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Michael a. mceobbie Relevant Analytic Tableaux 
and 

Nuel D. Belnap, Je. 

"Logic is at root 

all about trees" 

Abstract. Tableau formulations are given for the relevance logics E (Entail? 

ment), R (Eelevant implication) and RM (Mingle). Proofs of equivalence to 

modus-ponens-based formulations are via" left-handed" Gentzen sequenzen-kalk?le. 
The tableau formulations depend on a detailed analysis of the structure of tableau 

rules, leading to certain "global requirements". Eelevanceis caught by the requirement 
that each node must be "used"; modality is caught by the requirement that only 
certain rules can "cross a barrier". Open problems are discussed. 

In this paper1 we present a tableau-style analysis of the implication 

negation fragments of the principal relevant logics E, R and RM of [1] 
as well as the classical propositional calculus TV. This analysis, although 
similar in certain respects to the one given by Smullyan in [32] for TV, 
differs substantially in that it is purely proof theoretic in character, as 

opposed to that of Smullyan, which is semantical. This is then, as far 

as we know, the first time that a non-semantically based tableau-style 

analysis has been given for a set of logics. Therefore this paper seems 

like an appropriate place to distinguish between these two different 

tableau-style analyses. Henceforth the kinds of structures studied in 
a semantically based tableau-style analysis will be called analytic semantic 

tableaux, while the kinds of structures studied in a proof theoretically 
based tableau-style analysis will be called simply analytic tableaux. Further, 

logical systems in which the theoremhood (validity) of formulas is de? 

termined by whether or not analytic tableaux (analytic semantic tableaux) 
constructed in a prescribed way from these formulas meet certain necess? 

ary and sufficient conditions will be called analytic tableau systems (ana? 

lytic semantic tableau systems). Hence the analytic tableau formulations 

(analytic semantic tableau formulations) of some arbitrary ogic S is simply 

1 This paper was delivered by McEobbie at the 1976 Vacation School in Logic, 
held at the Victoria University of Wellington, New Zealand, from August 15-22, 
and was announced in [24]. Thanks for encouragement and many helpful discussions 
are due in particular to Dunn, Martin and Meyer and also to A.S. McEobbie, Mor 

tensen, Eennie, E. Eoutley and Eubenstein. Thanks also to the National Science 

Foundation for partial support of Belnap through Grant S0C71 03594 A04. 
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an analytic tableau system (analytic semantic tableau system) that is 

provably equivalent to S.2 In what follows, by 'tableau' we shall be 

referring to the proof theoretic species and not to the semantic one unless 

otherwise indicated. 

All conventions are adopted from [1]. The systems E, R, and RM 

are defined in ?27 of [1], and their implication-negation fragments E~^, 

R~>, and BM; are defined in ?14 of [1]. The system TV^ is the implication 

negation fragment of TV. 

I. 

In this section we will present the definitions of the various structures, 

and the concepts defined on these structures, which we shall be using. 
These definitions are essentially based on, and are extensions of, those 

given in Smullyan [32] and Toledo [35]. 
A tableau r is a finite tree to whose nodes formulas have been assigned. 

Some of the nodes may also be annotated in a sense to be specified. There 

may be barriers between certain adjacent nodes. We use <0, <, and < 

respectively for immediate predecessor, predecessor, and predecessor-identity. 
We let F be the function which assigns formulas to nodes, so that F(i) 

is the formula assigned to node i. An end node is one which is not the 

predecessor of any node. A branch of a tableau is a sequence of nodes 

commencing with the origin such that each node that is not an end node 

2 
Analytic semantic tableau formulations of the classical propositional calculus 

and its first-order extension are an adaptation of a method used by Hintikka in [14] 

for constructing model sets and of the semantic tableaux of Beth [3], which themsel? 

ves derive from the (proof theoretic) tableau-like methods used by Gentzen in [10] 

for proving theorems of his Sequenzenkalk?le. Such formulations were first given 

by Smullyan in a series of papers [28], [29], [30] and [31] and then received compre? 
hensive treatment by him in [32] and [33]. Davidson [5], Davidson, Jackson and 

Pargetter [6], Fitting [9], Girle [12] and Smullyan [34] have studied similar formu? 

lations of a wide range of modal logics (with necessity taken as a systemic primitive), 

while Smullyan in [34] has done the same for classical and intuitionistic logic. More 

recently Linden [20] has given analytic semantic tableau formulations of certain 

infinitary logics (although see his comments pp. 29-33 on the difference between 

syntactic and semantic transfinite tableaux), while Toledo [35] has done the same 

for a range of higher-order theories. Under the nom de plume of 
t 
truth trees9, analytic 

semantic tableau formulations of classical logics have been popularized by Gustason 

and Ulrich [13], Jeffrey [15], Leblanc and Wisdom [19], and Eennie and Girle [26]. 
As far as we know the only semantically based tableaustyle analysis of any relevant 

logics or parts thereof is the analytic semantic tableau formulation of the first-degree 

entailments of T, E and R given by Dunn in [7]. 
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of the tableau has as its immediate successor in the branch one of its 

immediate successors in the tableau. 

With each logical system S subject to our investigation we will be 

associating a tableau system TS. TS will be defined by (a) listing some 

rules which TS admits in the construction of its tableaux, and (b) listing 
some global requirements which the tableaux of TS must satisfy. We 

pause to characterize the two sorts of rules with which we shall be dealing. 
It is important to note that the prepositions "at" and "to" when italicized 

are being used technically and that special attention needs to be paid 
when they are used in this way. 

A connective rule is a rule applied at a given node n in some tableau 

to some node m < w, and, in a derivative sense, to the formula (of a prescri? 
bed form) assigned to m. The application of a connective rule to this for? 

mula generates (1) less complex formulas of a prescribed kind and (2) 
successor nodes to n. The generated formulas are assigned to the generated 

nodes in accordance with some prescribed pattern. The node n is annota? 

ted with "R(m)", where "R" stands in for the name of the connective 

rule applied at n. (We note that ordinarily (e.g., in [15]) it is the node(s) 

generated by application of a rule that is (are) annotated, but it will 

become clear why it is important for us to annotate the node at which 

the rule is applied rather than either the generated node(s) or the node 

to which the rule is applied.) A connective rule may also generate a barrier 

between n and its successor node(s); as is explained below, in certain 

systems only certain rules are allowed to "cross a barrier." 

A branch closure rule is a rule applied at a given end node n in some 

tableau to each member of a sequence of nodes mx, ...,mk^n, and deriva? 

tively to each member of a sequence of formulas (each one of which is of 

a prescribed form) assigned to the nodes mx, ..., mk. There are no new 

nodes or formulas generated by an application of a branch closure rule 

at n. The node n is annotated with "R(m17 ..., mk)", where "R" stands 

in for the name of the particular branch closure rule applied at n. 

Eecall that each TS has associated with it both a family of rules and 

some global requirements. The former permits us to define, abstractly 
and inductively, a TS-tableau: a finite unannotated chain of nodes to 

which formulas have been assigned is a TS-tableau, and if n is an end 

node of a TS-tableau at which no rule has been applied, then a new tableau 

resulting from the application at n of one of the rules admitted by TS 

is also a TS-tableau. 

Note that although a formula may have a rule applied to it more 

than once, no more than one rule can be applied at a node. Hence, if 

the end node of some branch of a tableau has a branch closure rule 

applied at it, then no further construction can take place in that branch. 

Such a branch is said to be closed. 
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For each TS-tableau r there is a uniquely determined sequence of 

nodes commencing with the origin of r and continuing to (and including) 
the first annotated node of r ? or continuing to the end of r if no node 

is annotated. We say that r begins with those nodes, and also that r begins 
with the sequence a of formulas assigned to those nodes. When thinking 
of building tableaux, we will also speak of beginning a tableau with a se? 

quence of formulas a-, i.e., constructing a sequence of nodes to which the 

members of a are assigned (in order). 
Global requirements are brought in to characterize those tableaux 

which really do some work for us. We say that r is a TS-refutation of 
a sequence of formulas a if (1) r is a TS-tableau, (2) r begins with a, and 

(3) r satisfies the global requirements of TS. In these circumstances we 

say that r is a TS-refuting tableau, and that a is TS-refutable. We write 

aYTS 

when a is TS-refutable. 

Note that the difference between TS-refuting tableaux and (mere) 
TS-tableax is satisfaction of the global requirements. 

Naturally refutability is the dual of provability; so we say that A 

is a theorem of TS just in case A YTS, and we write YTS A for theo 

remhood. 

In order to flesh out this abstract characterization, we next give 
the rules and the global requirements on which we shall be drawing. 
In our pictures, a solid [dotted] line from i down to j indicates i<0j 

[i^jl 
? 

i-e-j ?ur trees grow downwards. 

Connective rules 

Double Negation (^). 

Let A and A be assigned to i and j respectively and let n be annotated 

with ?v(i), where i < n <0j. Then we say that ^ has been applied at 

n to A at i, generating A at j. 

i A 

n m(i) 

3 A 

Negated Arrow (2^). 
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Let A->B, A and B be assigned to i, j and Tc respectively, and let n 

be annotated with ~ 
(?), where i^n <0j <0Tc. Then we say that ~ is 

applied at n to A->B at i, generating A at j and B at ft. 

i A->? 

n ?5; (i) 

i ? 

ft 5 

?<n<# Negated Arrow (S~). 

This rule is exactly like ?5:, except that a barrier is generated between 

the node n at which the rule is applied and its immediate successor node. 

We may indicate barriers by horizontal lines. Hence an application of 

the rule S~ has the following picture: 

i A^B 

n 8~{i) 
1 
I 

3 A 

ft B 

Arrow (-^). 

Let A->B, A and B be assigned to i, j and ft respectively, and let n 

be annotated with ->(i), where i^n<0j and i < n <0 ft and j ^Tc. 
Then we say that -> is applied at n to A->B at i, generating ? at j and 

JS at ft. 

n ->(i) 

/\ 
j A IB 
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Branch closure rules 

Closure (Cl). 

Let A and A be assigned to i and j respectively, and let n be annota? 

ted with Cl(i,j) where i,j^n. Then we say that Cl is applied at n to 

A at i and A at j. 

i A j ? 

j ? i A 

n Cl(i,j) n Cl(i,j) 

Mingle Closure (MCI). 

Let Ax, ...,Am, Ax, ..., Am be assigned to (not necessarily distinct) 
nodes ix, ...,im, im+l, ...,i2m(m^ 1) respectively, and let n be annota? 

ted with MCl(ix, ...., i2m), where for any j between 1 and 2m,ij^n. 
Then we say that MCI is applied at n to Ax, ..., Am at ix, ...,i2m re" 

spectively. 
The following illustrates one possibility: 

ix Ax 

i A 

lm + l Ax 

n MCl(ix, ...,i2m) 

Next we list the global requirements on which we shall draw. (Not all 

will apply to all systems.) 

Globai requirements 

Closure requirement. Every branch of r is closed, i.e., has a branch 

closure rule applied at its end node. 

Use requirement. If a formula at some node in r has a rule applied 
to it, then both the formula and the node will be said to be used. The 
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requirement is that each node in r (and hence the formula assigned to it) 
must be used at least once. 

This is the requirement with which we catch the concept of relevance 

in a tableau. If r satisfies the Use requirement, then it has no inessential 

ingredients, no loose pieces, no irrelevant or extraneous bits. 

Barrier requirement. A TS-tableau r satisfies the barrier require? 
ment iff the only rule which crosses a barrier is ->. That is, if there is 

a barrier between j and ft, and if any rule is applied at ft to j, then the 

rule must be ->.3 

Finally we may define the four tableau systems by stating for each 

(a) which rules it admits and (b) which global requirements it imposes 
on its tableaux. This may be summed up in the following table: 

Eules Global requirements 

TTF~ 

tr7 
TRM~ 

TE~ 

"* 

*,-, ~,Cl 

i, -*, ~,MCl 

Closure 

Closure, Use 

Closure, Use 

Closure, Use, Barrier 

Theoeem 1. Let S be E^,R^, RM~ or TV~. For all formulas A, 

\~ts A iff t-s-A, i.e., iff there is a proof of A in the corresponding Hubert 

system S. 

The proof will be expedited by a detour. 

II. 

With Theorem 1 in mind, in this section we prseent "lefthanded" 

Gentzen formulations of the four systems of interest as intermediaries 

between the Hubert calculi and the tableau systems. Notation is from 

3 
This requirement turns out to be modal in character, answering to the necessi 

tive character of entailments. The concept of a barrier was suggested by Meyer (to 
whom the appropriate thanks go) as a simplification of a more complex earlier device. 

By varying the conditions on what rules can cross barriers and certain other conditions, 
it is possible to provide analytic tableau formulations of many strict implicational 
calculi and of the same calculi alternatively formulated using and <>. See Mc? 

Eobbie [23]. 
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?13.1 of [1]. Greek letters stand for sequences of formulas; all members 

of a have the form A-^B; ? is the sequence of negations of members of a. 

We give a set of axioms and rules from which the various left handed 

Gentzen formulations of E~, R~, RM~ and TV- are defined. 

A, AY (Axh) 

Permutation (C Y) 
a, A, B, ?Y ' 

a,B,A,?Y 

Double Negation ( 
a, A Y 

a, 2 Y 

Negated Arrow (j^ 
a, A, BY 

Axioms 

a, a h (MAx Y) 

Steuctueal Eules 

Contraction (W Y) 
a, A, AY 

a, A Y 

Connective Eules 

Weakening (K Y) 
a Y 

a, A Y 

H) 

H) 

Arrow (-+ Y) 

a, I Y?,B Y 

"a, ?, A->B~Y 

Strict Negated Arrow (8f_ 

a, A, B Y 

I-) 

a, A-+B Y a,A->B Y 

The left handed Gentzen systems for ?7-, R^, RM^ and TVX are defined 

from these as follows. 

Y, 8: LXE^ 
= 

Ax, C Y, W Y, ^Y, 

LXR^ 
= 

Ax, G Y, W Y, ^ Y, -> Y, 
~ Y 

LXRM^ 
= 

MAx, C Y, W Y, & Y, -> h, 
~ Y 

LflV- 
= 

Ax, C Y, W Y, K Y, *t Y, ->Y, 
~ h 

We write a 
YLlS 

when a F- is a theorem of _LZS. 

Theoeem 2. Let S be JB., j?~, RM^ or TF~. For all formulas 

A, YSA iff A 
YLl&. 

That is, the left-handed systems exactly correspond to 

the respective Hubert systems. 

Peoof. The cases for JE~ and jR^ can be recovered from ?13 of [1], 
since the systems X?S are the duals of the right handed systems LrS 
treated there. The result for BM~ is new, but straightforward. The case 

for TV can be extracted from Gentzen [10]. 
The next theorem gives us half of the equivalence between the tableau 

svstems and the left-handed systems. 

Theoeem 3. For each considered S, if a 
YLlS 

then a YTS. 
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Peoof is by straightforward induction on the length of the proof 
of a h in X?S. 

If a h is an axiom of LlS, then beginning a tableau with a and apply? 

ing the appropriate branch closure rule at its last node to all its nodes 

constitutes a refutation, in the appropriate system, of a. 

For the remaining rules of the I^S-calculi, we assume we have 

TS-refutations of their premiss or premisses and then show how to con? 

struct a TS-tableau which will refute its conclusion because it satisfies 

the various global requirements of TS. 

Permutation. Begin a tableau with its conclusion, and continue it 

in exactly the same way as for the tableau refuting its premiss, except 
for switching annotations referring to the permuted items. Because only 
the last node of the beginning of the tableau is annotated, all ?o-nodes 

will remain above their a/-nodes, and there will be no problem about 

barriers. Nor is there any problem about any of the global requirements. 

Contraction. Begin a tableau with its conclusion, and continue it 

in exactly the same way as the tableau refuting its premiss, except change 
references to one of the J.'s to become references to the other. Note in 

particular that MCI permits repetition of a node in its annotation. There 

is no problem about any of the global requirements. 

Weakening. Begin a tableau with its conclusion, and continue it 

in exactly the same way as the tableau refuting its premiss. The inserted 

step will not be used, but this is not a problem since if L?S has Weaken? 

ing as a rule, then TS does not have the Use requirement. 
Of the connective rules, we go through only Arrow and Strict Negated 

Arrow. 

Arrow. By hypothesis we have refutations rx of a, A and r2 of ?, B. 

Begin a tableau with the conclusion of Arrow, and apply -> at its last 

step. Now continue down the left as in rx, and down the right as in r2, 

changing annotations to suit. Clearly the Closure and Barrier requirements 
will be satisfied by the constructed tableau if satisfied by the given ones, 
and so will the Use requirement, since members of a and ? are used 

(just) down the left side, members of ? and B are used (just) down the 

right side, and A->B is used at itself. 

Strict Negated Arrow. By hypothesis we have a refutation r of the 

premiss. Begin a tableau with the conclusion of Strict Negated Arrow, 
and apply S~ at its last step. Now continue with r, changing annotations 

to suit. Because of the restriction on Strict Negated Arrow, the Barrier 

requirement will be satisfied by the constructed tableau if satisfied by 
t; and so will the Use and Closure requirements. 
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We leave verification of the other rules to the reader.4 

Theorem 4. For each considered S, if a YTS then a YLS. 

Peoof. We shall see that a TS-refuting tableau can be looked at 

as a sort of Gentzen proof turned upside down; the global restrictions 

will come heavily into play. 
From this point onward we follow Curry's lead [4] by "identifying*' 

sequences which are permutes of each other (all our Lfsystems have 

permutation) 
? but we shall have to keep track of which formulas occur 

in our sequences, and how many times each occurs (some of our Trsystems 
do not have Weakening). 

Given any TS-refuting tableau, we define a function Seq from its 

nodes into sequences of formulas as follows: for each node n, A is to 

have nA occurrences in Seq(n) just in case there are nA distinct appli? 
cations of rules at nodes > n to nodes < n to which A is assigned (count? 

ing separately for multiple mentions of the same node in MCI)-, that is, 

just in case n is caught nA times between the at and the to of an appli? 
cation of a rule to A-, that is, just in case there are nA triples (i, j, m} 

where i and j are nodes and m is an integer, such that i ̂ n < j, F(i) ?A, 
and the mth member of the annotation at j is i. 

Lemma. If r is a TS-refuting tableau, then for each annotated node 

n of r, i.e., for each node n at which a rule is applied, Seq(n) YLS. 

Proof is by induction on the number of annotated nodes succeeding 
a given annotated node. 

Suppose first that n is an end node. By the Closure requirement, n must 

be annotated by an appropriate branch closure rule Cl or MCI-, since 

there will be in Seq(n) an occurrence of a formula corresponding to each 

reference to it in the annotation of n, Seq(n) Y will be an axio m of L?S. 

Second, suppose n is annotated with ->(?), where F(i) 
= A->B. Let 

j and ft be the immediate successors of n, so that F(j) 
= A and F(k) 

? 
B. 

Let Seq(j) 
= 

a, A, ..., A, with jA As corresponding to references to j, 
and let Seq(k) 

= 
?, B, ..., B, with kB Bs corresponding to references to ft, 

where jA, kB > 0, and where a and ? contain formulas corresponding to 

references to nodes < n. Clearly Seq(n) 
= 

a, ?, A->B. Now by inductive 

hypothesis, Seq(j) YLlS 
and Seq(k) YLlS. 

If TS requires Use, then jA, 

kB > 1. If not, LXS has Weakening, so we may anyhow suppose jA, kB > 1. 

By Contraction and -> Y, Seq(n) YLlS. 

4 Theorem 3 can be established directly in the fashion of McEobbie [22]; i.e., 

a detour via L?S is not necessary. What is primarily involved in this proof is proving 
a tableau-theoretic equivalent of Gentzen's Hauptsatz (see Gentzen [10]) for TS', 

where TS' is just TS plus a tableau-theoretic equivalent of Gentzen's rule cut. 
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Third, suppose n is annotated with A? (i) or $-=? (i), where T7^) 
= A->B. 

Let j be the successor of n, and ft the successor of j, so that F(j) 
= A 

and jP(fc) 
= 5. Let Seq(k) 

= 
a, A, ..., A, B, ..., B, with kA As corre? 

sponding to references to j, and kB Bs, corresponding to references to ft, 

each > ?. Since j is not annotated, Seq(n) 
= 

a, A-+B. By the hypothesis 
of the induction, ft being annotated, Seq(k) YLS. As before, if TS requires 

Use, kA, fc#> 1, while if not TZS has Weakening, so we may anyhow 

suppose kA,kB^ 1. By contraction, a, A, B YLS. If TS requires Barrier, 

every member of a is an implication, since all the references it represents 
will cross the barrier generated by the application of ?A- at n; so that 

8eq(n) YLlS by 8-=+ Y. Otherwise ~> Y produces the same result. 

The case when n is annotated with ^ is left to the reader. 

Eeturning to the proof of Theorem 4, we suppose a YTS, and note 

by the Lemma that Seq(n) YLS, where n is the first annotated node 

in a tableau TS-refuting a; by Closure there will be such anode. Seq(n) 
can contain no formula not in a. For each formula A in a, let mA be its 

number of occurrences in a and let nA be its number of occurrences in 

Seq(n). If TS imposes the Use requirement, nA^ mA^ 1; and if not, 

Weakening is available in X?S, so that it is anyhow harmless to suppose 

nA > mA > 1. So a 
YLlS by Contraction. 

Finally, we note that Theorem 1 is an immediate consequence of 

Theorems 2-4: the tableau and Hubert systems are in the appropriate 
sense equivalent. 

III. 

We conclude with a short list of some of the more interesting problems 
raised by the results we have presented in this paper. 

1. The analytic tableau formulation of B_~ given in this paper has 

been extended to the system R+ by McEobbie in [21]. Can it be extended 

further to all of ?? 
' 

2. There is a precise translation between analytic semantic tableau 

formulations and analytic tableau formulations of TV and a large number 

of modal logics, (e.g., see McEobbie [23]). Analytic semantic tableau 

formulations of E~^, R^ and BM~ can be quite straightforwardly extracted 

from the semantics given for their parent systems in Eoutley and Meyer 

[27]. Are the analytic semantic tableau formulations and the analytic 
tableau formulations of these logics intertranslatable ? Put more generally, 

what do the systems TE-,, TR^ and TRM^ mean from the point of 

view of the Eoutley /Meyer semantics? 
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3. By dropping the rule ^ from TE^, TR^ and TRM~^, and adjusting 
Cl and MCI so that closure can only take place on propositional variables 

and their negates, it can easily be shown that we have the analytic tableau 

formulations of E_+,R_^ and RM_+. What do these formulations mean 

from the point of view of the semilattice semantics given for these logics 

by Urquhart in [36]? What does the system TR+ mean from the point 
of view of the theory of Dunn monoids given by Meyer in [25]? The 

relation between TTV and Boolean algebras is discussed by Eytan in [8]. 

4. Decidability for various analytic tableau formulations of various 

strict implicational calculi can be straightforwardly extracted from Da? 

vidson, Jackson and Pargetter [6], and it is a trivial exercise to show 

that TTV can be used to show TV decidable. Can the systems TE^, TR~^ 
and TRM^ be used to show E^, R^ and RM^ decidable directly without 

translating them into the respective left handed Gentzen systems whose 

decidability is known (e.g., see Kripke [17] and Belnap and Wallace [2])? 

5. What are the analytic tableau formulations of at least the impli? 

cation/negation fragments of the weak relevant systems T, T-W, S and B ? 

We close with a final observation. Until this paper, tableau systems 
have always been construed semantically ; and even our given results, our 

tableau systems still have a strong semantical flavour. This fact taken 

together with the essential simplicity of operation of our tableau systems 
leads us to speculate that there may in fact be a simpler semantics for 

E, R and RM than those given by Eoutley and Meyer in [27], which 

are the best results to date. 
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