like this.

1 (A→B)→C hyp
2 B hyp

(you would have more space here)

C ?

You look around for a modus ponens, and you see you would need (A→B). So you
generate it as a wanted conclusion, and you indicate how you are going to use it:

1 (A→B)→C hyp
2 B hyp

A→B ?
C /? 1, MP

Resist the common temptation to write down A→B at the top, or to think of it as
having a reason, or to think of it as available. You are instead generating it as a
subgoal, something you wish to prove, but haven’t yet proved.

Now the question mark is on the next-to-last step, A→B. Use the strategy for A
→B as conclusion, i.e., hypothesize A and try to prove B:
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1 (A→B)→C hyp
2 B hyp
3 A hyp

B ?
A→B /?
C /?1, MP

Now complete the proof without additional steps: The remaining questioned item
can now have “reit” as its reason, and numbers can be filled in:

1 (A→B)→C hyp
2 B hyp
3 A hyp
4 B /? 2 reit
5 A→B /? 2–4 CP
6 C /? 1, 5 MP

Some of your proofs for the upcoming exercises will be incomplete. That is, after
having employed the appropriate strategies, you will be left with one or more items
still marked with question marks indicating they remain to be proved.

Here is another example. You are given the problem D ∴ (B→C)→∼A. When
you set it up, it looks like this.

1 D hyp

(B→C)→∼A ?

Employ the strategy for a conditional as conclusion.
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1 D hyp
2 B→C hyp

∼A ?
(B→C)→∼A /? 2–, CP

Next use the strategy for ∼A as conclusion, i.e., hypothesize A and try to prove ⊥.

1 D hyp
2 B→C hyp
3 A hyp

⊥ ?
∼A /? 3–, RAA⊥

(B→C)→∼A /? 2, CP

When you have exhausted the strategies for a given problem, move on to the next
one. (Do not waste your time with successive applications of RAA⊥ .)

Exercise 21 (Strategy problems)

Here are some “strategy” problems. Follow Exercise advice 2C-22. We made these
so that, with one exception, it is not possible to finish them with complete proofs—
just sketch a beginning. Use only simple failsafe strategies stopping, when there
are none left to apply; and for this exercise do not use RAA⊥ [variant].

1. C ∴ A&B

2. C ∴ A→B

3. C ∴ A∨B

4. C ∴ ∼A

5. C ∴ A↔B

6. A&B ∴ C



2C. Proof theory for truth-functional logic 79

7. A∨B ∴ C (use Case Argument)

8. ∼(A→B) ∴ ∼C

9. E ∴ (A&B)→(C&D)

10. D ∴ (A∨B)→(C→D)

11. ⊥ ∴ (A&(B∨C))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

Exercise 22 (More strategy problems)

Use the strategies to the full. Prove:

1. (∼A∨∼B)→∼C ∴ C→A.

2. A→(B→C), (C&D)→E, F→∼(D→E) ∴ A→(B→∼F)

3. ∼A∨C, T→(S&∼B), S↔∼(D∨C), ∼A→(E→(B∨C))
∴ T→∼(D∨E). Use Case Argument.

4. B→((F&G)↔D), (C→D)→∼A, ∼F→(D&E), ∼G→∼B
∴ ∼(A&B). Use RAA⊥ .

5. (∼(A∨B)∨∼(B∨C))→∼(A&C). This is a theorem. Use Case Argu-
ment.

6. ((P→Q)→P)→P

7. (P↔Q)↔R ∴ P↔(Q↔R)

Exercise 22(6) is “Peirce’s Law,” a tautology and therefore a theorem. It is surely
unintuitive! Try starting out with CP, and then, inside the CP, using the variant form
of RAA⊥ . Exercise 22(7) states that the truth-functional biconditional is “associa-
tive” (parentheses can be regrouped) in exactly the same sense as conjunction and
disjunction (and in contrast to the conditional). The property holds only for the
two-valued version of the biconditional. You can easily verify (7) by truth tables,
and therefore you know that its conclusion follows from its premiss by TI. To prove
it strategically, however, is tedious and also uninformative; for this reason, prob-
lem (7) should be skipped unless you wish to see just how tedious a strategic proof
of a simple fact can be.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /
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Exercise 23 (Simple set theory with truth functions)

Later we will come to use certain symbols of set theory in addition to “x∈X,”
which means that x is a member of the set X, and {a, b}, which is the set containing
exactly a and b (Symbolism 1B-10). These are some of the additional symbols that
we will be using, with an indication of what they mean.

• “⊆” stands for the subset relation; X⊆Y iff every member of X is also a
member of Y. This includes the possibility that X = Y.

• “⊂” stands for the proper subset relation; X⊂Y iff X⊆Y but not Y⊆X.

• ∅ is the empty set; ∅ is the one and only set that has no members.

• X∪Y is the union of sets X and Y; X∪Y is a set that contains anything that
belongs to either X or Y (or both).

• X∩Y is the intersection of sets X and Y; X∩Y is a set that contains anything
that belongs to both X and Y.

• X−Y is the set difference between X and Y; X−Y is a set that contains
everything in X that is not in Y.

We ask you to prove some principles involving this notation. In so doing, use
anything on the following list as a premiss.

S-1 c∈{a, b} ↔ (c = a∨c = b)

S-2 ∼(a∈∅)

S-3a a∈ (X∪Y)↔ (a∈X∨a∈Y)

S-3c c∈ (X∪Y)↔ (c∈X∨c∈Y)

S-3a∅ a∈ (X∪∅)↔ (a∈X∨a∈∅)

S-4a a∈ (X∩Y)↔ (a∈X&a∈Y)

S-4b a∈ (X∩∅)↔ (a∈X&a∈∅)

S-5 a∈ (X−Y)↔ (a∈X&∼a∈Y)

S-6a X⊆Y→ (a∈X→a∈Y)
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S-6b Y⊆Z→ (a∈Y→a∈Z)

When you use one of the premisses listed above as a premiss for some rule, you
do not need to copy it. Count each of them as “available,” and just cite any one of
them as if it existed as an earlier line in your proof, as indicated in the following
example, which works out one problem.

Problem: a∈X ∴ a∈X∪Y.

Proof:

1 a∈X hyp
2 a∈X∨a∈Y 1, Add
3 a∈X∪Y 2, S-3a, MPBC

1. a∈X∪Y, X⊆Y ∴ a∈Y.

2. a∈X, X⊆Y, Y⊆Z ∴ a∈Z.

3. Z∈Z↔ ((Z∈Z)→p) ∴ p.

4. c∈{a, b}, c = a→ c∈X, c = b→
c∈Y ∴ c∈ (X∪Y) .

5. a∈ (X∪∅) ∴ a∈X.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

Later on we are going to introduce some proof techniques for some of these set-
theoretical concepts. You should not refer back to Exercise 23 in that connection.
The point here is only to improve your facility with truth-functional connectives
when they are mixed up with other notation.

2C.9 Three proof systems

A “logical system” can be one of a number of things. Here we mean a proof system,
that is, a collection of rules of proof. We describe three such systems.

• All three concern sentences made from our six favorite logical connectives,
⊥, ∼,→, &, ∨, and↔.

• All three are constructed by a selection from among the following rules.
We first list all the rules, dividing them into “families.” Later we define
the systems. The word “intelim” used in classifying some of the rules is
explained below. (If you are not fully in command of these rules and their
names, now is the time to become so. Otherwise the following will make
little sense.)
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2C-23 DEFINITION. (Families of rules)

Structural rules. hyp (Rule 2C-3) and reit (Rule 2C-5). Also the concept of
Availability, Definition 2C-6.

Intelim & and ∨ rules. &int (or Conj, Examples 2B-16) and &elim (or Simp,
Examples 2B-16) and ∨int (or Add, Examples 2B-16) and CA (or Case Argument,
Rule 2C-18).

Intelim → and ↔ rules. →int (or CP, Rule 2C-11), →elim (or MP, Examples
2B-16),↔int (or BCP, Rule 2C-19), and↔elim (or MPBC, Rule 2C-19).

Intelim ∼-and-⊥ rules . ⊥ int and ⊥ elim (Examples 2B-16), and RAA⊥ (in
either regular or variant forms; Rule 2C-15).

Intelim pure negation rules (no ⊥). RAA (in either regular or variant forms),
Rule 2C-16; and XAQ (or ∼elim), Examples 2B-16.

Mixed rules. CE (Examples 2B-18), MT (or Modus tollens, Examples 2B-16),
MTBC (or Modus tollens for the biconditional, Examples 2B-16), and DS (or dis-
junctive syllogism, Examples 2B-16). These rules all mix at least two connectives.

Negated-compound rules. ∼& (or DeM), ∼∼ (or DN or Double negation), ∼∨
(or DeM), ∼→ (or Negated conditional), ∼↔ (or Negated biconditional); see Ex-
amples 2B-19 and Definition 2C-9 for all of these. And∼⊥ (or Negated absurdity,
Examples 2B-21).

Wholesale rules. TI (Tautological implication, Rule 2C-7), TE (Tautological
equivalence, Rule 2C-8), Taut (Tautology, Rule 2C-10).

That completes the list of rules on which we will rely. Here are the three proof
systems.

2C-24 DEFINITION. (Three proof systems)

Fitch proof or proof in Fi. Can use anything. Especially the wholesale rules TI,
TE, and Taut. This is the most useful system of logic. It combines delicate strategic
considerations with the possibility of relaxed bursts of horsepower. (Sometimes we
use “wholesale proof” as a synonym for “proof in Fi.”)

Strategic Fitch proof. In a “strategic proof in Fi,” you can use any rule mentioned
in §2C.8 on strategies, which is precisely: all except the unnamed Wholesale rules,
which cannot be used in a “strategic proof.” That is, you can use the Structural
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rules, the Intelim rules, the Mixed rules, and the Negated-compound rules—but
not the unnamed Wholesale rules.

Intelim Fitch proof. In an “intelim proof in Fi,” you can use only the structural
rules and the “intelim” rules).

These systems are of importance for different reasons.

In the long run, the wholesale system Fi is of the greatest practical use. When
you are in the midst of serious logical analysis, you should feel free to use any-
thing your mind can manage, constrained by rigor and clarity, but unconstrained
by considerations of elegance.

But the strategic Fitch system is also of great use in guiding you. It is good to
know that you do not need to step outside it (although you are encouraged to do
so whenever you feel impatient with its limitations). An efficient and sometimes
elegant proof can usually be constructed using only the strategic rules.

The system of intelim Fitch proofs is of theoretical (philosophical and mathemati-
cal and historical) interest rather than practical interest. The historical connections
are these.

When natural deduction was first introduced (independently by Gentzen (1934)
and Jaśkowski (1934)), brute-force rules like TI and TE were not part of the ap-
paratus. In contrast, there were postulated for each connective a pair of rules, one
for operation on premisses with that connective as principal, the other for obtaining
conclusions with that connective as principal. Only “pure” strategies were allowed.

Fitch’s book (1952) followed this plan, calling the former sorts of rules elimina-
tion rules and the latter sort introduction rules. (In our opinion, “premiss-rules”
and “conclusion-rules” might have been better choices because they suggest more
accurately what is going on.) Proofs that used only these introduction and elimi-
nation rules Fitch called intelim proofs. And though our exact choice of rules is a
little different, the terminology remains as apt as it ever was.18

2C-25 FACT. (Soundness of each system)

Each of these three systems is “sound”: If there is a proof with hypotheses G and
last line A, then in fact G tautologically implies A (G �TF A).

18The choice of words here is intended to suggest that the aptness was and is more Procrustean
than not.
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Indeed, take any step of any proof in one of the three systems, and let A be written
at that step. Let G be the set of hypotheses that are available at that step. Then G
�TF A.19

2C-26 FACT. (Completeness of intelim proofs)

The system of intelim proofs is “complete”: If an argument is truth-functionally
valid, there is an intelim proof that shows it to be so. That is, if a set G of sentences
tautologically implies a sentence A (i.e., if G �TF A), then there is an intelim proof
all of whose hypotheses are in G and whose last line is A. (This is intended to
include the case when G is empty, so that there is a categorical proof of A.) All the
other rules—TI, TE, and the like—are therefore redundant.

But mixed, negated-compound and wholesale rules are nevertheless a useful sort
of redundancy, shortening the work and making complex proofs (with quantifiers
and special theoretical machinery) vastly more perspicuous.

Exercise 24 (Intelim proofs)

This is an important exercise. Do not proceed without success in carrying it out.

1. In defining “strategic proofs” we relied on the Mixed rules (CE, MT, MTBC,
and DS) and the Negated-compound rules (DN, DeM, Negated conditional,
Negated Biconditional, Negated ⊥) as defined in Definition 2C-23 on p. 82.
Establish a each of these by intelim proofs. If a rule is a TI, a hypothetical
proof is wanted; for example, give an intelim proof from hypotheses A→B
and ∼B to conclusion ∼A. If a rule is a TE, you should supply two hy-
pothetical proofs, which is of course enough to prove the biconditional; for
example, give an intelim proof from hypothesis A∨B to conclusion∼(∼A&
∼B), and another intelim proof from hypothesis∼(∼A&∼B) to A∨B. Here
is a list of the rules—one version of each (except both versions of DeM)—
for you to check off as you go:

19For this to be true, if the step in question is itself a hypothesis, then it itself must be counted as
one of the hypotheses that are “available” at that step. We must, that is, use the fact that A �TF A.
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� CE (A →B) ≈TF ∼A ∨B
� MT A→B, ∼B�TF ∼A
� MTBC A↔B, ∼A�TF ∼B
� DS A∨B, ∼A�TF B
� DN ∼∼A ≈TF A
� DeM ∼(A&B) ≈TF ∼A∨∼B
� DeM ∼(A∨B) ≈TF ∼A&∼B
� NCond ∼(A→B) ≈TF A&∼B
� NBC ∼(A↔B) ≈TF A↔∼B
� Negated ⊥ �TF ∼∼⊥

2. A rule is redundant in a logical system provided the following holds: Any-
thing you can prove with the rule can be proved without the rule. The system
of intelim proofs itself contains redundancies. For example, the intelim rules
RAA and XAQ for negation are redundant because anything you can prove
with them can be proved instead by using the intelim rules involving ⊥. As
an example, show that XAQ (a.k.a. ∼ elim, p. 40) is redundant.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /



Chapter 3

The art of proof in the logic of
predicates, operators, and
quantifiers

In this chapter we survey the use in proofs of the universal and existential quanti-
fiers and the identity predicate in the context of predicates and operators and truth
functions. The following chapter considers the arts of symbolization and coun-
terexample for quantifiers.

The language is often called “first order” because, as we noted in Symbolism 1B-
13, quantification is not permitted at the higher order represented by predicates and
operators. We shall tag various grammatical ideas with “Q” instead of with “TF”
to mark the transition from the study of purely truth-functional ideas to the study
of ideas involving quantification. The reader should review §1B in general, and
Symbolism 1B-2 in particular for what we intend when we speak of “variables,”
“constants,” and “parameters.”

3A Grammar for predicates and quantifiers

We begin—as always—with (symbolic) grammar. Our discussion will presuppose
that you have followed our advice to review §1B starting on p. 11. As noted, we
will use “Q”—for “quantification”—as a tag, in strict analogy to our use of “TF”
as a tag for truth-functional logic. Q has the following apparatus.

86
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Variables of quantification. General-purpose variables x, y, z, x1, y′, etc. There
must be infinitely many individual variables available for use with quanti-
fiers. When we come to using our logic in order to understand special topics
such as the theory of sets and the theory of truth-functional logic, we will
also want variables with restricted ranges such as we have from time to time
introduced by convention; for example, A for sentences, G for sets of sen-
tences, and i for TF interpretations.

Quantifiers. “∀” and “∃” are called quantifiers, universal and existential respec-
tively. In addition, we also label as quantifiers the combinations “∀v” and
“∃v,” where v is any variable. In this case, we say that the quantifier uses the
variable v.

Individual constants. Including both “real” constants and parameters a, b, c, etc.
as needed. There must be infinitely many individual constants available for
use as parameters.

Predicate constants. Including both “real” predicate constants and parameters. F,
G , etc.; how many “places” is left to context.

Operator constants. Including both “real” operator constants and parameters. f,
g, sometimes ◦, +, etc., as needed.

Terms. Individual variables and constants are Q-atomic terms, and of course Q-
atomic terms are terms. New terms can be made from old ones by means of
operators. The story for Q-atomic terms parallels the story for TF-atoms in
truth-functional logic: Atomicity is a “negative” idea. See §2A.1. Parenthe-
ses are used as needed or wanted for communication. For example, when
f is a one-place operator, we use “fx” and “f(x)” interchangeably, and simi-
larly for a two-place operator: “hxy,” “h(x)(y),” and “h(x, y)” all come to the
same thing.

Q-atoms. The Q-atoms are exactly (1) the individual variables, and (2) the indi-
vidual, predicate, and operator constants. We will need this concept only
later, for semantics.

Sentences. A predicate constant followed by a suitable number of terms (a “pred-
ication” in the sense of Symbolism 1B-8 on p. 15) is a sentence, and others
can be made either with the truth-functional connectives from the preced-
ing chapter, or with the help of the quantifiers and variables: The result of
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prefixing a quantifier and a variable (in that order) to a sentence is itself a
sentence.1

Scope. When a sentence ∀xA or ∃xA results from prefixing a quantifier, the entire
sentence is said to lie within the scope of the quantifier.

Free and bound. An occurrence of a variable is free or bound in a term or sen-
tence according as it does not or does lie within the scope of a quantifier
using that variable. The variable itself is free in a term or sentence if each of
its occurrences (if there are any) is free therein, and is bound therein if some
occurrence is bound therein.

3A-1 REMINDER. (Restricted variables)

When discussing the logic the art of which is the topic of these notes, as largely
explained in Symbolism 1B-21, we use letters in the following way.

A, B, C range over sentences (perhaps containing free variables, perhaps not).

G ranges over sets of sentences.

i ranges over TF interpretations.

X, Y, Z range over sets.

t, u range over terms (perhaps containing or being free individual variables, perhaps
not).

x, y, z, v range over variables (they include themselves in their range—for they are
variables—but there are others, too).

T and F for Truth and Falsity. Formally there is ambiguity between this use of “F”
and our use of “F” as a predicate constant; but in practice there is never a problem.

For compact expression of the quantifier rules, we need a convention allowing
compact expression of substitution of terms for variables.

1 We might label as “Q-atomic” any sentence that involves neither one of the six truth-functional
connectives listed in Symbolism 1B-12, nor a quantifier connective ∀x or ∃x (for any variable x)
in accord with Symbolism 1B-1, so that predications would be Q-atomic sentences. This frequently-
given account of “Q-atomic sentence,” though entirely understandable, is parochial and misleading:
So-called Q-“atomic” sentences obviously have structure, namely, predicative structure.
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3A-2 CONVENTION. (Ax and At)

First we use “Ax” as standing for any sentence, without commitment as to whether
x occurs in it. Second, provided t is a term not containing (or being) a variable
bound in Ax, we declare that At is the result of substituting t for every free oc-
currence of x in Ax. As an extension of this convention, we use “Ax1 . . . xn” and
“At1 . . . tn” in the same way, additionally assuming all the x’s are distinct. It is
important that the various terms ti need not be distinct.2

Examples of Ax and At and Axy and Atu.
Source Result Source Result

Ax At Axy Atu
Fx&Gx Ft&Gt Fx→Gy Ft→Gu
∀xFx&Gx ∀xFx&Gt Fxu→Fty Ftu→Ftu
∀x(Fx&Gx) ∀x(Fx&Gx)

Fx&Gt Ft&Gt

The direction of substitution is always from Ax to At, never the other way. We
sometimes call the motion from Ax to At “instantiation”; then we say that At is an
instance of Ax.

Warning. When we use this convention in stating a rule, the direction of substi-
tution is from Ax to At regardless of which of Ax and At is in premiss and which
in conclusion. Later on (in UG and EG) you will be substituting “uphill” from
conclusion to premiss.

Exercise 25 (Ax and At)

1. Given a sentence Ax and a term t, you should be able to compute At; like-
wise, given Axy, t, and u, you can compute Atu. This is illustrated in the
following.

Ax At Axy Atu
Gx ? Gxy ?

Gx∨Hx ? Gxy∨Fxy ?
Gx∨Hc ? Gxt∨Fxu ?
∃Gx∨Fx ? Gxu∨Fty ?
∀x(Gx ∨Fx) ? Gvv ?

2This convention is in lieu of using an explicit notation for substitution, e.g., using “[t/x](A)” to
name the result of substituting t for every free occurrence of x in A.
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2. For each row below: Given that the formulas in the second and third columns
are respectively Aa and Ab, fill in at least one candidate for what Ax must
be.

Ax Aa Ab
a. ? Raa Rbb
b. ? Raa Rab
c. ? Raa Rba
d. ? Raa Raa

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

3B Flagging and universal quantifier

We introduce the proof theory in separated pieces.

3B.1 Flagging restrictions

Our quantifier rules depend on so-called “flagged” terms that must satisfy certain
“flagging restrictions”; the idea is that a “flagged” term can be taken (within its
scope) as standing for an “arbitrarily chosen entity,” while the restrictions guaran-
tee the propriety of this construal. Since we need to begin somewhere, we begin
by giving these flagging restrictions, though you cannot see how they work until
you come to the rules of Universal Generalization and Existential Instantiation.
Observe that although the flagging restrictions are a little complicated, so that you
must learn them with explicit effort, the rest of the rules for the quantifiers are
easy. And in fact if you think of the intuitive point of the restrictions—to guarantee
that flagged terms can be regarded (within their scope) as standing for arbitrarily
chosen entities—then they make immediate sense.3

3B-1 DEFINITION. (Flagging)

A term t is flagged by writing “flag t” as a step or as part of a step.4 The term that
3Other logical systems use “flagging” with just an opposite meaning: Variables are “flagged”

when they cannot be looked on as standing for arbitrarily chosen entities.
4The choice of notation here is of no consequence, as long as the term t is marked in some way or

other. Elsewhere we have sometimes used the imperative, “choose t,” and sometimes the declarative,
“t arbitrary.” Fitch just writes the term t itself—but his geometry is a little different than ours, and
that policy might be just slightly confusing in the present context. To repeat: Nothing hangs on these
choices.
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is flagged must be Q-atomic, because complex terms (for example, “x2”) have too
much structure to stand for an “arbitrarily chosen entity” (for example, “x2” cannot
stand for an arbitrary entity because whatever it stands for is constrained to be a
perfect square). It is understood that t occurs in “flag t” just as in any other step,
and that if t is a variable, it occurs free therein.

For absolute beginners in logic, it is best to use only constants (parameters, not
“real” constants) as flags, so that variables are used only with quantifiers. There
is that way less risk of confusion. After a while, however, the rigidity of this rule
is counterproductive; so our discussion envisages that flagged terms can be either
constants or variables. To compensate, we will use the phrase “occurs free” in
such a way that any occurrence of any constant is automatically free: The word
“free” draws a distinction only among variables.5 Therefore, if all your flagged
terms are constants, you can ignore the word “free.”

The flagging of a term has something in common with the assumption of a hy-
pothesis: The flagged term t is not taken as standing for an “arbitrarily chosen
entity” for all time, but only for a while, just as hypotheses are assumed only for
a while, but not for all time. This feature of hypotheses is usually discussed under
the heading of “scope,” and we shall use the same language for flaggings. A scope
is defined by its beginning and its ending.

3B-2 DEFINITION. (Scope of a flagging)

Beginning. The step where a term is flagged with “flag t” begins the scope of this
flagging.

Ending. The scope of a flagging always ends with the end of the subproof imme-
diately containing the flagging step. Pictorially, the scope of a flagging ends with
the vertical line against which the flagging step sits. (Fussy point: If a flagging step
occurs in an outermost or main proof, the scope ends with the last step of the proof
in which the flagged term occurs free.)

Picture of the scope of a flagging:
5Fitch himself certainly did not restrict application of the word “free” to variables. When he

phoned along about eleven of a morning, he would sometimes ask, “Are you free—or bound—for
lunch?”
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·
·
·
flag t [beginning of scope]
·
·
· [possibly beginning some other subproof]
·

·
· [end of scope]

·

Since quite universally it does not make sense to permit scopes to cross, we avoid
considerable trouble by forcing the scope of a flagging to stop at the end of its
innermost subproof. You can see by geometrical intuition that it is a result of our
convention about scopes that (1) the scopes of different flaggings never cross or
overlap, and (2) the scope of a flagging never crosses the scope of a hypothesis.
Scopes of either kind are, then, always either properly nested one within the other,
or else totally separate. We must now fasten one restriction or another onto flagged
terms so that they genuinely deserve to be construed as standing for “arbitrarily
chosen entities.” The essential idea is that we cannot move information about a
flagged term either into or out of its scope; the beginning and the ending of the
scope of a flagging of t stand as barriers to all flow of information concerning
t. There are, however, some restrictions that although stronger than this essential
idea, and accordingly stronger than necessary, are much easier to check in practice.
We state both an easy and an intermediate version for your practical use.

3B-3 DEFINITION. (Flagging restrictions)

Easy flagging restriction. (1) The flagged term must be a constant (a parameter,
not a “real” constant) rather than a variable. (2) Part of the meaning of (1) is
that the flagged term cannot be complex. (3) The flagged term cannot occur
outside of its scope, nor in any event in the last line of an entire main proof.

Intermediate flagging restriction. (1) The flagged term can be either a parameter
or a variable. (2) Part of the meaning of (1) is that the flagged term cannot be
complex. (3) The flagged term cannot occur free in any step above its scope
that is available inside its scope. Further, and more or less symmetrically, (4)
the flagged term cannot occur free in any step below its scope that depends
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on subproofs that include its scope, nor in any event in the last step of an
entire main proof.

Beginning students should learn only the easy flagging restriction, since anything
that can be proved at all has a proof satisfying this easy restriction. The inter-
mediate version is given for more advanced students to learn if they like, because
it makes some proofs a little easier to follow (see §3E.1 for an example).6 It is
obvious that if the easy flagging restriction is satisfied, then so is the intermedi-
ate flagging restriction.7 That is, these are not independent restrictions, but just
different versions of the same idea.

Flagging made easy. Given the picture of building up a proof from both ends
toward the middle, you can guarantee satisfying the easy flagging restriction, and
therefore the others as well, simply by flagging a parameter (when required by the
rules below) that is absolutely new to what you have so far written down (at either
the top or bottom); you will not have to worry. (Later, in §3E.1, we give examples
of the intermediate version of the restrictions.)

3B.2 Universal Instantiation (UI)

The first quantifier rule is Universal Instantiation (UI). This rule is easy (maybe too
easy).

6The “essential flagging restriction,” which is of only theoretical interest, might be put as fol-
lows. There are two parts. (I) A term flagged once may not be flagged again within the scope of the
first flagging. (II) No application of a rule that “crosses the scope barrier” is allowed to contain free
occurrences of the flagged term on both sides of the scope barrier. It is awkward to say exactly what
is meant by “crossing the scope barrier” without becoming involved with the details of the various
rules; rather than try, we just note that there are two cases. (1) An application of a rule with one or
more premisses above the scope barrier and a conclusion within the scope is said to “cross the scope
barrier.” In this case the restriction requires that the flagged term must be absent either from all the
premisses lying above the scope or from the conclusion that lies within the scope. The flagged term
may not use the rule to cross over the scope barrier. (2) An application of a rule that has as one
of its premisses the subproof containing a flagging step—its conclusion will certainly be below the
scope—is also said to “cross the scope barrier.” In this case, the restriction requires that the flagged
term must be absent from the conclusion (since it will certainly occur free in the premiss containing
the scope). Again, what is forbidden is that the flagged term use a rule to cross over the scope barrier.
And as usual we must add that a flagged term may not occur in the last line of an entire main proof.
(The essential flagging restriction is obviously Too Hard for any but theoretical use.)

7And if either the intermediate or the easy flagging restriction is satisfied, then so is the essential
flagging restriction.
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3B-4 RULE. (UI)

If x is any variable and ∀xAx is available, you may enter At for any term t not
containing a variable that is itself bound in Ax. Write premiss number, “UI” and
“t/x” to show what is substituted for what, as in the following.

·
·

j ∀xAx
·

·
j+k At j, UI t/x

It is understood that line j need only be “available” at line j+k.8

Further, if x1, . . . , xn are distinct variables and ∀x1 . . . ∀xnAx1 . . . xn is avail-
able, you may enter At1 . . . tn for any terms t1, . . . , tn (whether distinct or not
and whether complex or not) not containing a variable bound in Ax1 . . . xn. Write
premiss number, “UI,” and “t1/x1, . . . , tn/xn” to show what is substituted for what,
as in the following.

·
·

j ∀x1x2. . .xnAx1x2. . .xn
·

·
j+k At1t2. . .tn j, UI t1/x1, t2/x2, . . ., tn/xn

3B-5 EXAMPLE. (Universal Instantiation)

1 ∀x(x=x)
2 3+4=3+4 1, UI, 3+4/x
3 b=b 1, UI, b/x

1 ∀x∀y(Fxy→Gyxx)
2 Fab→Gbaa 1, UI a/x, b/y
3 Faa→Gaaa 1, UI a/x, a/y [OK: a for both x, y]

8Students often make up their own restrictions on this rule; don’t you. Any term t, simple or
complex, whether used before in the proof or not. We repeat: Any term (not containing a variable
bound in Ax).
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1 ∀x(∀xFx→Gxx)
2 ∀xFx→Gf(d)f(d) 1, UI, f(d)/x

1 ∀x∃yFxy
2 ∃yFyy Wrong UI, since y is bound in Ax of premiss.

1 ∀xFxbx
2 Fubt Wrong UI; same term must be put for all free x.
3 Fubx Wrong UI; term must be put for all free x.

You can (and sometimes must) use UI twice on the same premiss. See first example
above.

In using Convention 3A-2, we substitute for all free x in Ax, not in ∀xAx. (Of
course no x is free in ∀xAx, but plenty may be free in Ax.)

3B-6 ADVICE. (Common errors in applying UI)

1 ∀xFx→Gu
2 Ft→Gu wrong UI.

This is wrong because the premiss does not have the form ∀xAx. It appears to have
that form because “∀x” is on the left, but actually the scope of that “∀x” is not the
whole formula: It only covers “Fx,” whereas you can only use UI when the scope
of “∀x” is the whole step.

1 Gu→∀xFx
2 Gu→Ft wrong UI.

This is wrong for about the same reason: UI can only be used when the scope of
“∀x” is the whole step.

3B-7 ADVICE. (Advice on UI)

Postpone the use of UI until you know how you want to substitute or instantiate.
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3B.3 Universal Generalization (UG)

We are now ready for the second rule governing the universal quantifier, the one
that relies on the flagging restrictions Definition 3B-3. Universal Generalization is
like CP (→int) and RAA⊥ in requiring a vertical line, but this vertical line will
begin with a “flagging step” instead of a hypothesis. It is best to annotate this step
“for UG.” The rule is as follows.

3B-8 RULE. (UG)

The one-variable case of universal generalization:

·
·

j flag c for UG
·
·

j+k ·
j+k+1 Ac

∀xAx UG, j–(j+k+1), c/x

provided that c satisfies the flagging restrictions, including the part that says that
c must be an individual constant (not complex). You may of course use a or any
other constant you like in place of c as long as it does not violate the flagging
restrictions. The many-variable case of universal generalization:

·
·

j flag c1, . . . , cn for UG
·
·
·

j+k+1 Ac1 . . . cn
∀x1. . .∀xnAx1. . . xn UG, j–(j+k+1), c1/x1, . . . , cn/xn

provided that c1, . . . , cn satisfy all the flagging restrictions. There must be no
repetitions in the list c1, . . . , cn.
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The subproof in the one-variable case, beginning with the flag and stopping just
over the universal generalization ∀xAx, is called a proof general with respect to
the flagged constant, c , since we may think of c as arbitrarily chosen within its
scope.

The subproof in the many-variable case is called a “proof general with respect to
c1, . . . , cn,” since we may think of c1, . . . , cn as arbitrarily chosen within their
scope. Observe that by Convention 3A-2, the direction of substitution is “uphill”
when using UG.

It is logically crucial that the premiss for UG is not a single step. To infer from the
single step Fc to ∀xFx is the worst possible logic. The premiss for UG is instead
the entire subproof, including the flagging step. It is the fact that we can get to Ac
for arbitrarily chosen c that warrants the inference to ∀xAx; nothing less will do,
and nothing less than the entire subproof expresses this information.

3B-9 ADVICE. (Advice on UG I)

UG is a failsafe rule: Given that you want to show ∀xAx, always “set up to use
UG.” That is, suppose that you are given:

·
·
· (last of already derived steps)

∀xAx ? you want this

Then you add material to make your proof look like the following:

·
·
. (last of already derived steps)

flag b for UG
·
·
·
Ab ?

∀xAx UG b/x
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Be sure to extend the vertical line for UG as far up as possible.

This picture conceals the best time-order for carrying out the parts of “getting set
for UG.” Go back and look at the ADF Advice 2C-14 on p. 60: First annotate
your conclusion as coming by UG, second draw your vertical scope-marker to fill
up the entire space, and third fill in both the top (the flagging step) and the bottom
(the new subgoal).

Follow the above advice to “get set to use UG” before anything else, especially
before using any UI. In other words, postpone UI until after you are set to use UG.
Otherwise, the flagging restrictions will get in your way.

3B-10 ADVICE. (Advice on UG II)

In “getting set to use UG,” you need to choose a term to flag. At the moment of
choice, you are in the middle of a proof, with some already-derived steps above,
and also some “desired” steps below (including your desired conclusion).

• Choose a (new!) parameter.9

• By choosing something brand new, you will be sure to satisfy the easy flag-
ging restriction, Definition 3B-3.

• Warning. Do not be tempted by “wish-fulfillment” to flag a constant already
appearing in what you have so far written, either above or below. Look both
up and down: The constant should simply not occur at all. Especially not in
your desired conclusion.

3B-11 EXAMPLE. (UG and UI)

All artists are mad; all humans are artists; so all humans are mad.
9In easy cases, when you have become familiar with proofs involving quantifiers, it is all right

to choose the very variable of the quantifier “∀x.” Even so, it is necessary to check that you do
not violate the intermediate flagging restriction, Definition 3B-3. (You are all too likely to run into
confusion if you ever flag with any variable other than the very variable used in the conclusion of
your UG, especially if it occurs anywhere else in the problem. So play safe: Flag only parameters,
never variables.)
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1 ∀x(Ax→Mx) hyp
2 ∀x(Hx→Ax) hyp
3 flag a for UG
4 Aa→Ma 1 UI a/x
5 Ha→Aa 2 UI a/x
6 Ha→Ma 4, 5 TI (HS)
7 ∀x(Hx→Mx) 3–6 UG a/x

3B-12 EXAMPLE. (UI and UG)

None of Sam’s friends wear glasses. But oculists always wear glasses. And every
known gavagai is one of Sam’s friends. So no known gavagai is an oculist.

1 ∀x(Sx→∼Wx) hyp
2 ∀y(Oy→Wy) hyp
3 ∀z(Gz→Sz) hyp
4 flag b for UG
5 Gb hyp
6 Sb→∼Wb UI b/x
7 Ob→Wb 2 UI b/y
8 Gb→Sb 3 UI b/z
9 Sb 5, 8 TI (MP)

10 ∼Wb 6, 9 TI (MP)
11 ∼Ob 7, 10 TI (MT)
12 Gb→∼Ob CP 5–11
13 ∀x(Gx→∼Ox) 4–12 UG b/x

3B-13 EXAMPLE. (UI and UG)

Extortionists and gamblers are uncongenial. Alberta is congenial. So Alberta is no
extortionist.

1 ∀x[(Ex∨Gx)→∼Cx] hyp
2 Ca hyp
3 (Ea∨Ga)→∼Ca 1, UI a/x
4 ∼(Ea∨Ga) 2, 3 TI (MT)
5 ∼Ea&∼Ga 4, TE (DM)
6 ∼Ea 5, TI (Simp)
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3B-14 EXAMPLE. (UI and UG)

The subproof-example below illustrates two significant points.

• There is the use of the many-variable case of UI on line 3.

• In choosing a flag, you must look both above and below. At line 2, it would
be totally wrong to choose a as the flag letter, since a occurs in the last line
of the proof.

1 ∀x∀y(Fy∨Gx) hyp
2 flag b for UG
3 Fb∨Ga 1 UI a/x, b/y
4 ∀x(Fx∨Ga) 2–3, UG b/x

It’s worth pausing over Line 4, since it seems to have no thoroughly idiomatic read-
ing that is also faithful to its symbolic grammar. Here are three English candidates,
each to be compared with Line 4.

1. Everything is either F or Ga.

Is (1) bad English grammar? Or is OK, but ambiguous? It would take us too
far afield to sort out the many intricacies of this candidate. For example, if we
are thinking of F as corresponding to an English predicate constant such as
“is foxy,” we come up with “Everything is either foxy or Alfred is a giraffe,”
which, although good enough English, harbors a sad “scope ambiguity” as
between “everything” and “either-or.”

2. Either everything is F or Ga.

(2) is not faithful to the symbolic grammar of Line 4; but its symbolism,
∀xFx∨Ga, is indeed logically equivalent to Line 4. Optional: Try to prove
their logical equivalence in five minutes, and without flagging errors; but
stop after the five minutes. We will return to this equivalence in due time.

3. Everything is such that either it is F or Ga.

(3) is grammatically correct English that is faithful to Line 4. It is, however,
clumsy, ugly, and in poor taste.

Exercise 26 (UI and UG)
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1. The set-theoretical principles listed in Exercise 23 on p. 80 for the purpose
of providing exercises in truth-functional proof theory are of course more
general than their forms there let on. Here we reproduce some of them in
fuller (but not fullest) generality, and ask you to prove three of them from
the others. As before, consider the following S-principles “available” for use
in proofs; you need cite only their names when you use them.

S′-1 ∀x(x∈{a, b} ↔ (x=a∨x=b))
S′-2 ∀y∼(y∈∅)
S′-3a ∀x(x∈ (X∪Y) ↔ (x∈X)∨ (x∈Y))
S′-3b ∀z(z ∈ (X∪∅) ↔ (z∈X)∨ (z∈∅))
S′-6a ∀y((X⊆Y) → (y ∈X → y ∈Y))

Prove:

a. X⊆Y ∴ ∀x(x∈ (X∪Y) → x∈Y)
b. ∀y(y=a → y∈X), ∀z(z=b → z∈Y)

∴ ∀x(x∈{a, b} → x∈ (X∪Y))
c. ∀z(z∈ (X∪∅) → z∈X)

2. Explain what is illustrated by each proof among the following that is marked
as Wrong. To say what is Wrong with a figure is to say why that figure is not
a correct instance of UG, as described in §3B.3. So either the figure has the
wrong form (Convention 3A-2 is relevant) or the figure violates the flagging
restrictions Definition 3B-3. (This is a tedious exercise that most readers
should dip into only lightly if at all. Do not hand in your work.) The first
five of the following illustrate correct uses of UG.

flag a, b for UG
·
·
·
Fab

∀x∀yFxy UG a/x, b/y

flag a for UG
·
·
·
Faa

∀xFxx UG a/x

flag b for UG
·
·
·
Fba

∀xFxa UG b/x

flag a for UG
·
·
·
Fax

∀yFyx UG a/y
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flag a for UG
·
·
·
∀xFx→Fa

∀x(∀xFx→Fx) UG a/x

flag a for UG
·
·
·
Fax

∀xFxx Wrong UG a/x

flag a for UG
·
·
·
Faa

∀xFax Wrong UG a/x

Fa&Gb
flag a for UG
·
·
·
Gac

∀xGxc Wrong UG a/x

flag x for UG
·
·
·
Fx→Gu

∀xFx→Gu
Wrong UG x/x

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

Exercise 27 (Short and positive UQ Proofs)

Prove the following. Except for the first, categorical proofs are wanted! Use only
positive rules (no negation, no ⊥).

1. ∀x(Fx→Gx)→B, ∀x(Gx&Hx)
∴ B

2. ∀x(Fx→Gx)→(∀xFx→∀xGx)

3. ∀xFxx→∀yFyy

4. ∀x∀yF(x, y)→F(a, g(a))

5. (∀xFx∨B)→∀x(Fx∨B)10

6. ∀x∀yFxy→∀y∀xFxy

7. (B→∀xFx)↔∀x(B→Fx)

8. ∀x(Fx&Gx)→(∀xFx&∀xGx)

Double check your work to be sure that you treated any sentence “∀vA→B” as a
conditional rather than as a universal quantification. This mistake is both serious

10The converse is also valid, but requires an awkward detour through negation. Try it if you feel
like it.
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and common. Consult Advice 3B-6.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

Definitions are often universal generalized biconditionals; the following is a typical
use of such a definition. (Such definitions are treated in detail in 8B.1.)

3B-15 EXAMPLE. (UI and UG)

Let (*) be the following truth, which in English we express by saying that A is
tautologically equivalent to B iff A tautologically implies B and B tautologically
implies A.

∀x∀y[x≈TF y↔ (x �TF y & y �TF x)]. (*)

It follows from (*) alone that tautological equivalence is symmetrical: If A is
tautologically equivalent to B then B is tautologically equivalent to A. Since this
is a “complicated” case, we are especially careful to flag constants for UG. In
particular, it is good to avoid having to annotate line 7 below with “UI x/y, y/x,” a
point well worth remembering.

1 ∀x∀y(x≈TF y↔(x �TF y&y �TF x)) hyp (namely, (*))
2 flag a, b, for UG
3 a≈TF b hyp
4 a≈TF b↔(a �TF b&b �TF a) 1, UI a/x b/y
5 a �TF b&b �TF a 3, 4 TI (MPBC)
6 b �TF a&a �TF b 5, TE (Comm)
7 b≈TF a↔(b �TF a &a �TF b) 1 UI b/x a/y
8 b≈TF a 6, 7 TI (MPBC)
9 a≈TF b→b≈TF a 3–8 CP

10 ∀x∀y(x≈TF y→y≈TF x) 2–9 UG a/x b/y

Note how we used (*) in the proof: (*) is a universally generalized biconditional,
which we used first to take us from line 3 to line 5 by a UI followed by a MPBC,
and second to take us from line 6 to line 8 by another UI followed by a MPBC.

3B-16 ADVICE. (UI+MPBC)

You should look for a chance to use the UI+MPBC pattern whenever you have
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a universally quantified biconditional among your premisses. That will happen
often, since definitions are frequently expressed in this way, and definitions are
essential to organized thought. See, for example, Definition 4A-5 and other set-
theory definitions in §4A.

In fact it happens so often that below we advise shortening the work by use of two
new rules dealing explicitly with definitions: Def. introduction and Def. elimina-
tion (Rule 3E-8 and Rule 3E-9). As a preview, here is the short form of Example
3B-15; it assumes that (*) is given as a definition of ≈TF before the start of the
subproof.

1 flag a, b, for UG
2 a≈TF b hyp
3 a �TF b&b �TF a 2, ≈TF elim, a/x b/y
4 b �TF a&a �TF b 3, TE (Comm)
5 b≈TF a 4, ≈TF int, b/x, a/y
6 a≈TF b→b≈TF a 2–5 CP
7 ∀x∀y(x≈TF y→y≈TF x) 1–6 UG a/x b/y

To use this annotation of lines 3 and 5, you must be treating (*)11 as a definition of
≈TF.

It is essential to be prepared to use UI with complex terms; here is an easy example.

3B-17 EXAMPLE. (UI and UG with complex terms)

Any parent of anyone is their ancestor. The father of anyone is a parent of him or
her. Therefore, the father of anyone is their ancestor. (We represent parenthood
and ancestorhood with relations, and fatherhood with an operator: fx= the father
of x.)

1 ∀x∀y(Pxy→Axy)
2 ∀xP(fx)x
3 flag b for UG
4 P(fb)b 2 UI b/x
5 P(fb)b→A(fb)b 1 UI fb/x b/y
6 A(fb)b 4, 5 MP
7 ∀xA(fx)x 3–6 UG b/x

11Instead of Definition 2B-17—it won’t do to define the same symbol in two different ways at
once. You need to pick. See §8B.
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Exercise 28 (UI and UG)

1. Take the following as a definition, called “Def. ⊆”: ∀x∀y(x⊆y ↔ ∀z(z∈ x
→ z∈y)). Prove that each of the following is a consequence.

a. ∀x(x⊆x).

b. ∀x∀y∀z((x⊆y &y⊆z) → x⊆z).

2. (Inspired by Rule 3D-1.) Prove that, since someone is a person’s parent if
and only if that person is their child, and since someone is a person’s child
if an only if that person is either their mother or their father, it follows that
each person’s mother is their parent.12 That is, you should be able to prove
the following.

∀x∀y(Pxy↔Cyx), ∀x∀y(Cxy↔(y=mx∨y= fx)) ∴ ∀zP(mz)z. You
will need an additional premiss, soon to be licensed as an inference rule
(Rule 3D-1), that ∀x(x=x).

3. Symbolize and prove. By definition,13 a bachelor is an unmarried male.
Sally is a female. No male is a female. Sally’s father is married. Therefore,
neither Sally nor her father is a bachelor.

4. Problem with operators. Read “hx” as “half of x” and “dx” as “the double
of x.” As usual, “x < y” means that x is less than y. Symbolize (1), (2), and
(3), and prove that (3) follows from (1) and (2). (1) For all x and y, if x is
less than y, then half of x is less than half of y. (2) For all z and w, half of the
double of z is less than w iff z is less than w. Therefore, (3) for all x and y, if
the double of y is less than x, then y is less than half of x.

5. Optional (skippable). You may wish to figure out why (given our Convention
3A-2) you could not obtain an analog to line 7 of Example 3B-15 by way of
two successive uses of UI annotated “x/y” and “y/x.”

12This sentence fails the test of grammatical excellence, since “their” is supposed to be plural,
whereas here it is used as singular. You could substitute “his or her,” which is singular; in this sen-
tence, however, the substitution would yield awkwardities. We are fortunate to be logicians rather
than English grammarians! Still, when bad English grammar seems essential to someone’s philo-
sophical point, you should suspect that he or she has made a substantive conceptual error.

13A definition in these notes,is always an “if and only if,” even though there are many other useful
forms of definition.
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6. Suppose our domain consists of color shades, and suppose that Sxy repre-
sents the relationship of similarity of colors: Sxy↔ x and y are similar in
shade of color. We would expect the relationship of similarity to be reflexive
and symmetric; that is, we would expect that

∀xSxx; and ∀x∀y(Sxy→Syx).

However, we would not expect the relationship of similarity to be transitive;
that is, we would not expect that

∀x∀y∀z((Sxy&Syz)→Sxz).

We might define Exy, the relationship of exact similarity, by the formula

(Def. E) ∀x∀y(Exy↔∀z(Sxz↔Syz)).

In other “words,” two colors are exactly similar iff they are similar to exactly
the same colors. Using the above definition, (Def. E), as your only premiss,
prove that the relation of exact similarity has the following three features that
make it what is called an “equivalence relation.”

Reflexivity: ∀xExx.
Symmetry: ∀x∀y(Exy→Eyx).
Transitivity: ∀x∀y∀z((Exy&Eyz)→Exz).

You may well need help on this exercise, and if so, you should ask for it
immediately, and even repeatedly. Do not, however, continue your study
of logic without being able to complete all parts of this exercise—without
peeking. That is, go through it over and over with peeking, until finally you
can do it without peeking. Big hint: Your premiss, (Def. E), is a universally
quantified biconditional, which is the very form discussed in Example 3B-
15. In each problem, you will need to use the UI+MPBC procedure on Def.
E once per occurrence of “E” in the problem. Thus, transitivity will require
using UI+MPBC on Def. E three times.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

3B.4 Vertical lines in subproofs

There are only five reasons for drawing a new vertical line as an indicator of scope:
rules CP, BCP, RAA⊥ , CA, and UG. These have something in common beyond
the obvious fact that they are all failsafe rules: In each case, you are working at least



3C. Existential quantifier and DMQ 107

partly from the bottom up!!! In each case, that is, you are generating a “sub-goal,” a
new sentence to try to prove; and the vertical line tells you the scope within which
you must prove it. The ADF Advice 2C-14 on p. 60 applies in each and every
case: First annotate the desired conclusion, second draw the scope-markers for
the needed subproof(s), and third fill in both top and bottom of the subproofs. The
five rules are these:

• Rule CP: You want to prove A→B. You must prove B, “under” A as new
hypothesis. The new vertical line guarantees that B is proved “under” A by
providing a scope for that hypothesis.

• Rule BCP: You want to prove A↔B. You must prove B “under” A, and A
“under” B. The new vertical lines provide scope-markers guaranteeing that
B is proved “under” A , and A “under” B.

• Rule RAA⊥ : You want to prove A [or ∼A]. You must prove ⊥, “under”
∼A [or “under” A] as new hypothesis. The new vertical line guarantees that
⊥ is proved “under” A [or ∼A] by providing a scope for that hypothesis.

• Rule CA: You want to prove C, and you have A∨B available. You must
prove C “under” A, and also you must prove C “under” B. The new ver-
tical lines guarantee that C is proved “under” each of these hypotheses by
providing appropriate scopes.

• Rule UG: You want to prove ∀xAx. You must prove an arbitrary instance of
Ax, with flagging guaranteeing that it is indeed arbitrary. The new vertical
line gives the scope of the flagging.

In these cases, the new vertical lines mark the scope inside which you must generate
a subgoal as you work from the bottom up. So never introduce a new vertical line
for any other reason. In particular, do not introduce vertical lines when using rules
which do not generate sub-goals—rules such as UI or modus ponens.

3C Quantifier proof theory: Existential
quantifier and DMQ

In this section we continue with proof theory, first adding to our battery of tech-
niques a pair of rules governing reasoning with the existential quantifier.
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3C.1 Existential quantifier rules (EG and EI)

We rely on Convention 3A-2, defining At as the result of putting t for all free
x in Ax (proviso: t must not contain—or be—a variable bound in Ax). We use
Ac instead of At when the substituted term must be an individual constant (not
complex). We use Ax1 . . . xn and At1 . . . tn similarly.

The rule of existential generalization, EG, says that given any instance At of Ax,
you may derive ∃xAx. EG, like UI, is not a failsafe rule.

3C-1 RULE. (Existential generalization—EG)

j At
· ·
· ·
k ∃xAx j, EG t/x

Also the many-variable case:

j At1. . . tn
· ·
· ·
k ∃x1 . . .∃xnAx1. . . xn j, EG t1/x1, . . . , tn/xn

Naturally, the premiss for EG does not need to be just above the conclusion; it only
needs to be “available” in the technical sense of Definition 2C-6.

The direction of substitution is, as always, substituting the constant for the quan-
tified variable. Therefore, in EG the direction of substitution is “uphill.” Further-
more, in the many-variable case, the same constant can be substituted for several
variables, just as for UI. Here are some examples

Sab
∃xSxb EG a/x

Saa
∃xSxx EG a/x

Saa
∃xSxa EG a/x

Saa
∃xSax EG a/x

F(a+b)((c+d)−e)
∃xF(a+b)(x−e)

EG (c+d)/x
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X∩Y= (Y∩X)∩X
∃X1[X∩Y = X1∩X]

EG (Y∩X)/X1

Observe that from “Alfred shaves Alfred” any one of the following may be cor-
rectly deduced by EG: “Someone shaves himself,” “Someone shaves Alfred,” and
“Alfred shaves someone.” That is why it is critical that the substitution of a for x
be “uphill.”

The rule of Existential instantiation, EI, is considerably tighter in its requirements,
in strict analogy to UG. Furthermore, like UG, EI is a failsafe rule. Suppose an
existentially quantified sentence ∃xAx is available. For any individual constant c
that meets all the flagging restrictions (Definition 3B-3 on p. 92), you may write
“Ac EI, c/x, flag c.”

3C-2 RULE. (Existential instantiation—EI)

j ∃xAx
· ·
· ·
k Ac j, EI, c/x, flag c

There is also a many-variable version.

j ∃x1. . . ∃xnAx1. . . xn
· ·
· ·
k Ac1. . . cn j, EI c1/x1, . . . , cn/xn, flag c1, . . . , cn

It is part of the flagging restrictions that there must be no repetition among the
flagged constants c1, . . . , cn.

The idea is that we first choose c as entirely arbitrary, and then go on to postulate
of it that Ac. Writing “flag c” is part of the rule, and must not be omitted; otherwise
your choice of c as “entirely arbitrary” would be a mere metaphor.

The use of EI in formal proofs answers to the following. “By hypothesis, we know
there is an F (i.e., we know that ∃xFx); let us pick one out arbitrarily, say c, about
which we will suppose nothing is known except that it is an F (i.e., we suppose that
Fc). Now we will push our reasoning further, by whatever means we can. If we
can reason to some conclusion that does not involve the constant c, we can be sure
that such a conclusion legitimately follows from our hypothesis ∃xFx.”
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Note. The “Ac” exhibited in EI is not really a conclusion from ∃xAx, for to rea-
son from ∃xFx to Fc is a blunder. Just because there is a fox (∃xFx), it does not
follow that Charlie is a fox (Fc). In our system the step “Ac” represents not a con-
clusion, but rather an auxiliary hypothesis that the arbitrarily chosen c is such that
Ac. It is the flagging restrictions that keep us out of trouble when using EI in this
way.

As a matter of fact, EI could be replaced by the following rule, ∃elim, which is the
rule that Fitch himself preferred:

j ∃xAx
j+1 Ac hyp, flag c for ∃elim
· ·
· ·

j+n B
j+n+1 B ∃elim, j, (j+1)–(j+n) (provided c does not occur in B)

Our EI collapses the two vertical lines and the two occurrences of B of ∃elim,
which makes it easier to use than Fitch’s own preferred rule; and that is why we
adopt it in spite of the fact that some Trained Logicians find it not quite “natural.”

3C.2 One-place-predicate examples and exercises

Interesting quantifier problems are generally based on predicates with two or more
places. Just for a warm-up, however, here are some one-place-predicate examples
of proofs involving EG and EI.

3C-3 EXAMPLE. (Bad answers)

Bad answers are answers; so, since there is a bad answer, there must be an answer.
Dictionary: obvious.

1 ∀x(Bx→Ax) hyp
2 ∃xBx hyp
3 Ba 2 EI a/x, flag a
4 Ba→Aa 1, UI a/x
5 Aa 3, 4,TI
6 ∃xAx 5, EG a/x
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Note that it was essential to do the EI before the UI, on pain of violating the flag-
ging restriction Definition 3B-3, which says that for “flag a,” a must be new.

This illustration leads to the following.

3C-4 ADVICE. (Use EI early)

If you have a premiss ∃xAx, use EI on it immediately. It cannot hurt, and it is likely
to help you find the best possible proof. EI, like e.g. CP, and UG, is a failsafe rule:
If any proof will get you to your conclusion, then a proof that uses EI correctly
(obeying the flagging restrictions) is bound to get you there.

Here are several more examples. Although these problems are all worked out for
you, it will improve your mind to go over them sufficiently often that you can do
each one yourself, without peeking.

3C-5 EXAMPLE. (Terrible answers)

Bad answers are answers, and some of them are terrible, so some answers are
terrible. Dictionary: obvious.

1 ∀x(Bx→Ax) hyp
2 ∃x(Bx&Tx) hyp
3 Ba&Ta 2 EI a/x, flag a
4 Ba→Aa 1 UI a/x
5 Aa&Ta 3, 4 TI
6 ∃x(Ax&Tx) 5 EG a/x

3C-6 EXAMPLE. (Astronomy)

Any asteroid is smaller than any quasar. Any asteroid is smaller than no imploded
star. There are some asteroids. So no quasar is an imploded star. Dictionary:
obvious.
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1 ∀x(Ax→∀y(Qy→Sxy)) hyp
2 ∀x(Ax→∀z(Iz→∼Sxz)) hyp
3 ∃xAx hyp
4 flag b for UG
5 Aa 3 EI a/x, flag a
6 ∀y(Qy→Say) 1 UI a/x, 5 MP
7 ∀z(Iz→∼Saz) 2 UI a/x, 5 MP
8 Qb→Sab 6 UI b/y
9 Ib→∼Sab 7 UI b/z

10 Qb→∼Ib 8, 9 TI
11 ∀y(Qy→∼Iy) 4, 10 UG b/y

Two steps are collapsed on line 6, and another two on line 7. This is good practice,
provided you know what you are doing.

3C-7 EXAMPLE. (EI, etc.)

1 ∃x(Fx&Sx)→∀y(My→Wy) hyp
2 ∃y(My&∼Wy) hyp
3 flag a for UG
4 Mb&∼Wb 2 EI b/y, flag b
5 ∀y(My→Wy) hyp
6 Mb→Wb 5 UI b/y
7 ⊥ 4, 6 TI (⊥intro)
8 ∼∀y(My→Wy) 5–7 RAA⊥
9 ∼∃x(Fx&Sx) 1, 8 TI (MT)

10 ∼(Fa→∼Sa) hyp
11 Fa&Sa 10 TE
12 ∃x(Fx&Sx) 11 EG a/x
13 ⊥ 9, 12 TI (⊥intro)
14 Fa→∼Sa 10–13 RAA⊥
15 ∀x(Fx→∼Sx) UG a/x 3–14
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1 ∀x(Px→Ax) hyp
2 flag a for UG
3 ∃y(Py&Hay) hyp
4 Pb&Hab 3 EI b/y, flag b
5 Pb→Ab 1 UI b/x
6 Ab&Hab 4, 5 TI
7 ∃y(Ay&Hay) 6 EG b/y
8 ∃y(Py&Hay)→∃y(Ay&Hay) 3–7 CP
9 ∀x[∃y(Py&Hxy)→∃y(Ay&Hxy)] UG a/x 2–8

1 ∀x[Ox→∀y(Ry→∼Lxy)] hyp
2 ∀x[Ox→∃y(Hy&Lxy)] hyp
3 ∃xOx hyp
4 Oa 3 EI a/x, flag a
5 ∀y(Ry→∼Lay) 1 UI a/x 4 TI
6 ∃y(Hy&Lay) 2 UI a/x 4 TI
7 Hb&Lab 6 EI b/y, flag b
8 Rb→∼Lab 5 UI b/y
9 Hb&∼Rb 7, 8 TI

10 ∃x(Hx&∼Rx) 9 EG b/x

Exercise 29 (Quantifier proofs with one-place predicates)

1. Prove the following.

(a) ∀y(Ay→(By∨Cy)), ∀x∼Cx, ∃xAx ∴ ∃xBx

(b) ∀x(Fx→Gx), ∼(∃xGx∨∃xHx) ∴ ∼∃xFx

(c) ∼(∃xDx∨∃x∼Hx)→∀x(Dx→ Hx)

(d) ∼∀x(Sx→∼Bx), ∀x(Sx→(Cx&Dx)) ∴ ∼∀x(Dx→∼Bx)

(e) ∼∃x(Ax&Bx), ∀x(Fx→∼Bx), ∃x(Bx&(∼Dx→(Fx∨Ax))) ∴ ∃x(Dx
&∼Ax)

2. The following forms of argument are counted as valid syllogisms in tradi-
tional Aristotelian logic. Prove their validity by constructing a derivation in
our natural deduction system. (For Felapton, you will need to add an extra
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premise to the effect that there are M’s. This expresses the existential import
of the explicit premises as understood in traditional logic.)14

(a) Darii. All M are L, Some S is M ∴ Some S is L.
(b) Cesare. No L is M, All S are M ∴ No S is L.
(c) Felapton. No M is L, All M are S, (There are M’s) ∴ Some S is not L.

3. Suppose we were to enlarge our stable of rules by declaring that ∃ is inter-
changeable in every context with ∼∀∼. Show that EI and EG would then be
redundant.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

3C.3 De Morgan’s laws for quantifiers—DMQ

In using quantifier rules UI, UG, EI, and EG, it is essential that they be applied
only to quantifiers ∀x and ∃x that occur on the absolute outside of a step. All of
our rules—especially those concerning flagging—are geared to this expectation.
A common and deeply serious error is to think that they might apply when the
quantifier is inside a negation as in “∼∀x” or “∼∃x.” To forestall this error, you
need to learn that ∼∀xFx (for instance) is Q-logically equivalent to ∃x∼A, and
that ∼∃xFx is Q-logically equivalent to ∀x∼Fx. We call these equivalences “De
Morgan’s laws for quantifiers,” or “DMQ.” You will learn them best if you yourself
prove that they follow from UI, UG, EI, and EG together with our truth-functional
rules for negation and ⊥. We show you how the strangest part of the proof goes,
but leave you to fill in the justifications. The remaining parts are left as an exercise.

3C-8 EXAMPLE. (One part of DMQ)

1 ∼∀xFx
2 ∼∃x∼Fx
3 flag a for UG
4 ∼Fa
5 ∃x∼Fx
6 ⊥
7 Fa
8 ∀xFx
9 ⊥

10 ∃x∼Fx
14We explicitly work on symbolization later, in chapter 5. Exercise 29, however, assumes that you

have picked up a bit of symbolization from your earlier study of logic. Still, just in case, we mention
here that “Some S is not L” in Felapton symbolizes as ∃x(Sx&∼Lx).
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Exercise 30 (DMQ)

1. Fill in the justifications for Example 3C-8.

2. Prove the following categorically, using only UI, UG, EI, EG, and⊥/negation
rules, and of course BCP.

(a) ∼∀xFx↔∃x∼Fx

(b) ∼∃xFx↔∀x∼Fx

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

After you have established these equivalences, you are entitled to use them:

3C-9 RULE. (DMQ)

You can interchange “∼∃x” with “∀x∼,” and you can interchange “∼∀x” with
“∃x∼” in any context. Cite “DMQ” as your reason. Versions with built-in DN,
namely, rules permitting the interchange of ∼∃∼with ∀ and of ∼∀∼with ∃, are
also called DMQ.

The principal use of the rules DMQ is to move quantifiers to the outside, where
you may be guided by the rules UI, UG, EI, and EG, and where you understand
exactly when to use flagging—and when not to use flagging—without confusion.
(The presentation of this rule is repeated below by putting Definition 3E-2 together
with Rule 3E-7.)

3C.4 Two-place (relational) problems

The following problems, chiefly two-place, are more typical of those that you will
encounter.

Exercise 31 (Two-place quantifier proofs)

Prove the following.
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1. ∀x∀ySyx ∴ ∼∀x∃y∼Syx

2. ∀x∀yRxy ∴ ∃y∃xRxy

3. ∃x(Fx&Gx), ∼∃x(Fx&∼Cxx)
∴ ∃x∃yCxy

4. Use DMQ. ∼∃x(Fx&Gx),
∀x((Fx&∼Gx)→∼∃y(Tyx&
Hxy)), ∀x(∀y(Hxy→Zxy)→Gx)
∴ ∀x(Fx→∼∀y(Tyx∨Zxy))

5. If there is some (one) dog that
all persons love, then each per-
son loves some dog (or other):
∃x(Dx&∀y(Py→Lyx)) → ∀y(Py
→∃x(Dx&Lyx))

6. ∀x(Fx→ ∃y(Gy&Hyx)),
∼∃x∃yHxy ∴ ∼∃xFx

7. ∼∃x(∼Gx∨∼∃yFy) ∴ ∃zFz

8. ∀x(Ux→∃y(By&∼Cxy)), ∀y(By
→Cay) ∴ ∼Ua

9. ∀x(Fx→∃yBxy)
∴ ∼∃x(Fx & ∀y∼Bxy)

10. ∀x(Ux→Bx), ∼∃x(Bx&Cxx)
∴ ∼∃x(Ux&∀yCyx)

11. ∀x(Fx→(∃yJxy→∃zJzx)),
∀x(∃zJzx→Jxx), ∼∃xJxx
∴ ∀x(Fx→∀y∼Jxy)

13. You should also be able to prove that if there is a woman whom all male
Greeks love (e.g., Helen of Troy), then each male Greek loves some woman
(e.g., his mother). Why? Because it has exactly the same form as (5) above.

14. Some people don’t own any goats, all kids are goats, so some people don’t
own any kids. (Use P, O, G, K. O, of course, must be two-place.)

15. A relation, R, is irreflexive iff ∀x∼Rxx, and is asymmetric iff ∀x∀y(Rxy →
∼Ryx). Prove that if R is asymmetric, then it is irreflexive.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

3D Grammar and proof theory for identity

From at least one theoretical point of view, identity is just another two-place pred-
icate, but the practice of the art of logic finds identity indispensable. In this section
we present its (trivial) grammar and a little proof theory.

The grammar of identity. If t and u are terms, then t=u is a sentence. That is,
“ = ” is a predicate. That’s it.
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Proof theory. There is, as usual, an introduction and an elimination rule. (Most
people think that identity is the only predicate for which there is a complete set of
rules. It is in this misguided sense the only “logical” predicate.)

3D-1 RULE. (Identity introduction)

· ·
· ·
n t= t =int

Note that =int, like the rule Taut, involves no premisses at all. Also like Taut it is
seldom of use. (But not never!)

3D-2 RULE. (Identity elimination)

· ·
· ·
j At
· ·
· ·

j+k t=u
· ·
· ·
n Au j, j+k, =elim

or

· ·
· ·
j Au
· ·
· ·

j+k t=u
· ·
· ·
n At j, j+k, =elim

where At and Au are exactly alike except that Au contains one or more occurrences
of u where At contains t.
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More accurately but somewhat more obscurely, we have in mind Convention 3A-2
according to which At must be obtained from Ax by putting t for all free x, and Au
from that same Ax by putting u for all free x. For example, let Ax be Fxuxt; then
At is Ftutt and Au is Fuuut, which in fact must have the property expressed in the
preceding “where”-clause. It is also important that the Convention 3A-2 guarantees
that no variable in either t or u becomes bound in the process of substituting for
x. (What makes this particular application of the Convention hard to process is the
fact that there is no explicit occurrence of Ax in the vicinity.) Another picture of
(the first statement of) the rule of identity elimination is this:

· ·
· ·
j (. . . t . . . )
· ·
· ·

j+k t=u
· ·
· ·
n (. . . u . . . ) j, j+k, =elim

The easiest way to tell if you have a correct use of =elim is as follows. One of
your premisses is the identity t=u. You also have another premiss, (. . . t . . . ), and
a conclusion, (. . . u . . . ). Now see if you can find a way to underline some (or all)
of the t’s in (. . . t . . . ), and some (or all) of the u’s in (. . . u . . . ), so that “everything
else” in (. . . t . . . ) and (. . . u . . . ) looks exactly the same. This is illustrated below.

At: Ftutt

Au: Fuuut

The idea is that the conclusion must say exactly about u what one of the premisses
says about t. The circling or underlining makes this manifest.

3D-3 EXAMPLE. (Identity examples)

Charlie accepted Mary’s offer. Whoever accepted Mary’s offer caused a turmoil.
None of Mary’s friends caused a turmoil, and the famous author, Barbie Dolly, is
certainly one of Mary’s friends. So Charlie isn’t Barbie Dolly.
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1 Ac hyp
2 ∀x(Ax→Tx) hyp
3 ∀x(Mx→∼Tx) hyp
4 Mb hyp
5 b=c hyp (for RAA⊥ )
6 Mb→∼Tb 3 UI b/x
7 ∼Tb 4, 6, TI
8 Ab→Tb 2, UI b/x
9 ∼Ab 7, 8, TI

10 ∼Ac 5, 9, =elim
11 ⊥ 1, 10, TI (⊥ I
12 ∼(b=c) 5–11, RAA⊥

In the following example, which is a piece of real mathematics, “◦” is used as a
two-place operator and a prime is used as a one-place operator (in the sense of
§1A). Also “e” is an individual constant.

1 ∀x∀y∀z[x◦ (y◦z) = (x◦y)◦z] hyp (associativity)
2 ∀x(x◦e=x) hyp (e is an identity)
3 ∀x(x◦x′ = e) hyp (′ is an inverse)
4 a◦c=b◦c hyp, flag a, b, c, for CP+UG
5 (a◦c)◦c′ = (a◦c)◦c′ =int
6 (a◦c)◦c′ = (b◦c)◦c′ 4, 5, =elim
7 a◦ (c◦c′) = (a◦c)◦c′ 1, UI a/x, c/y, c′/z
8 b◦ (c◦c′) = (b◦c)◦c′ 1, UI b/x, c/y, c′/z
9 a◦ (c◦c′) = (b◦c)◦c′ 6, 7, =elim

10 a◦ (c◦c′) = b◦ (c◦c′) 8, 9, =elim
11 c◦c′=e 3, UI c/x
12 a◦e=b◦e 10, 11 =elim
13 a◦e=a 2, UI a/x
14 a=b◦e 12, 13, =elim
15 b◦e=b 2 UI, b/x
16 a=b 14, 15, =elim
17 ∀x∀y∀z[(x◦z = y◦z)→ (x=y)] 5–16, CP+UG x/x, y/y, z/z

Line 17 is called the Cancellation Law. Try this proof tomorrow, without peeking.

The next example outlines what we suppose is one of the most famous of all uses
of RAA (here, RAA⊥): the ancient Greek proof that

√
2 is irrational. Note the

interplay of arithmetic and logic. All letters range over positive integers.
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1
√

2 is rational hyp, for RAA
2 ((m/n ×m/n) =2))

& (m, n have no common divisor (except 1))] 1, Def., EI, flag m, n
3 m2/ n2 =2 2, arith.
4 m2 = (2×n2) 3, arith.
5 2 divides m2 evenly 4, EG on n2, Def.
6 2 divides m evenly 4, arith.
7 (a×2) =m 6, Def., flag a
8 (a×2)2 = (2×n2) 4, 7, =
9 (a×2×a×2)= (2×n2) 8, arith.

10 (a×2 ×a) =n2 9, arith.
11 2 divides n2 evenly 10, arith., Def.
12 2 divides n evenly 11, arith.
13 2 6=1 &2 divides m &2 divides n 6, 12, arith., Conj
14 m and n have a common divisor (not 1) 14, EG on 2, Def.
15 ⊥ 2, Simp, 14, ⊥int
16

√
2 is irrational 1–15, RAA⊥

More Rules. The following rules involving identity are all redundant;15 but they
crop up with fair frequency, and their use shortens proofs. You can cite them all as
just “=” if you like.

t=u
u= t (i.e., symmetry of identity)

t=u
u=w
t=w (i.e., transitivity of identity)

Versions of the above in which the terms are reversed, in either premiss or in the
conclusion, are also acceptable. The following equally useful (redundant) identity
rules should be seen as the closest of cousins to each other. We’ll give them a
special name, “Added context,” to indicate how they work.

3D-4 RULE. (Added context)

15Optional: Show this. That is, argue from premisses to conclusion using =int and =elim.
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· ·
· ·
1 t=u
· ·
· ·
2 (. . . t. . . )= (. . . u. . . ) 1, = (Added context)

· ·
· ·
1 t=u
· ·
· ·
2 (. . . t. . . )↔(. . . u . . . ) 1, = (Added context)

Grammar requires that in the first case (. . .t. . .) be a term, but in the second case,
(. . .t. . .) must be a sentence. Why? If an answer isn’t on the tip of your tongue,
see Definition 1A-3 on p. 6. With the grammatical distinction in mind, we might
have called the first form “Added operator context,” and the second form “Added
predicate context.” But we choose to leave well enough alone.

Examples.

1 3= (1+2) hyp
2 4+3=4+ (1+2) 1, = (Added context)

1 3= (1+2) hyp
2 ((3 is odd)→a=b)↔ (((1+2) is odd)→a=b) 1,= (Added context)

In the “piece of real mathematics” of Example 3D-3, the transition
from line 4 to line 6 is a case of Added Context. If we had anno-
tated line 6 of Example 3D-3 with “4, Added context,” we could have
omitted line 5. (Check this.)

Exercise 32 (Identity proofs)

Identity is deeply intertwined with operators. In the following exercises, be pre-
pared to use UI and EG with complex terms, not just individual constants.
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1. Prove that it is a law of logic (not just arithmetic) that adding equals to equals
yields equals:

∀x∀y∀w∀z[(x=y & w=z)→ (x+w=y+z)]

(You will need to use =elim and either =int or Added context.)

2. Prove that it is a law of logic that every two numbers have a sum:

∀x∀y∃z(x+y=z)

3. Prove: Mark Twain wrote Life on the Mississippi, and he was really Samuel
Clemens. Samuel Clemens was once a river pilot. Therefore, a one-time
river pilot wrote Life on the Mississippi. (Use m, W, l, s, R. W is of course
two-place.)

4. Each of the following is a way of saying that there is exactly one F. This is
easy to see for (4a), which evidently says “there is at least one F and there
is at most one F.” Show that (4b) and (4c) say the same thing by means of
proof. You can show that all three are equivalent by means of only three
(instead of six) hypothetical proofs that “go round in a circle,” for example,
from (4a) to (4c) to (4b) to (4a). (The order is up to you; any circle will do.)
Note: It took Russell to figure out the impenetrable version (4c).

(a) ∃xFx & ∀x∀y[(Fx&Fy)→x=y]

(b) ∃x(Fx&∀y(Fy→x=y))

(c) ∃x∀y(Fy↔x=y)

5. Prove the following as theorems.

(a) ∀x(f(gx)=x)↔ ∀x∀y(gx=y→fy=x).

(b) ∀x∃y(fx=y&∀z(fx=z→z=y)).

6. Two of the following equivalences are Q-logically valid and two are not.
Prove two that you believe to be Q-valid.

(a) Fa↔ ∀x(x=a & Fx)

(b) Fa↔ ∃x(x=a & Fx)

(c) Fa↔ ∀x(x=a→ Fx)

(d) Fa↔ ∃x(x=a→ Fx)

7. Prove the following.

(a) ∀x(g(fx)=x) ∴ ∀x∀y(fx= fy→x=y).
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(b) ∀y(∃x(fx=y)→fy=y), ∀x∀y(fx= fy→x=y) ∴ ∀x(fx=x).

8. Optional—but don’t count yourself as having mastered quantifier theory un-
less you can do it. You have a domain partially ordered by a binary relation
6 when 6 satisfies the following three conditions. Reflexivity: ∀x(x6x).
Transitivity: ∀x∀y∀z((x6y&y6z)→x6z). Anti-symmetry: ∀x∀y((x6y&
y6x)→x=y). You have a lower semi-lattice when, in addition to the partial
order, there is a binary operator ◦ on the domain that, for any two elements
of the domain, gives their greatest lower bound (x◦y). That is, when the
following also hold. Lower bound for x and y: ∀x∀y((x◦y6x)&(x◦y6
y)). Greatest among such lower bounds: ∀x∀y∀z((z6x&z6y)→(z6x◦
y)). Your job, should you agree to undertake it, is to prove uniqueness of the
greatest lower bound of x and y in any lower semi-lattice: Given as premisses
that your domain is partially ordered by 6 and that (x◦y) is a greatest lower
bound of x and y, prove that if anything w is also a greatest lower bound of
x and y, then w= (x◦y).

9. Optional. Prove the following result from group theory. Note the interesting
transition from “∀∃” in the premisses to “∃∀” in the conclusion. We give an
annotated empty “proof form” as an elaborate hint. The least obvious step is
step 7.

(1) ∀x∀y∀z(x+ (y+z)= (x+y)+z), (2) ∀x∀y∃z(x=y+z),
(3) ∀x∀z∃y(x=y+z) ∴ ∃y∀x(x+y=x).

1 hyp
2 hyp
3 hyp
4 2, UI a/x, a/y
5 4, EI e/z, flag e
6 flag b for UG
7 3, UI /x, /z
8 7, EI c/y, flag c
9 5, 8, =elim

10 1, UI /x, /y, /z
11 9, 10, =elim
12 8, 11, =elim
13 UG 6–12, b/x
14 13, EG e/y
15 14, = (symmetry)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /
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3E Comments, rules, and strategies

We collect together some comments, some additional (redundant) rules, and some
advice.

3E.1 Flagging—cautions and relaxations

We begin with some cautions, and then indicate how the flagging restrictions can
be relaxed a bit. In the first place, observe that there are only two occasions on
which to flag:

1. When starting a new vertical line for later use with UG:

·
·
·

flag a for UG
·
·
·

2. When using EI:

·
·
·
∃xAx
Ab EI b/x, flag b

Never flag on any other occasion. In particular, do not flag when using UI or EG.
The second “caution” is to remember the “flagging made easy” remark in §3B.1: If
every time you flag you choose a brand new term that you haven’t yet written down
anywhere, you cannot go wrong. The third “caution” is to keep in mind that the
four quantifier rules are whole line rules, and cannot be used “inside.” Experience
teaches the importance of this caution. Sometimes you can move a quantifier to
the outside by a Swoosh rule, which you will learn in §3E.3, but this must be
inserted as an extra step, and only if you know what you are doing. Using quantifier
rules on the “inside” is a common mistake, and must be consciously avoided; use
quantifier rules only on the outside. So much for cautions; now for relaxations.



3E. Comments, rules, and strategies 125

The easy flagging restriction is stricter than it needs to be. For example, there is
really nothing “wrong” with the following proof, even though step 6 violates the
easy flagging restriction Definition 3B-3. (Be sure you can say why, looking up
Definition 3B-3 if you do not recall it exactly.)

1 ∀x(Fx&Gx) hyp
2 flag a for UG
3 Fa&Ga
4 Fa
5 ∀xFx UG a/x
6 flag a for UG
7 Fa&Ga
8 Ga
9 ∀xGx UG a/x

But the above proof satisfies the intermediate flagging restriction, Definition 3B-3.
Usually you will find the original (more strict) easy version easier to remember and
easier to check; but feel free to use the more relaxed intermediate version if you
like.

3E.2 Universally generalized conditionals

So many interesting sentences have the form ∀x(Ax→ Bx), or maybe with more
universal quantifiers up front, that it is convenient to allow introduction or elimi-
nation of such steps with single rules, CP+UG and UI+MP, instead of by means of
rules for the conditional combined with rules for the universal quantifier.

3E-1 RULE. (CP+UG—universally generalized conditional)

The introduction part CP+UG combines CP and UG as follows (only the one-
variable case is illustrated, but the many-variable case is also allowed):

Ab hyp, flag b, for CP+UG
·
·
·
Cb

∀x(Ax→Cx) CP+UG b/x
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The elimination part UI+MP combines UI and MP:

1 ∀x(Ax→Cx)
2 At
3 Ct 1, 2 UI+MP t/x

The elimination part, UI+MP, simply gives a name to the combination of UI and
MP. In the introduction part, the vertical lines for the UG and for the CP are col-
lapsed into a single vertical line, with the UG flag directly on the line of the hy-
pothesis. The proof using CP+UG above then replaces the one below.

flag b for UG
Ab hyp
·
·
·
Cb

Ab→Cb CP
∀x(Ax→Bx) UG

Example using CP+UG:

1 ∀x(Hx→Ax) hyp
2 ∃x(Hx&Tax) hyp, flag a for CP+UG
3 Hb&Tab 2 EI b/x, flag b
4 Hb→Ab 1 UI b/x
5 Ab&Tab 3, 4 TI
6 ∃z(Az&Taz) 5 EG b/z
7 ∀y[∃x(Hx&Tyx)→∃z(Az&Tyz)] 2–6, CP+UG a/y

Having established line 7, one could use it with UI+MP as follows:

1 ∃x(Hx&Tcx) premiss
2 ∃z(Az&Tcz) 1, line 7 above, UI+MP c/y

One might well consider adding also special rules for “universally generalized
biconditionals,” namely BCP+UG and UI+MPBC, since they crop up frequently
indeed. Definitions usually have this form. If you wish to use such a rule, by all
means do so. Here is how the introduction part BCP+UG could go:
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Ac hyp. flag c for BCP+UG
·
·
Bc

Bc hyp. flag c for BCP+UG
·
·
Ac

∀x(Ax↔Bx) BCP+UG c/x

We spell out the details of the “elimination” half separately below since a version
of “UI+MPBC” that we call “UI+RE” (UI + replacement of equivalents) can be
used not only as a “whole line” rule, but as a rule permitting replacement in the
middle of sentences. See Rule 3E-7. Even more important are the special cases to
be used in connection with definitions, Def. int and Def. elim (Rule 3E-8 and Rule
3E-9).

3E.3 Replacement rules

There are five (and only five) rules that allow manipulation of the insides of for-
mulas. One of them is TE (tautological equivalence), which we have already had,
in Rule 2C-8. We call three more, all together, “the quantifier equivalences.” Here
they are, one by one.

3E-2 DEFINITION. (DMQ equivalence)

We say that formulas on the same line below are DMQ-equivalent (equivalent by
“De Morgan’s laws for quantifiers”):

∼∀xA ∃x∼A
∼∃xA ∀x∼A
∼∀x∼A ∃xA
∼∃x∼A ∀xA

These are generalizations of De Morgan’s Laws if the universal quantifier is thought
of as a generalized conjunction, and the existential quantifier as a generalized dis-
junction. They are used to “move quantifiers to the outside,” where we can work
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with them by the generalization and instantiation rules UI, UG, EI, and EG. We
presented them earlier as Rule 3C-9 so that you could start using them right away;
here we merely re-present them in a suitable context.

3E-3 DEFINITION. (Swoosh equivalence)

We also say that formulas on the same line below are swoosh-equivalent, given the
important stated proviso.

Proviso: B must not contain x free!16

∀xAx&B ∀x(Ax&B)
∃xAx&B ∃x(Ax&B)
∀xAx∨B ∀x(Ax∨B)
∃xAx∨B ∃x(Ax∨B)

The above represent various connections between the quantifiers and conjunction
and disjunction. They are used to “move quantifiers to the outside” where they can
be worked on by UI, UG, EI, and EG.

Also, pairs of formulas that are like the above, but with left-right of the & or ∨
interchanged, are swoosh-equivalent.

Furthermore, the following, which represent connections between quantifiers and
the conditional, are also swoosh-equivalent, with the same proviso: B must not
contain x free.

∀xAx→B ∃x(Ax→B)
∃xAx→B ∀x(Ax→B)
B→∀xAx ∀x(B→Ax)
B→∃xAx ∃x(B→Ax)

Notice and remember that when the quantified formula is in the antecedent of the
conditional, the quantifier must be changed—just as in DMQ; furthermore, the
reason is the same here as it is for DMQ: The antecedent of a conditional is really
a “negative” position, as can be inferred from the equivalence between A→B and
∼A∨B. Swoosh equivalences are more memorable than you might think. In every
case one starts with a quantified formula to either the left or right of a connective,

16The proviso is particularly relevant when the displayed formulas are subformulas lying inside
quantifiers that might bind variables free in B.
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and then moves the quantifier to the outside—changing it if moving from the left
of an arrow.

The last equivalence is only seldom useful—it allows us to exchange one bound
variable for another, provided we are careful. Its chief use is to prepare for appli-
cation of swoosh-equivalence.

3E-4 DEFINITION. (CBV equivalence)

Formulas on the same line below are defined as CBV-equivalent (“equivalent by
change of bound variable”) provided that x occurs free in Ax precisely where y
occurs free in Ay:

∀xAx ∀yAy
∃xAx ∃yAy

Given Convention 3A-2, this means not only that Ay is the result of putting y for
all free x in Ax, without any such y becoming bound in the process (so much is
part of the Convention), but also that y is not free in Ax. It follows that x is free
in Ax just where y is free in Ay, so that (and this is the intuitive point) Ax says
about x precisely what Ay says about y; so that the quantified formulas must say
the same thing.

Now for the quantifier equivalence rules stated altogether.

3E-5 RULE. (Rules DMQ, Swoosh, and CBV)

If (. . .A. . .) is “available” at a given step, and if A and B are

• DMQ-equivalent (DMQ), or

• swoosh-equivalent (Swoosh), or

• equivalent by change of bound variable (CBV)

then (. . .B. . .) may be inferred—giving as a reason one of DMQ, Swoosh, or CBV,
together with the step-number of (. . .A. . .).

You are reminded that the purpose of all these quantifier equivalences is to permit
“moving the quantifiers to the outside” where they can be worked on by UI, UG,
EI, and EG.
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3E-6 EXAMPLE. (Swoosh and CBV)

The following illustrates why you must sometimes precede swoosh by change of
bound variable (CBV), and why there is no simple swoosh equivalence for equiva-
lence (↔).

1 ∀xFx↔B
2 (∀xFx→B)&(B→∀xFx) 1, TE
3 ∃x(Fx→B)&∀x(B→Fx) 2, swoosh (twice)
4 ∃x[(Fx→B)&∀x(B→Fx)] 3, swoosh
5 ∃y[(Fy→B)&∀x(B→Fx)] 4, CBV
6 ∃y∀x[(Fy→B)&(B→Fx)] 5, swoosh

Exercise 33 (DMQ, Swoosh, and CBV )

With rules DMQ (in full generality), Swoosh, and CBV newly at your disposal,
prove the following.

1. ∃x(Gx→Haa), ∼∃xFx, ∀x(Gx∨Fx) ∴ ∃yHyy

2. ∀x((Fx&Gx)&∃y(Ryy&Gb)) ∴ ∼∀x∼Rxx
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

The fifth rule is called “replacement of equivalents.”

3E-7 RULE. (Replacement of equivalents)

There are two versions.

1. Replacement of equivalents (or RE). The plain-biconditional based ver-
sion is this: If (. . .A. . .) and A↔B are each “available” at a given step, then
(. . .B. . .) may be inferred, giving “RE” or “repl. equiv.” as the reason. Ob-
serve that whereas in the other of the five replacement rules, A and B are
known to be Q-logically equivalent in one of four special ways, here in this
fifth rule it is only a matter of A↔B being available.
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2. UI+RE. The second form of replacement of equivalents permits the avail-
able equivalence to be universally quantified, and so we call it “UI+RE.”
If (—At1. . .tn—) and ∀x1. . .∀xn(Ax1. . .xn↔Bx1. . .xn) are each “available,”
then you are entitled to infer (—Bt1. . .tn—); recalling that the At/Ax Con-
vention 3A-2 forbids certain troublesome cases. The rule is also intended to
permit replacement of Bt1. . .tn by At1. . .tn. Cite the rule UI+RE.

The rule UI+MPBC (Advice 3B-16 on p. 103) is merely a “whole line” special
case of UI+RE. Each is worth its weight in horseshoes when your inferences are
being carried out in the context of a perhaps large number of available definitions
in the sense of §8B below, which nearly always have the form of universally quan-
tified biconditionals. Whenever such a definition is available as a premiss, then in
any context you can replace an instance of the left side, which will be headed by
the predicate constant serving as the definiendum, by a matching instance of the
definiens (right side), and vice versa. (See Definition 8B-1.)

In fact, this is so important that we list a third and fourth form of the rule. The
underlying assumption is that definitions falling under these forms have the form

∀x1. . .∀xn(Rx1. . .xn↔Ax1. . .xn), (*)

with the left side being headed by the definiendum (the defined) and the right side
being the definiens (the defining). Note that the left side must be a predication,
not an arbitrary sentence, in order for this to count as a definition. The predicate
constant, R, that heads the left side is called the definiendum because it is what is
being defined.

Then the two “new” rules are “Def. introduction” and “Def. elimination.”

3E-8 RULE. (Def. introduction)

Given that the definition (*) is available, if a definiens-instance is available in some
context, as in

—At1. . .tn—,

then you may infer the matching left-side-instance (which will be headed by the
definiendum, R) in exactly the same context, as in
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—Rt1. . .tn—,

by the rule Def. introduction. The proper annotation on the conclusion is “R intro-
duction” or “R int,” where R is the definiendum (the predicate letter being defined).

3E-9 RULE. (Def. elimination)

Given that the definition (*) is available, if a left-side-instance (which will be
headed by the definiendum, R) is available in some context, as in

—Rt1. . .tn—,

then you may infer the matching definiens-instance in exactly the same context, as
in

—At1. . .tn—,

by the rule Def. elimination. The proper annotation on the conclusion is “R elimi-
nation” or “R elim,” where R is the definiendum.

You will avoid considerable muddle if in applying these rules you take care to insist
that all of the terms ti are closed. Otherwise, errant binding of variables may lead
you far astray. Also your definitions (*) must satisfy the conditions 8B.1. It is a
good idea to peek at these now.

3E-10 EXAMPLE. (Def. introduction and Def. elimination)

Given the two-place addition operation, x+y, you might define a three-place sum
relation, to be read “x and y sum to z,” as follows.

∀x∀y∀z[Σ(x, y, z) ↔ (x+y)=z]. (Def. Σ)

Suppose you have commutativity for + as an axiom. Then a proof that Σ inherits
this property might go as follows.
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1 ∀x∀y(x+y =y+x) hyp
2 Σ(a, b, c) hyp, flag a, b, c for UGC
3 a+b = c 2, Σ elim, a/x, b/y, c/z
4 b+a = c 1, UI, a/x, b/y, 3, =
5 Σ(b, a, c) 4, Σ int, b/x, a/y, c/z
6 ∀x∀y∀z[Σ(x, y, z) → Σ(y, x, z) 2–5, UGC, a/x, b/y, c/z

Exercise 34 (Simple Def. int and Def. elim)

Using Def. Σ from Example 3E-10, and the arithmetic fact that ∀x(x+0 = x).
prove that Σ(3, 0, 3).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

3E.4 Strategies again

This section is a repetition of section §2C.8, with strategies for the quantifiers and
Definition introduction and elimination added in their proper places. In construct-
ing proofs in system Fi, always remember that you are working from both ends
towards the middle. You must work stereoscopically, keeping one eye on the pre-
misses you have that are available, and the other eye on the conclusions to which
you wish to move. Make a habit of putting a question mark on any conclusion
for which you do not yet have a reason. (You should at any stage already have
a reason for each of your premisses, and perhaps for some of your conclusions.)
Divide, then, the steps you have so far written down into those towards the top—
your premisses—and those towards the bottom which are questioned—your de-
sired conclusions. Then use the following strategies.

3E-11 STRATEGIES. (For conclusions (questioned items) at bottom)

When your desired (not yet obtained) conclusion (bearing a question mark) is:

Rt1. . . tn, where R is a defined predicate constant; let D be the universally
quantified biconditional that is announced as the definition of R. Try to
prove the appropriate matching instance of the right side (the definiens
side) of D, and then obtain from this the desired definiendum, Rt1. . . tn,
by Def. int (you annotate with “R int”). Failsafe.



134 Notes on the art of logic

A&B. Try to prove A and B separately, and then use Conj, that is, &int.
Failsafe.

A∨B. In some cases you will see that either A or B is easily available,
and so you can use Addition, that is, ∨int. (Not failsafe.) Otherwise, it
is always safe and usually efficient to rely on the fact that disjunctions
and conditionals are “exchangeable.” First assume∼A and try to obtain
B. Then, as an intermediate step, derive ∼A→B by CP. Then obtain
the desired A∨B by Conditional Exchange. Failsafe.

A→B. It is always safe and usually efficient to try to obtain B from A, and
then use CP, that is,→int. Failsafe.

A↔B. Try to obtain each of A and B from the other, and then use BCP,
that is,↔I. Failsafe.

∀xAx. Obtain by UG. That is, try to obtain At within the scope of a “flag t,”
where you pick t so as to adhere to the flagging restrictions. Failsafe.

∃xAx. No very nice strategy is available. First, look around for some At
on which to use EG. Not failsafe. If this doesn’t seem to get you
anywhere, try obtaining ∃xAx by RAA⊥ as indicated just below.

∼A. If A is complex, obtain from an equivalent formula with negation
“driven inward” by the appropriate “Rule for Negated Compounds.” If
A is simple, try RAA⊥ (regular version): Assume A and try to derive
⊥. Failsafe.

A. If nothing else works, try RAA⊥ : Assume ∼A and try to reason to ⊥.
Failsafe, but desperate and to be avoided if possible.

⊥. About the only way to get ⊥ is to find some (any) kind of tautological
inconsistency in your available steps, and use the special case ⊥int of
TI. So if your desired conclusion is⊥, turn your attention immediately
to your premisses, as below. Failsafe.

3E-12 STRATEGIES. (For premisses (already justified items) at top)

When among your premisses (item has already been given a definite reason) you
have

Rt1. . . tn, where R is a defined predicate constant; let D be the universally quan-
tified biconditional that is announced as the definition of R. Use Def. elim
(you annotate with “R elim”) to obtain the appropriate matching instance of
the right side (definiens) of D. Failsafe.
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A&B. Derive A and B separately by Simp, that is, &elim—or anyhow look
around to see how A or B or both can be used. Failsafe.

A→B. Look for a modus ponens (A) or a modus tollens (∼B). Sometimes you
need to generate A as something you want to prove (at the bottom, with a
question mark). Not failsafe (but a really good idea).

A↔B. Look for an MPBC (A or B) or an MTBC (∼A or ∼B). Not failsafe (but
a good idea).

A∨B. Look for a disjunctive syllogism: a ∼A, a ∼B, or anyhow a formula
differing from one of A or B by one negation. This will often work. Not
failsafe. But suppose it doesn’t. Then consider that you not only have A∨
B as a premiss; you also have a desired conclusion, say C. Try to derive C
from each of A and B, and use Case argument, CA. Failsafe.

∃xAx. Use EI. This is always a good idea. When you use EI, you must flag,
choosing t so as to adhere to the flagging restrictions. Be sure to use EI
before using UI in order to avoid foolish violation of the flagging restrictions.
Failsafe.

∀xAx. Of course you will look around for appropriate UI. Not failsafe. The
important thing is to delay using UI until after the relevant EI’s and getting-
set-for-UG’s, because of the flagging restrictions. After thus delaying, look
around for plausible instantiations, remembering that any are allowed, with-
out restriction—except of course the restriction built into Convention 3A-2.

∼A. If A is complex, “drive negation inward” by a Rule for Negated Compounds.
Failsafe. If A is simple, hope for the best.

⊥. It doesn’t often happen that you have awful ⊥ as a premiss. If you do, you
can take yourself to have solved your problem, since any (every) desired
conclusion is obtainable from ⊥ by the special case ⊥E of TI. Failsafe.

3E-13 EXAMPLE. (Strategy example)

To prove: ∀x(Gx↔Hx) ∴ ∃x(Fx&Gx)↔∃x(Fx&Hx). You should begin by em-
ploying the strategy for a biconditional as conclusion.
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1 ∀x(Gx↔Hx) hyp
2 ∃x(Fx&Gx) hyp

∃x(Fx&Hx) ?

∃x(Fx&Hx) hyp

∃x(Fx&Gx) ?
∃x(Fx&Gx)↔∃x(Fx&Hx) /? BCP

Now you have both universal and existential claims as premisses. You should delay
using UI until after you have used EI.

1 ∀x(Gx↔Hx) hyp
2 ∃x(Fx&Gx) hyp
3 Fa&Ga 2, EI a/x, flag a

∃x(Fx&Hx) ?

∃x(Fx&Hx) hyp
Fb&Hb EI b/x, flag b

∃x(Fx&Gx) ?
∃x(Fx&Gx)↔∃x(Fx&Hx) /? BCP

At this point, you should be able to do appropriate universal instantiations and
finish the proof.
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1 ∀x(Gx↔Hx) hyp
2 ∃x(Fx&Gx) hyp
3 Fa&Ga 2, EI a/x, flag a
4 Ga↔Ha 1, UI a/x
5 Ha 3, 4 MPBC
6 Fa&Ha 3, 5 Conj
7 ∃x(Fx&Hx) /? 6, EG a/x

8 ∃x(Fx&Hx) hyp
9 Fb&Hb 8, EI b/x, flag b

10 Gb↔Hb 1, UI, b/x
11 Gb 9, 10 MPBC
12 Fb&Gb 9, 11 Conj
13 ∃x(Fx&Gx) /? 12, EG b/x
14 ∃x(Fx&Gx)↔∃x(Fx&Hx) /? BCP(2–7, 8–13)

Exercise 35 (Strategy exercises)

Use the strategies in solving the following problems. (Be self-conscious; the point
is to use the strategies.) [Apology: These exercises are not well chosen for their
purpose. Request: Make up one or more problems that illustrate the use of strate-
gies not naturally used in the following. Also there should be a problem or two
involving identity. ]

1. ∀xGx&Fa ∴ ∃yFy&Ga

2. ∼∃y(∼Fy∨∼∃zGz) ∴ Fa&∃zGz

3. ∼∀x(Fx→(Gx∨Hx)) ∴ ∼∀y(Gy↔Fy)

4. ∀x(((Gx→Fx)→Gx)→Gx)

5. ∃xFx∨ (∼∀xPx∨∀xQx), ∃xFx→∼∃xGx ∴ ∀xPx→(∃xGx→∀xQx)

6. ∃x∼(Gx↔Hx) ∴ ∃y(Gy∨Hy)

7. ∃xFx→∀y(Gy→∼Hy), ∃y(∼∀zJz→Fy) ∴ ∼Jc→∀y(∼Gy∨∼Hy)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /
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3E.5 Three proof systems again

Since we have added the universal and the existential quantifiers to our grammar,
you would expect that we would be adding four rules to each of the three systems
described in §2C.9, and of course we do.

• UI is the intelim rule for universally quantified sentences as premisses.

• UG is the intelim rule for universally quantified sentences as conclusions.

• EI is the intelim rule for existentially quantified sentences as premisses.

• EG is the intelim rule for existentially quantified sentences as conclusions.

Thus, the system of intelim proofs is enriched by these four rules, and so accord-
ingly is the system of strategic proofs and the system Fi of wholesale proofs. Where
should we put the quantifier replacement rules DMQ, Swoosh, CBV, and replace-
ment of equivalents of §3E.3? Evidently they aren’t intelim, but are they strategic
or wholesale? We think of them as “strategic”; so these three rules can and ought
to be used in strategic proofs. That leaves TI, TE, and Taut as the only difference
between strategic proofs and (wholesale) proofs in Fi. The upshot is then this.

3E-14 DEFINITION. (Proof systems for quantifiers)

Proof in Fi. All rules are usable here. This means that you can use:

• the structural rules hyp and reit (and availability),

• any truth-functional rule (especially the wholesale rules TI, TE, and
Taut),

• the four intelim quantifier rules UI, UG, EI, EG,

• the identity rules, and

• the quantifier equivalences DMQ, Swoosh, CBV, and replacement of
equivalents, including UI+RE.

This is the most useful system of logic. It combines delicate strategic con-
siderations with the possibility of relaxed bursts of horsepower. (Sometimes
we use “wholesale proof” as a synonym for “proof in Fi.”)

Strategic proof. You can employ any rule mentioned in §3E.4 on strategies except
the wholesale rules. More precisely, you can use:
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• the structural rules

• the intelim rules (including UI, UG, EI, EG),

• the mixed rules,

• the negated-compound rules,

• and the quantifier equivalences DMQ, Swoosh, CBV, and replacement
of equivalences

You cannot, however, use the wholesale rules.

Intelim proof. Here only the “intelim” rules may be employed. (The mixed rules,
negated-compound rules, wholesale rules, and quantifier equivalences are off
limits.) In addition to the truth-functional intelim rules described in §2C.9
on p. 81, this means only UI, UG, EI, EG, =int, =elim; and of course the
structural rules.

Exercise 36 (Intelim and Replacement Rules)

You already established half of the DMQ equivalences in connection with Exercise
30 on p. 115. Show that the rest of the DMQ equivalences (those involving two
signs of negation) and the Swoosh equivalences laid down in Definition 3E-3 on
p. 128 as the basis for the respective replacement rules can be established by using
intelim rules alone; this will give you the best possible feel for how the various
quantifier intelim rules interact; that is, give intelim proofs of the following, as-
suming that B does not contain x free. You really should do all of these; but, at
a minimum, you should do those marked with an asterisk (*) or a double asterisk
(**). Those with a double asterisk are of most philosophical-logical importance.

1. ** ∼∀x∼Ax↔∃xAx

2. ∼∃x∼Ax↔∀xAx

3. * (∀xAx&B)↔∀x(Ax&B)

4. (∃xAx&B)↔∃x(Ax&B)

5. Tricky
(∀xAx∨B)↔∀x(Ax∨B)

6. * (∃xAx∨B)↔∃x(Ax∨B)

7. Tricky
(∀xAx→B)↔∃x(Ax→B)

8. ** (∃xAx→B)↔∀x(Ax→B)

9. (B→∀xAx)↔∀x(B→Ax)

10. Tricky
* (B→∃xAx)↔∃x(B→Ax)
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

Exercise 37 (Quantifier exercises)

You should be ready for the following exercises. In each case, construct a proof
showing Q-validity of the indicated argument. [Apology: These exercises are ill-
chosen. You can improve them by insisting that you use the Swoosh and DMQ
rules as much as possible.]

1. ∃x∀y(∃zFyz→Fyx), ∀y∃zFyz ∴ ∃x∀yFyx

2. ∀x(∃yGyx→∀zGxz) ∴ ∀y∀z(Gyz→Gzy)

3. ∀x(Hax→Ixb), ∃xIxb→∃yIby ∴ ∃xHax→∃yIby

4. ∀x(Ax→∀y(By→Gxy)), ∃x(Ax&∃y∼Gxy) ∴ ∃x∼Bx

5. ∃x(Jx&∀y(Ky→Lxy)) ∴ ∀x(Jx→Kx)→∃y(Ky&Lyy)

6. ∀x((Bx&∃y(Cy&Dyx&∃z(Ez&Fxz)))→∃wGxwx), ∀x∀y(Hxy→Dyx),
∀x∀y(Fxy→Fyx), ∀x(Ix→Ex)
∴ ∀x(Bx→((∃y(Cy&Hxy)&∃z(Iz&Fxz)) → ∃u∃wGxwu))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /



Chapter 4

A modicum of set theory

We explain a portion of the theory of sets, going a little beyond Symbolism 1B-10.

4A Easy set theory

We call this section “Easy set theory,” or “EST.” One purpose is simply to give
you some practice with quantifier proofs in a serious setting (“real” constants, not
mere parameters). We use truth functions and quantifiers to explain the empty set
∅, the subset relation ⊆, the proper-subset relation ⊂, and three set-set operators,
intersection ∩, union ∪, and set difference −. We will return to this topic from
time to time, as need dictates. What we shall do in this section is to set down the
precise axioms and definitions required to give proofs, in quantifier logic, using the
ideas of set theory that we introduce. The following two conventions now become
relevant.

4A-1 CONVENTION. (Types of numbered statement)

In addition to exercises, examples, facts, conventions and definitions, we will now
have the following types of numbered statements:

Axiom. An axiom is a clear-cut, formalizable postulate that is to be used in
proving something. Though most are stated in (middle) English, all are to be
thought of as cast in the language of quantifiers and truth functions. Refer to
an axiom by name or number.
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Variant. A variant is a definition that is so trivial that it doesn’t even need refer-
ence.

Theorem. Theorems are statements that follow from axioms and definitions
(sometimes via conventions and variants). Unless we explicitly mark the
proof of the theorem otherwise, “follow” means: follows by the elementary
truth-functional and quantifier techniques you already know from axioms
and definitions explicitly declared in these notes.

Fact. A fact is a theorem that isn’t so important.

Corollary. A corollary is a theorem that can be proved in an easy way from what
closely precedes it; for this reason it usually bears no indication of proof.

4A-2 CONVENTION. (Omitted universal quantifiers)

We repeat Convention 1B-20: We feel free to drop outermost universal quantifiers
from what we say. So if we use a variable without binding it, you are to supply a
universal quantifier whose scope is our entire statement.

Fundamental primitives of set theory: sethood and membership. The primi-
tives we require from set theory are numerous. If our task were to understand the
concepts of set theory itself instead of those of logic, we should start with just one
or two and show how the rest could be defined in terms of those; as it is, we just
permit ourselves whatever seems best—making, however, an exhaustive effort to
keep track of precisely to which concepts with which properties we are helping
ourselves. The initial and most fundamental primitives we require from set theory
are two, both of which we introduced in Symbolism 1B-10. The first of these is the
one-place predicate, “ is a set.”

4A-3 CONVENTION. (X and Y for sets)

Let us repeat the content of Convention 1B-11: We will use X, Y, etc., for sets. In
contrast, we will use x, y, etc. as general variables. Thus, when we say or imply (by
Convention 4A-2) “for all X,” we mean “for all X, if X is a set then”; and when
we say “for some X” we mean “there is an X such that X is a set and.”

The second most fundamental primitive is set membership, carried by the two place
predicate, “ ∈ ,” read “ is a member of (the set) .” We often use 6∈ for its
negation; that is,
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Y

Y
X

X

Venn diagram Euler diagram

Figure 4.1: Euler and Venn diagrams of the subset relation

4A-4 VARIANT. (Nonmembership)

z 6∈X↔df ∼(z∈X).

Subset. A good deal of set theory is definitional. The first two definitions are
particularly straightforward. One set is a subset of another if all the members of the
set are also members of the second, and is a proper subset if in addition the second
set contains something that the first does not. There are two standard pictures of
the subset relation, as indicated in Figure 4.1, a Euler diagram and a Venn diagram.
The Euler diagram shows the subset X nested inside the superset Y, whereas the
Venn diagram shows that the region of X outside of Y is empty, so that a fortiori
every member of X is bound to be in Y.

4A-5 DEFINITION. (Subset)

∀X1∀X2[X1⊆X2↔ ∀z[z∈X1→z∈X2]] (Def. ⊆)

Strictly speaking this definition is not quite “proper,” since it involves our conven-
tional use of “X1” and “X2” as ranging over sets, but it is better at this stage if you
ignore this delicacy and just treat Definition 4A-5 as a definition having the form
of a universally quantified biconditional.
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Exercise 38 (Subsets)

Show how to use Definition 4A-5 to prove the following theorems of set theory.
Remark: You do not need to write down the definition of the subset relation as a
step in your proof. Just refer to it by number (namely, “Definition 4A-5”) or by
name (namely, “Def. ⊆”).

1. ∀X1[X1⊆X1] (reflexivity of subset relation)

2. ∀X1∀X2∀X3[(X1⊆X2 & X2⊆X3) → X1⊆X3] (transitivity of subset rela-
tion)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

Using definitions. Here is a “hint” for carrying out Exercise 38. It expands on
the discussion of Example 3B-15 and of the rules Rule 3E-8 and Rule 3E-9 on
p. 132.

4A-6 HINT. (Using definitions)

Whenever you are given a problem involving a defined expression, you must be
ready to use the definition in the proof.1 Since the definition will be a universally
quantified biconditional, how to use the definition is automatic: You instantiate
on those outermost universal quantifiers, and then, having obtained the instance of
the definition that you want, you make a trade between the left side and the right
side of the biconditional. That’s hard to say in words, but it is so important that it is
worth your while becoming crystal clear on the matter. Here are two key examples.
Suppose first you have a proof in which a premiss or some other already-justified

line is “X⊆Z”:

· ·
n X⊆Z justified somehow

1Must? Yes, if you are thinking straight. Euclid was not being perfectly clear-headed when
giving his famous “definition” of a point as that which is without parts and without magnitude. You
yourself can tell that something has gone awry when you learn the striking fact that nowhere does
Euclid appeal to this “definition” in proving his geometrical theorems! Similarly, if you come across
a piece of philosophy or sociology or physics in which some “definition” is never used, you can be
confident that something is not quite right. (It might be only that a helpful partial explanation of
meaning has been mislabeled as a “definition.” But it could be much worse.)
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You continue as follows:

· ·
n X⊆Z justified somehow

n+1 ∀z[z∈X→z∈Z] n, ⊆ elim, X/X1, Z/X2

Be careful to observe, incidentally, that you must not instantiate the quantifier “∀z”
as part of step n+1. Go back and look at Definition 4A-5: The quantifiers “∀X1”
and “∀X2” govern the entire biconditional, whereas, in contrast, “∀z” is just part of
the right side (the definiens) of the biconditional. (Of course you can now use step
n+1 in any way you like, but you need to record that use as a further step.)

Second, suppose that “Z⊆W” is a goal or subgoal marked with a question mark, so
that it is something that you want to prove (rather than something already justified
that can be used as a premiss).

m · justified somehow

Z⊆W ?

You just work the definition in reverse, writing down the right side (the definiens)
of the instantiated biconditional as what you now want to prove:

m · justified somehow

k ∀z[z∈Z→z∈W] ?
k+1 Z⊆W k, ⊆ int, Z/X1, W/X2

(The question mark on line k indicates that you still have work to do.) The ap-
plication of this “hint” to Exercise 38 is straightforward: Every time you have X
⊆Y available, you apply ⊆ elim, going on from there. And every time you want
to infer to X⊆Y, you set up to obtain it by ⊆ elim; in other words, write down its
definiens as a new goal, from which you will infer the desired X⊆Y by ⊆ int. (We
think that the picture is easier than the words.)

Extensionality. The most distinctive principle of set theory is known as the “ax-
iom of extensionality”:

4A-7 AXIOM. (Axiom of extensionality)
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If X1 is a set and Y1 is a set, then:

∀z[z∈X1↔z∈Y1]→ (X1 =Y1) (Ax. Ext.)

The axiom of extensionality says that sets are identical just in case they have ex-
actly the same members.2 Observe that the converse (i.e., from right to left) is
already logically true by the identity rule of Added context, 3D-4, together with
UG, so that there is no point in changing the conditional to a biconditional. Partly
to enforce this insight, it is good to employ the rule of extensionality, which simply
converts the conditional into a rule of inference:

4A-8 RULE. (Rule of extensionality)

Suppose that X and Y are sets. If ∀z[z∈X↔z∈Y] is available, then you may infer
X=Y, giving “Extensionality” (or “Ext.”) as justification. Picture:

·
j ∀z[z∈X↔z∈Y] ?

j+1 X=Y j, Ext.

4A-9 ADVICE. (Proving identity of sets)

Just about always, if you wish to prove two sets identical, do so by appealing to the
rule of extensionality. Be careful to keep in mind that the premiss of the rule is a
universal quantification.

Exercise 39 (Antisymmetry of ⊆ )

A relation is said to be a partial order if it is reflexive, transitive, and (new word)
antisymmetric. You established reflexivity and transitivity in Exercise 38. A re-
lation is said to be “antisymmetric” provided that its “going both ways” happens
only in the case of identity. Prove, using the rule of extensionality, that the subset
relation is antisymmetric and therefore a partial order:

(X⊆Y & Y⊆X)→ X=Y.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

2It is essential that the application of this axiom be limited to sets; for example, your pencil has
the same members as your pen (namely, none), but they are not thereby identical to each other.
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Figure 4.2: Euler and Venn diagrams of the proper subset relation

Proper subset. Moving on, X is said to be a proper subset of Y iff X is a
subset of Y, but Y has a member that is not a member of X. We may indicate this
pictorially in either a Venn or a Euler diagram by putting say a star in the portion
of Y that is outside of X as indicated in Figure 4.2.

4A-10 DEFINITION. (Proper subset)

∀X1∀X2[X1⊂X2↔ (X1⊆X2 & ∃z[z∈X2 &z 6∈X1])] (Def. ⊂ )

Exercise 40 (Proper subset)

The proper subset relation is a strict partial ordering of the sets (irreflexive, tran-
sitive, asymmetric).

1. Prove irreflexivity: ∀X1∼(X1⊂X1)

2. Prove asymmetry: ∀X1∀X2[X1⊂X2→∼(X2⊂X1)]

3. Optional. Prove transitivity: ∀X1∀X2∀X3[(X1⊂X2 & X2⊂X3)→X1⊂X3]
(transitivity of proper subset)
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4. Prove the following obvious relation between the subset and the proper sub-
set relation: X⊆Y↔ (X⊂Y ∨ X=Y).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

Lots of non-sets, such as gibbons and planets, have no members. There is, however,
special terminology for sets according as to whether they have members or not.

4A-11 DEFINITION. (Nonempty/empty)

A set X is nonempty if it has members: ∃y(y∈X).

A set X is empty if it has no members: ∀y(y 6∈X).

It turns out that there is only one set that is empty, and we give it a name: ∅,
pronounced “the empty set.” Its axiom describes it perfectly.

4A-12 AXIOM. (Empty set)

∅ is a set, and

∀x(x 6∈∅) (Ax. ∅)

Exercise 41 (Empty set)

Prove that Axiom 4A-12 (together with previous axioms or definitions) logically
implies some facts about the empty set.

1. ∀X1[∅⊆X1]

2. ∼(∅∈∅)

3. ∅⊆∅

4. ∀X1∼(X1⊂∅)

5. ∀y(y 6∈X)→ X=∅ (uniqueness of the empty set; use extensionality)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /
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X YX Y X Y

Figure 4.3: A picture of the intersection X∩Y, union X∪Y, and set difference X−
Y

Intersection, union, and set difference. Next we add three operators, set inter-
section (∩), set union (∪), and set difference (−). Each takes two sets as inputs
and delivers a set as output. The “Venn” diagram of Figure 4.3 makes clear to your
right brain which things belong to the set that is output. The axioms speak instead
to your left brain. Each axiom has two parts; you can ignore the first part of each,
which simply says that the output of the operator always names a set.

4A-13 AXIOM. (Intersection, or meet)

∀X1∀X2[X1∩X2 is a set]

∀X1∀X2∀z[z∈ (X1∩X2)↔ (z∈X1 &z∈X2)] (Ax. ∩)

4A-14 AXIOM. (Union, or join)

∀X1∀X2[X1∪X2 is a set]

∀X1∀X2∀z[z∈ (X1∪X2)↔ (z∈X1∨z∈X2)] (Ax. ∪ )

4A-15 AXIOM. (Set difference)

∀X1∀X2[X1−X2 is a set]

∀X1∀X2∀z[z∈ (X1−X2)↔ (z∈X1 &z 6∈X2)] (Ax. −)

Observe that ∀z is “on the outside,” and so may be instantiated (with UI) along
with ∀X1 and ∀X2.
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Exercise 42 (Set operations and subset)

There are dozens of useful facts about the set-theoretical concepts so far intro-
duced. Here is a family of such of some interest. Prove them. (In the presence
of the convention that outermost universal quantifiers may be omitted (Convention
4A-2), you are in effect proving the truth of some universally quantified statements.
But nothing will go wrong if you just treat X and Y as constants (parameters) in
proving the following—constants that could be flagged if you wished to continue
on to prove the universal quantification.)

1. X∩Y is the “greatest lower
bound” of X and Y with respect
to the subset relation:

(a) X∩Y ⊆ X

(b) Optional. X∩Y ⊆ Y

(c) Optional. (Z⊆X and Z⊆Y)
→ Z ⊆ X∩Y

2. X∪Y is the “least upper bound”
of X and Y with respect to the
subset relation:

(a) Optional. X⊆ (X∪Y)

(b) Optional. Y⊆ (X∪Y)

(c) (X⊆Z and Y⊆Z)→
(X∪Y)⊆Z

3. X−Y is the set difference of X
and Y, or the complement of Y
relative to X:

(a) Optional. Y∩ (X−Y)⊆∅
(b) Optional. X−Y⊆X

(c) X⊆ (Y∪ (X−Y))

4. Prove:

(a) X⊂Y↔
(X⊆Y&∃z[z∈ (Y−X)]).

(b) ∼(X⊆∅)↔ ∃z[z∈X].

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

We need identity to state the basic idea of our notation, Symbolism 1B-10, for finite
collections such as {a}, {a, b}, {a, b, c}, etc.

4A-16 AXIOM. (Unit sets {a}, pair sets {a, b}, etc.)

You can make the name of a set by enclosing a comma-separated list of entities in
curly braces:

• {y} is a set, and

∀x∀y[x∈{y} ↔ x=y] (Ax. {})
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• {y, z} is a set, and

∀x∀y∀z[x∈{y, z} ↔ (x=y∨x=z)] (Ax. {})

• {y1, y2, y3} is a set, and

∀x∀y1∀y2∀y3[x∈{y1, y2, y3} ↔ (x=y1∨x=y2∨x=y3)] (Ax. {})

• Etc.

Exercise 43 (Finite collections)

The first two exercises turn out, in Notes on the science of logic, to be essential
principles for thinking about what it means for a set to be finite.

1. Prove: y 6∈X → X = (X−{y})

2. Prove: y∈X → X = (X−{y})∪{y})

3. Prove: {a, b} = {b, a}.

4. Optional (not difficult but tedious, with much use of CA, case argument).
Prove that if {{a}, {a, b}}={{c}, {c, d}} then a=c and b=d. You might
start by showing that {a} belongs to the left side, and that therefore {a} also
belongs to the right side. If you add three similarly justified facts, e.g. that
{c, d} belongs to the left side since it belongs to the right side, you will
have quite a lot of information to begin your tedious investigation. (This
fact is required in order to justify a standard set-theoretical construction of
so-called ordered pairs 〈a, b〉, as we note in §4B.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

Exercise 44 (Sets with identity)

In the following, it is given that X, Y, and Z are sets.

1. Prove that in the following very
special case, it doesn’t matter
where you put the parentheses:

X∩ (Y∪X)= (X∩Y)∪X.

2. X⊆∅→X=∅.
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3. (X−Y)−Z = X− (Y∪Z)

4. For each of the following, either
prove it, or prove its negation.

(a) {∅}=∅.

(b) {{∅}, ∅}={∅}

(c) ∀X(X∩∅=∅)

(d) ∀X(X∪∅=X)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

We briefly indicate another standard axiom of set theory: separation. Once you
have some sets to start you off, this “wholesale” axiom guarantees the existence
of many additional sets, such as ∅ and X∩Y, that we earlier introduced in a retail
fashion (see Axiom 4A-12 and Axiom 4A-13):

4A-17 AXIOM. (Separation)

∀X∃Y∀z[z∈Y↔ (z∈X&Az)].

Here Az can be any sentence, so long as its only free variable is z: Az is interpreted
as a condition on z. So the axiom says that if you start with a set X and put some
condition on its members, you are sure of the existence of the set of members of
X that satisfy that condition. Important as it is, however, it would take us too far
afield to put this axiom to use.

That’s all the easy set theory (EST) there is. We explain a little more set theory in
the next section, §4B. From now on, you are entitled to use any item of easy set
theory in proofs, writing “EST” as a kind of wholesale justification.

4B More set theory: relations, functions, etc.

We next go through the set-theoretical background required for the art of the use
of relations and functions, adding some set-theoretical lagniappe at the end. “Re-
quired” has a special meaning here. There is nothing intrinsic to the idea of rela-
tions or functions that demands their treatment within set theory instead of inde-
pendently; but the set-theoretical treatment seems on the whole simpler in practice.
First we go over the informal definition of a function. We want to define a function
f from X to Y as a rule associating a member y∈Y with each x∈X. The notation
y= fx or y= f(x) will mean that f associates y with x.3 Suppose X ={1, 2, 3, 4,
5} and Y={a, b, c, d}. Figure 4.4 pictures a function f defined on every member
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X Yf

Figure 4.4: A picture of a function f from X into Y

of X and taking values in Y. The table [1] is another equally useful picture that
displays almost the same information:

x 1 2 3 4 5
fx a a c c c

[1]

More precisely, f is a function from X into Y if

1. X and Y are sets.

2. ∀x[x∈X→ ∃y[y∈Y & y= f(x)]]. For every x∈X there is an associated f(x)
∈Y.

3. ∀y∀z[(y∈Y & z∈Y & ∃x[x∈X & z= f(x) & y= f(x)])→ z=y].

The function f associates a unique y with each x. As the picture shows, functions
can be “many-one,” mapping different elements of X to the same element of Y.
They cannot be one-many or many-many, by clause (3). It is not part of the defini-
tion that each member of Y is used as a target (in these cases the function is said

3This cannot help but be confusing since up to this point we have taken the notation “f(x)” as
a given: a categorematic expression (namely, a term) that is governed by first-order logic. Now,
however, we are being foundational: We are interested in analyzing the very notion of a function that
lies behind the “f(x)” notation. For this purpose, we temporarily forbid ourselves to use “f(x)” as
categorematic. Instead, we use it only syncategorematically to make up the predication “y= f(x).”
Only when we have finished the foundational analysis and come to Definition 4B-9 will we entitle
ourselves once more to use “f(x)” categorematically as a term.
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to be “onto” Y). Note that Y could be X, or even a subset of X, as in the following
example:

“Father-of” is a function from the set of humans into the set of humans. For
each x∈X, father-of(x) is x’s father. In particular, father-of(Jacob) = Isaac,
and father-of(Isaac)=Abraham.

A convenient and perspicuous way to form these intuitions into a rigorous theory
is to define a function as a kind of relation. So what is a relation? In the same
spirit of convenience and perspicuity, a relation will be defined as a set (we know
what those are) of ordered pairs. What near earth is an ordered pair? Some people
define “ordered pair” in terms of “{}.” Using “〈x, y〉” for the ordered pair the
first member of which is x, and the second member of which is y, they give the
following definition:

〈x, y〉={{x}, {x, y}}; [2]

But we do not know of anyone who claims in a philosophical tone of voice that
is what an ordered pair “really is”: The proposed definition [2] (which we are not
going to adopt) is thought of as convenient but not perspicuous. In any event, it is
necessary and sufficient (for any purposes anyone has ever thought of) that ordered
pairs have the following properties:4

4B-1 AXIOM. (Ordered pair)

〈x, y〉=〈u, v〉 → (x=u & y=v). (Ax. 〈〉)

〈x, y〉 6= x; 〈x, y〉 6= y.

The general attitude toward relations appears to be different from that toward or-
dered pairs: Many people seem to think the following definition tells us what a
relation “really is”: The definition below (which we do adopt) is thought of as not
only convenient but also perspicuous.

4B-2 DEFINITION. (Relation)

A relation is a set of ordered pairs. That is,

R is a relation↔ R is a set and ∀x[x∈R→ ∃y∃z(x=〈y, z〉)]
4In Exercise 44(4) you were given the option of undertaking the tedious task of proving these

properties for the proposed definition [2].
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The following items introduce some indispensable language in the theory of rela-
tions.

4B-3 CONVENTION. (Relation notation)

When R is a relation,

xRy↔ Rxy↔ R(x, y)↔ 〈x, y〉∈R

4B-4 AXIOM. (Domain and range)

The domain5 of a relation is the set of its left elements, and its range is the set of
its right elements: Dom(R) and Rng(R) are sets, and

x∈Dom(R)↔ ∃y(〈x, y〉 ∈ R) (Ax. Dom)

x∈Rng(R)↔ ∃y(〈y, x〉 ∈ R) (Ax. Rng)

4B-5 AXIOM. (Cartesian product)

X×Y is the set of all ordered pairs with left member in X and right member in Y:
X×Y is a set, and

∀z[z∈ (X×Y)↔ ∃x∃y(z=〈x, y〉 and x∈X and y∈Y)] (Ax. ×)

4B-6 COROLLARY. (Cartesian product)

x∈X and y∈Y↔ 〈x, y〉∈ (X×Y)

PROOF. Trivial. �

It is good to think of X×Y as the “universal relation” on X and Y. Cartesian
products generalize to cartesian powers, where we think of a “power” as arrived
at by repeated “multiplication” by the same thing. When X is a set, we define
the set cartesian-powers-of(X) of the cartesian powers of X—that is, the results of
repeatedly taking products of X. We do not give the definition rigorously, and we
serve notice that, accordingly, we will not be proving anything involving it until
and unless that lack is made good.

5In these notes “domain” has two uses: Domainj is the domain of the Q-interpretation j, and
Dom(R) is the domain of the relation R.
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4B-7 DEFINITION. (Cartesian power of X; casual version)

X∈cartesian-powers-of(X).

(X× . . .×X)∈cartesian-powers-of(X) (where the dots are to be interpreted
with charity).

We later want cartesian powers to be the domains of definition of certain functions;
but what is a function? We repeat the earlier account, but now with full rigor, as a
definition.

Functions.

4B-8 DEFINITION. (Function)

A function is a relation such that there is a unique right member for each left mem-
ber: f is a function↔ f is a relation and

∀x∀y∀z[(〈x, y〉∈ f & 〈x, z〉∈ f)→ y=z].

The formal details of this definition are not important for our purposes, but the idea
of a function is decidedly so: There is a set on which the function f is defined, its
domain Dom(f) (see Axiom 4B-4). For each thing x in Dom(f), f yields a unique
thing y, namely, the unique member y of Rng(f) corresponding to x.

It is essential to have a compact notation for application of a function to one of its
arguments.

4B-9 DEFINITION. (Function notation)

Provided f is a function and x∈Dom(f): f(x)=y↔ 〈x, y〉∈ f.

When f is a function and x is a member of Dom(f), the notation is wholly trans-
parent and easy to use, permitting you to make transitions with your eye that would
otherwise call into play the higher faculties of your intellect (Whitehead); but when
f is not known to be a function, or if x is not known to be in its domain, then it is
pointless to use the notation because the definition, being conditional in form, gives
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no sense to its use (see §12A.4).6 In many cases below we label as a “definition”
some condition on a function-symbol. Showing that the “definition” really is a def-
inition (eliminable and conservative as explained in §12A) is generally Too Much,
and we omit it. In the same spirit, although we never use notations like “f(x)” when
we shouldn’t, we do not include verification of this as part of the development.

4B-10 CONVENTION. (Function notation alternatives)

We will (for example) use “fx” or “(f)x” or even “(f)(x)” or “((f)(x))” as meaning
the same as “f(x)”—whichever is in a given context convenient. That is, we are
wholly relaxed about parentheses in our use-language, adopting whatever commu-
nicative strategies seem to us best.

Also we nearly always use “f(x, y)” or “fxy” for “f(〈x, y〉)”; or sometimes it is
convenient to write “x f y” or “(x f y).”

Any ambiguities caused by collating this convention with Convention 4B-3 are to
be resolved in a seemly fashion.

4B-11 VARIANT. (Defined on)

A function f is defined on (an entity) x if x∈Dom(f). And f is defined on (a set)
X if X ⊆Dom(f).

Don’t use “f(x)” unless f is defined on x; it would be a silly thing to do, since then
nothing, not even Definition 4B-9, gives us a hint as to the identity of f(x).

The next comes in handy from time to time.

4B-12 FACT. (Range of functions)

For functions f, y∈Rng(f)↔ ∃x(x∈Dom(f) and fx=y).

PROOF. Tedious. �

The following is equally useful:
6The trickiest point is this: Use of the notation cannot itself make f a function or put x in its

domain! In constructing proofs, things must go the other way: First you must verify that f is a
function and that x is in its domain; only then is it sensible to use the notation f(x).
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4B-13 DEFINITION. (One-one)

A function f is one-one↔ for every x, y ∈ Dom(f), f(x)= f(y)→ x=y.

This means, by contraposition, that if x 6=y, then f(x) 6= f(y): Distinct arguments
yield distinct values. The picture: No two strings emanating from Dom(f) are tied
to the same member of Rng(f).

Function space operator. Some impressive insight is enabled by concentrating
on certain sets of functions.

4B-14 DEFINITION. (Function-space operator 7→)

(X 7→Y) is the set of all functions whose domain of definition is X, and whose
range of values lies inside Y. That is, (X 7→Y) is a set, and

f∈ (X 7→Y)↔ f is a function & Dom(f)=X & Rng(f)⊆Y. (Def. 7→)

In other words, for f to be a member of (X 7→Y), f must be a function with domain
X having the following further property:

∀x(x∈X→ f(x)∈Y).

f can be said to be from X into Y, in contrast to onto Y. In other equivalent jar-
gon, one may call f an injection, whereas if f were onto Y, one would call f a
surjection.

Since f-values for x∈X are always found in Y, (X 7→Y) satisfies the following kind
of “modus ponens”:

4B-15 COROLLARY. (MP for 7→)

1 f∈ (X 7→Y)
2 x∈X

f(x)∈Y 1, 2 MP for 7→

Also (see Axiom 4B-5):
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1 f∈ ((X×Y) 7→Z)
2 x∈X
3 y∈Y

f(x, y)∈Z 1, 2, 3 MP for 7→

You can use the principle of MP for 7→, Corollary 4B-15, for what we sometimes
call “type checking”—for making sure that what you write down makes sense.

4B-16 EXAMPLE. (MP for 7→; examples)

Let R be the set of real numbers and P the set of physical objects. So:

+ ∈ ((R×R) 7→R)

mass ∈ (P 7→R)

Given that 3 and 5 are real numbers, we can check that it makes sense to write
down “3+5” as follows:

1 3∈R Given
2 5∈R Given
3 + ∈ ((R×R) 7→R) Given
4 (3+5) ∈ R 1, 2, 3, MP for 7→

So “3+5” makes sense by line 4. And we may continue in the same spirit:

5 mass ∈ (P 7→R) Given
6 Frank ∈ P Given (just now)
7 mass(Frank) ∈ R 5, 6, MP for 7→
8 (mass(Frank)+3) ∈ R 1, 7, 3, MP for 7→

So “mass(Frank)” is o.k. by line 7, and line 8 yields an o.k. for “mass(Frank)+3.”

In a more negative spirit, we can see that what we would need for “mass(3)” to
make sense would be for 3 to belong to P (since P is the domain of definition
of mass), and what we would need for “Frank+3” to make sense is for Frank to
belong to R.

In the same spirit, we can see that it makes no sense to write down something like
“mass(mass(Frank))”—the argument to the inner occurrence of “mass” is o.k., but
the argument to the outer occurrence is thought to be a member of R rather than
a member of P. What guides your thinking here is always MP for 7→: What would
you need in order to apply it to the case at hand?
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X 7→Y also has the following conditional-proof-like property.

4B-17 COROLLARY. (CP for 7→)

1 f is a function
2 Dom(f)=X
3 a∈X hyp, flag a
· ·
· ·
· ·
k f(a)∈Y

k+1 f∈ (X 7→Y) 1, 3–k, CP for 7→

Exercise 45 (Exercise on function space)

The “composition” of two functions is written f◦g. Take the following as pre-
misses: f∈ (Y 7→Z), g∈ (X 7→Y), ∀x[(f◦g)x = f(g(x))], and Dom(f◦g)=Dom(g).
Now try to prove that (f◦g) is a member of (X 7→Z)—a kind of transitivity for the
function space operator. (This proof is short and in a sense easy, but you may well
become confused and need assistance.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

Occasionally we need an “identity criterion” for functions; the following is ulti-
mately a consequence of extensionality, Axiom 4A-7.

4B-18 FACT. (Identity of functions)

Functions are identical if they have the same domains, and deliver the same argu-
ment for each value: For functions f and g, if Dom(f) = Dom(g), and if f(x)=g(x)
for all x∈Dom(f), then f=g.

PROOF. Tedious. �

Since we have an “identity criterion” for functions, we can count them. It turns out
that the number of functions in (X 7→Y) depends in an easy way on the number of
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elements in X, and in Y: Namely, let X have x elements and let Y have y ele-
ments; then (X 7→Y) has yx functions in it. For this reason, most set-theoreticians
use the notation “YX” in place of “(X 7→Y)”; but the notation is unmemorable and
unhandy in applications such as ours in which we shall want to make frequent use
of MP and CP for 7→, Corollary 4B-15 and Corollary 4B-17.

Exercise 46 (Exercises on relations and functions)

1. Without being told what set X is, informally describe a function that is
bound to belong to (X 7→X).

2. a∈X; b∈Y; f ∈ (X 7→ (Y 7→Z)); so (f(a))b∈? (Consult Convention 4B-10
for help disentangling parentheses; they are indeed casually placed.)

3. f∈ (X 7→Y); x∈W; g∈ ((X 7→Y) 7→ (W 7→Z)); so ?

4. f∈ ((X×Y) 7→C); x∈X; y∈Y; so ?

5. For every x in Y, there are y and z such that y∈Y and z∈X and f(x)=〈y,
z〉. So f∈? (You will need to make an obvious guess about Dom(f)).

6. Let f∈ ({0, 1, 2, 3, 4, 5} 7→ {a, b, c}) and have the following among its
members: 〈3, b〉, 〈4, b〉, 〈0, c〉. Then:

(a) f(4)=?

(b) is “f(5)” meaningful?

(c) Is “f(b)”?

(d) As far as we know, could 〈5, c〉 be a member of f?

(e) Could 〈5, 3〉?
(f) Could 〈4, c〉?
(g) Could 〈4, b〉?
(h) Could both of the foregoing be simultaneously in f?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /
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Characteristic function. There is a standard move between sets and functions
that makes one’s technical life easier. You have to start with a set known to have
exactly two members. Any such set will do, but for us it is convenient to use the set
of truth values {T, F}, to which we give the mnemonic name 2. (It is essential that
we lay down as a fact that T 6=F.) We may use 2 in order to define the “characteristic
function” of a given set Y relative to a domain X. The idea is that we will tag each
member of X∩Y with T, and everything in X−Y with F.

4B-19 DEFINITION. (Characteristic function)

f is the characteristic function of Y relative to a domain X ↔df

f∈ (X 7→2), and for all y, if y∈X, then

f(y)=T↔ y∈X∩Y, and

f(y)=F↔ y∈ (X−Y).

Since X= (X∩Y)∪ (X−Y), this recipe tags each member x of X with exactly
one of T or F according as x∈Y or x 6∈Y.

Exercise 47 (Characteristic function)

1. Let X be {1, 2, 3, 4, 5, 6}. Let X0 be {1, 3, 5}. Let f be the characteristic
function of X0 relative to its superset X. Give a six-row “input-output” table
describing f.

2. Show by Easy Set Theory that the third clause of Definition 4B-19 is implied
by the first two clauses.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

Powerset. The powerset operator takes us “up” a set-theoretical level. Here we
merely explain it and say a word or two about it.

4B-20 AXIOM. (Powerset operator P)

P(X) is a set, and



4B. More set theory: relations, functions, etc. 163

∀Y[X∈P(Y)↔ X⊆Y].

So P(X) is the set of all subsets of X. Cantor, in what has to count as a remarkable
feat of intellect, came to see and then demonstrated that the powerset of X always
has more members than X has. You can convince yourself of this for finite sets
easily by jotting down all the members of P(X) when, for example, X={1, 2, 3}.
(If you are careful to include the empty set and {1, 2, 3} itself, you should wind up
with eight = 23 members in P({1, 2, 3}).) You have to internalize Cantor’s famous
thought that for sets, “same size” means “can be put into one-one correspondence,”
and then use Cantor’s famous “diagonal argument” to see that the principle also
holds for infinite sets.

It is also intuitive (and provably true) that the two sets X 7→2 and P(X) are exactly
the same “size.”

While we are considering “more set theory,” it is good to pair with the powerset
operator, which takes us up a set-theoretical level, the generalized union operator,
that takes us down a level.

4B-21 AXIOM. (Generalized union operator
⋃

)

⋃
Z is a set (Z is normally a set of sets, but that is not absolutely required), and for

all y,

∀y[y∈
⋃

Z↔ ∃Y[y∈Y and Y∈Z]].

So
⋃

Z is the set of members of members of Z, and thus descends a level. It should
turn out that

⋃
P(X)=X. Does it?

(For this “edition” of NAL, we omit exercises covering these ideas. Their defini-
tions are included here so that we can refer back to them if we wish.)



Chapter 5

Symbolizing English quantifiers

Having mastered proofs involving quantifiers, we turn to symbolization in this
chapter and semantics in the next.

5A Symbolizing English quantifiers:
Four fast steps

We have studied the proof theory of the universal quantifier and the existential
quantifier. Here we ask you to devote some effort to improving your ability to
understand quantification as it occurs in English by means of symbolizing into our
first order language. We approach symbolizing English quantifiers twice. We begin
in this section with a brief summary of a procedure that has its roots in Russell’s
famous Mind article “On denoting” (1906) and Richard Montague’s work to be
found in Montague (1974). You should be able to pick up enough to do some
interesting exercises, which we provide. We then treat the process of symbolizing
quantifiers at (perhaps tedious) length in §10A.

Taken as words or phrases, English quantifiers are such as those on the following
list: some, a, any, all, each, every, at least one, at most one, between three and five.
Taken grammatically, a “quantifier” in English is a kind of functor (Definition 1A-
1 on p. 5): The English quantifier gives us instructions for combining an English
count-noun phrase (something that is not in “logical” grammar) with a predicate (a
functor that takes singular terms into sentences—see Definition 1A-2) in a certain
way in order to make a sentence. So there are not only English connectives (they
operate on one or more English sentences to make new sentences); there are also

164
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English-quantifier functors. Among the logically complex English sentences that
we can symbolize with profit, some have one of the truth-functional operators as
major functor, and others have an English quantifier as major functor. In symbol-
izing such a sentence, the first thing to do is to locate the major functor, whether
it is a truth-functional connective or an English quantifier. Upcoming §10A.2 may
help a little in this task, but English grammar offers no sure-fire clues as to which
functor is major, so that you need constantly to use your judgment. The rest of this
section gives a procedure to use when you have decided that the major functor is
an English quantifier.

This topic is inevitably confusing because of the mismatch between English gram-
mar and symbolic Q-grammar. English grammar has no variables and no symbolic
quantifiers, and symbolic Q-grammar has no count-noun phrases and no English
quantifiers. We get around this confusion by means of the following underlying
thought:

5A-1 THOUGHT. (English quantifiers)

Each English quantifier corresponds to a symbolic pattern for combining two semi-
symbolic or “middle English” open sentences by means of a symbolic quantifier.
Each of the two open sentences contains a free occurrence of the same variable.
The result of the combination binds the free variable.

5A-2 EXAMPLE. (Middle English)

“Each” is an English quantifier that corresponds to the symbolic pattern

∀x( 1→ 2),

where each blank is filled with an open sentence using x, such as “x is a sheep” in
the first blank, and “x is placid” in the second. The result, “∀x(x is a sheep →x
is placid),” is evidently a part of neither English nor of our symbolic language; we
say from time to time that such a figure is in “middle English,” as are the open
sentences “x is a sheep” and “x is placid.” Such sentences are typically generated
during logical analysis or symbolization/desymbolization.

We introduce jargon for the two open sentences: the logical subject (LS) and the
logical predicate (LP).
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Here is a list of the principal English quantifiers with which we shall at present be
dealing, and the symbolic pattern-of-combination to which that English quantifier
corresponds. You must learn this list—as well, eventually, as the longer list in
§10A.1—if you are ever to understand English.

5A-3 TABLE. (Patterns of symbolic combinations matching English quantifiers)

English quantifiers Pattern of combination

all, any, each, every ∀v[ LS → LP ]

only ∀v[ LP → LS ]

some, a, at least one ∃v[ LS & LP ]

no, nary a ∀v[ LS →∼( LP )]

The English quantifier gives you the right pattern, as the table indicates. But you
also need to know how to extract the logical subject (LS) and the logical predicate
(LP) from the sentence that you wish to symbolize. We will come to that as part
of the procedure that we are about to outline as four fast steps for symbolizing
English quantifiers (that occur on our list). Suppose you are given the following to
symbolize.

English: Each horse in the stable is larger than some dog.

Step 1. Find the major English functor, whether connective or quantifier. We are
now assuming that it is one of the English quantifiers on our list. In this step we
tinker with the English and we write the skeleton of a symbolization.

Step 1-English Underline the English quantifier, for example as follows.

English: Each horse in the stable is larger than some dog.
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Step 1-Symbolization Use a new variable x (or y or z—it must be new) to write
down the symbolic pattern that corresponds to this English quantifier, for example
as follows. (Warning: Do not use the variable “v” that is used in the table. You
will just wind up being confused. Use x, y, or z, maybe with subscripts.)

Symbolic 1: ∀x[ LS → LP ].

Write the entire pattern down, not omitting the final closing bracket. Leave plenty
of space for later insertion of the logical subject and the logical predicate. It is a
good idea to write “LS” and “LP” under or above the respective blanks to remind
you which blank is to receive the logical subject and which is to receive the logical
predicate.

Step 2. That quantifier will (according to the grammar of English) be followed by
an English count-noun phrase.1 Extend the underlining on the English quantifier
so that it includes the following English count-noun phrase.2 This is an essential
step, as here indicated:

English: Each horse in the stable is larger than some dog.

Step 3. Now is the time to extract the logical subject from the English sentence
that you are symbolizing. Obtain the logical subject from the phrase that you have
underlined (that is, the English quantifier plus its following count-noun phrase)
by replacing the English quantifier by “x is a.” You must of course use the same
(new) variable that you used in Step 1-Symbolization. For this example, the logical
subject is

x is a horse in the stable.3

1If not, this method will not work.
2As jargon, we call the combination of English quantifier plus its following count-noun phrase

the English quantifier term, as we did in §1A and will again. This is good jargon, since an English
quantifier term can be used in the blank of any predicate, such as “ is larger than some dog.” You
can put “Jack” in that blank, or you can put in “each horse in the stable.” Also you can take any
English quantifier term and put it into the blank of the predicate “Each horse in the stable is larger
than . (With plural quantifiers such as “all” and some uses of “some,” you need to adjust to the
singular.) Nevertheless, we avoid the jargon English quantifier term for this brief section, always
saying instead “English quantifier plus its following count-noun phrase.”

3If your sentence began with a plural quantifier such as occurs in “All brown horses are fast,” you
would need to adjust plural to singular so that your logical subject would be “x is a brown horse.”
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Now put the logical subject into the proper blank of the pattern that you wrote
down in Step 1-Symbolization.

Symbolic 1: ∀x[x is a horse in the stable→ LP ]

At this point you will be glad that you left plenty of room when you wrote down
the pattern in Step 1-Symbolization.

Step 4. Obtain the logical predicate from the entire English sentence by replac-
ing the underlined English quantifier plus its following count-noun-phrase by the
variable x (still using the same (new) variable from Step 1-Symbolization). In
other words, the logical predicate comes from the whole English sentence by tak-
ing out the underlined English quantifier plus its following count-noun phrase and
inserting the variable. For this example, the logical predicate is

x is larger than some dog.

Now put the logical predicate into its proper blank:

Symbolic 1: ∀x[x is a horse in the stable→ x is larger than some dog].

Observe that the method requires that you mark up the existing original English
sentence and that you write down a new sentence in “middle English” that is partly
English and partly symbolism. It is the new sentence that we called “Symbolic 1”;
the number indicates that it is the first new sentence that you have been asked to
write down anew.

Finish or recurse. To “recurse” is to go back and do it again. You are now
finished with the major English quantifier of the example, but in this particular
example there remains amid your partial symbolization yet another English quan-
tifier, “some,” which has now become major as a functor in your logical predicate.
So here is how we apply the same steps. We begin by “marking up” the existing
sentence Symbolic 1.
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Step 0. Starting with your unfinished symbolization Symbolic 1, isolate the part
on which you wish to work; let’s call that part the “target.” You probably do not
need to write the target separately in order to keep track of what you are doing—
just keep track in your head. The point is that you are working on only part of
Symbolic 1, not on all of it. In this example, we are going to use bold face, just
once, to indicate the target.

Symbolic 1: ∀x[x is a horse in the stable→ x is larger than some dog].

Step 1. Locate the major English quantifier of the target, underline it, and rewrite
your entire partly-symbolized sentence, but with the symbolic pattern with a new
variable in place of the part that we have called the “target.” (In this method, you
must write down one new line for each English quantifier—on pain of hopeless
confusion and more generally suffering the consequences that follow upon the sin
of arrogance.)

Symbolic 1: ∀x[x is a horse in the stable→ x is larger than some dog].

Symbolic 2: ∀x[x is a horse in the stable→
∃y[ LS & LP ]].

We call this “Symbolic 2” because it is the second complete sentence that so far
you have written down. This method asks you to write one complete sentence for
each English quantifier. Experience teaches that utter confusion follows if you try
to shortcut this requirement at any point at which you are still learning your way
around the intricacies of English quantification.

Step 2. Extend the underlining in the existing target (which is part of Symbolic
1). Don’t rewrite it, just mark it up.

Symbolic 1: ∀x[x is a horse in the stable→ x is larger than some dog].

Step 3. Locate the logical subject of the target by prefixing “y is a.” (That y is
a new variable is critical.) Put the logical subject into its proper blank in Symbolic
2.

Symbolic 2: ∀x[x is a horse in the stable→
∃y[y is a dog & LP ]]
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Step 4. Locate the logical predicate by putting variable “y” in place of the un-
derlined English quantifier together with its following count-noun phrase. Put the
logical predicate into its proper blank. (Do this mindlessly; just follow directions.)

Symbolic 2: ∀x[x is a horse in the stable→
∃y[y is a dog & x is larger than y]].

Finish or recurse. In some contexts “the” also counts as an English quantifier
(as Russell discovered for us), but its treatment as such is more advanced. Here we
might just as well think of “x is a horse in the stable” as a conjunction “x is a horse
& x is in the stable,” and be satisfied with going on to complete our symbolization
by turning the following into predicative symbolic form: “x is a horse,” “x is in
the stable,” “y is a dog,” and “x is larger than y” going respectively to “Hx,” “Sx,”
“Dy,” and “Lxy.” So except for this routine symbolizing, we are finished.

“That” and other connectives. When “that” or “who” fronts a relative clause,
conjunction is just what is wanted. The same goes for “which.” In the case of both
“who” and “which” there is, however, the threat of a difficult ambiguity between
their so-called restrictive and nonrestrictive uses, a topic that we here avoid.4

1. “Every bear that climbs a tree loves honey”

leads as first step to “∀x[(x is a bear and x climbs a tree)→ x loves honey].” (The
conjunction is part of the logical subject.) As an example of another connective,

2. “If any bear climbs a tree then he or she loves honey”

leads to “∀x[x is a bear → (if x climbs a tree then x loves honey)].” (The con-
ditional is part of the logical predicate.) In each of these two cases, “x climbs a
tree” is symbolized by ∃y[y is a tree & x climbs y]; note that the scope of the new
quantifier “∃y” is as small as possible.

4The ambiguity crops up chiefly in connective with “the,” whose quantifier pattern we list among
those given in Definition 10A-1. In good writing the ambiguity is resolved by commas. “The owner
who is rich lives in luxury,” where “who is rich” is so-called restrictive, puts “& x is rich” as part
of the logical subject. In contrast, “The owner, who is rich, lives in luxury,” where “who is rich”
is so-called nonrestrictive, puts “x is rich &” as part of the logical predicate. The best writing,
incidentally, always uses “that” without commas (and so as unambiguously restrictive), while always
using “which” with commas (and so as unambiguously nonrestrictive), thus giving the reader the
most possible help.
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Observation. The proposed symbolizations of these two sentences are the only
ones that correctly follow the English grammar. In particular, the English grammar
of (2) forces “any” to have wide scope, and therefore forces the logical subject to be
“x is a bear” and the logical predicate to be “if x climbs a tree then x loves honey.”
No choice. After these grammar-following symbolizations, you learn from logic
that the two symbolizations are Q-logically equivalent. (Stop to check your under-
standing of this remark.) This serves as a partial explanation of an undoubted fact:
Most people when faced with (2) leave its English grammar in the dust on their
way to an “intuitive” symbolization that is identical to (and not just Q-logically
equivalent to) their symbolization of (1). This is of course harmless—except when
your task is to learn and use the four fast steps.

Note on “one” and “body” as in “someone” or “nobody,” and “thing” as in
“anything” or “something.” It seldom hurts to treat “one” and “body” as equiv-
alent to “person,” as in “some person” or “no person.” Thus, symbolize “Someone
entered” as “∃x(Px&Ex).” Also, given “anything,” “something,” or “nothing,” it is
all right to leave out the logical subject entirely, using just “∀x,” “∃x,” or “∀x∼”
directly in front of the logical predicate, as in symbolizing “Something is out of
joint” as “∃xOx.”

Pronouns that refer back to English quantifier terms. Some pronouns and
some pronoun-like phrases refer back to English quantifier terms. Example: “Any-
thing is expensive if it costs hard work.” Here you need to use the same variable
both for the logical subject, e.g. “x is expensive,” and for the occurrence of “it,”
e.g. “x costs hard work.” Some “the” phrases play this role: “If a (any) rat chases
and catches a (any) dog, then the rat is faster than the dog.” Here you want to use
appropriate variables in place of “the rat” and “the dog.”

Special note on passives. Suppose you are symbolizing “No one who loves Mary
is loved by someone who loves Sally.” Eventually the English passive “x is loved
by y” will be symbolized in exactly the same way as the English active “y loves
x.” It is essential, however, that this “passive-to-active” transformation be delayed
until you are working on a target that has no quantifiers. Do not assume, for ex-
ample, that the above example means the same as “Someone who loves Sally loves
no one who loves Mary.” Maybe, maybe not. You can find that out accurately only
if you delay the “passive-to-active” switch until you come to a sentence without
quantifiers. The reason is this: As long as there are two English quantifiers, there
is the question of which is major. English is ambiguous in this respect (whereas
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our symbolic language is not). Resolving this ambiguity in a particular case can
make a great difference.

General disclaimer. These steps work for many, many cases of English, but there
are also many cases for which they will not work. Such is life.

More details. See §10A for numerous additional details.

5A-4 METHOD. (Four fast steps)

Here are the “four fast steps” enumerated. The “zero” step is to locate the major
English quantifier.

1. Underline the English quantifier, and write down its complete symbolic pat-
tern, including all parentheses.

Good idea: Make notes about where to put the logical subject and the logical
predicate.

2. Extend the underlining to cover the entire English quantifier term (the quan-
tifier plus its “following count-noun phrase”).

3. The English quantifier term that you underlined has two parts: an English
quantifier and a following common noun phrase. Get the logical subject by
mechanically prefixing “x is a” to the following count-noun phrase. Put this
into the proper blank.

4. Get the logical predicate by putting “x” in for the entire English quantifier
term (and also cross-references if necessary). Put this into the proper blank.

In using the four fast steps, much can be done in your head, without writing. Not,
however, everything. It is essential to write a separate line, usually semi-symbolic,
for each quantifier. As an example, we process “No dog is larger than only cats.”

No dog is larger than only cats.

∀x[x is a dog→∼x is larger than only cats]
LS1 LP1

∀x[x is a dog→∼∀y[x is larger than y→ y is a cat]]
LP2 LS2

∀x[Dx→∼∀y[Lxy→Cy]]
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Observe that logic tells us that the last line is equivalent to “∀x[Dx→∃y[Lxy&
∼Cy]],” which results by the four fast steps from “Each dog is larger than some
non-cat.” Hence, the two English sentences should be equivalent. What do you
think?

Exercise 48 (Using four fast steps to symbolize English)

Symbolize the following by using the four fast steps. Use initial letters of “animal”
count-nouns for your one-place predicate constants. Use the following dictionary
for the relational concepts: Lv1v2 ↔ v1 is larger than v2; Cv1v2 ↔ v1 chases v2.
Two remarks: (1) If you find yourself at a loss, come back to this exercise after
having worked through §10A. (2) Use the four fast steps mechanically, without
trying to figure out what these sentences “really mean.” If you do, you may very
well lose your bearings. In other words, do not let your own intuitions compete
with the genius of English grammar as encoded in the four fast steps!

1. Every dog is larger than some cat.

2. Not every cat is larger than every dog.

3. Only dogs are larger than no cats.

4. Every dog that is larger than some cat is larger than every dog.

5. Some dog is larger than some cat that is larger than every dog.

6. If no dog is larger than no dog then every dog is larger than some dog.

7. Optional: Only dogs who chase no rat and who are chased by only cats
chase all dogs that are larger than no dogs. [Remember, one new line for
each English quantifier.]

You do not need to rewrite the original English sentence, but you must write a sep-
arate symbolic or semi-symbolic line for each English quantifier. Just jotting down
your “final” result does not count as using the four fast steps.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

Exercise 49 (Using four fast steps to symbolize TF Semantics)
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Idiomatic English is not good at expressing complicated relational ideas with ac-
curacy, but it can be done. The four fast steps may help, but may well not do the
entire job. In symbolizing the following, use the following conventions governing
restricted range for certain letters: A and B range over sentences, G ranges over
sets of sentences, and i ranges over TF interpretations. (This means for instance
that you can symbolize “any sentence” merely with “∀A” and “no sentence” with
“∀A∼.”) Also use the following dictionary.

A∈G↔ A is a member of the set G;
�TF A↔ A is a tautology;
G �TF A↔ G tautologically implies A;
A �TF ↔ A is inconsistent;
G �TF ↔ G is inconsistent;
G 2TF ↔ G is consistent;
V ali(A)=T↔ A has the value T on i;
V ali(A)=T↔ i gives A the value T (two pieces of English symbolized in
the same way).

Hint: Each of the first five English sentences is a definition, and should be sym-
bolized by means of a universally generalized biconditional. English quantifiers
occurring to the right of “iff” need to be symbolized to the right of “↔.” If you find
yourself at a loss, come back to this exercise after having worked through §10A.

1. A is inconsistent iff A has the value T on no TF interpretation. Answer:
∀A[A �TF ↔ ∀i∼(V ali(A) = T)].

2. A is a tautology iff A has the value T on every TF interpretation.

3. G tautologically implies A iff A has the value T on every TF interpretation
that gives every member of G the value T.

4. G is consistent iff some TF interpretation gives the value T to every member
of G.

5. G is inconsistent iff no TF interpretation gives the value T to every member
of G.

Now (a) symbolize the following and (b) use your symbolizations 1–5 above as
premisses from which to prove each of the following. Hint: These are all univer-
sally quantified conditionals. Bear in mind that A is a sentence and G is a set of
sentences.



5B. Symbolizations involving identity 175

6. If A is a member of G, then G tautologically implies A.

7. If A is a tautology, then any set of sentences tautologically implies A.

8. If G is inconsistent, then G tautologically implies every sentence.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

Exercise 50 (Proofs requiring symbolization)

When symbolizing, restrict yourself to the method explained in this section. Dictio-
nary: Rv↔ v is a rat; Dv↔ v is a dog; Cv1v2↔ v1 chases v2. If you find yourself
at a loss, come back to this exercise after having worked through §10A. For this
set of problems, in each case assume that the leftmost quantifier is “outermost” or
“major,” and thereby count the rightmost quantifier as within its scope.

1. Symbolize “No rats chase no rats.” Symbolize “Every rat chases some rat.”5

Then prove your symbolizations logically equivalent. (You will be teaching
yourself how careful you have to be with the suggestion that “two negatives
make a positive.”)

2. Symbolize “Only rats chase only dogs.” Prove your symbolization logically
equivalent to the following: ∀x∃y[(∼Cxy→Rx)&(Dy→Rx)].

3. Symbolize and prove: No rats are dogs. Therefore, no dog that chases only
rats chases a dog.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

5B Symbolizations involving identity

Any branch of mathematics is full of explicit identities. And see §10A.1 for some
English quantifier expressions that involve identity in their formal unpacking.

5These sentences are grammatically ambiguous; the ambiguity makes a difference, however, only
in the second sentence. Resolve the ambiguity by supposing that the speaker intended the leftmost
quantifier term to be symbolized first. (This makes “every rat” the “major” quantifier term, or, equiv-
alently, makes “every rat have widest “scope.” You must symbolize it first.)
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Exercise 51 (Identity symbolizations)

Let the domain be all persons. Let f(x)= the father of x, and let m(x)= the mother
of x. Let j=John, s=Sue and b = Bill. Let Fxy↔ x is faster than y, Kx↔ x is
a present king of France, and Bx ↔ x is bald. Express the following using only
these non-logical symbols—and of course any logical symbols you like, including
identity. (You should, however, avoid using redundant quantifiers or identities.)

1. No one is his or her own mother.
[Answer: ∀x(x 6= m(x)).]

2. No one’s mother is the same as
that person’s father.

3. In fact, no one’s mother is the
same as anyone’s father.

4. John and Sue have the same fa-
ther.

5. John and Sue are (full) siblings.

6. Bill is John’s father’s father and
Sue’s father.

7. Sue’s father’s father is not the

same person as her mother’s fa-
ther.

8. Two persons are faster than John.

9. Sue is faster than at most one per-
son.

10. No one is faster than himself.

11. John is the fastest person. That is,
John is faster than anyone except
himself.

12. There is a present king of France,
and there is at most one present
king of France, and every present
king of France is bald.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /



Chapter 6

Quantifier
semantics—interpretation and
counterexample

Part of the art of logic consists in a rough command of semantics. We first give an
account of interpretations for quantifier logic (we’ll call them “Q-interpretations”
in order to distinguish them from TF interpretations as in Definition 2B-7), and
then put this account to use in some standard semantic concepts.

6A Q-interpretations

The point of an interpretation in any branch of logic is to give enough information
to determine semantic values of all categorematic expressions (Definition 1A-4 on
p. 7). Here “semantic values” means “truth values” for sentences, and “entities” for
terms. It follows from this and our understanding of how our quantifier language
works that a “Q-interpretation” must do much more than a TF interpretation: A
Q-interpretation must state

1. The domain of quantification; what the quantifiers (or variables) range over.
The domain must be nonempty. If we did not specify a domain of quantifi-
cation, we should have no way of evaluating a sentence such as “∃x(5+x=
3),” whose truth value depends on whether or not negative numbers are part
of the intended domain.

177
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2. An “extension” for each “Q-atom” as defined in §3A. That the interpretation
of the Q-atoms be “extensions” is required by our wish to confine ourselves
to “extensional” logic.1

Keep in mind that by the jargon of Definition 1A-4, a “Q-atom” is defined as either
an individual variable or an individual constant or an operator constant or a predi-
cate constant. Therefore, (2) breaks up as into four parts. A Q-interpretation must
state the following.

2a. Individual variable. What it denotes or is assigned. It must be assigned
something in the domain.

2b. Individual constant. What it denotes. It must denote something in the do-
main. One may think of an individual constant as “naming” a certain entity
(in the domain). When the Q-atom is an individual variable, however, it is
better to think of it as “being assigned” a certain entity (in the domain) as
value. “Denotation” is intended to cover both of these modes of expression.

2c. Operator constant.

One-place. Since one-place operator constants are used to make up one-
place operators, simple input-output analysis requires that the Q-inter-
pretation of an operator constant f should be a function. The function
should take its arguments (inputs) from the domain, and for each such
argument, its value (output) must also be in the domain. That is, just
as an operator takes terms as inputs and gives a term as output, so the
Q-interpretation of an operator constant should take entities (in the do-
main) as inputs and give an entity (in the domain) as output. It figures.

Two-place. Recall that a two-place operator constant is used to make up a
two-place operator, which has two terms as input and a term as out-
put. The Q-interpretation of a two-place operator constant f should
therefore be a two-argument function: Given any (ordered) pair of ar-
guments (inputs) in the domain, the Q-interpretation of f must hand
you back an entity (in the domain) as output.

And so on.

2d. Predicate constant.
1We don’t offer a general account of “extension” or “extensional”; it suffices for us to say what

we mean in a retail fashion by explaining what we mean by the extension of each kind of Q-atom
and of each kind of categorematic expression.
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One-place. A one-place predicate constant F is used to make up a one-
place predicate, which takes a term as input and delivers a sentence as
output. Therefore, the Q-interpretation of F should be a function that
takes an entity (in the domain) as input and delivers a truth value as
output.

Two-place. A two-place predicate constant F is used to make up a two-
place predicate, which has two terms as input and a sentence as out-
put. The Q-interpretation of a two-place predicate constant F should
therefore be a two-argument function: Given any (ordered) pair of ar-
guments (inputs) in the domain, the Q-interpretation of F must hand
you back a truth value as output.

And so on.

The above constitutes a rough definition of what a Q-interpretation “really” is.
If you explain the “extension” of individual variables and predicate, individual,
and operator constants in this way, you have indeed supplied enough information
to determine an entity (in the domain) for each term, and a truth value for each
sentence. In order to upgrade the rough definition of “Q-interpretation” to an exact
definition, we should need more in the way of set theory than the portion to which
we are currently entitled. Instead of going that far towards exactness, however, we
settle for the following, which is enough for us to work with.

6A-1 SEMI-ROUGH DEFINITION. (Q-interpretation)

• Anything j is a Q-interpretation iff j fixes the domain of quantification as a
particular set, and also fixes an appropriate extension for each Q-atomic term
(whether individual variable or individual constant), operator constant, and
predicate constant, as indicated roughly above and somewhat more exactly
below.

• We let “j” range over Q-interpretations.

• We use three notations involving j, as follows.

1. Domainj ↔df the domain of quantification fixed by the Q-interpretation j.

2. We uniformly write j(E) whenever E is any Q-atom, whether individual vari-
able, individual constant, operator constant, or predicate constant. We may
read “j(E)” with some variant of “the interpretation of E in j.” Because
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there are three) kinds of Q-atoms, you should expect to see any of the fol-
lowing: j(x), j(a), j(f), and j(F). Clauses below become specific about the
various cases of this usage.

(a) When a is a Q-atomic term, any Q-interpretation j must tell what entity
in the domain is denoted by a. We may express this as follows: For
each individual variable x, j(x)∈Domainj ; and for each individual
constant a, j(a)∈Domainj .

(b) When f is an n-place operator constant, j(f) must be a function de-
fined on each array z1, ..., zn of n inputs chosen from the domain
Domainj . For each of these arrays of inputs from Domainj , the out-
put must also belong to Domainj . In that way, we can be sure that
the Q-interpretation of f in j is a function defined on each array z1, ...,
zn of entities in Domainj , and always outputting values in Domainj .
We may express this as follows: Take any operator constant f and any
sequence z1, ..., zn such that zi∈Domainj for every i with 16 i6n.
Then also j(f)(z1, ..., zn)∈Domainj .

(c) When F is an n-place predicate constant, j(F) must be a function de-
fined on each array z1, ..., zn of n inputs chosen from the domain
Domainj . For each of these arrays of inputs from Domainj , the out-
put must be a truth value. In that way, we can be sure that the Q-
interpretation of F in j is a function defined on each array z1, ..., zn
of entities in Domainj , and always outputting truth values. We may
express this as follows: Take any predicate constant F and any se-
quence z1, ..., zn such that zi∈Domainj for every i with 16 i6n.
Then j(F)(z1, ..., zn)∈{T, F}.

3. We uniformly write V alj(E) whenever E is a categorematic expression (Def-
inition 1A-4), whether term t or sentence A. We may read “V alj(E)” as “the
value of E on the Q-interpretation j.”

(a) When t is a term, V alj(t)∈Domainj . We may read this as “the deno-
tation of t on j.”

(b) When A is a sentence, V alj(A)∈{T, F}. We read this as “the truth
value of A on j.”

Observe the big difference between j( ), which gives the Q-interpretations of Q-
atoms, and V alj( ), which gives the values of (usually complex) categorematic
expressions (terms and sentences), values that depend on the Q-interpretation j.
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The difference here for Q-logic repeats a difference that we noted for TF-logic in
Rough idea 2B-6. The correspondence indicated in the following table is Good.

TF logic Q logic

TF-atom Q-atom

TF interpretation Q-interpretation
Domainj

i(p) j(x), j(a), j(f), j(F)

V ali(A) V alj(t), V alj(A)

So Semi-rough definition 6A-1 tells us what a Q-interpretation j is: Every Q-
interpretation gives us a domain of quantification and an appropriate extension to
each of the four kinds of Q-atoms (individual variables, individual constants, oper-
ator constants, and predicate constants). Since there are infinitely many Q-atoms,
that is a great deal of information to pack into j. For practical purposes, however,
we can ignore most of it. As should be obvious, the denotation of each term and
the truth value of each sentence depend only on the Q-atoms that actually occur in
the term or sentence. Furthermore, in the case of individual variables, only those
that occur free are going to count. (See Fact 6D-1 for a definitive statement of this
property of “local determination.”) For this reason, in describing a Q-interpretation
j relevant to determining the truth values of some particular set of sentences, you
need only describe how j interprets those individual, operator, and predicate con-
stants that actually occur in those sentences, and how j interprets any individual
variables that are free in those sentences. We exploit this observation silently in
what follows.

There are two standard methods of presenting Q-interpretations j informally. The
first is via equivalences and identities, and the second is via tables.
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6B Presenting Q-interpretations via biconditionals and iden-
tities

In order to present a Q-interpretation j by means of biconditionals and identities,
do the following.

1. State the domain, Domainj .

2. State the extension that j gives to predicate constants by biconditionals, and
state the extension that j gives to individual constants and operator constants
by identities, as in Example 6B-1 just below.

This will be enough information to fix the critical ideas V alj(t) and V alj(A) for
all closed terms t and closed sentences A, which is often all that we care about.
Later we will deal with open expressions, i.e., with terms and sentences with free
variables. Then the values that j assigns to the variables will become important. In
the meantime, we can ignore j(x), where x is a variable.

Suppose you are asked to provide a Q-interpretation sufficient to give a definite
truth value to the following sentence:

∃x[Mx & ∀y[Fxy→ (Py∨ (f(x)=a)]] [1]

You must (1) describe a domain, and you must (2) describe the extension of each
constant, using identities and biconditionals.

6B-1 EXAMPLE. (Q-interpretations via biconditionals and identities)

First the domain of Q-interpretation j1. You might write

Domainj1 ={0, 1, 2, . . .}.

Your example describes an infinite domain, the set of non-negative integers. Now
you must move to (2), the description by identities and biconditionals of the Q-
interpretation of each constant. A look at [1] makes it plain that you must explain
the interpretation of each of the following constants: M, F, P, f, and a. The left side
of the biconditional or identity contains what you are interpreting, and the right
side explains its Q-interpretation in previously understood language. So you must
complete the following in order to define your Q-interpretation j1:
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Mv↔
Fv1v2↔
Pv↔
fv =
a =

You might complete step (2) by filling in the right sides as follows:

Mv↔ v is even
Fv1v2↔ v1< v2
Pv↔ v is divisible by 4
fv = (3×v)+4
a = 14

Your interpretation is now complete: With this Q-interpretation j1, [1] receives a
definite truth value, either T or F. You could figure out which, but we’ll postpone
that exercise. For now it is enough that you know exactly what counts as a Q-
interpretation.

Observe that to write “a= .5” would make no sense, since .5 is not in your domain.
Similarly, “fv = (1−v)” would be nonsense, since, for example, when v is 2, 1
−v is not in your domain. It is absolutely essential that each constant denote
something in the domain, and that the interpretation that a Q-interpretation j gives
to an operator be such that the output is in the domain Domainj ; that is part of the
very definition of a Q-interpretation.

Keep in mind that it is really the predicate constant M, for instance, that is be-
ing interpreted, and that the variable v is only used in order to present the Q-
interpretation. It is not Mv but M that is being interpreted. For this reason it is not
sensible to give both of the following in the same presentation of a Q-interpretation:

Mv1↔ v1 is a positive integer
Mv2↔ v2 is an even number

For only one Q-interpretation must be given to M. What variable is used to present
it makes no difference at all. Well, not quite no difference. When you are giving
a Q-interpretation, you always have certain quantified sentences in mind. You
are interested in the truth value of these sentences. If you use the same variables
in presenting your Q-interpretation as the variables that occur in those quantified
sentences, you are extremely likely to become confused.
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So in presenting Q-interpretations via biconditionals and identities, never use the
variables that occur in your sentences of interest.

Let us give a second example. We will provide another interpretation for the same
sentence, [1] on p. 182.

6B-2 EXAMPLE. (Q-interpretations via biconditionals and identities)

This time we will choose a small finite domain:

Domainj2 = {1, 2, 3}.

And here are our identities and biconditionals:

Mv↔ (0< v and v< 14)
Fv1v2↔ v1< v2
Pv↔ v is divisible by 4
fv = 4−v
a = 2

Observe that our baroque explanation of M boils down to this: “M is true of
everything in the domain.” To write “Mv↔v=v” would have been more straight-
forward. Similarly, we have used a number of words just to say that P is false of
everything in the domain, as if we had written “Pv↔v 6=v.”

6B-3 ADVICE. (Presenting Q-interpretations)

You will do well to carry out Exercise 52 as follows:

1. State the domain.

2. Make an entire list of identities and equivalences, one for each constant,
leaving the right side blank.

3. Fill in the right sides.

Exercise 52 (Q-interpretations via biconditionals and identities)

Make up and present, via biconditionals and identities, two Q-interpretations, j1
and j2, each of which confers a definite truth value (any truth value you like) on
the following sentence.
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∀x∃y[(Mxy→Px)&P(f(a))].

Choose your domain, Domainj1 , as the set of all nonnegative integers {0, 1, 2, 3,
. . . }. Choose your domain, Domainj2 , to have a size about three. Note the list of
Q-atoms that occur in the given sentence: You will have to explain how each of
j1 and j2 interprets each of a, f, P, and M. (You do not need to worry about any
variables, since none occur free in the given sentence.) Use identities to explain a
and f, and biconditionals to explain P and M. Consult Example 6B-1.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

6C Presenting Q-interpretations via tables

If the domain happens to be finite, and indeed rather small, the extension of pred-
icate constants and operator constants can conveniently be given by means of ta-
bles. The following set of tables gives an exactly equivalent description of the
Q-interpretation j2 of Example 6B-2.

6C-1 EXAMPLE. (Q-interpretations via tables)

First, Domainj2 = {1, 2, 3}. Second, here are the explanations via tables of M, F,
P, f, and a that are exactly equivalent to those of Example 6B-2.

M1=T P1=F f1=3 a=2
M2=T P2=F f2=2
M3=T P3=F f3=1
F11=F F21=F F31=F
F12=T F22=F F32=F
F13=T F23=T F33=F

You need to compare the two presentations of j2 (6B-2 and 6C-1) in order to verify
that on this small, finite domain they come to the same thing. Observe that in these
tables, sentences such as F11 are assigned truth values, while terms such as f1 are
assigned entities in the domain. It figures.

Here is another example.

6C-2 EXAMPLE. (Q-interpretations)

Suppose you are thinking about a couple of sentences:
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(a) ∀xSxx

(b) ∃y[Ra&Gya&R(fy)]

(a) and (b) are closed sentences. For them to have a truth value, you must interpret
all of their constants: S, R, G, a, and f. Of course you must pay attention to which
are predicate constants (and how many places), which are individual constants,
and which are operator constants (and how many places). Here is how one Q-
interpretation j3 might be presented via tables:

Domainj3 ={1, 2}
S11=T G11=F R1=T f1=2 a=1
S12=F G12=F R2=F f2=1
S21=T G21=T
S22=T G22=F

This fixes a truth value for the sentences (a) and (b): (a) is true, since the open
sentence Sxx is true for each value of x; and (b) is also true, since Ra&Gya&
R(fy) is true for some value of y.

Note: This Q-interpretation is just made up. You can obtain another Q-interpreta-
tion, one you may prefer, by changing truth values, or changing what a denotes,
or changing the value (an entity in the domain) of f1 or f2. Or you can change the
domain, in which case your table would be more or perhaps less complicated.

Exercise 53 (Presenting Q-interpretations via tables)

1. Make up a Q-interpretation j4 different from that of Example 6C-2 that has
the same domain (Domainj2 ={1, 2}), but that also gives definite truth
values to both (a) ∀xSxx and (b) ∃y[Ra&Gya&R(fy)]. Present your Q-
interpretation with tables.

2. Make up and present by tables a Q-interpretation that gives truth values to
those same sentences (a) and (b) based on a domain of just one individual,
{1}.

3. Optional. Make up and present by tables a Q-interpretation for (a) and (b)
based on a domain of three individuals, {1, 2, 3}.
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4. Make up a Q-interpretation for (a) and (b) based on an infinite domain, {0,
1, 2, 3, . . .}. In this case, you obviously cannot present the Q-interpretation
of the non-logical constants with a table; you will have to present your Q-
interpretation via biconditionals and identities.
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6D Truth and denotation

Review §2B, where it is brought out that there are two concepts of truth each of
which is useful in semantics: garden-variety truth, which is a one-place sentence-
predicate, and truth relative to an interpretation, which is two place. Here we
are primarily interested in a two-place concept, which we carry with the notation
“V alj(A) = T,” read as “the value of A on j is T,” or perhaps “A is true on j”
or (to change the English word order) “j makes A true.” Particularly when A
contains free variables, one also says “j satisfies A.” The notation V alj(A) was
introduced in Semi-rough definition 6A-1(3). It was also indicated in that place
that in quantifier logic we have, among our categorematic expressions, not only
sentences, but also terms; and that we may read “V alj(t)” as “the denotation of t
on j.”

It is illuminating to note that the idea of a Q-interpretation j can be broken up into
two parts.

1. The first part consists of the domain Domainj together with what j does to
each constant (individual constant, operator constant, predicate constant).

This much of j is enough to fix a value for every categorematic expression
that does not contain any free variables. Since our assertions, predictions,
guesses, conjectures, premisses, conclusions, etc., never contain free vari-
ables, this portion of a Q-interpretation is of fundamental importance.

2. The second part of a Q-interpretation assigns a value to each variable: j(x)
∈Domainj . This part is important because we use it in explaining how
each sentence comes to have its truth value. The assignments of values to
variables is, however, “auxiliary” in the sense that the truth values of our
assertions and so forth, which have no free variables, are independent of
these assignments. So to speak: We use them, and then throw them away.

The sense in which the truth values of closed expressions are independent of as-
signments to variables is worth stating with some care. While we are at it, we
generalize to the feature called “local determination.”
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6D-1 FACT. (Local determination)

Let E be any categorematic expression and j1 any Q-interpretation. Let j2 be any
other Q-interpretation that is exactly like j1 with respect to its domain and with
respect to those constant Q-atoms a, f, or F that actually occur in E, and also
exactly like j1 with respect to any variables x that occur free in E. Then V alj1(E)
= V alj2(E).

In other words, the truth value of A on j depends entirely on how j interprets the
constants that occur in A, and on how it assigns values to the variables that occur
free in A (and analogously for the denotation of terms t).

Therefore, if A contains no free variables, the assignment that j gives to variables
is entirely irrelevant to the truth value of A.

Why do we then care about the portion of the Q-interpretation that assigns values to
variables? The answer is that this portion is essential when we come to explaining
how the truth values of quantified sentences depends on the pattern of truth values
of their parts. That is, we need to look at how j assigns values to variables in order
to explain how the truth values of ∀xAx and ∃xAx depend on the pattern of values
of the open sentence, Ax. Here is the explanation, couched as a definition.

6D-2 DEFINITION. (V alj(∀xAx) and V alj(∃xAx))

Let Ax be any sentence, let x be any variable, and let j1 be any Q-interpretation.

• Universal quantifier. V alj1(∀xAx) = T iff for every entity d and every Q-
interpretation j2, if (d∈Domainj1 and j2 is exactly like j1 except that j2(x)
= d) then V alj2(Ax) = T.

In other words, a sentence ∀xAx is true on one Q-interpretation just in case
the ingredient sentence Ax is true on every Q-interpretation that can be ob-
tained from the given one by re-assigning x a value in the domain—and
keeping fixed the domain and the interpretations of other variables (and con-
stants as well).

• Existential quantifier. V alj1(∃xAx) = T iff there is an entity d and there is
a Q-interpretation j2 such that (d∈Domainj1 and j2 is exactly like j1 except
that j2(x) = d) and V alj2(Ax) = T.

In other words, a sentence ∃xAx is true on a certain Q-interpretation just
in case the ingredient sentence Ax is true on some Q-interpretation that can
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be obtained from the given one by re-assigning x a value in the domain—
and keeping fixed the domain and the interpretations of other variables (and
constants as well).

These confusing explanations of the quantifiers should be compared with the much
more easily understood explanations for the truth-functional connectives. See Def-
inition 2B-11 for the TF versions; here, for the Q versions, we take negation and
the conditional as examples.

• Negation. V alj(∼A) = T iff V alj(A) 6=T.

• Conditional. V alj(A→B) = T iff either V alj(A) 6=T or V alj(B) = T.

Compare these simple explanations with the complexities of our explanation 6D-2
of the meaning of the quantifiers.

In finite cases, these quantifier explanations can be laid out in a kind of “truth
table,” with one row for each assignment over the domain. Let’s call such a table
an assignment table, since there is one row for each possible assignment to the
variables that are of interest. Suppose, for instance, that we are considering the
closed sentence, ∀y∀x(Fxy→Fyx). Let the Q-interpretation be j1, the same Q-
interpretation as at the beginning of Example 6C-1, with Domainj1 ={1, 2}, and
with the table for F given by F11=T, F12=T, F21=F, F22=F. We have not yet
needed to say what j1 assigns to variables, but now we do; let us suppose (it won’t
make any difference) that j1 assigns each and every variable the number 1. The
Q-interpretations j2, j3, and j4 come by varying the assignment to the variables x
and y. Then we can do a routine assignment-table calculation as follows:

6D-3 PICTURE. (Assignment table for two variables)

Q-interp x y Fxy Fyx (Fxy→Fyx) ∀x(Fxy→Fyx) ∀y∀x(Fxy
→Fyx)

j1 1 1 T T T T F
j2 1 2 T F F F F
j3 2 1 F T T T F
j4 2 2 F F T F F

Key ideas:

• Although each of the Q-interpretations ji interprets F in just one way, the
patterns for the open sentences Fxy and Fyx are not the same.
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• Suppose you are calculating some truth functional compound, for example,
A→B. You are doing the calculation for a certain row. You need to look at
the truth values of the parts, e.g. A and B, only in that same row.

• Suppose, however, you are calculating a quantifier compound, for example
∀xAx. You are doing the calculation for a certain assignment (row). You
must look at the truth values of the part, e.g. Ax, not only in that same row.
You must also look at the truth value of Ax in some other rows (assign-
ments).

You need the truth value of Ax not only in the row you are calculating. You
also need the truth value of Ax in each row whose assignments to variables
other than x are exactly like the one you are calculating. In these rows,
while every other assignment is held fast, the assignment to x will run over
the entire domain.

You can see, for example, that in order to calculate that ∀x(Fxy→Fyx) has
the value T in row j1, we needed to see that the value of Fxy→Fyx was T
not only in row j1, but in row j3 as well.

This idea is not clearly brought out in Picture 6D-3; it is difficult to see the
point if you are considering only two variables. For a better idea, consult
Picture 11A-1 on p. 273.

Since x and only x varies, you will consult just as many rows (assignments)
as the size of the domain.

• A closed sentence, such as ∀y∀x(Fxy→Fyx), will always have the same truth
value relative to every assignment (row) on this one Q-interpretation. That
is precisely the idea of “local determination,” Fact 6D-1. The part of j1 that
assigns values to variables does no work for closed sentences.

• If you have some operator constants and individual constants, then simple
or complex terms can also head columns. But in each row (assignment), the
value of a term will not be a truth value. It will be an entity in the domain.
(Not illustrated. We’ll do this on the blackboard.)

The appendix §11A goes more deeply into how assignment tables work. They are
not, however, of much practical utility: If an interpretation has a large domain or if
a sentence contains many free variables, assignment tables just get out of hand too
quickly. And for very small problems, the method of reduction to truth functions
makes easier work than does the method of assignment tables.

The idea of “reduction to truth tables” is this.
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6D-4 METHOD. (Reduction of quantifications to truth functions)

On small domains in which we can give everything a name, one can easily evalu-
ate a universal quantification ∀xAx by treating it as a conjunction At1 &.. .&Atn,
where t1, . . ., tn run through the n members of the domain. Similarly, one can treat
an existential quantification ∃xAx as a disjunction At1∨ . . .∨Atn, where t1, . . ., tn
run through the n members of the domain.

For instance, suppose you are given Domainj ={1, 2} (just to keep things small).
Then the following.

V alj(∀xFx)=T reduces to V alj((F1&F2))=T.

V alj(∀x∃yFxy)=T reduces to V alj((∃yF1y & ∃yF2y))=T; which in turn
reduces to
V alj((F11∨F12) & (F21∨F22))=T.

Try out the method of reduction-to-truth-tables calculation on the following exam-
ples. We have worked out the first two. Observe our shortcut: Since j1 is fixed
throughout, we write for example “A=T” instead of “V alj1(A)=T,” just to save
writing.

6D-5 EXAMPLE. (Truth values of quantified sentences
on a Q-interpretation)

Let the domain Domainj1 be {1, 2}, and let j1 interpret M, F, and f exactly as in
the Q-interpretation j1 in the first part of Example 6C-1 on p. 185.

1. V alj1(∀xMx) = T, since the sentence reduces to (M1&M2).

2. V alj1(∃x∀yFxy) = F, since the quantifier sentence reduces to (∀yF1y∨ ∀yF2y),
which reduces to (F11&F12) ∨ (F21&F22).

3. V alj1(∀x∀yFxy) = F

4. V alj1(∃xFxx) = F

5. V alj1(∀x∀y(Fxx→Fyx)) = T

6. V alj1(∃x∀yFyx) = F
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7. V alj1(∃xF(x, fx)) = T

8. V alj1(∀x[Fxx↔F(fx, fx)]) = T

Exercise 54 (Determining truth values)

Consider the following Q-interpretation j3.

Domainj3 ={1, 2, 3}. a=2, b=2, c=3.

F1=T G1=T g1=1 H11=F J11=F
F2=T G2=F g2=3 H12=F J12=T
F3=T G3=T g3=3 H13=F J13=F

H21=F J21=F
H22=F J22=T
H23=F J23=F
H31=F J31=F
H32=F J32=T
H33=F J33=F

Using this Q-interpretation j3, determine the truth values on j3 of each of the fol-
lowing. Take any shortcuts that you like.

1. Jbc

2. J(a, ga)

3. ∀xJxx

4. ∀xJ(gx, x)

5. ∀x(Fx→Gx)

6. ∀x(Gx→Fx)

7. ∀x((Jax∨Jbx)→Fx)

8. ∀x((Jxa∨Jxb)→Fx)

9. ∃x∀yJyx

10. ∀x(∼Hxx→Jxx)

11. ∀x(Hxx→Jxx)

12. ∀x(∃yHxy→(Gx∨Hxx))
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

6E Validity, etc.

Now that we are clear on “V alj(A) = T” (“A is true on j,” or “j makes A true”), we
go on to define a family of logical concepts by “quantifying over Q-interpretations.”
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These definitions are exactly analogous to those of §2B.2, which you should review.
In our present circumstances, it is customary to pretend (or believe) that quantifier
logic exhausts all of logic. This explains why e.g. “tautology” is replaced by “log-
ical truth.” We prefer, however, to tone down the claim implied by such a choice
of vocabulary by routinely inserting a “Q.” This insertion reminds us of the mod-
esty of our goals; for example, “is a tautology” means “is true in virtue of our
understanding of our six truth-functional connectives,” and “is Q-valid” (or “is Q-
logically-valid”) means “is true in virtue of our understanding of the workings of
individual constants and variables, of (extensional) operators and predicates, of
our six truth-functional connectives, and of the two quantifiers.” Nothing more,
nothing less.

6E-1 DEFINITION. (Q-logical truth or Q-validity; falsifiability or invalidity)

Let A and B be sentences and let G be a set of sentences.

1. �Q A↔df V alj(A) = T for every Q-interpretation j.

In English, A is a Q-logical truth (or is Q-valid)↔df �Q A.

2. A 2Q ↔df V alj(A) = T for some Q-interpretation j.

In English, A is Q-consistent↔df A 2Q .

3. A �Q ↔df V alj(A) 6=T for each Q-interpretation j.

In English, A is Q-inconsistent↔df A �Q .2

4. 2Q A ↔df V alj(A) 6=T for some Q-interpretation j. In English, A is Q-
falsifiable (or Q-invalid)↔df 2Q A.

5. G 2Q ↔df there is some Q-interpretation j such that V alj(A) = T for every
member A of G.

In English, G is Q-consistent↔df G 2Q .

6. G �Q ↔df there is no Q-interpretation j such that V alj(A) = T for every
member A of G.

In English, G is Q-inconsistent↔df G �Q .

2Of course “V alj (A) = F” is just as good as (or better than) “V alj (A) 6=T” in the definition of
inconsistency; but if you use it, then in proofs you need to supply an extra (obviously true) premiss,
namely, ∀j∀A[V alj (A) = F↔V alj (A) 6=T] (the principle of bivalence).
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7. G �Q A↔df for every Q-interpretation j, if (for all B, if B∈G then V alj(B)
= T) then V alj(A) = T.

In English, G Q-logically implies A ↔df G �Q A. An argument with pre-
misses G and conclusion A is then said to be Q-valid.

8. A ≈Q B↔df V alj(A) = V alj(B) for all Q-interpretations j.

In English, A and B are Q-logically equivalent↔df A ≈Q B.

logical

9. A set of sentences G is Q-independent ↔df there is no member A of G
such that G−{A} �Q A.3

That is, G is Q-independent iff no member of G is Q-logically implied by
the rest of G. For example, {A, B, C} is Q-logically independent if (1) {A,
B} does not Q-logically imply C, and (2) {A, C} does not Q-logically imply
B, and (3) {B, C} does not Q-logically imply A.

Exercise 55 (Symbolizing definitions of logical ideas)

Symbolize the above definitions Definition 6E-1(1)–(9) as well as you can. Help-
ing remarks:

1. Whenever you use a quantifier, pin down a “type” for it by using one of
the specially restricted variables: A, B, C for sentences, G for sets of sen-
tences, and j for Q-interpretations (with or without subscripts or primes or
whatever).

2. See that your definition is a universally quantified biconditional; you may,
however, omit outermost universal quantifiers if you wish. On the other
hand, you may never omit internal quantifiers! Let us add that no harm
comes if you omit the “df” subscript.

3. These definitions are written in “middle English.” When you see “for every
member A of G,” This just means “for every member of G,” with the extra
information that you should use “A” as the variable with which you express
the universal quantification. But there are no rules available; there is no
substitute for trying to figure out what is meant.

3We forbore offering an account of “TF-independence” in §2B.2 because such a concept, though
respectable, is not of much use or interest.
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Example. Given the task of symbolizing “any sentence A is Q-falsifiable iff A is
false on some Q-interpretation j” you could write “∀A[ 2Q A↔∃j[V alj(A) 6=T]].”

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

6F Using Q-interpretations

An “interpretation problem” asks you to produce a Q-interpretation that demon-
strates that some sentence (or group of sentences) has one of the just-defined prop-
erties. Note well: (a) The produced Q-interpretation must be a Q-interpretation
and (b) the produced interpretation must have the required properties. We break
(a) into parts (1) and (2) below, and we break (b) into parts (3) and (4): An answer
to a problem requiring the presentation of a Q-interpretation is best seen as hav-
ing four parts, as follows. (1) State the domain of your proposed Q-interpretation.
(2) Present (using one of two methods) the Q-interpretation of each non-logical
symbol. (3) Exhibit what the various sentences come to on your proposed Q-inter-
pretation. (4) State the truth values of the various sentences on your Q-interpretation,
defend your claim that they have those truth values, and be explicit as to how this
information solves the problem you began with. Parts (1) and (2) present the Q-
interpretation itself, and parts (3) and (4) establish that the Q-interpretation does
the work required.

6F-1 EXAMPLE. (Q-interpretations)

Problem: Show that

∃xRxx [2]

is Q-falsifiable (not Q-logically true). We present the Q-interpretation using a bi-
conditional.

1. Domain={1, 2}

2. Rv1v2↔ v1<v2

3. [2] would be true on this Q-interpretation just in case some number in the do-
main, that is, either 1 or 2, is less than itself. In other words, [2], on this Q-
interpretation, says that either 1< 1 or 2< 2.
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4. [2] is false on this Q-interpretation, since, by common knowledge, neither 1
nor 2 is less than itself (∼(1< 1) and ∼(2< 2)). Therefore [2] is false on some
Q-interpretation; that is, [2] is falsifiable—not a logical truth.

Note that you must consult both instances R11 and R22 to justify the Fs under
∃xRxx.

Problem: Show that the same sentence, [2], is Q-consistent.

Observe that you cannot show this with the same Q-interpretation as used above,
since on any given Q-interpretation, [2]—or any other sentence—can have exactly
one truth value! We will present this second Q-interpretation via a table.

1. Domain={1, 2}

2. R11=T; R12=T; R21=F; R22=F.

3. [2] would be true on this Q-interpretation just in case either R11=T or R22=T.

4. [2] is true on this Q-interpretation, since R11=T. Therefore, [2] is true on some
Q-interpretation, that is; [2] is Q-consistent.

Again, you must in principle consult both instances R11 and R22 in order calcu-
late a value for ∃xRxx. Of course a T for any instance is enough for giving the
existentially quantified formula a T; but the principle of checking every row is just
the same.

Exercise 56 (Q-interpretations)

Do the calculational work by “reduction to truth functions” (Method 6D-4 on
p. 191) if you wish—keeping in mind that if your domain is infinite, this will be
impossible.

1. Give a Q-interpretation showing that the sentence below is Q-consistent.

∀xRax

2. Give a Q-interpretation showing that the sentence below is Q-falsifiable.

∃xR(x, f(x))

3. Give Q-interpretations to show that the sentence below is both Q-falsifiable
and Q-consistent. (How many Q-interpretations will you need?)
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∀x((Px∨Qx)→Px)

4. Give a Q-interpretation to show that the following set of sentences is Q-
consistent.

∀x((Px&Qx)→Rx); ∀x(Px→∼Rx)

5. Give Q-interpretations to show that the following set of sentences is Q-
independent. (How many Q-interpretations will you need?)

∀x(Px&Qx); ∃x(Px&Rx); ∃x(Qx&∼Rx)

6. Construct Q-interpretations to show that each of the following sentences is
not Q-logically true.

(a) (∀xPx→∀xQx)→
∀x(Px→Qx)

(b) ∀x∀y∀z((Pxy&Pyz)→Pxz)
→∀xPxx

(c) ∃x∀y(Pxy→Pyx)

(d) (∃xPx&∃xQx)→
∃x(Px&Qx)

7. Construct Q-interpretations to show that each of the following arguments is
Q-invalid.

(a) ∀x(Fx→Gx), ∀x(Gx→Hx)
∴ ∃x(Fx&Hx)

(b) ∃xFx, ∀x(F(hx)→Gx)
∴ ∃xGx

(c) ∀xF(gx) ∴ ∀xFx

(d) ∀x∀y(Mxy→Nxy) ∴
∀x∀y(Mxy→(Nxy&Nyx))

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

Exercise 57 (More symbolization and Q-interpretation)

This needs to be supplied. Contributions are welcome.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

6G Semantics of identity

We need to say exactly when an identity sentence t=u is true (and when false) on
a given Q-interpretation:
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V alj(t=u) = T iff V alj(t) = V alj(u).

In other words, t=u is true on a Q-interpretation just in case that Q-interpretation
assigns exactly the same individual (in the domain) to both t and u.4

Identity is the only predicate that receives a fixed “meaning” on every Q-interpreta-
tion; it is in this sense, too, a “logical” predicate. Identity is sheer identity, not
some unexplained or context-relative “equality.” Leibniz’ “definition” of identity,
which uses quantifiers ∀F over predicate positions—the grammar of the branch of
logic that we are currently studying does not happen to include quantification over
predicate positions—is as follows:

a=b↔ ∀F(Fa↔Fb)

This says that a and b are identical iff they have exactly the same properties; if,
that is, every property of a is also a property of b, and every property of b is
also a property of a. In pseudo-English: a and b are identical iff they are indis-
cernible. (Left-to-right is the principle of identity of indiscernibles, and right-to-
left is the principle of indiscernibility of identicals; or, contrapositively, they are
the principles of differentiability of distinguishables, and distinguishability of dif-
ferentiables. If, however, you cannot discern the difference between distinctness
and difference, then perhaps you will wish to identify them. In any event, we mean
to be identifying distinctness or distinguishability with non-identity, and differen-
tiability with discernibility (that is, with non-indiscernibility).

Exercise 58 (Identity semantics)

1. Consider the following Q-interpretation.

D={1, 2, 3}, a=2, b=3.
F1=T G1=T f1=1 g1=2
F2=T G2=F f2=3 g2=1
F3=T G3=T f3=2 g3=2

h11=2 h12=1 h13=2
h21=3 h22=2 h23=1
h31=1 h32=2 h33=2

Using this Q-interpretation, determine the truth values of the following.
4This clause in effect redefines what we mean by a “Q-interpretation.”
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(a) gb = hab

(b) haa 6= f(g(b))

(c) ∃x∀y(hxy 6=x)

(d) ∃xFgx

(e) ∃x∀y(Fx↔G(fy))

(f) ∃xFhxx

(g) ∀x(F(fx)→Gx)

(h) ∃x(hxx=gx)

(i) ∀x∀y(Ghxy↔Fhxy)

(j) Ghab

(k) ∀xGh(x, fx)

(l) ∀x(x 6=a→F(fx))

2. Construct a Q-interpretation to show that the following sentence is not Q-
valid.

∀x∀y(fx= fy→x=y)

3. Construct a Q-interpretation to show that the following argument is invalid.

∀x∀y(fxy= fyx) ∴ ∃x(x= fxx)

4. Two of the following equivalences are Q-logically valid and two are not. For
each of the Q-invalid ones, provide a Q-interpretation on which it is false.

(a) Fa↔ ∀x(x=a & Fx)

(b) Fa↔ ∃x(x=a & Fx)

(c) Fa↔ ∀x(x=a→ Fx)

(d) Fa↔ ∃x(x=a→ Fx)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

6H Proofs and interpretations

Existential claims are easy to defend, hard to attack. To defend them, one only
needs a single example. To attack them, one must show that nothing counts as
an example. Contrariwise, universal claims are hard to defend, easy to attack. To
attack them, one has only to produce a single counterexample; to defend them, one
must show that nothing counts as a counterexample.

We have four key ideas: Q-validity, Q-implication, Q-inconsistency, and Q-equiv-
alence. All of these receive semantic definitions of universal form. Hence, they are
hard claims to defend. They are, however, easy to attack—one must only provide a
single Q-interpretation to show a formula not valid, or that an Q-logical implication
does not hold, or that a set is consistent (not inconsistent), or that two formulas are
not equivalent. So in showing any of these “not” things, use Q-interpretations. But
how?
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What to do with Q-interpretations

Q-invalidity. To show A invalid, produce a Q-interpretation on which A is false.

Q-nonimplication. To show that a set G of formulas does not Q-logically imply a
formula B, produce a Q-interpretation on which all members of G are true,
while B is false.

Q-consistency. To show that a set G of formulas is consistent (not inconsistent),
produce a Q-interpretation on which every member of G is true.

Q-nonequivalence. To show that A is non-equivalent to B, produce a Q-interpret-
ation on which A and B have different truth values.

But proofs must be used to establish Q-validity, Q-logical implication, Q-inconsist-
ency, or Q-equivalence. Why? Because these are universal semantic claims, claims
about all Q-interpretations; and you could never finish the work by treating each
Q-interpretation separately; there are just too many. Exactly how should one use
proofs?

What to do with proofs

Q-validity. Show that A is Q-valid by producing a categorical proof of A.

Q-logical implication. Show that a set G of formulas Q-logically implies a for-
mula A by producing a proof with hypotheses G and conclusion A.

Q-inconsistency. Show that G is a Q-inconsistent set by producing a proof with
hypotheses G and conclusion ⊥ (or, if you prefer, any explicit contradiction
A&∼A instead of ⊥).

Q-logical equivalence. Produce two proofs, one that A Q-logically implies B and
one that B Q-logically implies A (as required for showing Q-logical impli-
cation). Or produce a proof that A↔B is Q-valid (as above).

The techniques using Q-interpretations work by definition. But the techniques us-
ing proofs rely on the fact that our logical system, Fi, is sound and complete. Let us
concentrate on validity so as to cut down on repetition (exactly the same remarks
apply to the other three concepts).

We are supposed to know what an Fi-proof is, namely, a figure using only the rules
hyp, reit, TI, TE, Taut, Conditional Proof, RAA⊥ , Case Argument, Biconditional
Proof, UI, UG, EG, EI.
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6H-1 DEFINITION. (Fi-provable)

A is Fi-provable if and only if there is a categorical Fi-proof of A.

6H-2 FACT. (Fi-provability and Q-validity)

A is Fi-provable if and only if A is Q-valid.

Fact 6H-2 has been mathematically proven by paid logicians. We use Fact 6H-2 to
sanction our use of proofs—and of only proofs—in order to establish Q-validity.
Note that F-provability is an existential notion: A is Fi-provable iff there is an
Fi-proof of A. That is why we want to use the technique of proof when showing
something is valid—like all existential claims, provability claims are easy to sup-
port (just produce an example proof). But the method of proof cannot be used to
show that something is not valid, for in terms of proofs, A is invalid just in case no
proof yields it—and that, again, suggests an infinite task. So use Q-interpretations
for Q-invalidity and use proofs for Q-validity. Let’s go back to Fact 6H-2, and
restate it, unpacking the defined terms “Fi-provable” and “Q-valid”:

6H-3 COROLLARY. (Fi-provability and Q-validity, restated)

There is an Fi-proof of A just in case A is true on every Q-interpretation.

This is equivalent (as you can prove) to the following, which negates both sides:

6H-4 COROLLARY. (Fi-provability and validity once more)

There is no Fi-proof of A if and only if some Q-interpretation makes A false.

Point: We always use the existential side of Corollary 6H-3 to prove Q-validity,
and we always use the existential side of Corollary 6H-4 to prove Q-invalidity.
Thus, we always make things easy on ourselves.

Penultimate note. It is interesting that the same property can be expressed both
existentially and universally (as in Corollary 6H-3). As you can imagine, it is
non-trivial to prove that the existential fact of Fi-provability is equivalent to the
universal fact of validity. Oddly enough, the most difficult part of the proof is
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the part showing that the universal form implies the existential form; when one
considers the apparent strength of universals and of existentials, one might have
thought it was the other way around. That is what Gödel’s famous completeness
theorem is all about; see §7C for a sketch of its proof.

Final note. Given a sentence and asked to decide whether or not it is Q-valid, what
should you do? This is what to do. (1) Try for a while to prove it (being careful not
to make any flagging mistakes). Then (2) try for a while to find a Q-interpretation
on which it has the value F. And then continue by alternating between (1) and (2)
until you become bored. Alas, no better advice is available since, as noted in §13A,
there is no mechanical method for deciding between Q-validity and its absence. On
a more practical note, however, sometimes you can “see” from a failed attempt at
a proof of Q-validity just why the proof is not working out; and that insight may, if
you are fortunate, lead you to a definite Q-interpretation on which your candidate
is false.

Exercise 59 (Using proofs and Q-interpretations)

Explain how you would use proofs or Q-interpretations in the following cases. (Do
not actually produce any proofs or Q-interpretations. The exercise is simply to
explain, abstractly, how you would use them)

Example. Show that A&B→(A→C) is invalid. Answer: You need to produce a
Q-interpretation on which it is false.

1. Show that the set {A→B, A&∼B} (taken together) is Q-inconsistent.

2. Show that A→(B→A) and A→(B↔A) are Q-nonequivalent.

3. Show that the set {A, B, C} (taken together) fails to Q-logically imply D.

4. Show that the set {A, B, C, D} (taken together) is Q-consistent.5

5. Show that A→B and ∼A∨B are Q-equivalent.

6. Show A→(B→A) is Q-valid.
5If someone asks you to believe that free will, determinism, optimism, and the existence of evil

are Q-consistent, that person is not asking you to believe merely that each is Q-consistent. You
are instead being asked to believe in the consistency of the set of those four doctrines taken all
together. At this point in your education, you need already to have learned enough about quantifiers
to distinguish between “For each sentence in the set, there is a Q-interpretation on which it is true”
and “There is a Q-interpretation on which every sentence in the set is true.”
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7. Show that A and B (taken together) Q-logically imply A&B.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /



Chapter 7

Theories

This chapter is somewhat of a miscellaneous collection of theories based on Q-
logic. Its section headings speak for themselves, if only in muted tones.

7A More symbolization of logical theory

The semantic theory of TF was developed roughly in §2B. Parts of the development
can now be made a little more revealing with the use of set-theoretical concepts
from §4A.

Also, we are using A and the like as variables ranging over sentences, G and
its cousins to range over sets of sentence, and i as a variable ranging over TF
interpretations. We use “V ali(A) = T” to mean that A is true on TF-interpretation
i.

We rely on the previously given definition of tautological implication, which we
here repeat, changing bound variables (CBV, 3E-4 on p. 129) as we see fit.

7A-1 DEFINITION. (�TF)

G1 �TFA1↔ ∀i[∀B(B∈G1→ V ali(B) = T)→ V ali(A1) = T].

That is, G1 �TFA1 just in case A1 is true on every TF interpretation that makes
every member of G1 true—which is precisely the idea of implication. From this
definition and earlier postulates, we can prove several facts about the semantics of

204
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truth-functional logic.. These are important, but here we are using them only as
exercises.

7A-2 FACT. (Structural properties of tautological implication)

1. Identity. A∈G→ G �TFA.

2. Weakening. G⊆G′→ (G �TFA→ G′ �TFA).

3. Cut. [G∪{A} �TF C & G �TFA]→ G �TF C.

4. Finiteness. G �TFA→ ∃G0[G0 is finite & G0⊆G & G0 �TFA].

The following definition and fact are here just to offer an exercise—although they
are in another context important ideas. (G* is just another variable over sets of
sentences, and A* over sentences.)

7A-3 DEFINITION. (Maximal A*-free)

G* is maximal A*-free↔df G* 2TFA* and ∀G′[G*⊂G′→ G′ �TFA*].

7A-4 FACT. (Maximal A*-free)

G* is maximal A*-free→ ∀A(G* �TFA↔ A∈G*)

Exercise 60 (Theory of �TF formulated set-theoretically)

1. Prove Fact 7A-2(1)–Fact 7A-2(3), using instances of Definition 7A-1 as
many times as needed. You should also expect to use some set theory and
the logic of identity, since these concepts occur in the statements of what you
are to prove. (It is perhaps a little surprising that these facts do not rely on
any properties of the “truth-value-of” operator V ali(A).)

2. Prove Fact 7A-4. There is a proof of this fact that does not require additional
appeal to the definition of �TF; in fact, you can rely on just the property Cut
(provided you have succeeded in proving it).

3. Refrain from proving Fact 7A-2(4). This is not only Hard, but does depend
on properties of the truth-value-of operator.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /
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7B Peano arithmetic

A fundamental theory finding a natural reconstruction amid quantifiers and identity
is the arithmetic you learned in grade school, and whose theory you began to study
under the heading “algebra” in somewhat later years. This reconstruction, due
in essentials to Dedekind, was elaborated by Peano, from whom Whitehead and
Russell learned it, from whom we all learned it, and is always named after Peano.

Grammar. There are four primitives: one constant, 0, and three operators that
make terms looking like x′, x+y, and x×y.

Semantics. The operator “+” represents ordinary addition, while “×” represents
multiplication. The operator “ ′ ” represents the successor operation, so that x′ is
the successor of x, i.e., x′=x+1. The constant “0” represents 0. The intended
domain of quantification is constituted by the non-negative integers {0, 1, 2, . . .}.

Proof theory. First the axioms PA1–PA7 of Peano arithmetic (PA = Peano ax-
iom). PA3—the induction axiom—is an “axiom schema,” representing not one but
infinitely many axioms—one for each choice of A(x).1

7B-1 AXIOMS. (Peano axioms for arithmetic)

PA1. ∀x∀y(x′=y′→ x=y)

PA2. ∀x∼(x′=0)

PA3. [A(0) & ∀x(A(x)→ A(x′))]→ ∀xA(x)

PA4. ∀x(x+0=x)

PA5. ∀x∀y(x+y′= (x+y)′)

PA6. ∀x(x×0=0)

PA7. ∀x∀y(x×y′= (x×y)+x)
1Here we write “A(x)” instead of “Ax” because of improved readability when terms with operators

are substituted for “x,” as for example in PA3; but the intention remains to rely on Convention 3A-2.
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“Peano’s Axioms” usually include: N(0) and ∀x(N(x)→N(x′)), and also “N” fig-
ures in P3; this is essential when “N” is thought of as representing only part of the
domain of quantification, rather than (as here) all of it.

In carrying out proofs, it is convenient to replace the induction axiom by an induc-
tion rule, as follows:

·
·
·

1 A(0) ? [0/x]
2 A(a) hyp (of induction), flag a for Ind. [a/x]
· ·
· ·
· ·
k A(a′) ? [a′/x]
n ∀xA(x) 1, 2–k, Induction 0/x, a/x, a′/x

That is, ∀xA(x) follows from A(0) and a proof flagged with (say) a, the hypoth-
esis of which is A(a) and the last step of which is A(a′). So the first premiss for
Induction says that 0 has the property A, and the second says that there is a way to
show that a′ has the property A if a does—so every number must have A, which
is what the conclusion says. The induction rule should be treated as a new kind
of universal-quantifier-introduction rule, applicable only in the context of Peano
arithmetic. It gives one a new strategy, apart from UG, for proving universal gen-
eralizations. Observe that its annotation involves three separate instantiations for
x; this is the most confusing part of using the induction rule.

Just to help visualize what an inductive proof might look like, we repeat the above
layout, except using triple dots instead of A.

·
·
·

1 . . . 0 . . . 0 . . . ? [0/x]
2 . . . a . . . a . . . hyp (of induction), flag a for Ind. [a/x]
· ·
· ·
· ·
k . . . a′ . . . a′ . . . ? [a′/x]
n ∀x(. . . x . . . x . . .) 1, 2–k, Induction 0/x, a/x, a′/x
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Exercise 61 (Peano arithmetic)

What follows are a few theorems of Peano arithmetic (PT = Peano theorem). Take
these as exercises, and try to prove them in the order indicated, using old ones in
the proof of new ones if wanted. Each is as usual to be construed as a universal
generalization, as indicated explicitly in the first.

PT1. ∀x∀y∀z[(x+y)+z=x+ (y+z)]

PT2. 0+x=x

PT3. x′+y= (x+y)′

PT4. x+y=y+x

PT5. x× (y+z)= (x×y)+ (x×z)

PT6. (x×y)×z=x× (y×z)

PT7. x′×y= (x×y)+y

PT8. x×y=y×x
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

Here is a proof of the first one. Note how two of the quantifiers are introduced by
UG, while one is introduced by induction. “PA” refers to the Peano axioms above.

1 flag a, b for UG
2 (a+b)+0=a+b PA4, a+b/x
3 (a+b)+0 = a+ (b+0) 2, PA4, b/x, = [0/z]
4 (a+b)+c=a+ (b+c) hyp of ind., flag c [c/z]
5 ((a+b)+c)′ = (a+ (b+c))′ 4= (add. context: 3D-4)
6 ((a+b)+c)′ = a+ (b+c)′ 5, PA5 a/x, b+c/y, =
7 ((a+b)+c)′ = a+ (b+c′) 6, PA5 b/x, c/y, =
8 (a+b)+c′ = a+ (b+c′) 7, PA5 a+b/x, c/y [c′/z]
9 ∀z[(a+b)+z = a+ (b+z)] 3, 4–8, Ind. 0/z, c/z, c′/z

10 ∀x∀y∀z[(x+y)+z = x+ (y+z)] 1–9, UG a/x b/y

We have flagged here with constants a, b, c (and not with variables) because any
time the induction rule comes into play, there is an extra threat of confusion. Using
constants helps to avoid it.

One caution: When you attack a problem by “setting up for induction,” be sure put
a question mark on the “zero step” and leave room in which to prove it.

A hint: Unless we are mistaken (which is possible), you only need to use induction
on one of the variables—the alphabetically last such. The alphabetically earlier
quantifications can be proven by way of plain UG.

Another hint: In order to prove PT8 above, you are probably going to have to use
induction to prove something that stands to PT8 as PT2 stands to PT4.
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Exercise 62 (Definitions in arithmetic)

Many standard concepts can be defined in Peano arithmetic. What follows is a
mixture of examples and exercises; the ones marked “exercise” call for definitions
(not proofs).

1. Less-than: ∀x∀y[x< y ↔ ∃z(z 6=
0 & x+z=y).

2. Less-than-or-equal (6): Exercise.

3. “Funny” subtraction: ∀x∀y∀z[x
−y=z ↔ (y6x & x=z+y) ∨
(∼(y6x) & z=0)]. (Recall that
the domain for Peano arithmetic
does not include negative num-
bers.)

4. Divisibility: x divides y
(evenly): Exercise.

5. Primeness: x is prime: Exercise.

6. Even: ∀x[x is even ↔ ∃y[0′′×y
=x]]

7. True or false? Every even number
is the sum of two primes. Exer-
cise: Symbolize this statement.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

7C Gödel’s completeness theorem for the
system Fi of intelim proofs

We have used the double turnstiles �TF and �Q for speaking of semantic relations.
It is convenient to introduce turnstiles also on the side of proofs; for these we use
single turnstiles G `Fi

TF A and G `Fi
Q A. We want to use them in connection with

intelim Fitch proofs as follows:

7C-1 DEFINITION. (Fitch-intelim-provable: G `Fi
TF A and G `Fi

Q A)

• G `Fi
TF A, read “A is intelim TF Fitch-provable from G,” ↔df there is a hy-

pothetical truth-functional intelim Fitch proof (only truth-functional intelim
rules permitted) all of whose hypotheses belong to G and whose conclusion
is A. For a list of permitted rules, see Definition 2C-23.

• G `Fi
Q A, read “A is intelim Q Fitch-provable from G,”↔df there is a hypo-

thetical intelim Fitch proof (only truth-functional or quantifier intelim rules
permitted) all of whose hypotheses belong to G and whose conclusion is A.
For the list of permitted rules, see Definition 3E-14.
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Note that G can include “junk”: Not all the members of G need to be listed among
the hypotheses, whereas all the hypotheses must belong to G.

7C-2 THEOREM. (Soundness and completeness)

The systems of Fitch intelim proofs for truth-functional logic and for quantifier
logic are sound and complete:

• G `Fi
TF A iff G �TF A, and

• G `Fi
Q A iff G �Q A.

From left to right is called soundness (or sometimes semantic consistency) of the
proof-system: Every argument that the system of intelim proofs certifies as “OK”
is in fact semantically valid (in the appropriate sense). Soundness means that the
system of intelim proofs does not “prove too much,” inadvertently letting in some
semantically bad arguments.

The argument for soundness is an “induction” rather like induction in Peano arith-
metic. You show that intelim proofs of length 1 make no mistakes, and then show
(more or less) that if all intelim proofs of length n are all right, then so are all
intelim proofs of length n+1. Hence you may conclude by induction that all inte-
lim proofs, no matter their length, are OK. Working out the details is at this point
inappropriate.

From right to left is called completeness of the proof system: If a certain argument
is semantically valid (in the appropriate sense), then the proof system certifies it as
“OK.” Completeness means that no semantically valid argument is omitted by the
proof system.

The argument for completeness is entirely different. We restrict attention to the
simpler truth-functional case, and even then we lay out only a bare outline, sup-
pressing almost all details.

To begin with, we need some lemmas. They contain all the hard work of proving
that the system of intelim proofs is complete. You should be able to understand
these lemmas, but their proofs are well beyond our scope. All of these are to be
interpreted as having universal quantifiers on the outside governing G, G*, A, and
A*, as well as A1 and A2.

In Fact 7A-2 we considered identity, weakening, etc., as properties of the double
turnstile, G �TFA, of semantics. The following lemma claims that strictly analo-
gous properties hold for the single turnstile, G `Fi

TF A, of proof theory.
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7C-3 LEMMA. (Structural properties of G `Fi
TF A)

The properties identity, weakening, and cut all hold for G `Fi
TF A, and so also does

finiteness.

1. Identity. A∈G→ G `Fi
TFA.

2. Weakening. G⊆G′→ (G `Fi
TFA→ G′ `Fi

TFA).

3. Cut. [G∪{A1} `Fi
TFA2 & G `Fi

TFA1]→ G `Fi
TFA2.

4. If G* 0Fi
TF A* and ∀G′[G*⊂G′→ G′ `Fi

TF A*]] (that is, if G* is maximal A*-
free in the single-turnstile sense), then ∀A[G* `Fi

TF A↔ A∈G*].

5. Finiteness. G `Fi
TFA→ ∃G0[G0 is finite & G0⊆G & G0 `Fi

TFA].

In the following we make explicit reference only to Lemma 7C-3(1); the remainder
are needed only for the proofs of upcoming lemmas, whose explicit proofs we
omit. You proved the double-turnstile analogs of all except Lemma 7C-3(5) as Fact
7A-2. Those proofs, however, are worthless here, since they relied on Definition
7A-1 of the double turnstile, whereas Definition 7C-1 of the single turnstile is
entirely different in form: For instance, the former is a universal quantification over
TF-interpretations, whereas the latter is an existential quantification over intelim
proofs. The only exception is Lemma 7C-3(4), which follows from the single-
turnstile cut (Lemma 7C-3(3)) in exactly the same way as in your Exercise 60. All
proofs omitted—but it is easy enough to convince yourself informally that they
must be true.

7C-4 LEMMA. (Lindenbaum’s lemma)

If G 0Fi
TF A* (which is to say, if G is A*-free in the single-turnstile sense) then

G can be extended to a G* that (in the single-turnstile sense) is maximal A*-free.
That is,

if G 0Fi
TF A* then there is a G* such that [G⊆G* and G* 0Fi

TF A* and ∀G′[G*
⊂G′→ G′ `Fi

TF A*]].

You will see below how we use Lindenbaum’s lemma (as it is called). We omit
its proof because the proof of Lindenbaum’s lemma uses ideas and principles not
present in this book.2

2The proof can, however, be arm-waved on a suitably large blackboard.
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The next (and last) lemma delivers a critical property of maximal A*-free sets.

7C-5 LEMMA. (Truth like)

If G* 0Fi
TF A* and ∀G′[G*⊂G′ → G′ `Fi

TF A*] (that is, if G* is a maximal A*-free
set), then there is a TF interpretation i such that membership in G* exactly agrees
with truth on i:

∃i∀A[V ali(A) = T↔ A∈G*].

We sometimes say that G* is truth like if its membership agrees with truth on some
one TF interpretation. So this lemma says the following: Every maximal A*-free
set is truth like. As above, we omit the proof.

Having stuffed all the “hard” parts into lemmas, we are now ready to give you an
outline of a proof of the completeness of the system of intelim proofs. The easiest
proof to follow proceeds via contraposition. Here is how it goes, in bare outline,
for the truth-functional case (the argument for completeness in the case of quan-
tifiers is substantially more complicated). Assume for arbitrary G and A* that (a)
G 0Fi

TF A*; we show that under this hypothesis, (z) G 2TF A*. (The standard state-
ment of completeness—the right-to-left part of Theorem 7C-2—then follows by
contraposition.) Our strategy is to show (z) by showing its definitional equivalent:
(y) there is a TF-interpretation i such that (y1) ∀A[A∈G→ V ali(A) = T] and (y2)
V ali(A*) 6=T (all members of G are true on i, but A* is not).

First put Lemma 7C-4 together with (a), and then use EI on the result (flagging
G*) to obtain (c) G⊆G*, (d) G* 0Fi

TF A*, and (e) ∀G′[G*⊂G′→ G′ `Fi
TF A*]. Now

(d) and (e) give us the antecedent of Lemma 7C-5, so that we may use EI on the
result (flagging i) to give (f) ∀A[V ali(A) = T↔ A∈G*]. It is easy to see that (f)
and (c) imply (y1) to the effect that all members of G are true on i.

We also need to show (y2); we do so by a reductio, starting with the assumption
to be reduced to absurdity, namely (h) V ali(A*) = T. Note that (h) and (f) together
imply that (i) A*∈G*. Now this in turn implies that (j) G* `Fi

TF A* by Identity for
the single turnstile, Lemma 7C-3(1). But this contradicts (d) and completes the
reductio, thereby establishing (y2). Since we have shown (y1) and (y2), we may
existentially generalize to (y), which by definition implies (z), and completes the
proof that (given the lemmas whose proofs were omitted) the system of intelim
proofs for truth-functional logic is complete.
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Exercise 63 (Completeness of the system of intelim
proofs for truth-functional logic)

Set out the foregoing proof as a strategic proof in the sense of Definition 3E-14
on p. 138, using of course the quantifier rules, and omitting only the wholesale
rules TI, TE, and Taut. You should present the proof as hypothetical, with the lem-
mas Lemma 7C-3(1), Lemma 7C-4, and Lemma 7C-5 serving as its hypotheses
and with conclusion ∀G∀A[G�TF A→ G `Fi

TF A]. For accuracy, when you enter the
lemmas, include all needed outermost universal quantifications.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

7D Gödel incompleteness

A certain form of Gödel’s argument shows that each formal arithmetic that is se-
mantically consistent must be semantically incomplete. This conclusion is less
strong and less pure then Gödel’s own proof-theoretical result (as modified by
Rosser) to the effect that each formal arithmetic that is negation consistent must
be negation incomplete. But it does reveal at least some of the central ideas.

7D.1 Preliminaries

Words are used as follows.

7D-1 DEFINITION. (Arithmetic)

Arithmetic. The grammar of truth functions, quantifiers, identity, zero, one, ad-
dition, and multiplication (as in §7B). The obvious and usual semantic ac-
counts of “semantic value”: denotation (of arithmetic terms) and truth (of
arithmetic sentences), where the domain of quantification is understood as
the set of non-negative integers {0, 1, . . . }.

Formal arithmetic. A system of arithmetic is formal iff its proof theory is based
on a family of axioms and rules such that it is effectively decidable to say
of an appropriate candidate whether or not it is an axiom, and whether or
not it is an instance of one of the rules. In other words, theoremhood in the
arithmetic is “formalizable” (§13A).
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Let S be a particular formal system of arithmetic,

Semantically consistent. S is semantically consistent iff all theorems of S are
true.

Semantically complete. S is semantically complete iff all truths are theorems of
S.

Negation-consistent. S is negation consistent iff for no A are both A and ∼A
theorems of S.

Negation-complete. S is negation complete iff for each A, at least one of A and
∼A are theorems of S.

Now we may state

7D-2 THEOREM. (Gödel’s incompleteness theorem, semantic version)

There is no formal arithmetic S such that theoremhood in S coincides with arith-
metic truth; or, equivalently, there is no semantically consistent formal arithmetic
S that is semantically complete. That is, the concept of arithmetic truth is not
formalizable.

To show how it goes, we pick on a group of islanders far away who have a formal
system S that they think of as arithmetic. We will show that the notion “theorem
of S” does not coincide with truth, so that they have failed fully to “formalize
arithmetic.”

When we speak of the islander’s arithmetic, we use the following.

Our variables What they stand for

n Numbers (if we ever need to speak of them).

K, M, N Islanders’ number terms (actually, these are the only terms
they have). The islanders use their number terms to stand
for numbers. We use the letters, “K,” “M,” and “N” to
range over their number terms.
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A, T(v), G Islanders’ sentences. They use their sentences to make
arithmetic statements. We use “A,” etc., as variables rang-
ing over their sentences.

v, v′ Islanders’ variables (over numbers 0, 1, ...). We are using
“v” and “v′” as names of two of these variables; it turns
out that we will not need to talk of any of the others

You understand that what is written down here is in our own language. No part
of the islanders’ language will ever be displayed. In this heavy-handed way we
entirely avoid the threat posed by Confusion 1B-16 on p. 19.

There are three pieces of “hard work” that we will just assume so as to get on with
it. The first work is “Gödel-numbering.” Or better, for our immediate purposes,
“Gödel-number-terming.” Gödel needed to show that our language contains an
(islander number term)-to-(islander sentence) operator, which we are writing for
transparency as “the N-sentence”:

the N-sentence is an islander sentence whenever N is an islander number
term.

Exactly how to find the N-sentence when you are given the number term N is
important for a deeper understanding of Gödel’s work, but not for what we are
doing. All we need is a guarantee that each islander sentence is in fact correlated
with a number term:

7D-3 FACT. (Gödel numbering)

Every islander sentence has a number term: For each islander sentence A (whether
open or closed), there is an islander number-term N such that A= the N-sentence.
In symbols: ∀A[A is an islander sentence→ ∃N[N is an islander number term &
(A= the N-sentence)]].

In other words, the function expressed by “the N-sentence” is from the islander
number terms onto the islander sentences.

The next work is to show that the islanders themselves can find an open sentence
(only v will be free in it) that will stand in for our concept of theoremhood (of
their system S of arithmetic). This is Really Hard Work. The idea is that this
theoremhood-of-S-expressing open sentence shall be true when completed by an
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islander number term just in case the islander sentence associated with that number
term is a theorem of the islanders’ system S of arithmetic. As notation, we’ll
assume that the open sentence in question is T(v), so that what we are promising to
locate is an islander open sentence T(v) that expresses “theoremhood in S” in the
following sense.

7D-4 FACT. (Expressibility of theoremhood)

There is an islander sentence T(v), with v its only free variable, such that for
every islander number term K, T(K) is true↔ the K-sentence is a theorem (of the
islanders’ arithmetic). So for an islander to say “T(K)” is tantamount to our saying
“the K-sentence is a theorem of S.”3

The final work is to show that substitution is expressible in the islanders’ language.
We’ll say this technically first, because that is what is important. The assumption is
that there is in the islanders’ arithmetic an open term Sub(v, v′) such that for every
pair of islander number terms N and M, Sub(N, M) is correlated with the result
of putting the number term M for every free occurrence of the variable v in the
N-sentence.

7D-5 FACT. (Expressibility of substitution)

There is in the islander language an open term Sub(v, v′), with v and v′ its only free
variables, such that for any islander open sentence A(v), and any islander number
term N, if A(v)= the N-sentence, then for every islander number term M, A(M)=
the Sub(N, M)-sentence.4

In other words, if the number term N is correlated with A(v), then the number
term Sub(N, M) is correlated with the result of putting the number term M for
every free occurrence of v in A(v). A picture should be helpful in engendering a
feel for Sub(v, v′).

3The existential Fact 7D-4 is squarely dependent on the islanders’ arithmetic being formal. All
bets are off if they appeal to Delphi. Maybe there is a Delphic concept of theoremhood, but it is only
formalizable notions of theoremhood that we promise to locate inside of arithmetic.

4In fact there is no such term as Sub(v, v′): Addition and multiplication and 0 and 1 are not enough
to express substitution. But what we have said is nearly true, since one can express the corresponding
three-term relation with an open sentence of the islanders’ arithmetic. The nice thing about open
sentences is that they can contain quantifiers, whereas terms cannot, so that their expressive power
is far greater. But pretending that we express substitution with a term is harmless, and it makes our
presentation easier to follow.
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Number Term Sentence Ponderously
N A(v) A(v)= the N-sentence
Sub(N, M) A(M) A(M)= the Sub (N, M)-sentence
Sub (N, K) A(K) A(K)= the Sub (N, K)-sentence

Hence, if you have a number term for the open sentence A(v), you automatically
have a number term for each of its instances. Good!

7D.2 The argument

We now proceed as follows.5 Fact 7D-4 guarantees the expressibility of theo-
remhood in the islander’s language, so consider the critical open sentence T(v)
mentioned in Fact 7D-4. We know by Fact 7D-3 that T(v) has to have a number
term:

T(v)= the K-sentence (some number term K).

As a special case of Fact 7D-5, we note that we could, if we wished, calculate a
number term for any substitution instance of T(v): For any term M, T(M) must be
the Sub(K, M)-sentence. We do not, however, care about this. We are really more
interested in unprovability or non-theoremhood than we are in theoremhood. That
is, we want to focus for a moment on the open sentence ∼T(v), which expresses
non-theoremhood in S. The open sentence ∼T(v), too, will have a number term,
by Fact 7D-3, and so by Fact 7D-5 we would be able to calculate a number term
for any of its substitution instances. But even the open sentence expressing non-
theoremhood is not what we can finally use as a basis for Gödel’s argument. What
we are really interested in is the more complex open sentence, ∼T(Sub(v, v)) that
is obtained by putting the open term Sub(v, v) in place of v in the open sentence
∼T(v) that expresses non-theoremhood. The observation that this more complex
open sentence has a number term is the first step in the argument:

1. ∼T(Sub(v, v))= the N-sentence (some number term N, which we are flagging).
Reason: Fact 7D-3.

As a special case of Fact 7D-5, we note that we can now calculate a number term for
any substitution instance of ∼T(Sub(v, v)): For any term M, ∼T(Sub(M, M)) must
be the Sub(N, M)-sentence. We do not, however, care to calculate all these number
terms. We are interested in only the particular instance of this generalization for

5The argument itself is given in Fact 7D-3, Fact 7D-4, Fact 7D-5 and the steps numbered 1–12,
which are self-contained and can be read by themselves.
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the number term N promised in step 1, and this gives us the critical second step of
the argument.

2. ∼T(Sub(N, N))= the Sub(N, N)-sentence. Reason: 1, Fact 7D-5.

The trick is that the number term N is playing a double role here, both as the
number term of the open sentence and as the number term to be substituted for the
variable. The outcome is a sentence of the islander’s language that “says of itself”
that it is unprovable. All we need to do is verify that (1) this not quite viciously self-
referential claim is true, and that (2) it leads to the incompleteness of the islander’s
formal system.

The next step, 3, just gives us a short way of writing; it is redundant but helpful.
Step 4 is keeping track.

3. G=∼T(Sub(N, N)) (local definition).

4. G= the Sub(N, N)-sentence. Reason: 2, 3, identity.

So G is the sentence that “says of itself” that it is unprovable. The rest of the
argument falls into two parts. In Part I we conclude that G does indeed have the
self-referential property we just informally ascribed to it. We do this by establish-
ing that

(I) G is true↔ G is not a theorem of S.

This is step 9 below. In Part II we rely on (I) in order to conclude that G itself is a
witness to either the semantic inconsistency or the semantic incompleteness of S:

(II) Either G is true and not a theorem of S or else it is a theorem of S but
not true.

This is step 10 below. Then we immediately obtain the conclusion of the whole
argument as step 12.

All of this will be easy. The hard work lies behind us in Fact 7D-4 and Fact 7D-5.

Part I.

5. [Extra number.]

6. G is true↔∼T(Sub(N, N)) is true. Reason: 3, = (Added context)

7. G is true↔ T(Sub(N, N)) is not true. Reason: 6, semantics for ∼.
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8. G is true↔ the Sub(N, N)-sentence is not a theorem of S. Reason: 7, Fact 7D-4,
logic.

9. G is true↔ G is not a theorem of S. Reason: 8, 4, identity.

Part II

10. Either G is true and not a theorem of S or else it is a theorem of S but not
true. Reason: 9, truth tables.

11. Either some sentence is true and not a theorem of S or else some sentence is a
theorem of S but not true. Reason: 10, logic.

12. Either the islander’s formal arithmetic is not semantically consistent or else it is
not semantically complete. In either event, the notion of “theoremhood in S” does
not agree with the notion of “truth.” Reason: 11, Definition 7D-1 of key terms.

Since step 12 is what we wanted, we are done. We can add a little more information
if we want. We all think that the islanders’ arithmetic is in fact consistent (after all,
if it weren’t, surely someone would have found a contradiction by now). Let us
then use this additional hypothesis: All theorems of S are true. Now we can
show that the Gödel sentence, G, is itself true and not a theorem of S (exercise).
Of course the clever islanders might decide (Delphically?) to add G as an axiom
to their formal arithmetic; why not? Let S′= S+G. But they will not approach
completeness more closely, for we can find a new Gödel sentence, say G′, with
which we can pull off the same trick, but now relative to their new formal arithmetic
S′ instead of relative to their old formal arithmetic.

This argument should be compared with Tarski’s “Paradox of the Liar.” Suppose
arithmetic can express its own truth:

Tr(K) is true↔ the K-sentence is true.

Then run the same argument with “Tr” in place of “T.” You will find that the ana-
log of (I) above, which is Step 9 above, is now not just strange, but an outright
contradiction. As so often, Gödel skirts the very edge of paradox.



Chapter 8

Definitions

Definitions are crucial for every serious discipline.1 Here we consider them only
in the sense of explanations of the meanings of words or other bits of language.
(We use “explanation” as a word from common speech, with no philosophical
encumbrances.) Prominent on the agenda will be the two standard “criteria”—
eliminability and conservativeness—and the standard “rules.”

8A Some purposes of definitions

There are two especially clear social circumstances that call for a meaning-explaining
definition, and then many that are not so clear. The clear ones call either for (1)
“dictionary” definitions or for (2) “stipulative” definitions; some of the less clear
circumstances call for (3) “analyses.”

8A.1 “Dictionary” or “lexical” definitions

One might need to explain the existing meaning of a word already in use in the
community, but unfamiliar to the person wanting the explanation.

1This chapter draws on Belnap (1993), which in turn found its basis in earlier versions of this
chapter. The cited article contains material not present here, including an exceedingly small history
of the theory of definitions. Even though much is omitted, however, you may well find this chapter
more “talky” (more “philosophical”?) than some others.

220
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8A-1 EXAMPLE. (Lexical definitions)

1. What is a sibling? A sibling is a brother or a sister. In notation: ∀x[x is a
sibling↔ (x is a brother ∨ x is a sister)].

2. What does it mean to square a number? One obtains the square of a number
by multiplying it by itself. In notation: ∀x[x2 = (x×x)].

3. What do you mean by zero? Zero is that number such that when it is added
to anything, you get the same thing back. In notation: ∀x[0=x↔ ∀y((y+
x)=y).

4. What is a brother? A brother is a male sibling. In notation: ∀x[x is a brother
↔ (x is male & x is a sibling)].

We postpone discussion of the question whether these interchanges should be sprin-
kled with quotation marks and whether or not the circularity threatened by com-
bining the sibling/brother examples (1) and (4) is vicious.

8A.2 “Stipulative” definitions

One might wish to explain a proposed meaning for a fresh word. The purpose
might be to enrich the language by making clear to the community of users that
one intends that the new word be used in accord with the proposed meaning. This
case squarely includes the putting to work of a previously-used word with a new
technical meaning.

8A-2 EXAMPLE. (Stipulative definitions)

1. Let ω be the first ordinal after all the finite ordinals.

2. Let a group be a set closed under a binary operation satisfying the following
principles . . . .

3. By a terminological realist I mean a philosopher who subscribes to the fol-
lowing doctrines . . . .

The person who introduces a new word might have any one of various purposes.
Here is a pair:
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1. The person might want a mere abbreviation, to avoid lengthy repetition: “By
NAL I refer to Notes on the art of logic.”

2. Or the person might take it that he or she is cutting at a conceptual joint: An
elementary functor is a functor such that either all of its inputs are terms or
all of its inputs are sentences; and whose output is either a term or a sentence
(Definition 1A-2).

Note that in both cases the defined expression has no meaning whatsoever prior to
its definition—or in any event no meaning that is relevant in any way to its newly
proposed use.

8A.3 “Analyses” or “explications”

There are many cases not exhibiting either of these clear purposes, including per-
haps most distinctively philosophical acts of definition. In these cases (Carnap calls
some of them “explications”) one wants both to rely on an existing meaning and
also to attach a new, proposed meaning; it seems that one’s philosophical purposes
would not be served if one let go of either pole.

8A-3 EXAMPLE. (Explicative definitions)

1. Let knowledge (in the present technical sense) be justified true belief. In
notation: ∀x∀p[x knows p↔ x believes p & x is justified in believing p & p
is true].

2. A choice is right if it produces the greatest good for the greatest number.

3. We say that a set G tautologically implies a sentence A iff A is true on
every TF interpretation in which every member of G is true. In notation
(see Definition 2B-14(4)): G �TF A↔df for every TF interpretation i [if (for
every sentence B, if B∈G then V ali(B)=T) then V ali(A)=T].

Observe that in these cases the philosopher neither intends simply to be reporting
the existing usage of the community, nor would his or her purposes be satisfied
by substituting some brand new word. In some of these cases it would seem that
the philosopher’s effort to explain the meaning of a word amounts to a proposal
for “a good thing to mean by” the word. We learned this phrase from Alan Ross
Anderson. Part of the implication is that judging philosophical analyses is like
judging eggs: There are no shortcuts; each has to be held to the candle.
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8A.4 Invariance of standard theory across purposes: criteria and rules

The extraordinary thing is this: The applicability of the standard theory of defi-
nition remains invariant across these purposes—just so long as the purpose is to
“explain the meaning of a word.” An early manifestation of this invariance is that
in any case, the word or phrase being defined is called the definiendum (the de-
fined), and the word or phrase that is intended to count as the explanation is called
the definiens (the defining).

This standard theory has two parts. In the first place, it offers two criteria for
good definitions: the criterion of eliminability and the criterion of conservative-
ness. Later, in §12A.1 and §12A.2 we give full explanations of these criteria. For
now, the following extremely rough account will do.

8A-4 CRITERIA. (Criteria of eliminability and conservativeness,
extremely roughly put)

• The criterion of eliminability requires that the definition permit the elimi-
nation of the defined term in favor of previously understood terms.

• The criterion of conservativeness requires that the definition not only not
lead to inconsistency, but not lead to anything—not involving the defined
term—that was not obtainable before.

In the second place, the standard theory offers some rules for good definitions,
rules which if followed will guarantee that the two criteria are satisfied.

The criteria are like the logician’s account of the Q-validity of an argument (Def-
inition 6E-1(7)): Q-validity is proposed as an account of “good inference,” and
satisfaction of the criteria as an account of “good definition.” And the standard
rules are like the logician’s rules defining derivability in a particular system such as
Fitch intelim proofs (Definition 7C-1): As indicated in Theorem 7C-2, if you fol-
low the Fitch intelim rules for constructing derivations, you will derive all and only
correct semantic consequences, i.e., you will make all and only “good inferences.”
In a similar way, if you follow the logician’s rules for constructing definitions, you
will offer all and only definitions that satisfy the criteria of eliminability and con-
servativeness. You will, that is, offer all and only “good definitions.”2 (There is,
however, a different and richer account of “good definition.” This we postpone to
the end of §12A.3.)

2Thanks to M. Kremer for the analysis leading to this fact, and for communicating its (unpub-
lished) proof.
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8A.5 Limitations

For simplicity we severely limit our discussion of the theory of definitions as fol-
lows. First, the discussion applies only to a community of language users whose
language can profitably be described by labeling it an “applied first-order logic”
such as the one that we have been learning.3 You should imagine that this lan-
guage may contain a fragment of English, a fragment that the users think of as
structured in terms of predicate, function, individual, and perhaps sentence con-
stants; truth-functional connectives; individual variables; quantifiers; and identity.
But you should also imagine that this language is really used and therefore has lots
of English in it. Think of the language that some mathematicians sometimes em-
ploy, or indeed of the language that we employ in these notes: a mixture of English
and notation, but with the “logic” of the matter decided by first-order logic. For
example, the language will use English common nouns such as “set”; but only in
locutions such as “Some sets are nonempty” that the users think of as symbolizable
in the usual first-order way.

We need to say more about what this first limitation means. So far we have said
that the users take the grammar of their language in the standard first-order way.
They also think of their proof theoretical notions as given in the standard way: We
are thinking of “axioms,” “rules,” “theoremhood,” “derivability from premisses,”
“theory,” “equivalent relative to a theory,” and so forth. They have learned their
Fitch, or something equally as good, and they freely use the notation G `Fi

Q A as
in Definition 7C-1 for “A is derivable by Fitch intelim rules from premisses G.”
And lastly, they think of their semantic concepts in the standard way: “Q-logical
truth,” “Q-logical implication by some premisses,” “Q-logical equivalence relative
to a theory,” and so forth, as encoded in the notations G �Q A, etc. of Definition
6E-1. They know that there is agreement between the appropriate proof-theoretical
and semantic ideas (§7C).

In the second place, we consider only definitions (explanations of meaning) of
predicate constants and function constants and individual constants. The defined
constant is traditionally called the definiendum, and we will follow this usage. To
keep our discussion suitably general, we let c stand for an arbitrary definiendum,
whether predicate constant, function constant, or individual constant.

If c is a predicate constant, we expect c to have a definite “n-arity” and therefore to
be associated with a unique predicate (a functor, with blanks; see Definition 1A-1).
For example, if the predicate constant is R of n-arity 2, we expect that it uniquely

3This limitation, made to keep our discussion within bounds, is severe; we have by no means
been studying all of logic!
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determines a predicate (functor) such as “ R .” To avoid circumlocution, we will
sometimes speak of the predicate instead of the predicate constant as the definien-
dum, not being careful to distinguish which of these we are considering. We treat
operator constants vs. operators in the same way: They are different, but we feel
free to call either a definiendum. In the third place, we are going to follow the
standard account in considering only definitions that are themselves sentential. In
imposing this limitation we do not intend to be deciding whether the act of defining
is “really” imperatival instead of assertional, or “really” metalinguistic rather than
not. We do intend to assert, however, that the technical theory of definition goes
very much more easily if in giving it one can assume that the only “logic” involved
is a logic that applies to declarative sentences.

We can therefore see that the policy, exhibited in Example 8A-1, of giving example
definitions above as plain sentences correctly forecast this decision. It is simpler
to take the definition of “sibling” to be “Anything is a sibling if and only if it is
a brother or a sister” instead of “Replace ‘sibling’ by ‘brother or sister’ wherever
found!.”

Fourth, we consider only one definition and one definiendum at a time. Most theo-
ries require many, many definitions in order to be interesting, but you should picture
that these are added in a series, one by one, and that the discussions to follow apply
to the very point at which a single new definition is added to the underlying theory
and all previous definitions.

8A.6 Jargon for definitions

The entire discussion goes more smoothly if we introduce some jargon. This will
be confusing on first reading, but if you master this jargon, you will find the dis-
cussion to follow much more transparent. As indicated in §8A.5, we are imagining
a single act of definition.

8A-5 CONVENTION. (Definition terminology)

1. Let c be the constant that is the definiendum.

2. Let D be the sentence that counts as a definition of the definiendum. In every
case the definiendum c occurs as part of the definition D.

3. We have to talk about two vocabularies, one vocabulary without the definien-
dum c, and one with it. A “vocabulary” here is just a set of constants.
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(a) Let C be the set of constants before the definition D is entered. We
sometimes call C the Old vocabulary, and we say that sentences con-
fined to this vocabulary are in the Old language. You are supposed to
understand every sentence in the Old language.

(b) Automatically, C∪{c} is the set of constants after the definition D is
entered. We sometimes call C∪{c} the New vocabulary. The New
vocabulary is obtained by adding the definiendum c to the Old vocabu-
lary. Sentences confined to the New vocabulary may be said to be in the
New language. The definition D is certain to be in the New language.

4. In addition to two vocabularies C and C∪{c}, we need to keep track of two
theories (two sets of sentences), one before and one after the definition D
has been entered.

(a) We let G be the theory in hand before the entering of the definition D.
For example, G may be the theory of kinship before entering Example
8A-1(1) as a definition of “sibling” (in notation, S); or G could be the
theory of arithmetic before entering Example 8A-1(2) as a definition
of the squaring operator (in notation, 2). We sometimes call G the Old
theory. You are supposed to be willing to assume the entire Old theory.

(b) Automatically, G∪{D} is the theory in hand after the definition D is
entered. We sometimes call G∪{D} the New theory.

Keeping §8A.5 and Convention 8A-5 in mind, we discuss the rules first, and then
the two criteria. From a “logical” point of view this is somewhat backwards; we
choose this order because for most students the rules are easier to understand than
are the criteria.

8B Rules of definition

Here, briefly, are the standard rules for producing definitions guaranteed to satisfy
the criteria of eliminability and conservativeness. They are easy. And by Beth’s
definability theorem, they are complete for the first-order logic of truth functions
with quantifiers. Why is it, then, that so much philosophy otherwise faithful to
first-orderism is carried out contrary to the policies they enjoin? Answer: Logic
books, excepting Suppes (1957), do not give these matters proper discussion. The
consequence is that students of philosophy, even those who are thoroughly taught
to manipulate quantifiers, are not taught the difference between acceptable and
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unacceptable definitions. Since philosophers spend vastly more time proposing
and using definitions than they do manipulating quantifiers, this is sad.

8B.1 Rule for defining predicates

We will give a rule for defining predicates, and then, in §8B.3, a rule for defining
operators. As promised, the rules are presented as definitions. (Surely it won’t
occur to anyone to think in this regard of circularity.) These rules have so many
clauses that you may find them intimidating. A closer look, however, will make it
clear that each clause is extremely simple, obvious, and boring.

8B-1 DEFINITION. (Standard rule for defining a predicate by an equivalence)

D is a standard definition of an n-ary predicate constant R relative to C and G iff
for some variables v1, . . ., vn, and some sentence A (the definiens), the following
all hold.

1. The definiendum R is in fact an n-ary predicate constant, v1, . . ., vn are in
fact variables, C is a set of constants (the Old vocabulary), and G is a set of
sentences (the Old theory) all of whose constants belong to C.

2. D is the n-times universally quantified biconditional

∀v1. . .∀vn[Rv1. . .vn↔ A].

3. The definiendum R does not belong to the Old vocabulary C.

4. The constants occurring in the definiens A all belong to the Old vocabulary
C.

5. The variables v1, . . ., vn are distinct.

6. The definiens A has no “dangling” or “floating” variables, that is, no free
variables other than v1, . . ., vn.

Definition 8B-1 has something fishy about it: None of the requirements for a stan-
dard definition of a predicate constant mention the Old theory G, so that had we
chosen we could have omitted any mention of G. Though fishy, this does not
amount to a problem; it simply testifies to the fact that a standard definition of an
n-ary predicate constant can be reliably added to any theory whatsoever. The point



228 Notes on the art of logic

is that you will be able to show satisfaction of the criteria of eliminability and con-
servativeness (Criteria 8A-4) regardless of the contents of the Old theory G. In
contrast, the Old theory really does make a difference when it comes to standard
definitions of operators, as we see later in §8B.3.

8B.2 Defining predicates: examples and exercises

Suppose we take the Old language as Peano arithmetic (§7B), with Old vocabulary
0, ′, +, and×; and also suppose the Old theory is the theory given by Axioms 7B-1.

8B-2 EXAMPLE. (Less)

x< y if and only if ∃v(v 6=0 & x+v=y).

Example 8B-2 is a proper definition, provided two conventions are understood.
First, we have omitted outermost universal quantifiers in accord with Convention
1B-20. Second, we have used English “if and only if” instead of symbolic ↔.
Since it is obvious that we intend to be understood as if we had written

∀x∀y[x< y↔ ∃z(z 6=0 & x+z=y)], [1]

the definition should be counted as proper according to Definition 8B-1.

The following is a key point about Example 8B-2: The variable z that occurs in
the definiens (right side) but not in the definiendum (left side)4 is bound. If it had
been free, it would have violated Definition 8B-1(6). The next example illustrates
violation of this clause.

8B-3 EXAMPLE. (Evenly divisible, violates Definition 8B-1(6))

y is even if and only if w×(0′′)=y.

If we treat this candidate exactly as before, we obtain
4This is a third use of “definiendum,” to be added to the two explained on p. 224: A definiendum

can be (1) a predicate or operator constant, or (2) a predicate or operator, or (2) the left side of a
definition, in which case it will be a sentence with free variables. Only the most compulsive reader
should feel the need to be in command of such subtleties.
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∀y∀w[y is even↔ w×(0′′)=y]. [2]

This is not of the correct form according to Definition 8B-1(2) (too many universal
quantifiers), but more profoundly, there is a violation of Definition 8B-1(6). This
faulty definition has as easy consequences (by UI) both “0 is even↔ (0×0′′)=0”
and “0 is even ↔ (0′×0′′)=0.” It is now but an exercise in Peano arithmetic to
prove “(0×0′′)=0” (so that you can prove “0 is even”) and also “∼((0′×0′′)=0)”
(so that you can prove “∼(0 is even)”). Whoops, a contradiction! This is a dreadful
violation of the criterion of conservativeness in either its rough form (Criteria 8A-4)
or its more accurate form (Definition 12A-5 below). And all because of a dangling
free variable in violation of Definition 8B-1(6).

It seems clear that what the incautious definer intended as a definition of “ is
even” was the following.

y is even if and only if ∃w(w×0′′) = y), [3]

which when conventions are applied becomes

∀y[y is even↔ ∃w(w×0′′) = y)], [4]

which satisfies all the rules for defining a predicate.

The given definition [4] is not only formally correct, but, in Tarski’s phrase, “ma-
terially adequate.” That is, it works as a faithful lexical definition to describe our
use of “ is even,” which makes the definition interesting. The rules, however, by
no means guarantee that a definition will have interest. Here is an example of a
definition that is formally correct by the rules:

8B-4 EXAMPLE. (Always false)

∀x[Rx↔ 0=0′].

Definition 8B-1(6) requires that each variable free in the definiens must occur also
in the definiendum; but there is no rule insisting every variable in the definiendum
must also occur in the definiens. In fact Example 8B-4 is o.k. Is it a silly definition?
Perhaps; no one ever said that every defined predicate must be interesting. On the
other hand, perhaps someone will find it useful to have in their language a predicate
such as R that is false of everything. It certainly isn’t going to hurt anything.

For this next attempt at definition, which is faulty, assume that the Old language
already contains < as defined by Example 8B-2.
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8B-5 EXAMPLE. (Circular definition, violates Definition 8B-1(3))

∀x[Gx↔ (Gx&(x< 0′))].

Here the circularity is obvious; this definition cannot count as an explanation of
the meaning of G. It violates the criterion of eliminability (see Criteria 8A-4 or
Definition 12A-2): When you try to use Example 8B-5 in order to eliminate G
in favor of previously understood language, you just run around in circles. The
particular rule violated is Definition 8B-1(3), which see.

Consider again Example 8A-1(1) and Example 8A-1(4). If you think of these as
both definitions, you have to put them into some order. If you put the first definition
of “sibling,”

∀x[x is a sibling↔ (x is a brother ∨ x is a sister)], [5]

then you must be treating “brother” as part of the previously understood Old lan-
guage in order to satisfy Definition 8B-1(4). But then if you later try to enter the
definition of brother,

∀x[x is a brother↔ (x is male & x is a sibling)], [6]

you are trying to define a constant that is already in the Old language, in violation
of Definition 8B-1(3). And if you invert the order in which the definitions of “sib-
ling” and “brother” are entered, you run into the same trouble, just inverted. You
may not care which you take as a definition and which as an assertion, but you
can’t have it both ways: At most one of these can be taken as a formally correct
standard definition that explains the meaning of its definiendum in language that is
previously understood.5

The following faulty definition illustrates the need for Definition 8B-1(5), which
requires that all the variables v1, . . ., vn be distinct. Suppose that the Old language
is Peano arithmetic enriched via the definition Example 8B-2 of <.

8B-6 EXAMPLE. (6, violates Definition 8B-1(5))

∀x[(x6x)↔ (x< x ∨ x=x)].
5See §12A.5 on p. 289 for reference to a non-standard formal theory of circular definitions.
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Why is this faulty? It seems to look all right. What difference does the violation
of “distinctness” make? This: You can use this definition to eliminate 6 only
when it is flanked by the same term on each side, as in (0′′60′′). The definition
gives no help at all in understanding the meaning of 6 in a context such as (060′).
Therefore, the definition does not satisfy the criterion of eliminability (Criteria 8A-
4 or Definition 12A-2). What the definer doubtless “had in mind” was the following
absolutely correct definition:

∀x∀y[(x6y)↔ (x< y ∨ x=y)]. [7]

Here, since the variables are distinct, the definition explains 6 in every context.

Exercise 64 (Kinship terminology)

Take the following as previously understood constants in the Old language: parent-
of (use P ), ancestor-of (A ), male (M ), female (F ). Restrict the domain
to people, past, present, or future. Create a sequence of definitions, feeling free to
use constants defined earlier in the sequence when it comes to giving later defini-
tions. Your defined constants should include all of the following. You may choose
to define other helpful constants on the way, and you should not expect that the
given order is a good order for your purposes—part of the exercise is to figure out
the right order. You may choose to abbreviate the defined constants symbolically,
or you may prefer to leave them in English. If you choose to use symbolic ab-
breviations and you run out of capital letters, mark some letters with subscripts or
superscripts in order to avoid ambiguity.

Two-place predicates: sister, aunt, mother, child, half-sister, grandmother,
grandparent, great-grandparent, blood-relative, father, sibling, first cousin,
second cousin, first cousin once removed.

Optional: Think about the possibility of defining “parent” in terms of “an-
cestor,” and the possibility of defining “ancestor” in terms of “parent.”

One-place predicates: father, grandfather.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /
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8B.3 Rule for defining operators

The rule for defining an operator by an equivalence6 is very much like the rule
for defining predicates, 8B-1, and you should begin by comparing the two rules
clause-for-clause.

8B-7 DEFINITION. (Standard rule for defining an operator by an
equivalence)

D is a standard definition of an n-ary operator constant f relative to C and G
iff for some variables v1, . . ., vn, and w, and some sentence A (the definiens), the
following all hold.

1. The definiendum f is in fact an n-ary operator constant, v1, . . ., vn and w
are in fact variables, C is a set of constants (the Old vocabulary), and G is a
set of sentences the constants of which all belong to C.

2. D is the (n+1)-times universally quantified biconditional

∀v1. . .∀vn∀w[(fv1. . .vn = w)↔ A].

3. The definiendum f does not belong to the Old vocabulary C.

4. The constants occurring in the definiens A all belong to the Old vocabulary
C.

5. The variables v1, . . ., vn, and w are distinct.

6. The definiens A has no “dangling” or “floating” variables, that is, no free
variables other than v1, . . ., vn, and w.

7. G �Q∀v1. . .∀vn∃y∀w[(y=w)↔A]. That is, it is a Q-consequence of the Old
theory (without the definition!) that, for each n-tuple of arguments v1, . . .,
vn, there is in fact exactly one w such that A; so A is “functional.”

If you have seen the point of all the clauses for defining predicates, then you au-
tomatically see the point of all the rules for defining operators, except for the one
critical difference: There is no clause in the rule for predicates that corresponds
to (7) in the rule for operators. To illustrate the need for the earlier clauses would

6In simple cases it is perfectly all right to define an operator by means of an identity, an alternative
standard form of definition that we do not illustrate.
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accordingly be repetitious, and we illustrate only the need for (7). Take the special
case of a one-place operator f, and permit us to display the variables v and w that
you would expect to occur in A:

∀v∀w[(fv=w)↔ Avw]. [8]

What does the definiens Avw of [8] tell you about f? What you want it to tell
you is, for each input v to f, the exact identity of the output fv. It can do this,
however, only if Avw is “functional”: For each input value of v, there is exactly
one output value of w such that Avw. And that is exactly what Definition 8B-
7(7) says. (See Exercise 32(4) to review how the quantifier-form “∃y∀w[y = w↔
Avw]” works, and to convince yourself that it does say what it is supposed to say.)
If you cannot prove in the Old theory that Avw is “functional,” then [8] has to be a
faulty explanation of the meaning of the operator f.

There is a sharp way of putting this: Unless Definition 8B-7(7) is satisfied, your
definition will violate the criterion of conservativeness: You will be able to prove
something in the Old language using the definition D, namely, ∀v1. . .∀vn∃y∀w[(y
=w)↔ A], that you could not prove in the Old theory, without the definition. It is
a reasonable exercise for you to prove a simple case of this.

Exercise 65 (Defining operators and clause (7))

Take as a candidate definition D the following, where we have chose A as “Rvw.”

∀v∀w[(fv=w)↔ Rvw]. (D)

Using (D) as a hypothesis, prove the existence and uniqueness clauses for Rvw:

1. ∀v∃wRvw (for every input there is an output), and

2. ∀v∀w1∀w2[(Rvw1 &Rvw2)→w1 =w2] (for every input there is at most one
output).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

This is an exercise in the logic of identity. It is a matter now of the further use of
that logic to see the equivalence of the conjunction of Exercise 65(1) and Exercise
65(2) with the fancier ∀v∃y∀w[w = y↔ Rvw].
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Exercise 66 (Defining operators)

Assume that you have already entered definitions for all the kinship predicates
listed in Exercise 64. Consider the problem of defining the following two operators:

1. father of , and

2. son of .

First write down a pair of candidate definitions, and check to see that each satisfies
all of the conditions of Definition 8B-7 except perhaps (7). For each of your two
candidate definitions, what must follow from the theory of kinship in order to sat-
isfy clause (7) of rule Definition 8B-7 for defining operators? If you think about it,
you will see that the clause stands in the way of giving a formally correct definition
of one of the operators, but gives no trouble in defining the other. Explain.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

8B.4 Adjusting the rules

Even within the purview of the standard account, there are other forms of definition
with an equal claim to propriety. In the context of the set-theoretical axioms Axiom
4A-17 of separation and Axiom 4A-7 of extensionality, for instance, one may prop-
erly define set-to-set operators such as X∩Y by way of membership conditions, for
example taking Axiom 4A-13 as a definition instead of as a mere axiom. The ax-
iom of separation will imply “existence,” whereas the axiom of extensionality will
imply “uniqueness,” both needed for Definition 8B-7(7).

In the context of higher-order axioms establishing an inductively generated struc-
ture (such as a higher-order version of Peano’s axioms as listed in Axioms 7B-1
on p. 206), one may properly define operators by rehearsing the mode of induc-
tive generation. Sometimes, in some contexts, some of these are called “implicit
definitions.” In these cases, “properly” means “in such a way as to satisfy the cri-
teria of eliminability and conservativeness.” So much is a built-in generality of the
standard account.
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Chapter 9

Appendix: Parentheses

9A Parentheses, omitting and restoring

This section is in the nature of an appendix. Every exercise in this section is op-
tional, and may be skipped.

Sometimes showing all proper grouping via parentheses leads to a thicket or for-
est of parentheses, which interferes with easy visual processing. Since logic is
supposed to make this kind of processing easier, not harder, there is point in in-
troducing conventions that reduce the severity of this problem. On the other hand,
we have to be sure that we do not cut out anything valuable when we cut out some
parentheses. That is, we must be sure that all our expressions remain unambiguous.
The following conventions are of help in this regard.

(You do not have to learn to write these; it is good, however, to learn how to read
them.)

1. Outermost parentheses are generally omitted.

2. Competition between either of → and ↔ on the one hand, and either of &
and ∨ on the other. In such competition, always take → or ↔ as the main
connective. Examples.

A→B∨C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . is A→(B∨C)
A∨C↔A&D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . is (A∨C)↔(A&D)
A&(B∨A↔C)→D&E . . . . . . . . . . . is (A&((B∨A)↔C))→(D&E)

236
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The above example correctly indicates that “competition” only occurs within
a parenthetical part.

Exercise 67 (Parentheses—skippable exercise)

Cover the right hand sides of the examples of item (2) above, and then write them
out, looking only at the left hand sides. Check this yourself (do not hand in your
work). Extra credit: Do (and check) the reverse.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

3. Because & and ∨ are associative, so that parentheses for them don’t make
any difference anyhow, we can omit parentheses between a series of &, or a
series of ∨ (but not, of course, a mixture of the two!):

(A&B&C&D)
((A→B)∨∼∼C∨ (∼E↔(F&G))

If you require a definite rule for restoration in these cases, think of replacing
the parentheses by grouping everything to the left:
(((A&B)&C)&D).

4. Other groupers. In complicated cases, we can substitute “[” or “{” for “(”—
and similarly for the right mates—so that the eye can more easily pick up
left-right matches.

5. Dots. The useful convention of Church (1956) is this: A dot is a left paren-
thesis, whose mate is as far away as possible; i.e., either at the end of the
whole expression, or if the dot is inside a parenthetical part, at the end of
that parenthetical part. (Church’s dots are “heavy dots,” whereas here our
dots are mere periods. For this reason, you may have to look closely to be
able to follow.) Example.

A→B→.B→C→.A→C is A→B→(B→C→(A→C)).

6. But this, so far, is ambiguous. The second part of Church’s convention is
that any missing parentheses (when all the above conventions have already
been employed) are to be restored by grouping to the left, so that the above
example becomes

(A→B)→((B→C)→(A→C)).
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The left-grouping convention was used twice: once in the right-hand paren-
thetical part, once in the main expression. A few more examples:

A→.B→C is . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A→(B→C).
(A→.B→C)→.A→B→.A→C is a tautology, namely, . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (A→(B→C))→((A→B)→(A→C)).

A→B→A→A is Peirce’s Law, . . . . . . . . . . . . . . . (((A→B)→A)→A).

Exercise 68 (Left grouping—skippable exercise)

Use the examples above as an exercise: Cover the right hand formulas, and then
write them out while looking at only the left formulas. Extra credit: Try the re-
verse. In both cases, check your own work (do not hand it in).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

7. Our conventions really do resolve all ambiguities, because (6) settles any-
thing that hasn’t already been settled, by grouping everything to the left. But
in fact we mostly avoid using the full power of this part of the convention,
because we find it confusing—and the point of all of these conventions is to
be useful. For example, we never write A∨B→.∼A→B, but instead always
(A∨B)→.∼A→B or (A∨B)→(∼A→B). For another perhaps even more
potent example, we never write A∨B&C, which by the left-group conven-
tion is (A∨B)&C. We just write the latter instead. Also, we usually write
A∨ (B&C) instead of A∨ .B&C. In fact, we mostly use the dots only after
arrows.

Exercise 69 (Dots—skippable exercise)

Restore parentheses. Optional (involving material not yet studied): Indicate which
are tautologies in the sense of Definition 2B-20.

1. A&A→B→B

2. A&.A→B→B

3. (A&A→B)→B

4. A&(A→B)→B

5. (A&.A→B)→B

6. A&.A→.B→B

7. A&A→.B→B
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

The only ones of these examples which we would ever write, incidentally, are (4)
and (6). Or maybe also (1).



Chapter 10

Appendix: Symbolization in more
detail

The following sections elaborate on symbolization, relying on an adaptation of
“Montague grammar” (Montague, 1974).

10A Symbolizing English quantifiers:
A longer story

This section expands on §5A. We begin by repeating the basic idea with emphasis,
and then take up details of the technique.

Every English quantifier is an instruction to put together two open sentences
according to a certain pattern.

This is true not only for “all” and “some,” but also for other English quantifiers like
“only,” “at most one,” and even “the.” It follows that to use this technique, you must
learn (a) how to find the two open sentences, and (b) for each English quantifier,
what pattern should be used in combining the two sentences. Neither part is quite
easy (nothing worthwhile is), but you will find this particular study of English
grammar most rewarding if what you care about is understanding what is said by
persons who have something worthwhile to say, or saying something worthwhile
to be understood by those very same persons. By way of referring to the most
important examples, we shall call the two open sentences to be combined (1) the

240
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logical subject and (2) the logical predicate—though beware of false associations
until you have learned our definitions of these two kinds of open sentences.

10A.1 English quantifier patterns

We begin by outlining for each English quantifier how the logical subject is to be
combined with the logical predicate; this should be familiar territory. The examples
are chosen so that it is easy to see what is meant in these cases by “logical subject”
and “logical predicate”:

Sv symbolizes the logical subject “v is a sheep.”

Pv symbolizes the logical predicate “v is placid.”

We will use special variables here—variables you will never use in your own
symbolizations—so that you won’t get mixed up later when consulting this table.

10A-1 DEFINITION. (English quantifier patterns)

The following list amounts, for each of the listed English quantifiers, to a definition
of the symbolic quantifier pattern corresponding to that quantifier.

All sheep are placid. ∀v(Sv→Pv)

Each, every. Ditto.

Only sheep are placid. ∀v(Pv→Sv)

No sheep are placid. ∀v(Sv→∼Pv)

The sheep is placid. ∃v1[(Sv1 & ∀v2(Sv2→v2 =v1)) & Pv1]

Some sheep are placid. ∃v(Sv&Pv)

At least one sheep is placid. Ditto.

A sheep is placid. Ditto. But “ a ” is sometimes used for “every.”

At least two sheep are placid. ∃v1∃v2[v1 6=v2 & (Sv1 &Pv1) & (Sv2 &Pv2)]

At least three sheep are placid. ∃v1∃v2∃v3[v1 6=v2 &v1 6=v3 &v2 6=v3 & (Sv1 &
Pv1) & (Sv2 &Pv2) & (Sv3 &Pv3)]
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At least four (five; etc.) sheep are placid. Similar

At most one sheep is placid. ∀v1∀v2[((Sv1 &Pv1)&(Sv2 &Pv2))
→ v1 =v2]

At most two sheep are placid. ∀v1∀v2∀v3[((Sv1 &Pv1)&(Sv2 &Pv2)
&(Sv3 &Pv3))→ (v1 =v2∨v1 =v3∨v2 =v3)]

At most three (four;, etc.) sheep are placid. Similar.

Exactly one sheep is placid. Conjoin “at least one” with “at most one,” or use the
following mystery, due to Bertrand Russell: ∃v1∀v2((Sv2 &Pv2)↔ v1 =v2)

You have seen all or most of these forms before; the next step is to see “the pattern
of the patterns”: Every one of these symbolizations arises by combining the two
open sentences (the logical subject and the logical predicate) according to a certain
pattern—and the English quantifier tells you exactly what pattern to use in com-
bining them. One thing that might blind you to this insight is the fact that in certain
of the patterns, one or more of the open sentences is repeated, with a different vari-
able. But in fact, as you know, the variable of an open sentence is irrelevant: Since
it is just a place-holder, telling us where something is to be substituted, it doesn’t
matter if the variable is x, y, or z, whatever—as long as the same variable is used
consistently. For example, “the” should be seen by you as giving directions for
combining the two open sentences Sx and Px in a pattern that requires using Sx
twice (once with v1 for x, once with v2 for x) and using Px once (with v1 for x).
Once again: English quantifiers tell you how to put together two open sentences.
Though some of the patterns may not be memorable, they are memorizable, and to
use this method you must learn them.

Exercise 70 (English quantifier patterns)

1. Which English quantifiers go with the following symbolic quantifier pat-
terns?

(a) ∃v(Sv&Pv)

(b) ∃v1∃v2[v1 6=v2 & (Sv1 &Pv1) & (Sv2 &Pv2)]

(c) ∃v[(Sv & ∀w(Sw→w=v)) & Pv]

(d) ∀v(Sv→∼Pv)



10A. Symbolizing English quantifiers: A longer story 243

2. Which symbolic quantifier patterns go with the following English quanti-
fiers?

(a) At most two

(b) A

(c) The

(d) No

(e) Only

3. Now be sure to memorize the entire list of quantifier patterns, in both direc-
tions. Do not claim to be able to speak or understand English unless you have
completed this straightforward task. Do not proceed until you are prepared
to certify that you have done so.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

But knowing the pattern for each English quantifier is not enough; you must also
know how to find the open sentences that are to be combined. This is a somewhat
longer story; it relies on the work of R. Montague (Montague (1974)), who had
the vision that perhaps the entire process of symbolizing English could be made
as routine as truth-tables. (His ideas have of course been adapted to the present
context.) To understand the procedure you must learn about the following concepts.

1. Major English quantifier.

2. English quantifier term.

3. Major English quantifier term.

4. Logical subject.

5. Logical predicate.

You will discover that the open sentences to be combined are precisely the logical
subject and the logical predicate.
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10A.2 Major English quantifier

So much for English quantifiers. Which English quantifier terms are “major”? Like
the major connective, the major English quantifier is the one that must be symbol-
ized first as we proceed from the outside to the inside. The reason we need the
concept of major English quantifier is analogous to the situation in truth-functional
logic: Just as a sentence may have more than one connective, so a sentence may
have more than one English quantifier. We must decide which one to symbolize as
outermost, in order to give the most plausible reading to the English sentence. The
major English quantifier is the one that gives rise to the logical subject—the one
that tells us what the sentence is “about.”1

Consider “Each president consulted at least two elderly advisors.” This sentence
has two English quantifiers (underlined). It is therefore like a sentence with two
connectives, say “and” and “or,” and we must decide in the former case as in the
latter which to make major. In this case it is perhaps not plausible that “at least
two” be the major English quantifier. For if it were, the sentence would say that
there were at least two elderly advisors such that each president consulted them,
which is absurd. Instead, it is more plausible to suppose that the sentence has
“each” as major English quantifier; for then we are analyzing the sentence as saying
that for each president, he or she consulted at least two elderly advisors—which
sounds right. (We don’t know, of course, whether it is true, but at least it isn’t
silly.) You should be warned that there is no automatic way to pick out the major
English quantifier (or indeed the major connective). Usually the leftmost quantifier
is major in English—but, alas, not always. Surely “At least two elderly advisors
were consulted by each president” has essentially the same content as the above
sentence, which indicates that “each” is the major English quantifier, even though
it is not leftmost. And there are cases of genuine ambiguity: Does “Some woman
is loved by every man” have “Some woman” as its major English quantifier, so that
the sentence says that there is some one woman (Helen) such that she is loved by
every man, or is “every” major, so that the sentence says that every man is such
that some woman (his mother) is loved by him? Alas, there is nothing else to say
except that English is ambiguous.

Exercise 71 (Major English quantifier or connective)

1The notion of aboutness is useful in obtaining your bearings here, but worthless for serious
conceptual analysis. That is one reason our discussion is based on grammatical distinctions.
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Decide for each of the following sentences whether the major functor is an English
quantifier or a connective, naming the English quantifier or connective that is major.
No ambiguity is intended, but if you think there is an ambiguity (and it is difficult
to make up unambiguous examples), explain.

1. No pitcher will win every ball game.

2. If Jake wins every ball game, he will gain the prize.

3. If someone helps with the dishes, Jake will be content.

4. Some numbers are both odd and even.

5. Some numbers are odd and some numbers are even.

6. The boy who kissed a girl who won every prize was wearing a tie.

7. He did not give her some cake. Answer: “not.”

8. He did not give her any cake. Answer: “any.”

9. Delilah wore a ring on every finger and a photograph on every toe.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

10A.3 English quantifier terms

What is an “English quantifier term”? The easiest way to identify one is just this:
An English quantifier term (1) starts with an English quantifier and (2) can mean-
ingfully be put anywhere a name can be put (though you may have to change
singular to plural, or vice-versa). But where can names be put? They can be sub-
stituted for the variables of open sentences (of middle English). We are therefore
led to the following (rough) definition: An English quantifier term is an expres-
sion of English that begins with an English quantifier and that can meaningfully be
substituted for the variables in an open sentence (of middle English).

What would be some examples of English quantifier terms? Begin by consider-
ing the following sentence: “x disagrees with y.” Now note that either “x” or “y”
or both could sensibly be replaced by any of the following: “everyone,” “every
knowledgeable woman in Boston,” “nobody in his right mind,” “at least one Alba-
nian,” “a man from Georgia who raises peanuts,” “some professor of logic,” “the
tallest midget in the world.” All the following are then good English sentences
or open middle-English sentences: (The term substituted for the variable has been
underlined):
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• Every knowledgeable woman in Boston disagrees with y;

• x disagrees with nobody in his right mind;

• at least one Albanian disagrees with some professor of logic.

The underlined expressions are English quantifier terms, because substituting them
for variables makes sense. You can use the same procedure to verify that the other
expressions above are also English quantifier terms. Stop. Do the following before
proceeding: Read aloud each result of substituting one of the above terms for one
of the variables in “x disagrees with y.”

An English quantifier term can be recognized in another way: Each English quan-
tifier term is constructed from an English quantifier and a “count-noun phrase.”
We go into this a little in §10E, which serves as a kind of appendix going more
deeply into the idea of “English quantifier term”; at this stage, however, a circular
definition is quite enough: A count-noun phrase of English is a phrase that nicely
follows an English quantifier to make up an English quantifier term (which can be
recognized because it goes in the blank of a predicate). A splendid test is this:
Can you turn the phrase into a predicate by prefixing “ is a”? If so, you have a
count-noun phrase, and if the phrase is a single word, you have a count noun (see
p. 269).

Exercise 72 (English quantifier terms)

Parenthesize all the English quantifier terms in the following sentences. Note that
sometimes an English quantifier term can occur inside another English quantifier
term.

1. No number is larger than every number.

2. The fastest runner was late.

3. Every dog has a day worth remembering.2

4. The pilot who flew a biplane during the recent war was not as big as any
bread box.3

2The phrase “a day” can be an English quantifier term, but not in this sentence. Reason: “Ev-
ery dog has x worth remembering” is ungrammatical. You have to take the entire “a day worth
remembering” as the inner English quantifier term.

3The phrase “a biplane” is an English quantifier term here. Reason: “The pilot who flew x during
the recent war was not as big as any bread box” is grammatical.
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5. If only scientists seek a wise solution to the problem of pollution, at least
two troubles will arise.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

10A.4 Major English quantifier term

The “major English quantifier term” is identified simply as the English quantifier
term that begins with the major English quantifier. (Considering that a connective
might be major, we need to add “if there is one.”) It is the English quantifier
term that starts with the major English quantifier and is completed by its following
count-noun phrase.

Exercise 73 (Identifying major English quantifier terms)

Underline all English quantifier terms. Indicate the major English quantifier some-
how, perhaps by circling it. (If the given sentence seems to you ambiguous as to
major English quantifier, explain.)

1. A philosopher wrote “Moby Dick.”

2. Sam wrote a brilliant novel while he was in Chicago.

3. Every philosopher writes a book.

4. Every book is written by a philosopher.

5. No philosopher that writes a book writes at most one book.

6. Every philosopher writes a good book or a bad article.

7. Someone who lives in every state receives fifty tax bills.

8. Someone who lives in each city specializes in fire safety.

9. A woman who kissed a man that owned two Mercedes that stood in the
garage on Main Street stood up.

10. A book written by a philosopher is bound to be read by someone.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /
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10A.5 The logical subject and the logical predicate

Now that you have located the major English quantifier term of a sentence, re-
gardless of where it is, it is easy to define the two open sentences that are to be
combined according to the pattern of the major English quantifier, the two open
sentences that we call the “logical subject” and the “logical predicate.”

Logical subject. The logical subject comes from the major English quantifier
term.

To obtain the logical subject from the major English quantifier
term: Just strip off the English quantifier and replace it by “x is a.”

Thus, if

two black-eyed unicorns wearing trousers

is the major English quantifier term, then

x is a black-eyed unicorn wearing trousers

is the logical subject. Sometimes you need to adjust plural to singular: Given
“all male lawyers,” the logical subject is “x is a male lawyer.” Sometimes if there
is a pronoun in the major English quantifier term referring back to the English
quantifier, you need to put in an extra variable; given “two barbers who shave
themselves,” the logical subject is “x is a barber who shaves x.” One point: You can
pick any variable as long as it is new to the problem. Given the term “some disease
that crippled x,” for instance, it should be obvious that the logical subject is “y is a
disease that crippled x,” rather than “x is a disease that crippled x.” Once again, you
obtain the logical subject from the English quantifier term by replacing the English
quantifier by “x is a” (choosing a new variable in place of “x” if necessary).

Exercise 74 (Logical subject)

Write out the logical subject of each of the following sentences.

1. All humans are mortal.
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2. Some mortals are not human.

3. Each owner of each cat in the yard gave Horace a present.

4. Two persons thanked Horace.

5. Horace thanked two persons.

6. Horace gave two presents to Sarah.

7. The boy who kissed a girl went to y.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

Logical predicate. Finding the other open sentence, the “logical predicate,” is
also easy.

To obtain the logical predicate, take the original sentence, underline the ma-
jor English quantifier term, and then replace the major English quantifier
term by a variable.

That’s all. So given

each president consulted at least two elderly advisors,

the logical predicate is

x consulted at least two elderly advisors

and given

at least two elderly advisors were consulted by each president,

the logical predicate is

at least two elderly advisors were consulted by x.

Here again you may need to introduce a new variable; given

x gave nobody a book,
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the logical predicate is

x gave y a book

(with “y” new). But sometimes you do want to repeat the (new) variable—if there
is a pronoun referring to the English quantifier term. Thus, given

Every barber living in x shaves himself,

the logical predicate is

y shaves y

rather than “y shaves himself.”4

Exercise 75 (Logical predicate)

For the following sentences, write down the logical predicate.

1. All humans are mortal.

2. Some mortals are not human.

3. Horace thanked two persons.

4. Every male cat loves himself.

5. x went to three cities.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

Exercise 76 (Logical subject and predicate)

In the following sentences, the major English quantifier term is underlined. For
each one, write down the logical subject and the logical predicate. Be sure to
resolve all pronouns, which is perhaps the trickiest part of this exercise.

4In general so-called “reflexive” pronouns in English correspond to a repeated term (either vari-
able or constant) in the symbolism.
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1. Everyone older than thirty is suspect.

2. Jack gave at most two raisins to his brother.

3. If any man is meek, he will inherit the earth.

4. Mary is loved by only friends of her brother.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

10A.6 Putting it together

So now you know what you need to do to symbolize a sentence with an English
quantifier that is major.

1. First find the major English quantifier (if there is one!). Underline it by all
means. Write down the symbolic pattern from §10A.1 that corresponds to
that English quantifier, leaving large blanks for logical subject and logical
predicate. Remind yourself which blank is which by lightly writing a small
“LS” or “LP” in the respective blanks.

2. Extend the underlining to cover the entire major English quantifier term,
including its following count noun phrase.

3. Then obtain the logical subject by replacing the English quantifier (in the
major English quantifier term) by “x is a” (choosing a new variable in place
of “x” if necessary). Put the logical subject into its proper blank.

4. And obtain the logical predicate by replacing the entire English quantifier
term (in the original sentence) by the variable “x” (or whatever variable you
used for the logical subject). Put the logical predicate into its proper blank.

Let us first do an easy (but not trivial) example. With abbreviation scheme Px↔ x
is a president, Cxy↔ x consulted y, Ex↔ x is elderly, Ax↔ x is an advisor, we
might proceed as follows.

10A-2 EXAMPLE. (Presidents and advisors)

• Each president consulted at least two elderly advisors.

• ∀x(x is a president→ x consulted at least two elderly advisors)
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• ∀x(Px→ x consulted at least two elderly advisors)

• ∀x(Px→∃y∃z[y 6=z & (y is an eld. adv. & x consulted y) & (z is an eld. adv.
& x consulted z)])

• ∀x(Px→ ∃y∃z[y 6=z & ((Ey&Ay)&Cxy) & ((Ez&Az)&Cxz)])

The three most important things to see about this example are all features of our
work on “x consulted at least two elderly advisers.” In the first place, we didn’t
just dream up “x consulted y” or “x consulted z”; we obtained these forms of
the logical predicate in a mechanical fashion by replacing the underlined major
English quantifier term by “y,” and then by “z.” Nor, secondly, did we just fantasize
the logical subject “y is an elderly advisor”; we found it by following the rule to
prefix “y is a” to the part of the major English quantifier term following the English
quantifiers (and changing to the singular). Ditto for “z is an elderly advisor.” Third,
we didn’t just make up out of whole cloth the pattern according to which these two
open sentences are combined: We routinely consulted the table for “at least two”
given above in §10A.1, using the logical subject here for the logical subject there,
the logical predicate here for the logical predicate there, and the variables “y” and
“z” here for “v1” and “v2” there. All of which is harder to say than to do.

Before going on to the next, more complex, example, it should be emphasized that
the chief thing “new” in the technique you are learning can be summed up in the
slogan, “Find the major English quantifier term!”

One thing you should keep in mind in locating the major English quantifier term
is that you will not have done it right unless you wind up with a grammatical
logical predicate after replacing your candidate major English quantifier term with
a variable. For instance, which of the following underlinings is correct?

1. Every auto made in the U.S. before the 20th century began is now an antique.

2. Every auto made in the U.S. before the 20th century began is now an
antique.

3. Every auto made in the U.S. before the 20th century began is now an
antique.

4. Every auto made in the U.S. before the 20th century began is now an
antique.
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Each of the underlined bits is in fact a potential English quantifier term since it
could replace the variable in some open sentence; but only (4) is correct, because
only in that case does the result of replacing the English quantifier term by a vari-
able in this sentence yield a grammatical logical predicate.

Here, for example, is how the logical predicate would look if (3) were correct: “x
began is now an antique.” But that just doesn’t make sense. You try putting “x” for
the underlined bits of (1) and (2) and (4), noting that only (4) comes out right.

Let us now attempt a more complex symbolization. The scheme of abbreviations
is as follows: Fxy↔ x is a friend of y, Cx↔ x is a carouser, Wx↔ x is wise, Lx
↔ x is loaded, Px↔ x is a pistol, Dx↔ x is a drunk, Gxyz↔ x gives y to z.

10A-3 EXAMPLE. (Friends of carousers)

1. If any friend of only carousers is wise, he gives no loaded pistol to a
drunk.

2. ∀x[x is a friend of only carousers → if x is wise, x gives no loaded
pistol to a drunk]

3. ∀x[∀y(x is a friend of y→ y is a carouser)→ if x is wise, x gives no
loaded pistol to a drunk]

4. ∀x[∀y(Fxy→Cy)→ (x is wise→ x gives no loaded pistol to a drunk)]

5. ∀x[∀y(Fxy→Cy)→ (Wx→ ∀z(z is a loaded pistol→ ∼ x gives z to
a drunk))]

6. ∀x[∀y(Fxy→Cy) → (Wx → ∀z((Lz&Pz) → ∼∃w(w is a drunk & x
gives z to w)))]

7. ∀x[∀y(Fxy→Cy)→ (Wx→ ∀z((Lz&Pz)→∼∃w(Dw&Gxzw)))]

Note that in Step 1, “he” had to be identified as “x” to make sense. You should
verify that what follows “→” in step 1 is in fact the logical predicate (the original
sentence with “x” in place of the major English quantifier term and in place of
“he”). It is typical of “any,” incidentally, to tend to be major over “if” when it is in
the antecedent, and also major over negations. But the chief point to keep in mind
is that you should not choose a connective as major if the choice will force you
to leave some pronoun without an antecedent. “Only if a man believes will he be
saved” requires taking “a man” (in the sense of “any man”) as major; for to take
“only if” as major would leave “he” without an antecedent. (There are difficulties
with this doctrine. A favorite puzzle is typified by the following so-called “donkey
sentence”: If a man has a donkey, he beats it. See Exercise 79(3).)
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Exercise 77 (Some symbolizations)

Symbolize some of the following. Do not rely on luck or intuition: The exercise
is to use the method! You do not need to write each logical subject and predicate;
that would be too tedious. You do, however, need to write a separate line for each
quantifier term. That is the only way to keep things straight. You may wish to use
Example 10A-2 and Example 10A-3 as models. Better yet, review §5A and use
that example as a model. In any case, we repeat: Write a separate line for each
English quantifier term.

1. Use r=Rex, Dx↔ x is a dog, and other equivalences provided by you.

(a) Rex chases only dogs.
(b) Rex chases all dogs.
(c) Rex chases no dogs.
(d) Rex chases dogs.
(e) Some dogs chase some rats.
(f) Only dogs chase only rats.
(g) No dog chases no rat.
(h) No rat is chased by no dog.
(i) No one who writes poetry is a

professor of the student who is

reading a comic book. (Take
“the . . . ” as major—it usually
is.)

(j) At most one student is reading
at least two books.

(k) At least two books are being
read by at most one student.
(Understand the leftmost En-
glish quantifier as major.)

2. Use the method on the following, working carefully from the outside in, and
writing down your intermediate results.

(a) A person who succeeds at anything will be envied by everyone. Px↔
x is a person, Sxy↔ x succeeds at y, Exy↔ x envies y.

(b) Fred wore a rose on every toe, and hung a toe on every surfboard. f=
Fred, Wxyz↔ x wore y on z, Rx↔ x is a rose, Txy↔ x is a toe of y,
Hxyz↔ x hung y on z, Sx↔ x is a surfboard.

(c) Some woman is married to at least two men. Wx↔ x is a woman, Mxy
↔ x is married to y, Mx↔ x is a man.

3. We discussed the ambiguity of “some woman is loved by all men (or each
man).” Explain the ambiguity by building two different symbolizations, the
difference lying in the choice of major English quantifier.
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4. Consider “all sheep are not placid.” Explain its ambiguity by building two
different symbolizations, the difference being that “not” is taken as major
connective in one, and “all sheep” as major English quantifier term in the
other.

5. Optional. The following bits of English, which come out of the mouths of
philosophers or their translators, do not come with a logician-given dictio-
nary. In order therefore to exhibit some part of their structure that may be
relevant to the logician’s task of separating the good arguments from the
bad, you will need to consider the “logical grammar” of both English and
our symbolic language. With this in mind, symbolize as many of the fol-
lowing sentences as you can. Be sure to provide a “dictionary” correlating
each English term or functor with a symbolic term or functor (e.g., “Bx↔
x is a brute”). If you think that one of them is ambiguous, try to expose its
ambiguity by means of two different symbolizations. If you find one of the
problems particularly difficult, or if you think that it cannot be adequately
symbolized, explain why.

(a) Of desires, all that do not lead to a sense of pain, if they are not satis-
fied, are not necessary, but involve a craving which is easily dispelled
(Epicurus).

(b) Some intelligent being exists by whom all natural things are directed
to their end (Aquinas).

(c) Whatever I clearly and distinctly perceive is true (Descartes).

(d) There are no moral actions whatsoever (Nietzsche).

(e) One substance cannot be produced by another substance (Spinoza).

(f) All things that follow from the absolute nature of any attribute of God
must have existed always and as infinite (Spinoza).

(g) All ideas come from sensation or reflection (Locke).

(h) There are some ideas which have admittance only through one sense
which is peculiarly adapted to receive them (Locke).

(i) Brutes abstract not, yet are not bare machines (Locke).

(j) Nothing is demonstrable unless the contrary implies a contradiction
(Hume).

(k) All imperatives command either hypothetically or categorically (Kant).

(l) There is one end which can be presupposed as actual for all rational
beings (Kant).
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(m) There are synthetic a posteriori judgments of empirical origin; but there
are also others which are certain a priori, and which spring from pure
understanding and reason (Kant).

6. Thoroughly optional: Try the following difficult and time-consuming exer-
cise, taken from the l980 general instructions for income tax Form 1040A.
(So far as we know, the set of students since 1980 who have tried this exercise
is altogether empty.) You should probably treat “even if” clauses as rhetori-
cal flourishes that are not symbolized (“John may go even if he doesn’t finish
his orange juice” just means that John may go). Watch out for the difference
between “may be permitted (or required)” and “is permitted (or required).”
The wording and punctuation is theirs; you must make the best of it. Though
one cannot be sure, the following scheme of abbreviations appears to be best.

u = you, t=your total income, i=your total interest income, d=your
total dividend income, a = Form 1040A, b=Form 1040, $400 = $400,
etc., (x> y)↔ x is a greater amount of money than y, Ixy↔ x is some
of y’s income, Pxy↔ you are able (can; may; are PERMITTED) to use
y; P′xy↔ x may be able (PERMITTED) to use y; Rxy↔ x must (has
to, is REQUIRED to) use y; R′xy ↔ x may have to (be REQUIRED
to) use y, Bxy↔ x should (it’s BETTER for him if he does) use y, Exy
↔ x is EASIER to complete than y, Lxy ↔ x lets you pay LESS tax
than y, Cx↔ x is filing only to get a refund of the earned income tax
CREDIT, Wx↔ x is WAGES, Sx↔ x is SALARY, Tx↔ x is TIPS,
Ux↔ x is UNEMPLOYMENT compensation, Mx↔ x is MARRIED,
Jx↔ x is filing a JOINT return.

You MAY Be Able to Use Form 1040A if: You had only wages, salaries, tips,
unemployment compensation, and not more than $400 in interest or $400
in dividends. (You may file Form 1040A even if your interest or dividend
income was more that $400 if you are filing only to get a refund of the earned
income credit), AND Your total income is $20,000 or less ($40,000 or less
if you are married and filing a joint return). Since Form 1040A is easier to
complete than form 1040, you should use it if you can unless Form 1040 lets
you pay less tax. However, even if you meet the above tests, you may still
have to file Form 1040.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /
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10B Extending the range of applicability

The following remarks will somewhat increase the range of English sentences that
you can relate to symbolic notation.

Missing English quantifiers. You have to supply them, using your best judg-
ment. “Whales are mammals” clearly intends “all whales,” while “whales entered
the harbor last night” clearly means “some whales.” (The purist might want to say
that it means “at least two whales.”)

“A,” “any.” For these, sometimes you want to use the pattern for “all,” some-
times for “some.” The thing to do is try each and see which sounds best. “A whale
is a mammal” means “every whale is a mammal,” but “if any whale entered the har-
bor, there will be trouble” doesn’t mean “if every whale entered the harbor, there
will be trouble” (with “if” a major connective).

Special note. “x is a drunk” might be thought to involve the term “a drunk,” read as
“some drunk,” and perhaps it does (Montague thought so). But for our elementary
purposes it is best to ignore this possibility, and symbolize “x is a drunk” directly
as “Dx.” And similarly whenever you have “x is a” followed by a single count
noun.

Exercise 78 (Missing English quantifiers, and “any”)

Symbolize the following. (Symbolize h= the Hope Diamond.)

1. Philosophers are self-righteous.

2. Philosophers are to be found in Boston.

3. If everything is expensive, the Hope Diamond is so (trivially).

4. If the Hope Diamond is expensive, anything is expensive (doubtless false).

5. If anything is expensive, the Hope Diamond is expensive. (This statement is
intended as nontrivially true. Be sure that your symbolization has the same
feature.)

6. A philosopher is supposed to think.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /
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“Each” and “all.” “Each” tends to yield a major English quantifier, while “all”
tends to let other quantifiers or connectives be major. Can you hear the difference
between (1) “each” in “Some woman is loved by each man” (his mother), and (2)
“all” in “Some woman is loved by all men” (Helen)? The underlining indicates
what appears to be the major English quantifier term of each sentence above, and
the parenthetical phrases are just to help you hear it that way; but people do differ
about this.

Possessives, etc. There are a number of terms that aren’t names (because com-
plex) and not English quantifier terms either. Possessives (Bill’s dog, Bill’s weight,
Bill’s father) are good examples. Possibly they should be paraphrased into definite
descriptions before symbolization: the dog Bill has, the weight Bill has, the father
Bill has. But you can see that this paraphrase might not help much, since you are
still left with the problem of symbolizing the dreadful word “has”—Bill “has” his
dog in the sense of owning it; but he doesn’t own his weight or his father; he “has”
his weight as a characteristic, but he doesn’t “have” his dog or his father in that
sense. He “has” his father in the sense that his father stands in the fatherhood re-
lation to him; but his dog doesn’t stand in any doghood relation, nor his weight
in a weighthood relation. Point: No single technique, such as this one, will solve
all problems. (Problem: Symbolize “no technique will solve all problems” by this
technique.)

Exceptives. These are a bit of a bother because there is trouble regardless of
whether you include the “except” clause as part of the major English quantifier
term, or include it as part of the logical predicate. Starting with “all ticket holders
except drunks will be admitted,” we seem to have two choices for the major English
quantifier term: either all ticket holders, or all ticket holders except drunks. The
first choice gives us a sensible logical subject, “x is a ticket holder,” but leaves us
with “x except drunk(s) will be admitted” as an ungrammatical logical predicate.
The second choice leaves us with a sensible logical predicate, “x will be admitted,”
but leaves us with “x is a ticket holder except drunk” as an ungrammatical logical
subject.

There are some nice theoretical questions here, but we will bypass them and just
give you one approach, which depends on thinking of “except” as part of the En-
glish quantifier phrase itself (just as “if-then” is a single connective). (1) Let the
major English quantifier term include the exceptive; if in the English the exceptive
is at a distance as in “all ticket holders will be admitted except drunks,”first “col-
lect” it by paraphrase: “All ticket holders except drunks will be admitted.” This
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automatically gives us the logical predicate, as before, by putting a variable for
the major English quantifier term. (2) Derive two open sentences from the major
English quantifier term, not one. Let the one obtained from the words following
“all” or “no” be called the “logical subject” as before, and let the one obtained from
the words following “except” be the “logical exceptive.” (3) Treat the pattern for
exceptives as combining three open sentences instead of two, according to one of
the following patterns

10B-1 DEFINITION. (Exceptive patterns)

This list defines the patterns associated with the English quantifier-exceptive phrases
displayed.

All sheep except East Fresians are placid. ∀x(Sx→(∼Ex↔Px))

No sheep except East Fresians are placid. ∀x(Sx→∼(∼Ex↔Px))

The double negative can of course be canceled.

Observe that “except” does not combine well with English quantifiers other than
“all” and “no”: “Some sheep except East Fresians are placid” is just not English.
Thus only these two patterns are needed.5

Quantifiers without terms. Quantifiers can enter English other than by way of
terms: “There are placid sheep” is an example, and a number of others are given
in §10D. Just take things as they come, if you can, and rest assured that there are
countless constructions of English such that no one has a good theory of them (can
you symbolize that?). But still, Montague’s idea of the English quantifier term has
supplied us with a technique that at the very least is widely applicable.

Exercise 79 (More symbolizations)

Symbolize the following. Use the method as far as possible.

1. Oranges and apples, except the rotten ones, are expensive.

2. No oranges or apples, except the golden ones, are expensive.

3. Any farmer who owns a donkey beats it [this is a donkey sentence].
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

5“Unless” has a different grammar and accordingly requires a different treatment.
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10C Further notes on symbolization

The following are further notes on symbolization, in no particular order.

Definite descriptions. The definite article “the,” like the indefinite article “a,”
can sometimes be used to convey a universal claim. Thus “The whale is a mam-
mal” means “All whales are mammals.” The instructions provided in §10A.1 for
“the” cover only those cases where “the” is used to form a definite description,
that is, a phrase which purports to denote a single object by describing it rather
than naming it—for example “the smallest prime number,” or “the president of the
United States.” Such phrases do not always succeed in describing a unique object,
for which reason we don’t want to symbolize them as singular terms. The method
suggested in §10A.1 is Bertrand Russell’s famous “theory of descriptions.”

Restricting the domain. It is sometimes possible to simplify symbolizations by
restricting the universe of discourse in an appropriate manner. In a context in which
the only things being discussed are natural numbers, for example, it is reasonable
to take the universe of discourse to be the set of natural numbers. This not only per-
mits the use of operators such as +, but also permits another simplification in that
one need not symbolize the predicate “x is a number.” For example, the sentence
“All numbers are even or odd” could be symbolized as

∀x(Ex∨Ox)

rather than as

∀x(Nx→(Ex∨Ox)).

“Nobody,” “someone,” etc. These are best thought of as quantifiers over people—
“no person,” “some person” and so on. Certain adverbs can also be thought of as
phrases of quantity: “Always,” “sometimes,” “never,” and so on seem to involve
quantification over moments of time, while “somewhere,” “nowhere,” and their ilk
seem to involve quantification over places. In symbolizing sentences involving
such phrases one must give a more complicated representation of the predicates
involved. For example, to symbolize “Sometimes I feel like a motherless child”
one might do this:
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Domain= the set of people and moments of time; a=me; Tx↔ x is a time;
Fxy ↔ x feels like a motherless child at time y; Symbolization: ∃x(Tx&
Fax).

Here it would not be enough to set Fx↔ x feels like a motherless child.

“Only” again. “Only” has a use which is not covered by the methods of §10B,
namely, where it combines a singular term and an open sentence (rather than two
open sentences), as in “Only Calpurnia knows what happened in the Forum.” Here
the pattern to be followed is illustrated in the symbolization:

Domain = the set of people; a=Calpurnia; Kx↔ x knows what happened in
the Forum; Symbolization: ∀x(Kx↔x=a).

“Except” again. “Except” also has a use in which the “exception” phrase in-
volves a singular term—“All ticket holders except Bob will be admitted.” Here one
can adopt the paraphrase “All ticket holders except those identical to Bob will be
admitted,” illustrated by:

Domain= the set of people; Tx ↔ x is a ticket-holder; Wx ↔ x will be
admitted; b = Bob; Symbolization:∀x(Tx→(x6=b↔Wx)).

Relative clauses. Relative clauses beginning with “who,” “that,” “which,” and
so on are symbolized by using conjunction (&). For example, the open sentence
“x is a woman whom I love” should be understood as “x is a woman & I love x.”
Thus “The woman whom I love has dark hair” comes out as:

Domain= the set of people; a = me; Wx↔ x is a woman; Hx↔ x has dark
hair; Lxy↔ x loves y; Symbolization: ∃x((Wx&Lax) &∀y((Wy&Lay)→
y=x) & Hx).

Adjectives. Adjectives can often be treated in the same way as relative clauses,
as involving conjunction. Thus, we can treat “x is a green frog” as “x is green &
x is a frog.” Caution must be used here, however. Two broad classes of adjectives
cannot be treated in this way. First, there are relative adjectives such as “large”—
“x is a large Chihuahua” cannot be thought of as “x is large & x is a Chihuahua.” If
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we thought of things this way, we would end up validating the incorrect inference
from “All Chihuahuas are dogs” to “All large Chihuahuas are large dogs.” A more
reasonable ploy is to think of “x is a large Chihuahua” as “x is a Chihuahua & x is
large for a Chihuahua”—this isn’t perfect, though.

Another problem class of adjectives includes words like “fake.” While a large
Chihuahua is after all a Chihuahua, a fake Chihuahua isn’t really a Chihuahua at
all. In this case the whole phrase “x is a fake Chihuahua” should perhaps be thought
of as a simple one-place predicate, at least for the purposes of deductive logic.

Adverbs. Most adverbs cannot be represented. (Exceptions are “sometimes,”
“anywhere,” and so on, discussed above.) Thus we have no choice but to symbol-
ize “x walks quickly” as a simple one-place predicate. One disadvantage of this
approach is that we fail to represent the inferential connection between “x walks
quickly” and “x walks.” This might lead one to try to modify one’s logical thought
to include functors taking predicates as both inputs and outputs (which is what ad-
verbs are from the logical grammarian’s point of view). We shall not pursue this,
however. (D. Davidson suggests an alternative strategy involving the view that sen-
tences which contain adverbs implicitly make use of first-order quantification over
events. As you might expect, this works nicely for some examples and badly for
others. See Belnap et al. (2001) for some observations and an alternative strategy
using non-truth-functional connectives.)

Superlatives. Superlatives such as “the tallest mountain” can best be handled as
follows. Treat “x is taller than y” as a two-place predicate, and treat “the tallest
mountain” as “the mountain that is taller than all other mountains.” Symbolize “x
is other than y” as “x 6=y.” So for “x is a tallest mountain” we shall have “x is a
mountain & ∀y[(y is a mountain & x 6=y) → x is taller than y].” (That of course
only gives us the logical subject of “the tallest mountain is such and such.” The
complete recipe for “the” can only be followed once you have also a particular
logical predicate in place of “such and such.”)

Most elementary logic books have lengthy discussions of these issues. A particu-
larly useful discussion, especially of the expressive limitations of first-order logic,
is found in chapter VIII of Thomason (1970).

Exercise 80 (Contributions)
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As an optional exercise, we hereby solicit you to submit some exercises concern-
ing the preceding section, §10C. Here are a few contributions from from former
students, with our comments. Think about them all, and try symbolizing a couple.

Student 1 This batch, you will noticed, has been “pre-processed” so that the
language is exactly the same as that of the text, hence ready for symbolization. (a)
All dogs except Jack chase themselves. (b) Nobody always feels lonely. (c) Any
dog who has fleas chases only rats. (d) Only Jack loves someone. (e) Jack is the
fastest dog.

Student 2 This batch needs some “pre-processing” before symbolization. We
have indicated our comments or suggestions in parentheses. (f) The Red Bull is
a delicious energy drink. (Take “The Red Bull” as a proper name, not a definite
description. Observe that the example is not like “The Red Bull is a large energy
drink.”) (g) This is a delicious pear. (This “this” needs to be accompanied by
pointing, which is not a part of our logical grammar; the journals, however, have
been full of formal observations to be made concerning such uses. Look under
“indexicals” in, say, Wikipedia.) (h) He was the greatest magician to have lived in
Pittsburgh. (Our logical grammar doesn’t do tenses (but there is a rich literature on
“tense logic,” so that this needs pre-processing: “He is the greatest magician living
in Pittsburgh on July 4, 1986.” The pre-processing needs to include presupposing
some fixed date to avoid problems with the present tense. Take “ lives (or did
live or will live) in on ” as a three-place predicate.

Student 3 (h) Sam wants to go to the movies. The movies are closed on weekday
mornings. (This would need a bucket of pre-processing. Two examples: “wants”
does not fit into (our) logical grammar; and “the movies” clearly begins a univer-
sal quantification.) (i) Nobody ever achieved anything with that attitude. (Tough.
What shall we do with “ever,” with “with,” and with “that”?) (j) Only Jack is able
to answer that. (You would have to mash together “is able” and the following in-
finitive phrase to form a two place predicate: “ is able to answer .” There are,
incidentally, logics that treat questions and answers. For one, see Belnap and Steel
(1976). (k) The old boat pulls into the foggy harbor. (Grammatically this is easy,
but semantically, not. There is the problem of existence-and-uniqueness, given that
the two “the” phrases are to be definite descriptions; and then in symbolizing two
definite descriptions, the question of scope has to be faced. We like this example:
“The boy who loved her kissed the girl that didn’t love him.” Awful problem.)
(l) The most amazing prize will go to the smartest contestant. (We don’t see any
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pre-processing problems; what do you think?)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

10D Additional ways of expressing quantification

English quantifier terms are just one of the many ways that English has found to
represent quantifications in the straitjacket of English grammar. These are best
thought of as exercises, some to be worked on jointly in class.

Exercise 81 (Additional quantification expressions)

Group A. Here we illustrate a few more that are entirely idiomatic. As you read
these, think about them in terms of “quantifier pattern,” “logical subject,” and “log-
ical predicate.”

1. There are (or exist) numbers between 0 and 1.

2. No matter which pair of numbers you take, adding the first to the second is
the same as adding the second to the first.

3. For every pair of numbers you consider, there are numbers that lie between
them.

4. There are (or exist) no codes that cannot be broken (by someone).

5. Sooner or later everyone dies.

6. A solution for the equation “a+x=c” always exists. (In the jargon of math-
ematics, this is a pure number-quantifier statement. The statement is not
really quantifying over “solutions.”)

Group B. This group involves quantification in middle English (Remark 1B-3 on
p. 13). Their style fits much of our own prose, and so we choose some of the
illustrations from these notes.

1. G�TF A iff there is no TF interpretation in which all of the members of G are
true and A is not. (Definition 2B-14(5) on p. 39).
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2. When G is truth-functionally inconsistent, one has G �TF A quite regardless
of the nature of A (taken from just after Examples 2B-24 on p. 44).

3. The lowest common multiple n of a pair of numbers a and b is the smallest
number such that each of the pair divides it (evenly).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

Exercise 82 (Further symbolizations)

Give these a go. Assume the following domain: the natural numbers {1, 2, . . .
}. Use only the following notation (in addition to usual names for the numbers):
Ex ↔ x is even; Ox ↔ x is odd; x+y= the sum of x and y; x < y ↔ x is less
than y; Px ↔ x is a prime number. On some of them it makes sense to use the
method, working always from the outside in. Others, however, including item
(1), employ methods of expressing quantification in English that do not follow the
simple pattern “quantifier + common noun phrase” that the method expects. You
are on your own.

1. If a number is less than another, then the second is certainly not less than the
first.

2. Every number is smaller than some number.

3. No number is smaller than every number.

4. No number is larger than every number.

5. Every number is larger than some number.

6. The sum of two odd numbers is an even number.

7. Every even number is the sum of two odd numbers.

8. Every even number is the sum of two primes.

9. Only 1 is smaller than every even number.

10. Every number except 1 is larger than some number.

11. The number that is less than 2 is odd.

12. Discuss: 4 is a small number.
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13. 6 is the largest number.

14. If an operation ◦ satisfies the well-known group axioms, then there is an
identity element for ◦; namely, there is some e such that no matter what
element x of the group you choose, you will find that (x◦e)=x, and also
(e◦x)=x.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

10E English quantifier terms

This section is in the nature of an appendix to our discussion of symbolizing En-
glish quantification.

We can do better than we did with respect to the concept of an English quantifier
term. You must not, however, expect rigor, since we are speaking of English gram-
mar, not an idealized grammar. We will frequently pretend to the absence of hard
problems.

Altogether we shall be using the following English-grammar jargon: term, pred-
icate, sentence, singular term, English quantifier, English quantifier term, count-
noun phrase, count noun, common noun, mass noun. If you think this is compli-
cated, please put the blame on English.

We begin with the term, and ask a pair of very good grammatical questions:

10E-1 QUESTION. (English terms: Whence and whither?)

Where do they come from? Where do they go?

Terms: Where do they come from? There are in English at least two kinds of
terms:

1. (Singular) terms (which we introduced in §1A.1), and

2. English quantifier terms (which we have been discussing for numerous pages).
We repeat: There are no “quantifier terms” in logical grammar; only in En-
glish. And we are leaving out plural terms of English such as “Mary and
Tom.”

We discuss English quantifier terms at length below. But first we turn to the other
question, which is of critical importance.
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Terms: Where do they go? Singular terms and English quantifier terms have
something decisive in common: They can go in the blanks of English predicates.
So given an English predicate, there are two ways of making a sentence:

1. You can fill it with a singular term,

2. or you can fill it with an English quantifier term.

This is a feature of English grammar of the highest importance. It is for this deep
reason that we introduce the generic term “term,” covering both cases.6 (If there
are other ways of filling predicate blanks, we are hereby ignoring them.)

We are altogether ignoring the plural in the case of name-like terms. So we are
ignoring plural terms such as “Mary and John.” Furthermore, we are ignoring
the difference between the singular and the plural with respect to quantifier terms.
So we will just continue to be fuzzy concerning for example “a horse” vs. “some
horses” or “at most one rider” vs. “three riders.”

So what is an “English quantifier term”?

English quantifier terms. The first half of our explanation of “English quantifier
terms” is based on where they can go: They can go in the blanks of predicates to
make a sentence. Anything that cannot do that is not an English quantifier term.

The second half is more complicated and may be put into a formula:

English quantifier term = English quantifier + count-noun phrase.

That is, a typical English quantifier term consists of two parts. The left part is an
English quantifier, discussed below. The right part is a count-noun phrase, also
discussed below. Here are some examples.

10E-2 EXAMPLES. (English quantifier terms)

6Did you happen to notice that “term” is not a term in our jargon sense? Instead, the word “term”
is a common noun (a count noun in the sense explained below), and therefore “term” is a word that
(unlike terms) cannot be put into the blank of an English predicate.
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English quantifier count-noun phrase
a horse

the raid on the city
every one (person) who admires Mira
some dog with fleas

at most one World War I pilot known for bravery
between three and five success stories

a few brave souls
many daughters of the American Revolution

We have said that an “English quantifier term” is made up of two parts, (1) an
“English quantifier” and (2) a “count-noun phrase.” To complete our grammatical
story, we need to explain each of these ideas.

English quantifiers. A dictionary of the English language should (but won’t) tell
you which words and phrases are English quantifiers; we shall pretend, however,
that somewhere there is a definite list of them. Some are simple such as “three,”
whereas some are more complex, consisting of several words such as “at least
seven.” Most of the words and phrases have in common that they are all answers
to “how many?” questions.7 Here is a list of some English quantifiers.

10E-3 EXAMPLES. (English quantifiers)

a, the, an, any, every, all, some, at most three, less than five, less than five
but more than two, exactly one, at least seven, a finite number of, an infinite
number of

English quantifiers have the following critical feature: They make sense when pre-
fixed to a count-noun phrase (adjusting for singular vs. plural). “Make sense” is a
longish story that in the end is helpfully circular: It means that the result of prefix-
ing an English quantifier to a count-noun phrase gives you something that you can
put in the blank of a predicate (and so the result is some kind of term).

7A deeper commonality is that in order to bear the sense that we give one of them when we
symbolize its use with quantifiers and identity, the phrase following it must express a kind, and
must permit making sense out of “individuating” what falls under that kind. So much is a necessary
condition of enabling our location of the logical subject by replacing the English quantifier with “x
is a.” This is part of the reason that “the” belongs on the list even though it cannot be used to say
“how many.”
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Take each one of the English quantifiers listed in Examples 10E-3 and try to put it
in front of some count-noun phrases such as those listed in Examples 10E-2. The
idea is to see that they make good grammar (adjusting for singular vs. plural); for
example, ”exactly one raid on the city.”

We have said that an English quantifier term is made up of two parts, (1) an English
quantifier, which we have just discussed, and (2) a “count-noun phrase,” to which
we now turn.

Count-noun phrases. We know that count-noun phrases can be prefixed with
English quantifiers to make English quantifier terms (which go in the blanks of
predicates to make sentences). That’s essential. But how are they made up? Cer-
tainly count-noun phrases can be exceedingly complex, and we do not know the
rules for building them. We do know this: Each count-noun phrase has a “count
noun” (discussed below) as its base. You start with a count noun and you can add
adjectives and you can add subordinate clauses and doubtless much else. But you
have to start with a count noun. Example. The “base” count noun (sometimes
called the “head” noun) of the following is just: cow.

vastly admired pregnant cow who rapidly walked through the Wisconsin
State Fair grounds in 1962 while her owner whistled Dixie.

Exercise. Pick out the “base” or “head” count nouns of the various count-noun
phrases given in Examples 10E-2. You should come up with the following list of
count nouns: horse, raid, one, dog, pilot, story, soul, daughter.

Some count-noun phrases may be built in more complex ways. We suppose that
“brown horse or black cow” can be a count-noun phrase. We repeat: We just don’t
know the rules for this.

Since every count-noun phrase starts with a “count noun,” we next ask after count
nouns.

Count nouns. We know that count nouns serve as a basis from which we can
make count-noun phrases by combining adjectives, relative clauses, and so on.
(Also each count noun itself counts as a “count noun phrase.”)

We add the following. Each count noun is a single word that is a “common noun,”
which is a more general category. A dictionary should (but won’t) tell you which
single words are common nouns, and among those, which are count nouns.
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Common nouns. You need first to distinguish a “common” noun from a “proper”
noun.

• A common noun cannot be put in the blank of a predicate.

• A common noun can sensibly be prefixed by a “determiner” such as “a,”
“some,” or “all.” (These are all quantifier words, too; “determiner” is a wider
class, e.g. possessives such as “Mary’s,” and (of most importance for us)
“the.”)

That’s not so very helpful, but we have little more to say. Common nouns express
“kinds.” The most important point for our purposes is that common nouns are of
two quite different species, which some folks mark by dividing common nouns into
the “count nouns” and the “mass nouns.”

Count nouns. Count nouns such as “horse,” “person,” and “box” can be prefixed
by a determiner that does some counting, which is to say, a count noun can be
prefixed by an English quantifier: a (single) horse, a person, three boxes. An even
better test for our particular purpose is this: You can transform any English count
noun into an English predicate by prefixing “ is a”: is a horse, is a person,

is a box.

Mass nouns. Mass nouns such as “water,” “air,” “snow,” and “mercury” cannot
be prefixed by a determiner that does some counting. The following are o.k.: some
water, all air. The following are bad grammar: three waters, at least one air. In
parallel, you cannot make an English predicate from an English mass noun by
prefixing “ is a.” For example, “ is a water” is bad grammar. 8

Even though quantifier terms are made from count nouns, much of what we say can
be adapted to mass nouns, partly because associated with every mass noun there is
a count noun phrase “a portion (or parcel) of .” We can count portions of snow.
If we say “all snow is white,” we could well mean that all portions of snow are
white.” In symbolizing, we could use “Sx for “x is a portion of snow,” or even (in
English) “x is some snow.”

8English lets just about any word be used in just about any grammatical category. Not al1 lan-
guages are like that, but English is. In the face of this, we just need to count a word as “a different
word” when it changes grammatical category. So go ahead and use “horse” as a verb (Jack horsed
around) and use “water” as a count noun (Minnesota is the land of many waters). But don’t lose sight
of the advances we are describing.
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Exercise. Give a number of examples of count nouns, choosing them as diverse as
you can (e.g., give only one animal count-noun).

The grammatical difference between count nouns and mass nouns can be felt to
have a “metaphysical” basis, and perhaps sometimes it does. But not always. For
a striking example, consider that “chair” is grammatically a count noun, whereas
“furniture” is grammatically a mass noun, as you can see from the following table.

a chair (ok) a furniture (bad)
three chairs (ok) three furnitures (bad)
all chair (bad) all furniture (ok)
all chairs (ok) all furnitures (bad)
every chair (ok) every furniture (bad)
some chair (ok) some furniture (also ok)
some chairs (ok) some furnitures (bad)
a chair (ok) a furniture (bad)
the chair (ok) the furniture (also ok)

We don’t know the theory (metaphysics?) of this; but you can see that the grammar
of “chair” is different from the grammar of “furniture.” “Chair,” like “mystery,” is
a count noun, whereas “furniture,” like “water,” “snow,” and “intelligence,” is a
mass noun.



Chapter 11

Appendix: Assignment tables

This chapter is in the nature of an appendix to our discussion of Q-interpretations.

11A Universals in assignment tables

Assignment tables provide a paradigm of the workings of connectives that are not
truth functional; for someone who has had some exposure to such connectives, this
section may prove of some use in putting into a common perspective the semantic
explanations of quantifiers and those other non-truth-functional connectives. The
section is, however, too complicated to help with the practical job of finding Q-
interpretations in order to show Q-invalidity or the like, and should be passed over
by all but the most compulsive.

The essential point emphasized by assignment tables is that you need to look in
more than one row when you evaluate a quantifier statement.

Suppose Domainj ={1, 2, 3}, and that just the four variables w, x, y, and z are of
interest. The relevant assignment table has 34 =243 rows. Let us suppose that we
already know the truth value of some (it could be any) sentence Awxyz for each
of the 243 rows, and that we are interested in the truth value of the four possible
universal quantifications in the particular row, labeled “j,” in which j(w)=2, j(x)
=1, j(y)=3, and j(z)=2. We will call this row the “target row.”1

1The Q-interpretation j of course gives an extension to all Q-atoms. Apart from the assignments
to the four relevant variables, however, this information is not represented in the pictured assignment
table.

272
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You cannot determine the truth value at j of a quantification of Awxyz—for ex-
ample, V alj(∀xAwxyz)—merely by consulting V alj(Awxyz). You need to know
the truth value of Awxyz at other rows (at other Q-interpretations j1, etc.). Which
other rows? The recipe (p. 156) says that

V alj1(∀xAx) = T iff for every entity d and every Q-interpretation j2,
if (d∈Domainj and j2 is exactly like j1 except that j2(x) = d) then
V alj2(Ax) = T.
In other words, a sentence ∀xAx is true on a certain Q-interpretation
just in case the ingredient sentence Ax is true on every Q-interpretation
that can be obtained from the given one by re-assigning x a value in
the domain—and keeping fixed the domain and interpretations of other
variables (and constants as well).

Picture 11A-1 lists all the rows that are relevant, by this recipe, to calculating a
value for each of the four universal quantifications of Awxyz.

11A-1 PICTURE. (Assignment-table with four variables)

Given Calculated
w x y z Awxyz ∀wAwxyz ∀xAwxyz ∀yAwxyz
1* 1 3 2 T
2 1 1* 2 F
2 1 2* 2 T
2 1 3 1* F

j 2* 1* 3* 2* T T F F
2 1 3 3* F
2 2* 3 2 T
2 3* 3 2 F
3* 1 3 2 T

For any one quantifier, you need only three rows: the target row plus two others,
one for each re-assignment (from Domainj) to the variable in question. Since we
are playing with four quantifiers, you will need two extra rows for each of them.2

In other words, the “other” rows are obtained by varying the target row in exactly
one column, so that in addition to the target row, there are eight others. The nine

2Symbolize—in your head—the sentence “you will need two extra rows for each quantifier.”
Note that “each” forces wide scope (is major).
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rows are arranged in “numerical” order, but, since we are picturing a mere nine
rows out of 243, the vertical spacing between the various rows means nothing.

You will note that every listed row (other than the target row) is exactly like the
target row, except in one place; and you can see that we have marked that place
with a star (*).

Picture 11A-1 shows the given pattern of truth values under Awxyz for these rows.
This “given” column is just an example, for illustration. But based in the pattern
of truth values for Awxyz in these nine rows, the truth values (in the target row) of
the four universal-quantifier statements can be calculated. How?

• For ∀wAwxyz to be true in the target row, we must consult the three rows
with a star under w. These three rows are exactly like the target row except
(perhaps) with respect to w, and under w we get each of the three possible
entities from Domainj . Checking then delivers that V alj(∀wAwxyz) = T.

• For ∀xAwxyz to be true in the target row, we must consult the three rows
with a star under x. These three rows are exactly like the target row except
(perhaps) with respect to x , and under x we get each of the three possible
entities from Domainj . Checking now tells us that V alj(∀xAwxyz) = F.

• For ∀yAwxyz to be true in the target row, we must consult the three rows
with a star under y. These three rows are exactly like the target row except
(perhaps) with respect to y, and under y we get each of the three possible
entities from Domainj . As above, we may be sure that V alj(∀yAwxyz) =
F.

• For ∀zAwxyz to be true in the target row, we must consult the three rows
with a star under z. These three rows are exactly like the target row except
(perhaps) with respect to z, and under z we get each of the three possible
entities from Domainj . Checking those three rows with a star under x
yields that V alj(∀zAwxyz) = F. (This column is omitted from the picture.)

11B Existentials in assignment tables

Note that each of the four companion existential statements must automatically be
true in the particular target row j of this example. Why? Since the target row itself
gives Awxyz the value T (i.e., V alj(Awxyz) = T), the target row must also give T to
every existential quantification of Awxyz (e.g. V alj(∃wAwxyz) = T), by the rule of
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existential generalization. To offer an “interesting” example of calculating a value
for existential quantifications, we should need to change the example, considering
another sentence, say Bwxyz, that has an F in the target row (i.e., V alj(Bwxyz) =
F). Then we should be forced to look at rows other than the target row (the very
same “other” rows that are pictured) in order to calculate whether, for instance,
V alj(∃wBwxyz) = T.

Exercise 83 (Calculating existentials from an assignment table)

Optional (since the section itself is optional). Suppose the “Given” truth-value en-
try for Awxyz in row j is changed from T to F (and the rest of the “Given” column is
left alone). Calculate the truth values of prefixing Awxyz with an existential quan-
tifier using (in turn) each of w, x, y, and z. For example, what is V alj(∃wAwxyz)?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /



Chapter 12

Appendix: The criteria for being
a good definition

12A Criteria of eliminability and conservativeness

The standard criteria for good definitions are those of “eliminability” and “conser-
vativeness.” Where do these criteria come from? Why should we pay attention to
them?

We can derive a motivation for these criteria from the concept of definitions as
explanations of the meanings of words (or other bits of language). Under the con-
cept of a definition as explanatory, (1) a definition of a word should explain all the
meaning that a word has, and (2) it should do only this and nothing more.

1. That a definition should explain all the meaning of a word leads to the crite-
rion of eliminability.

2. That a definition should only explain the meaning of the word leads to the
criterion of conservativeness.

We discuss the two criteria in order.

12A.1 Criterion of eliminability

One may approach the criterion of eliminability from the direction of the “use”
picture of meaning, with its picture-slogan, “meaning is use.” Then to explain all of

276
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the meaning of a word is to explain all its uses, that is, its use in every context. (We
intend that this recipe neglect ambiguity.) The advance is this: The metaphorical
quantifier in “all the meaning” is cashed out in terms of a non-metaphorical (if still
imprecise) quantifier over contexts. But what shall we mean by a “context”?

By §8A.5 we are considering only first-order languages. Accordingly, the criterion
of eliminability requires that for each first-order sentential context B in the New
language (i.e., the vocabulary of B is confined to C∪{c}), the definition gives
enough information to allow formation of an equivalent piece of language B′ in
the Old language (i.e., the vocabulary of B′ is confined to C). (The definition D
constitutes a bridge between New language and Old.) Then, and only then, will we
be sure that we have explained all the meaning of the word to be defined—whether
our purpose is to explain an existing meaning of a word already in use or to give
a new meaning to a fresh piece of vocabulary. The move from B in the New
language (i.e., with the definiendum c) to the equivalent B′ in the Old language
(i.e., without c) is what you should think of as “eliminating” the definiendum.

It should be clarifying to use our logical concepts in order to sharpen this idea. The
criterion of eliminability requires the following:

For every sentence A of the New language (so A may be expected to
contain c) there is a sentence A′ of the Old language (so A′ definitely
does not contain c) such that

G∪{D} �Q A↔A′.

[1]

It is the universal quantifier “For every sentence A of the New language” on the
front of [1] that entitles us to say that the definition D explains all the meaning of
the definiendum c.

Let’s consider some examples of definitions that do and some definitions that don’t
satisfy the criterion of eliminability.

12A-1 EXAMPLE. (Piety)

Piety is what the gods all love (Euthyphro to Socrates, in Plato’s dialogue Euthy-
phro). In notation: ∀x[x is pious↔ the gods all love x].

This definition permits the elimination of “ is pious” in all first-order contexts.
How? By the rule that we have called “UI+RE” (Rule 3E-7(2) on p. 131). Since
Example 12A-1 is a universally generalized biconditional, the rule UI+RE applies
exactly: It tells us that given either of the following as a premiss,
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. . . t is pious . . . [2]

. . . all the gods love t . . . [3]

we are entitled to infer the other—regardless of the symbolic context represented
by the “. . .”. For example, under the definition, we could use UI+RE to show that
the following are interchangeable:

• Euthyphro’s act of prosecuting his father is pious.

• All the gods love Euthyphro’s act of prosecuting his father.

So far so good. But it is to be carefully noted that UI+RE is worthless if the
“context” represented by “. . .” in [2] and [3] is not first-order (quantifiers plus truth
functions). Socrates gives a telling example of the importance of this qualification.
Socrates asked Euthyphro to consider the following plausible premiss.

If x is pious, then all the gods love x because it is pious.

If we tried to use Euthyphro’s Example 12A-1 to eliminate the second occurrence
of “pious”—the one in the scope of “because”—we should find that we were led
to the following silly conclusion.

If x is pious, then all the gods love x because all the gods love x.

This leads us to see that the limitation of our account to first-order contexts as
in §8A.5 has real bite: Example 12A-1 suffices to explain “pious” in first-order
contexts, but fails miserably for other philosophically important contexts such as
clauses beginning with “because.”

In addition to “becausal” contexts, we should keep in mind quotation contexts,
and also psychological contexts involving rapt attention such as “he was turning
over in his mind the question of whether prosecution of his father was pious.” If
we do then we will be more likely to keep remembering that no definition will
permit elimination in absolutely every context. Such remembering will perhaps
disincline us to ask more of a definition than it can very well deliver. But perhaps
not. Some people respond by cooking up an account of quotes or of so-called
“propositional attitudes” on which they do not count as “contexts.” This seems an
unhelpful obfuscation of the general principle. What is helpful is to realize that
definitions like Example 12A-1 will help eliminate a defined term in all (and only)
first-order contexts.
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Exercise 84 (Criterion of eliminability)

Let the Old language be the language of Peano arithmetic with (say) just 0, ′, + and
×. Suppose we enter the following as a definition D: ∀x∀y[x6y ↔ ∃z(x+z)=
y]. How could you eliminate 6 from the context “060”? That is, find a sentence
A′ in the Old language such that D �Q (060) ↔ A′. Prove that your particular
candidate for A′ works by providing a Fitch proof with premiss D (that is, with
premiss ∀x∀y[x6y↔ ∃z(x+z)=y]) and with conclusion (060)↔ A′.

Just to be sure that you have the idea firmly in mind, show how you could use the
same definition D to eliminate 6 from the context 0′60. Find the appropriate A′,
and prove that it works.1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

It is good to replace the slightly informal account of the criterion of eliminability
with a sharp definition. You will see, indeed, that all we are doing is changing
the status of the “requirements” [1] for eliminability into clauses of a definition of
the very kind we are discussing in this chapter. Since there are four key entities in-
volved in explaining the criterion of eliminability, we define a four-place predicate,
as follows.

12A-2 DEFINITION. (Eliminability)

D, qua definition of c, satisfies the criterion of eliminability relative to C and G
iff each of the following.

1. D is a sentence, c is a constant, C is a set of constants, and G is a set of
sentences.

2. The definiendum c does not belong to C, but all constants in D except c, and
all constants in G, belong to C.

3. For every sentence A all of whose constants are in C∪{c} (so A is in the
New language), there is a sentence A′ all of whose constants are in C (so A′

is in the Old language) such that

G∪{D} �Q (A↔A′).

1Probably unnecessary warning: Our use of ′ for the successor operator in Peano arithmetic has
nothing to do with our use of ′ in making up a new sentence-variable A′.
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12A.2 Criterion of conservativeness

On the standard view a good definition (in the sense of an explanation of meaning)
should not only explain all the meaning of the word, as required by the criterion of
eliminability. It should only do this. It should be empty of assertional content be-
yond its ability to explain meaning. If it were to go beyond the job assigned, say by
claiming that Euthyphro’s act of prosecuting of his father is pious, it might indeed
be doing something useful. It would, however, no longer be entirely satisfactory
as a definition. In this perfectly good sense, a definition should be neither true
nor false (whether explaining a word already in use or introducing a fresh word):
Whether or not it has a truth value qua definition (we might argue about that), it
should make no claims beyond its explanation of meaning.

There is a special case: Clearly a definition should not take you from consistency
to inconsistency; that would be a dreadful violation of conservativeness. The older
theoreticians of definitions in mathematics were, however, insufficiently severe
when they suggested that consistency is the only requirement on a mathematical
definition.

Terminology for this criterion is a little confusing. Some folks use “conserva-
tive” to mean something like “does not permit the proof of anything we couldn’t
prove before.” This accounts for calling the second criterion that of conservative-
ness: A definition satisfying the second criterion is conservative in that very sense.
Other folks use “creative” to mean something like “permits proof of something
we couldn’t prove before.” It is with this sense in mind that the second criterion
is sometimes called “the criterion of noncreativity.” We opt for the former name
merely to avoid the negative particle. Under either name, the criterion demands
that the New theory G∪{D} (with the definition) not have any consequences in
the Old language that were not obtainable already from the Old theory (without the
definition).2 If before the definition of “sibling” we could not establish that Euthy-
phro’s act is pious, then it should not be possible to use the definition of “sibling”
to show that Euthyphro’s act is pious. Were we able to do so, the definition would
manifestly contain more information that a mere explanation of meaning: It would
not be conservative. Neither in explaining the meanings of words already in use
nor in introducing fresh words should one use the cover of definitions to smuggle
in fresh assertions in the Old language. It’s bad manners.

2Watch out: “Old” is critical here. The definition D itself will of course be in the New language,
since it will have to contain the definiendum c. And it will also have numerous other consequences
in the New language. Understanding conservativeness requires that you distinguish the Old and New
languages in order to appreciate that what is forbidden is consequences of the New theory G∪{D}
in the Old language unless they are already consequences of the Old theory G.
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Figure 12.1: A picture of the criterion of conservativeness

Again it should be helpful to use our logical concepts to enhance clarity. The
criterion of conservativeness requires the following:

For any sentence A, if A is in the Old language, then if G∪{D} �Q A
then G �Q A.

[4]

That is, anything you can derive in the Old language using the definition you could
already derive without the definition. Some people are more at home with the con-
trapositive: If A is in the Old language, then if G 2Q A then G∪{D}2Q A (adding
the definition does not permit the derivation of anything in the Old language that
isn’t already derivable in the Old theory). See Figure 12.1 for a picture.

12A-3 EXAMPLE. (Noid)

Suppose that Wordsmith introduces “noid” by announcing that all the guys on the
other side of Divider Street are noids (a sufficient condition) and that all noids are
born losers (a necessary condition). In notation, his candidate definition D is the
following: ∀x[Dx→Nx] & ∀x[Nx→Lx].

Wordsmith’s plan appears innocent: He wishes to help his gang understand “noid”
by squeezing it between two understood ideas. Wordsmith’s introduction of “noid,”
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however, may or may not be innocent. If the gang and Wordsmith have already
committed themselves to the proposition that all guys on the other side of Divider
Street are born losers, (in notation: if ∀x[Dx→Lx] is already derivable from the
Old theory G, without the definition) then Wordsmith has not by this “definition”
D violated conservativeness. But if Wordsmith has not done this, if he has not
committed himself and the gang to the born-loserness of all guys across Divider
(if, that is, ∀x[Dx→Lx] is not already derivable from the Old theory G), then he
has violated conservativeness—just because his “definition” D, i.e. ∀x[Dx→Nx]
& ∀x[Nx→Lx], logically implies ∀x[Dx→Lx] (that is, G∪{D} �Q∀x[Dx→Lx]).
The latter is in the Old language since it does not involve the definiendum “noid,” so
there is no excuse for smuggling in its assertion under cover of an act of definition.

The following example of a violation of conservativeness is just a little trickier. Let
us consider two speech acts, one by Sarah and one by Janet.

12A-4 EXAMPLE. (Empty set)

1. Suppose Sarah says “Axiom: ∅ is a set and ∅ has no members” (∅ is a set
& ∀x[x 6∈∅]). (Compare Axiom 4A-12.)

2. Suppose Janet says “Definition: ∅ is a set and ∅ has no members” (∅ is a
set & ∀x[x 6∈∅]).

Observe that in either case, “there is a set with no members” (in notation, ∃z[z
is a set and ∀x[x 6∈z]]) follows logically. The key feature here is that this logical
consequence, since it does not involve the constant ∅, is in the Old language. But
there remains a difference between (1) and (2).

First, Sarah’s (1). Sarah does not purport to offer a definition at all, so conserva-
tiveness is simply not an issue. There is nothing wrong with an axiom that governs
New notation having consequences such as ∃z[z is a set and ∀x[x 6∈z]] that do not
involve that notation.

Furthermore, if Janet’s community has already fixed on a theory G that implies
∃z[z is a set and ∀x[x 6∈z]] (without using Janet’s definition), she is not in violation
of conservativeness. But since this “definition” obviously permits her to prove
that there is a set with no members (by existential generalization), she violates
conservativeness if she couldn’t prove it before. That is, the sentence “∃z[z is a set
and ∀x[x 6∈z]]” would constitute a violation of conservativeness since (a) it is in
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the Old language (since it does not contain the defined constant ∅), (b) but (c) it is
not a consequence of only the Old theory G without the use of Janet’s definition.
She would therefore be using the “definition” to smuggle in an existence claim to
which she is not entitled.

Suppose the worst, however, that Janet’s community has a theory G according to
which no set has no members.3 Suppose she goes ahead and introduces ∅ in accord
with Example 12A-4. What should we say about her? What did she denote by ∅?
Probably no one cares, but there are cases like Janet’s about which philosophers do
seem to care. For example Leverrier introduced “Vulcan” as the planet responsible
for certain astronomical anomalies. Later it was learned that relativistic considera-
tions sufficed for the anomalies; there was no such planet. What shall we then say
about the meaning of “Vulcan” and of all the discourse using this term? Our own
view is this. You should say that the answer to “Is there a unique planet responsible
for the astronomical anomalies at issue?” is “No.” You should say that the answer
to “Is the definition defective?” is “Yes.” You should say that some of what we
prize in science and other activities does not rest on answers to these eminently
clear questions, since we often manage to get along very well when presupposi-
tions fail. You should add that nevertheless there are no general policies for what
to do or what to say in the presence of defective definitions. Just about anything
you remark beyond this will be either artificial or unclear, and is likely only to add
to the general babble of the universe.4

It is easy to imagine languages that allow nonconservative or creative definitions
in the following sense: In them a single speech act both introduces the new termi-
nology and makes the assertion needed to justify that introduction. In fact English,
even scientific English, is like that. Our practices are lax. We suppose that is
one thing people mean when, like Quine, they advise us to abandon the analytic-
synthetic distinction.

We should not, however, follow this advice. Those philosophers who wish to be
clear should follow Carnap in maintaining the analytic-synthetic distinction to the
maximum extent possible. That is, when confronted with a complex speech act
such as that of Leverrier, it is good to idealize it as consisting of two distinct compo-
nents: the assertion of the existence and uniqueness of an anomaly-causing planet,
and the definition of Vulcan as this very planet. There is, we think, no other way
to continue with a clear conversation about the matter. For example, we do not
think we can otherwise make a clear distinction between revealed and concealed
assertions. And we should do so. Speech acts that conceal assertions are (whatever

3The logician Lésniewski promoted such a theory.
4A signal exception to this rule is the careful treatment of confusion in Camp (2002).
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their intentions) misleading. We should try to avoid them whenever we are clear
enough to be able to do so.

Here is the sharp definition that, in parallel to Definition 12A-2, replaces our
slightly informal account [4] of the criterion of conservativeness. As there, we
define a four-place predicate.

12A-5 DEFINITION. (Conservativeness)

D, qua definition of c, satisfies the criterion of conservativeness relative to C and
G iff each of the following.

1. D is a sentence, c is a constant, C is a set of constants, and G is a set of
sentences.

2. The definiendum c does not belong to C, but all constants in D except c, and
all constants in G, belong to C.

3. For every sentence A, if every constant in A is in C (so A is in the Old
language), then

if G∪{D} �Q A then G �Q A.

The diagram of Figure 12.1 on p. 281 should help sort this out for you.

Exercise 85 (Conservativeness)

Suppose that the Old vocabulary C consists in the standard constants for Peano
arithmetic (§7B): 0, ′, +, and × . Let the Old theory G be the Peano axioms Ax-
ioms 7B-1. Let the definiendum be the predicate constant “is interesting.” Let the
candidate definition D be ∀x∀y[x is interesting↔ x=y)]. Your job is to show the
candidate definition violates conservativeness by finding a sentence in the Old lan-
guage that can be derived (by a proof) from the candidate definition. (Hint: The
example is silly, but the proof is easy.)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /
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12A.3 Joint sufficiency of criteria for a “good definition”

In concluding this preliminary account, we add the following. The proposal is
that each of the criteria of eliminability and conservativeness are necessary for
a good definition in the sense of an explanation of meaning; and that together
they are sufficient (so that their conjunction provides a good definition of “good
definition”). The pros and cons of necessity are easily discussed through examples.
In contrast, we do not much know how to defend the claim to sufficiency other than
by a rhetorical question: You’ve asked for a good definition of this word, and now
we’ve given you a procedure for eliminating it from every intended context in favor
of something you yourself grant is entirely equivalent; and we have done nothing
else (i.e., we haven’t slipped any further statements past you); so what more do you
want?

We enshrine this view in (what else?) a definition:

12A-6 DEFINITION. (Good definition)

D, qua definition of c, is a good Q-definition relative to C and G iff each of the
following.

1. D, qua definition of c, satisfies the criterion of eliminability relative to C
and G (Definition 12A-2).

2. D, qua definition of c, satisfies the criterion of conservativeness relative to
C and G (Definition 12A-5).

A little more needs to be said. It is common to think of an entire set of sentences
G* (instead of a single sentence D) as expressing an “implicit definition” of some
constant c taken as definiendum in terms of some Old constants C. Here the entire,
presumably infinite, set of sentences G* is taken as definiens. Since our account
Definition 12A-6 of “good definition” presupposes a single-sentence definition D,
it simply does not apply to this important case. Instead, analysis suggests that the
right idea is ask if G* together with the Old theory G forces a unique interpretation
on c in the following sense: Whenever the interpretations of all Old constants C
are fixed in some way as to make all the sentences of G true, there is a unique
interpretation of c on which every member of G* comes out true. If so, the implicit
definition G* is good; if not, not. We do not, however, have to worry much about
good implicit definitions for this reason: Beth’s Theorem—which is one of the
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important theorems of the science of logic—tells us that whenever there is a good
infinite set-of-sentences implicit definition G* of c, there is also a good single-
sentence explicit definition D of c—a single-sentence definition D of c that satisfies
all the rules for and all the criteria of “good definition.”

12A.4 Conditional definitions and reduction sentences

This section may be skipped by those concentrating on the art of logic. Here we
use our discussion of definitions in order to help in some philosophical work. We
start with an example that revolves around the fact that division by zero makes no
sense. Here you must imagine that the Old vocabulary includes + and × and 0 and
1, and that the Old theory is not mere Peano arithmetic, but includes the arithmetic
of the rational numbers (fractions) as well. We are trying to define “the inverse of
x,” usually written as “1/x,” in terms of the Old vocabulary.

12A-7 EXAMPLE. (Inverse)

Take D as ∀x[x 6=0→∀y[Inverse(x)=y↔ (x×y)=1]], with Inverse( ) the definien-
dum. Let C and G be as in Peano arithmetic, §7B.

Thus the definition takes Inverse( ) as the standard multiplicative inverse, (1÷ ).
And Inverse(x) “is defined” only when x is not zero so that the problem of division
by zero is avoided. Such a definition is often called a “conditional definition,” the
condition being that x 6=0.

Evidently D does not satisfy eliminability, since you cannot use it to eliminate all
uses of Inverse(0), for example, its use in “Inverse(0)=3.”

Exercise 86 (Inverse)

What happens when you instantiate the definition with 0 for x?

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . /

It does, however, satisfy a “partial eliminability,” since D does permit elimination
of Inverse(t) for any term t such that G∪{D} �Q t 6=0. More generally, D permits
elimination of Inverse(x) in any sentence ∀xB(x) [or ∃xB(x)] such that G∪{D}�Q
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∀xB(x)↔ ∀x((x 6=0)→B(x)) [or G∪{D} �Q∃xB(x)↔ ∃x((x 6=0)&B(x))]. Since
these are known in advance as the only contexts of Inverse(t) or Inverse(x) that we
care about (nobody wants an Inverse(0)), such partial eliminability is conceptually
satisfying.

We know that Frege thought otherwise; he believed in total eliminability. Our own
view is that Frege’s belief (or practice) arose from a certain slightly misdirected
compulsiveness—the same compulsiveness, however, that gave the world its most
glorious standard of uncompromising rigor. Many of us, perhaps almost equally
compulsive, avoid conditional definitions for what we announce as mere technical
convenience. Our alternative device is to use “don’t-care clauses,” e.g. defining
Inverse(0) as equal to 0 (or perhaps as equal to 14), and then remarking that this
bit of the definition is a don’t-care. That is, we would replace the definition of
Example 12A-7 with the following “good definition”:

∀x∀y[Inverse(x)=y↔ ((x 6=0→((x×y)=1)) & (x=0→y=0))]. [5]

Now if you let the definition D be [5], you can eliminate every occurrence of
Inverse( ). Since you can use [5] to prove “Inverse(0)=0,” when you come to
a sentence A with an occurrence of Inverse(0), just choose A′ as the result of
putting 0 in place of Inverse(0), and you will be sure that G∪{D} �Q A↔A′, as
required for eliminability.

If one studies our inferential practices, however, one sees that we never use the
don’t-care clauses, and that we counsel others to avoid relying on them for con-
ceptual interest. So practically speaking, conditional definitions such as Example
12A-7 and don’t-care clauses such as used in [5] come to the same thing.

Not all conditional definitions, however, are created equal. Carnap envisaged two
kinds of predicates for science: An Observation predicate, e.g., “dissolves in water
(when put into water),” is such that whether or not it holds of an object is a matter
of direct observation. In contrast, a Theoretical predicate, e.g. a so-called dispo-
sitional predicate such as “is soluble,” is only indirectly tied to observation via
some theory. Carnap suggested that what he called a “reduction sentence” could
serve as a kind of partial meaning-explanation of a Theoretical predicate in terms
of Observation predicates. Here is an example.

12A-8 EXAMPLE. (Solubility)

Let D1 be as follows: ∀x[x is put in water→ (x is soluble↔ x dissolves)]. Take the
definiendum c to be the Theoretical predicate constant, “is soluble,” take the Old
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vocabulary C to include only Observation predicates, and identify the Old theory G
as common-sense generalizations using only Observation predicates (e.g., perhaps
“If you put a sample of copper in water, it doesn’t dissolve”).

D1 is exactly what Carnap called a “reduction sentence.” He was surely thinking
that the definition of Example 12A-8 gave us a “partial” definition of “soluble.”
Suppose the Old theory contains “Sam is put in water.” Then clearly the definition
D1 of Example 12A-8 permits elimination of “soluble” in the context “Sam is
soluble,” for it is easy to see that G∪{D} �Q Sam is soluble ↔ Sam dissolves.
That is the sort of thing that Carnap had in mind. On the other hand, however,
we couldn’t use D1 to eliminate the defined symbol from “Mary is soluble” unless
“Mary is put in water” was a consequence of our Old theory G. But suppose that
in fact it is false that Mary is put in water? What then?

The superficial form of a reduction sentence is the same as that of a conditional
definition. We think this resemblance misleads some of those who rely on re-
duction sentences: Reduction sentences such as Example 12A-8 and conditional
definitions such as Example 12A-7 are entirely different. In the case of conditional
definitions, we do not want an account of the newly introduced constant as ap-
plied to arguments not satisfying the condition. We do not want, for example, an
account of Inverse(0). In the case of the reduction sentence for solubility, how-
ever, the samples whose presence in water we cannot deduce from the theory are
precisely those samples whose solubility we care about. For example, it would be
ridiculous to provide a don’t-care clause for the condition, adding the following to
Example 12A-8: “and if x is not put in water then x is a rotten apple.” That this
would be foolish is obvious from examination of the inferential contexts in which
one finds the concept of solubility. We infer that Carnap’s terminology represents
a wrong turn. Reduction sentences do not give partial explanations of meaning;
unless, on analogy, one wishes to take “counting to three” as “partially counting to
infinity.”

Turning now to the other criterion, the reduction sentence D1 of Example 12A-8 is,
if taken as a definition, doubtless conservative. Suppose, however, that we enrich
that definition by adding a conjunct.

12A-9 EXAMPLE. (Solubility, another try)

Let D2 now be taken as a definition of solubility, where D2 is as follows: (D1 &
∀x∀y[x and y are of the same natural kind→ (x is soluble↔ y is soluble)]).
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Adopting D2 would doubtless enlarge the cases in which we could eliminate “sol-
uble,” making it in that respect more definition-like. But notice that we can now
conclude that each thing of the same natural kind as Sam, if put in water, dissolves
if and only if Sam does. Unless our Old theory G already committed us to this
view, our definition would have smuggled in new assertional content and would
not be conservative. A healthy respect for conservation regards such sneaking as
reprehensible. Thus again, reduction sentences are not much like definitions after
all. They do not reduce, or not enough to count.

What, then, do reduction sentences do? It is perfectly all right to suggest that they
describe or establish “meaning relations” between the Theoretical mystery vocab-
ulary to which “soluble” belongs and the less mysterious Observation language of
water and the like. The only thing that is wrong is to think of them as “reduc-
ing” the mysterious to the less mysterious, even partially. Only the terminology
is wrong. Here is an example that early Carnap considered on his way to reduc-
tion sentences, though we add a moral of which only the later Carnap would have
approved.

12A-10 EXAMPLE. (Solubility; yet another try)

Suppose we let D3 be as follows: ∀x[x is soluble ↔ (x is put in water → x dis-
solves)].

This definition of solubility is bound to satisfy both criteria (it is a good definition
in the sense of Definition 12A-6), regardless of the Old theory G. Given that the
connectives↔ and→ are truth-functional, however, it does have the strange (but
still conservative) consequence that whatever is not put in water is soluble, so that
as stipulative it is not a happy choice and as lexical it is doubtless false to our usage.
One can see here a motive for a “modal” theory of “if” that brings into play the
idea of possibility, and accordingly a motive for not identifying “logic” with the
logic that we are presently studying.

12A.5 Relaxing the criteria

The standard criteria and rules must be counted as logic of the greatest interest.
They are, we should say, always to be respected as devices to keep us from ad-
dle. On the other hand, one can easily find cases in which good thinking bids us
moderate their force. Here is an illustration concerning noncircularity.

Gupta and Belnap (1993), building on earlier work by Gupta, establishes the fol-
lowing.
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1. Some concepts are essentially circular. (Normal results of “inductive defini-
tions,” e.g. multiplication in Peano arithmetic, are not examples of circular
concepts.)

2. The standard account of definitions says nothing useful about circular con-
cepts (We suppose it denies their existence).

3. One obtains a powerful theory of circular concepts by reworking the theory
of definitions to admit circular definitions.

4. Truth (in e.g. English) is a circular concept.

5. The ideas of the reworked definitional theory, when applied to truth, make
fall into place both the ordinary and the extraordinary (pathological, para-
doxical) phenomena to which philosophers have called attention.

These notions are extended and defended in The revision theory of truth, Gupta and
Belnap (1993), which we will reference as RTT. It is not possible to summarize
even the main ideas here; we only make two remarks relating the RTT work to the
standard account of definitions.

RTT fully accepts conservativeness. The norm remains: If it’s a definition, then it
should not provide camouflage for a substantive assertion. We shan’t say anything
more on this topic.

RTT abandons eliminability, and in particular noncircularity. The indispensable
idea is that a definitional scheme cannot illuminate a circular concept except with
the help of a circular definition, and that circularity intrinsically prevents elim-
inability. For example, the RTT definition of truth permits its elimination from
“‘Euthyphro is pious’ is true,” but not from “This very sentence is true.” An espe-
cially fascinating part of this story is that RTT furnishes something worthwhile to
say about circular concepts such as truth even in those cases in which eliminability
fails. It does so by attending to their patterns of revision under different hypothe-
ses. In this way forms of pathologicality can be distinguished one from the other
in a conceptually satisfying way. You can see the difference between “This very
sentence is true” and “This very sentence is false” by watching the unfolding of
their altogether different patterns of revision.

12B Coda

Two items remain. The first is to express regret that these remarks have been too
coarse to capture the fine structure of even the standard account of definitions. The
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second is to make explicit that the general lesson has the usual banal form. On the
one hand, the standard criteria and rules are marvelous guides. They have point.
They are not to be taken lightly. Every philosopher and indeed we should say
everyone engaged in conceptual work ought to know and understand them. He or
she who unknowingly breaks with the standard criteria or the rules risks folly. On
the other hand, there is no single aspect of these criteria or rules that we should
consider unalterable.



Chapter 13

Appendix: Future discussion of
decidability, etc.

This chapter is what it is and is not another thing.

13A Effective, constructive, prospective

(This section is not intended as self-standing; it presupposes outside explanation.)
From Myhill (1952):

A character is effective if human beings may be so trained as to respond
differentially to its absence and its presence.

A character is constructive if human beings may be so trained as to execute a
program in the course of which a replica of every object having that property
will appear, barring the untimely death or distraction from his purpose of
that human being. By a “replica” in this connection is meant an object not
differing from the original in any way which could confer upon it or detract
from it the character declared by this definition to be constructive.

A character is prospective if it is neither effective nor constructive, and if
nonetheless some human being clearly entertains an idea of that character.

A character is effective iff it is possible to provide a routine and mechanical and
finite “decision procedure” for that character, a procedure that involves neither luck

292
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nor ingenuity. Since the definiens did not mention Mind, a character can be effec-
tive even if nobody knows a decision procedure that will work for that character.
A character is constructive iff its theory can be formalized. “Constructive” is the
same as “formalizable.” For Myhill’s “prospective,” but without its denial of effec-
tivity and constructivity, we just say “clear.”

Theory Effective Constructive Clear
Truth-table Yes
tautology (Post 1921)

→ →

Quantifier No Yes
validity (Church 1936) (Gödel 1930)

→

Arithmetic No Yes
truth

↓
(Gödel 1931) (Gentzen 1936)

Set-theory No
truth

↓ ↓
(Russell 1902)

Arrows indicate that affirmatives propagate rightward and that negatives propagate
downward.
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incompleteness of, 213–219
Peano, 206–208

arrow, 18
assignment table, 189, 272–275

296



Index 297

Assoc (rule), 42
assumption, 49
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Church 1936, 293
circular concepts, 290
clear, 293
closed sentence, 19
closed term, 15
closure clause, 25
Comm (rule), 42
common noun, 4, 270
completeness

negation, 214
of a system, 84, 210
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conditional proof (rule), 56–63
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truth-functional, 30–32
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connective, 17
individual, 14, 178
operator, 14, 178
predicate, 15, 178

constructive, 292
Contrap (rule), 42
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corollary, 142
count noun, 246, 269, 270
count-noun phrase, 246, 269
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CP (rule), 56–63

vertical line for, 107
CP+UG (rule), 125
criteria for good definitions, 276–289

analogous to Q-validity, 223
conservativeness, 223, 280–284
eliminability, 223, 276–279
relaxing, 289
sufficiency of, 285

curl, 18
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Curry 1963, 3
Curry and Feys 1958, 3
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dangling variables, 227
Dedekind, 206
Def. elimination (rule), 132

example, 144
preview, 104
strategy for, 134

Def. introduction (rule), 131
example, 144
preview, 104
strategy for, 133
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definiendum, 223–225
definiens, 223
definition
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as a sentence, 225
circular, 230, 290
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lexical, 220
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effective, 292
EG (existential generalization rule), 108,

138
EI (existential instantiation rule), 109,

138
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eliminability, see criteria for good defi-

nitions, eliminability
elimination rules, 83
empty set, 148
English count-noun phrase, 167
English quantifier, 8–9, 165, 240, 268

a, 241, 257
all, 241, 258
any, 257
at least one, 241
at least two, 241
at most one, 242
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some, 241
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Fi (system of Fitch proofs), 48, 82
-proof, 58, 138, 200
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first order logic, 18
Fitch 1952, 48, 83
Fitch proof, 58
flagging, 90
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made easy, 93
notation for, 90
scope of, 91
terms, 91

flagging restriction
easy, 92
essential, 93
intermediate, 92

formal arithmetic, 213
free variable, 88
function space, 158
functions, 156

identity of, 160
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elementary, 5
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G (a set of sentences), 19
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Gödel 1930, 293
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truth-functional logic, 27
greatest lower bound, 123

higher order logic, 18
HS (rule), 40
hyp (rule), 49
hypothesis (rule of), 49
hypothetical proof, 59

i (a TF interpretation), 34
identity, 16, 116

elimination, 117
introduction, 117
of functions, 160
rules for, 117, 120
semantics of, 197

identity symbolizations, 175
implicit definition, 285
incompleteness, Gödel, 213–219
inconsistency, 193

truth-functional, 44
individual constant, 14, 87, 178
individual variable, 18, 178
induction, 207, 210
inductive clause, 20
inductive explanations, 19
instance, 89
intelim proof, 83, 138, 139

completeness of, 84
intelim rule, 81, 82
intermediate flagging restriction, 92
interpretation, 34

TF, 34
and proof, 199
for quantifier logic, 177
general idea, 34
Q, 177, 179

intersection, 149
introduction rules, 83
is a set, 16

j (a Q-interpretation), 179
Jáskowski 1934, 83
join, 149

Kremer, M., 223

Lindenbaum’s lemma, 211
local determination, 188
logic, parts of, 12
logical grammar, 2
logical predicate, 166, 168, 249
logical subject, 166, 167, 248
lower bound, greatest, 123
lower semi-lattice, 123

major English quantifier, 244
major English quantifier term, 247
mass noun, 270
maximal A*-free, 205
meet, 149
middle English, 12, 14, 165
mixed rule, 82
Montague 1974, 243
MP (rule), 40
MP for 7→ (rule), 159
MPBC (rule), 40
MT (rule), 40
MTBC (rule), 40
Myhill 1952, 292

natural deduction, 83
NBC (rule), 42
NCond (rule), 42
negated compound equivalences, list of,

42
negated-compound rule, 55, 82
negation, 18
negation completeness, 214
negation consistency, 214
New theory, 226
New vocabulary, 226
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no (English quantifier), 241
nobody (English quantifier), 260
number-predicate, 9
number-subnector, 9

obvious, 59
Old vocabulary, 226
one, 171
one-one, 158
only (English quantifier), 241, 261
operator, 6, 7, 14, 87

exercises on defining, 234
rule for defining, 232
rule for defining, examples, 233
truth-value-of, 30

operator constant, 14, 178
ordered pair, 151, 154

parameter, 13
parentheses, 87

elimination of, 236–239
partial order, 123
passive (symbolizing), 171
Peano arithmetic, 206–208
physical-object predicate, 9
politesse, 59
possessives, 258
Post 1921, 293
powerset operator, 162
predicate, 6, 7, 15

definition exercises, 231
example definitions of, 228–231
logical (English), 249
rule for defining, 227

predicate constant, 15, 87, 178
predication, 16, 19
premiss, 49
pronoun (symbolizing), 171
proof

and interpretation, 199

hypothetical vs. categorical, 58
in Fi (system of Fitch proofs), 82,

138
intelim, 83, 138, 139
strategic, 82, 138

proof systems, 82
proof theory, 11, 48

for quantifiers, 90
proper subset, 147
proposition, 9
proposition-predicate, 9
proposition-term, 10
prospective, 292
provability and Q-validity, 201

Q-atomic sentence, 88
Q-atom, 178, 181

extension of, 178
interpretation of, 178

Q-atomic term, 87
Q-consistency, 193, 200
Q-falsifiable, 193
Q-inconsistency, 193, 200
Q-interpretation, 177, 179

form of answers to problems, 195
presentation of, 182–186
via tables, 185

Q-invalidity, 200
Q-logical equivalence, 194
Q-logical implication, 194, 200
Q-logical truth, 193
Q-nonequivalence, 200
Q-nonimplication, 200
Q-validity, 193, 200

and provability, 201
of a sentence, 193
of an argument, 194

quantifier
English, 8–9, 268
omission of outermost universal, 142
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quantifier equivalences, 127
quantifier patterns, 241
quantifier term (English), 8–9, 245, 266
quantifier, symbolic, 12
quantifier, symbolism for, 87

RAA⊥ (rule), 63–68
vertical line for, 107

RAA (rule), 69
range, 155, 157
RE (rule), 130
reductio ad absurdum (rule), 63–68
reduction sentence, 286–289
reduction to truth functions, 191
redundant rule, 85
reflexivity, 106, 123
reit (rule), 51
reiteration (rule), 51
relation, 154
relative clauses, 261
repl. equiv. (rule), 130
replacement, 28
replacement of equivalents (rule), 130
replacement rules, 127, 129
rule

BCP+UG, 126
BCP+UI, 126
CP, 56
CP+UG, 125
DMQ, 114
EG, 138
EI, 138
failsafe, 73–75
for defining predicates, 227
for negated compounds, 55
hyp, 49
intelim, 82
mixed, 82
MP for 7→, 159
negated compound, 82

RAA, 69
RAA⊥ , 64
RE, 130
redundant, 85
reit, 51
structural, 82
Taut, 55
TE, 54
TI, 53
UG, 96, 138
UI, 93, 138
UI+MP, 125
UI+MPBC, 126
UI+RE, 131
wholesale, 53, 82

rules for good definitions, 223
rules, families of, 82
Russell, 206

1902, 293

scope, 106
of a flagging, 91
of a hypothesis, 50
of a quantifier, 88
vertical lines for, 107

semantic completeness, 214
semantic consistency, 214
semantics, 11

for quantifier logic, 177
for truth-functional logic, 29–48

semi-lattice, lower, 123
Sent (a set), 27
sentence, 3, 9, 19, 20, 25, 87

TF-atomic, 25, 26
Q-atomic, 88

sentence-predicate, 9
separation, axiom of, 152
set, 16, 142
set difference, 149
set theory, 16
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easy, 141–152
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Simp (rule), 40
some (English quantifier), 241
someone (English quantifier), 260
soundness (of a system), 83, 210
strategic proof, 82, 138
strategies, 75, 133

for conclusions, 73–74, 133–134
for premisses, 74–75, 134–135
for quantifier logic, 133
for truth-functional logic, 73–79

strict partial ordering, 147
structural rules, 82
subject, logical, 248
subnector, 6, 7
subordinate proof, 50
subproof, 50
subset, 143
substitution, 28, 88

expressibility in arithmetic, 216
superlatives, 262
Suppes 1957, 48
swoosh (rule), 129
swoosh-equivalence (rule), 128
symbolization, 240
symmetry, 106
syncategorematic expression, 7

t (a term), 15, 88
T (Truth), 30
Taut (rule of tautology), 55
tautological equivalence, 41

list of, 42
rule of, 54

tautological implication, 38
list of, 40
properties of, 205
rule of, 53

tautology, 43

rule of, 55
TE (rule of tautological equivalence), 54
term, 3, 15, 19, 20, 87, 266
TF consistency, 45
TF inconsistency, 44
TF interpretation, 34

and truth tables, 35
TF-atom, 25, 26, 35, 181
TF-atom (a set), 27
TF-falsifiable, 43
that (symbolizing), 170
the (English quantifier), 241, 260
theorem, 142
theoremhood, expressibility in arithmetic,

216
thing, 171
Thomason 1970, 262
TI (rule of tautological implication), 53
transitivity, 106, 123
True, 30
truth, 33

relative to an interpretation, 33
two concepts of, 33

truth functional, 30
truth like, 212
truth table, 32
truth value, 30, 187
truth, logical, 193
truth-functional connective, 30–32
truth-functional consistency, 45
truth-functional inconsistency, 44

list of, 44
truth-functional logic

grammar of, 24–239
semantics for, 29–48

truth-value-of operator, 30

u (a term), 88
UG (universal generalization rule), 96,
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advice on, 97
vertical line for, 107

UI (universal instantiation rule), 93, 138
advice on, 95
common errors, 95

UI+MP (rule), 125
UI+MPBC (rule), 125, 126
UI+MPBC pattern, 103
UI+RE (rule), 131
union, 149
universal generalization (rule), 96
universal instantiation (rule), 93
universal quantifier, 12
universal quantifiers, dropping outermost,

21

V al(A) (truth value of A), 30
V ali(A) (truth value of A on i), 35, 36
validity and provability, 201
V alj(E) (value of E on j), 180, 188–189
variable, 87

individual, 18, 178
of quantification, 13

variant, 142
vertical lines, 106
vocabulary, 225

wedge, 18
Whitehead, 206
who (symbolizing), 170
wholesale rule, 53, 82

X (a set), 17, 142
x (variable), 88
XAQ (rule), 40

Y (a set), 17, 142
y (variable), 88

Z (a set), 17
z (variable), 88
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Preface

These notes do not constitute a finished book.† They represent an incompletely
organized collection of materials. For one thing, you will find some places where
the text makes little sense without oral supplementation, and for another, in a few
cases exercises and examples are not fully in place. If, however, you are using these
notes by yourself solely for review, perhaps the most efficient procedure would be
to let serve as your agenda the numbered exercises that are scattered throughout
the book. These numbered exercises are listed just after this preface, on p. x.
Then you can read only what you must read in order to satisfy yourself that you
can carry out these exercises.

The intended user should satisfy one of two criteria: Either the user should have
had a first and very-elementary course in the art of symbolic logic that emphasized
the arts of the logic of truth functions and one-variable quantification, or the user
should be prepared to master within the first two weeks, and carrying out an
enormous number of exercises, one of the many texts that teach those arts. Klenk
(2002) (Understanding symbolic logic) (units 1–16 essential, with 17–18 desirable)
is suitable for this purpose—but certainly not uniquely so.

Thanks to M. Dunn and K. Manders for suggestions, to W. O’Donahue and B.
Catlin for collecting errors, to M. Kremer for both, and to several groups of stu-
dents who have helped, namelessly, in nameless ways. I owe yet a third debt to
Kremer for permitting use of exercises that he had prepared for his own students,
and for some material on symbolization. P. Bartha, A. Crary, and B. Schulz have
each made contributions that are at once extensive and valuable, and C. Campbell

†This 2009 version of these notes is the result of a medium-sized revision (including moving
some material from the main text to some appendices), a procedure that invariably introduces errors.
Many have been located by various readers, but it is certain that a number remain. I ask that you
let me know about typos, substantive errors, poor or missing exercises, incomprehensible passages,
strange formatting, and so on. Your action in this regard will benefit others, since I revise these notes
almost each time that I use them.
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not only did likewise, but also re-worked a number of exercises that were unsat-
isfactory, and cheerfully agreed to teach from the book in such a way that his
authoritative wisdom contributed manifold suggestions. Gupta helped in particular
with chapter 8. C. Hrabovsky helped greatly with preparing the book.
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