The present investigation examined the sexual dimorphic patterns of cardiorespiratory fitness to working memory in preadolescent children (age range: 7.7–10.9). Data were collected in three separate studies (Study 1: n = 97, 42 females; Study 2: n = 95, 45 females; Study 3: n = 84, 37 females). All participants completed a cardiorespiratory fitness assessment in addition to a specific measure of working memory (i.e. the operation span task, the n-back task, or the Sternberg task). Results from all three samples revealed that higher cardiorespiratory fitness levels were associated with better working memory performance only for males with no such relation observed for females. In addition, the sexually dimorphic pattern was selective for the most challenging working memory conditions in each task. Together, these findings reveal new evidence that cardiorespiratory fitness is selectively related to better working memory performance for male children. This investigation provides additional insight into how interventions aimed at improving fitness may influence cognitive development differentially among preadolescent children.

Research highlights

- The relation of fitness to working memory is selective for prepubertal male children with no such relation observed for females.
- For males, the fitness–working memory relationship is generalized across several constructs of working memory, yet selective for conditions that placed greater demand on working memory.
- Only at higher fitness levels do males demonstrate greater working memory performance compared to females, revealing that sexual dimorphic patterns of cardiorespiratory health differentially influence working memory performance.
- These sex-related differences provide a link for future research aimed at elucidating the benefits of fitness on mechanisms of brain health and cognition.

Introduction

Physical inactivity has been described as a global health pandemic (Kohl, Craig, Lambert, Inove, Alkandari et al., 2012) and has been identified as the fourth leading risk factor for non-communicable diseases (World Health Organization [WHO], 2009). Perhaps more alarming is evidence indicating that this trend is increasing among school-age children (Hallal, Andersen, Bull, Guthold, Haskell et al., 2012), with more youth being diagnosed with type-II diabetes and obesity as inactivity rates continue to rise (Eisenmann, 2003). Such trends are likely exacerbated by reductions in opportunities for physical activity during the school day (e.g. more than 44% of school districts in the US have reported reductions; Andersen, Crespo, Bartlett, Cheskin & Pratt, 1998; Centers for Education Policy, 2007; Institute of Medicine of the National Academies [IOM], 2013; Sisson, Church,
explored fitness-related differences in children (e.g. age, sex), but also on the cognitive and brain health benefits associated with improvements in cardio-respiratory fitness (see Hillman, Erickson & Kramer, 2008, for review; IOM, 2013; National Association for Sport and Physical Education, 2008).

To date, the majority of research is consonant in demonstrating a positive relationship between fitness and academic achievement (Castelli, Hillman, Buck & Erwin, 2007; Chomitz, Slining, McGowan, Mitchell, Dawson et al., 2009; Donnelly, Greene, Gibson, Smith, Washburn et al., 2009), and aspects of cognitive control that support scholastic performance (Diamond, Barnett, Thomas & Munro, 2007) including working memory (Kamijo, Pontifex, O'Leary, Scudder, Wu et al., 2011; Scudder, Lombourne, Drollette, Herrmann, Washburn et al., 2014). Cognitive control refers to top-down, goal-directed operations that assist with selection, scheduling, maintaining, and coordinating processes that underlie perception, memory, and action (Norman & Shallice, 1986; Rogers & Monsell, 1995). Working memory is a key component of cognitive control that represents a hierarchical system involving the short-term, transitory storage and manipulation of information in the service of motivated behavior (Baddeley & Hitch, 1974; Cowan, 1995, 1999; Kane & Engle, 2002). Prior evidence elucidating the relationship between working memory and fitness has been derived from cross-sectional research. For example, Scudder et al. (2014) found that a field test of cardiorespiratory fitness had a beneficial relation with working memory performance using a spatial n-back task in a cohort of 397 preadolescent children. Interestingly, the relation was strengthened during task conditions requiring greater amounts of working memory (i.e. 2-back trials).

This and other investigations (Kamijo et al., 2011; Scudder et al., 2014) have provided emerging evidence on the relation of higher fitness with enhanced working memory performance among children while minimizing potential bias by matching groups based on individual differences (e.g. age, socioeconomic status, pubertal timing, IQ, sex); however, few studies have systematically explored fitness-related differences in children’s working memory among these key demographic characteristics. Specifically, a separate line of research has demonstrated a unique contribution of sex to various cognitive abilities including working memory. Across the lifespan, research findings demonstrate a male advantage on select spatial and working memory-related tasks (Astur, Tropp, Sava, Constable & Markus, 2004; Kaufman, 2007; Levine, Huttenlocher, Taylor & Langrock, 1999; Masters & Sanders, 1993; Moore & Johnson, 2008; Parsons, Larson, Kratz, Thiebaux, Bluestein et al., 2004; Peters, Laeng, Latham, Jackson, Zaiyouna et al., 1995; Quinn & Liben, 2008; Vecchi & Girelli, 1998), including: the mental rotation task (Linn & Petersen, 1985; Shepard & Metzler, 1971; Vandenberg & Kuse, 1978), the spatial digit span task (Geiger & Litwiller, 2005), the spatial transformation task (Levine et al., 1999), working memory span tasks (Kaufman, 2007), and object location memory tasks (Postma, Jager, Kessels, Koppeschaar & Van Honk, 2004).

These working memory differences have been attributed to a variety of developmental variations between males and females including differential rate of brain development and function. Specifically, research has demonstrated sexually dimorphic patterns in the latency and duration of brain maturation (Blakemore, Burnett & Dahl, 2010; Colom, Stein, Rajagopalan, Martínez, Hermel et al., 2013; Giedd, Vaituzis, Hamburger, Lange, Rajapakse et al., 1996), with such differences observed in cortical and sub-cortical structures associated with cognitive control processes (Bramen, Hranilovich, Dahl, Forbes, Chen et al., 2011; Christakou, Halari, Smith, Ifkovits, Brammer et al., 2009; Davies, Segalowitz & Gavin, 2004; De Bellis, Keshavan, Beers, Hall, Frustaci et al., 2001; Rubia, Hyde, Halari, Giampietro & Smith, 2010) including regions associated with working memory (Colom et al., 2013; D’Esposito, Detre, Alsop, Shin, Atlas et al., 1995). Such regions include the prefrontal cortex (D’Esposito, Postle & Rypma, 2000; Diamond, 2002; Owen, Evans & Petrides, 1996; Petrides, 1989), the anterior cingulate cortex (ACC; Osaka, Osaka, Kondo, Morishita, Fukuyama et al., 2003; Smith & Jonides, 1999), and the hippocampus (Axmacher, Henseler, Jensen, Weinrich, Elger et al., 2007; Axmacher, Henseler, Jensen, Weinrich, Elger et al., 2010; Chein, Moore & Conway, 2011; Colom et al., 2013; Faraco, Unsworth, Langley, Terry, Li et al., 2011; Hannula, Tanel & Cohen, 2006; Oztekin, McElree, Staresina & Davachi, 2009; van Vugt, Schulze-Bonhage, Litt, Brandt & Kahana, 2010; Warren, Duff, Tanel & Cohen, 2011). For example, developmental neuroimaging studies demonstrate that during cognitive control tasks (i.e. switching, inhibition, and working memory) neural activation (i.e. fMRI) increases with age to a greater degree in frontal regions for females and temporal-parietal regions for males (Bell, Willson, Wilman, Dave & Silverstone, 2006; Christakou et al., 2009; De Bellis et al., 2001; Goldstein, Jerrom, Poldrack, Anagnoson, Breiter et al., 2005; Rubia et al., 2010; Thomsen, Hugdahl, Ersland, Barndon, Lundervold et al., 2000; Weiss, Siedentopf, Hofer, Deisenhammer, Hoftman et al., 2003). Furthermore, total volume of the female hippocampus during the early stages of development gradually increases through adolescence and results in greater cell density compared to...
the male hippocampus (Filipek, Richelme, Kennedy & Caviness, 1994; Giedd et al., 1996; Murphy, DeCarli, McIntosh, Daly, Mentis et al., 1996). By adulthood the hippocampal formation appears lateralized with the right formation being larger (Colom et al., 2013) and more active (fMRI; Frings, Wagner, Unterrainer, Spree, Halsband et al., 2006) than the left in males compared to females. Given that neural activation associated with working memory depends on such inter-related cortical and sub-cortical regions, it is interesting that these hemispheric lateralization effects between males and females have also been observed while participants performed working memory tasks (Hugdahl, Thomsen & Erslan, 2006; Speck, Ernst, Braun, Koch, Miller et al., 2000). Taken together, these sexually dimorphic differences in brain development suggest a neural substrate for sex differences in working memory performance.

Further, these regions associated with working memory are also amenable to changes in cardiorespiratory fitness (Chaddock, Erickson, Prakash, Kim, Voss et al., 2010; Colcombe, Erickson, Raz, Webb, Cohen et al., 2003; Colcombe, Kramer, Erickson, Scaf, McAuley et al., 2004; Colcombe, Erickson, Scaf, Kim, Prakash et al., 2006; Erickson, Prakash, Voss, Chaddock, Hu et al., 2009; Erickson, Voss, Prakash, Basak, Szabo et al., 2011; Kramer & Erickson, 2007). For example, research has demonstrated larger bi-lateral hippocampal volume (along with superior relational memory performance) in higher-fit compared to lower-fit children (Chaddock et al., 2010), and in older adults who participated in an exercise intervention compared to control participants (Erickson et al., 2011). Such volumetric fluctuations in cortical and sub-cortical regions are typical especially among developing populations, and possibly represent neuronal proliferation, synaptic pruning, and myelination (Eriksson, Perflieva, Björk-Eriksson, Alborn, Nordborg et al., 1998; Kornack & Rakic, 1999); processes which facilitate the growth, development, and efficiency of cognitive processing. Therefore, it is interesting that fitness is not only associated with improved working memory performance, but also with greater volume in brain structures supporting working memory.

Taken together, it is surprising that previous research has left the contribution of fitness on working memory performance between males and females unexplored given these unique sexually dimorphic differences in behavior outcomes and underlying neural mechanisms associated with working memory. To our knowledge, no investigations have explored the combination of these research threads; however, previous research has provided some evidence for sexually dimorphic effects of fitness on scholastic performance (Grissom, 2005; Kwak, Kremers, Bergman, Ruiz, Rizzo et al., 2009; Sigfúsdóttir, Kristjánsson & Allegrante, 2007) with higher fitness associated with better academic achievement only in males (Kwak et al., 2009). Thus, given the unique relation of working memory with various academic outcomes (Gathercole & Pickering, 2000; Geary, Hoard, Byrd-Craven & DeSoto, 2004), the aim of the present study was to extend these findings and examine whether fitness differentially modulates sex differences in working memory. In accordance with prior work (Kamijo et al., 2011; Scudder et al., 2014) we hypothesized a relationship between higher fitness and better working memory performance, with selectively greater associations for task conditions that placed increased demand on working memory. Further, based on the academic achievement literature (Kwak et al., 2009; Sigfúsdóttir et al., 2007), it was predicted that such associations would manifest more strongly for males relative to females.

Study 1

The operation span task (OSPAN; Turner & Engle, 1989) is a working memory span (WMS) task (Conway, Kane, Bunting, Hambrick, Wilhelm et al., 2005) which taps constructs including maintenance of memory representations and controlled attention under conditions of distraction or interference (see Engle & Kane, 2004, and Conway et al., 2005, for reviews). Such WMS tasks have demonstrated important individual differences related to sex. For example, research has indicated that adult males outperform females on various WMS tasks including the OSPAN (Kaufman, 2007). To our knowledge, the OSPAN has not been used in prior studies examining the relation between fitness and working memory performance in children and thus provides new insight into the differential relation of fitness and working memory between males and females.

Methods

Participants

One hundred and seventeen (56 females) preadolescent children were recruited from the East-Central Illinois area. Participants were excluded for incomplete demographic data (n = 8; e.g. socioeconomic status, puberty timing, grade, etc.), task performance below 50% (n = 6), and failure to achieve maximal aerobic capacity criterion during the cardiorespiratory fitness assessment (n = 6; see Cardiorespiratory Fitness Assessment methods). Thus, analyses were conducted on the remaining 97 (42 females) preadolescent children (age range: 7.9–10.9 years). All
OSPAN task

Stimuli were presented focally on a computer screen at a distance of 1 meter using Neuroscan Stim software (Compumedics, Charlotte, NC). A single word was presented followed by an arithmetic problem; both of which were required to be read aloud, and together constituted one trial. After reading the arithmetic problem aloud, participants were instructed to respond as accurately as possible with a left thumb press (using a response pad) if the solution was incorrect, or a right thumb press if the solution was correct. Once the to-be-remembered word was read aloud and the math operation was solved, the next trial was presented. Following the final trial of each set a prompt appeared instructing the participant to recall and write down remembered words (in order of presentation). This recall phase signified the end of a set, and each set varied between one and four trials.

All participants completed four blocks that each contained four sets, one of each set size (1, 2, 3, and 4 trials presented in random order), for a total of 40 word-operation trials or 16 sets. To ensure that math computation successfully prevented mental rehearsal, a 50% accuracy inclusion criterion was set. Although prior research recommends that a higher math accuracy cut-off be used for inclusion criterion (Conway et al., 2005), such a criterion applied to the present study only eliminated females from the sample, thus biasing the results. Therefore, a chance criterion (i.e. 50%) was adopted to control potential bias related to sex differences in arithmetic ability. 2 For practice, all participants received one block of set sizes 2, 3, and 4 (nine trials total). Words were presented for a duration of 1000 ms with an inter-stimulus interval (ISI) between words and arithmetic problems set at 1100 ms. Arithmetic problems were presented for up to 10 seconds or until a response was made. Word recall OSPAN accuracy was calculated as total trials in a correctly recalled set (e.g. 2 correctly recalled words in a set of 2 = score of 2; 3 correctly recalled words in a set of 4 = score of 0), and recalled in the correct order, divided by total trials possible (i.e. 40). (see Conway et al., 2005, for calculation method).

Cardiorespiratory fitness assessment

Maximal aerobic capacity (VO\textsubscript{2max}; expressed in ml/kg/min) was measured on a motor-driven treadmill following a modified Balke protocol (American College of Sports Medicine [ACSM], 2010). Prior to testing, all participants had their height and weight measured and were fitted with a Polar heart rate (HR) monitor (Polar WearLink®+ 31, Polar Electro, Finland) to measure HR throughout the test. Following a warm-up period, the treadmill was set to a constant speed during the remainder of the test, while grade increments of 2.5% occurred every 2 minutes until volitional exhaustion. Oxygen consumption was measured using a computerized indirect calorimetry system (ParvoMedics True Max 2400) with averages for oxygen uptake (VO\textsubscript{2}) and respiratory exchange ratio (RER) assessed every
20 seconds. Concurrently, ratings of perceived exertion (RPE) were measured every 2 minutes using the children’s OMNI scale (Utter, Robertson, Nieman & Kang, 2002). VO$_{2\text{max}}$ was defined as the highest oxygen consumption corresponding to a plateau in oxygen uptake (i.e. an increase of less than 2 ml/kg/min despite an increase in exercise workload) or a minimum of 2 of the following criteria: (1) a peak heart rate \geq 185 bpm (ACSM, 2010) and a heart rate plateau (Freedson & Goodman, 1993); (2) RER \geq 1.0 (Bar-Or, 1983); and/or (3) ratings on the children’s OMNI scale of perceived exertion \geq 8 (Utter et al., 2002). Participants were excluded if they did not achieve a plateau or any combination of two of the remaining criteria.

Procedure

All participants completed preliminary screening, along with cognitive and cardiorespiratory fitness assessments, in a single session in the laboratory. In preparation for testing, participants were instructed to avoid moderate to vigorous physical activity and to limit foods and beverages containing caffeine (12 hours prior to testing) while otherwise maintaining a normal daily routine. After completing informed assent/consent, a brief IQ exam was administered by a trained laboratory staff member while parents completed health history and demographics questionnaires, as well as other prescreening measures described previously. Cognitive testing took place in a separate room while participants were seated in a quiet testing chamber. All participants were instructed on appropriate completion of the working memory task and given practice trials prior to testing. Following cognitive testing, participants completed a graded exercise test on a motor-driven treadmill to assess cardiorespiratory fitness level. Fitness assessment was always performed at the end of either session to avoid any confounding effects related to acute physical activity on cognitive task performance (Drollette, Scudder, Raine, Moore, Saliba et al., 2014; Drollette, Shishido, Pontifex & Hillman, 2012; Hillman, Pontifex, Raine, Castelli, Hall et al., 2009; Pontifex, Saliba, Raine, Picchietti & Hillman, 2013).

Statistical analysis

Data were analyzed using SPSS (SPSS v. 22, Chicago, IL) with the family-wise alpha threshold for all tests set at $p = .05$. Demographic, fitness, and behavioral differences between males and females were evaluated using independent t-tests. Bivariate correlations were conducted utilizing Pearson product-moment correlation coefficients. Collective (i.e. all participants) and separate correlation analysis (i.e. groups separated by sex) were conducted between working memory measures, age, grade, SES, IQ, BMI, and cardiorespiratory fitness (i.e. VO$_{2\text{max}}$). Further, primary linear regression analyses were performed with demographic factors that were significantly correlated with working memory performance entered as covariates, sex (coded: 0 = females, 1 = males), fitness, and a two-way interaction of sex \times fitness. If the interaction product of sex \times fitness reached significance (i.e. suggesting sexual dimorphic patterns of cardiorespiratory fitness on working memory) further decomposition was performed using hierarchical linear regression analyses separately for male and female groups. This was accomplished by regressing working memory measures with statistically significant demographic correlates in Step 1 and fitness in Step 2. The change in the R-square value between Step 1 and Step 2 was used to determine whether the independent contribution of fitness explained a significant portion of variance in working memory. Based on the a priori hypotheses, only regression analyses revealing an effect of fitness are reported.

Further, given the small sample size (when parsing groups by sex) an additional bootstrapping procedure (Efron & Tibshirani, 1993; Shout & Bolger, 2002) was utilized to increase confidence in the reliability of the regression results. This was accomplished by re-sampling with replacement 500 samples derived from the original sample. Thus, 95% confidence intervals of unstandardized coefficients derived from bootstrap analysis are included in the regression results. In addition, simple slope analysis (Aiken & West, 1991; Jaccard & Turrisi, 2003) was performed to further decompose the interaction of sex \times fitness. The purpose of this analysis was to examine the main effect of sex at higher and lower levels of cardiorespiratory fitness. This was accomplished by: (1) standardizing (i.e. z-score) dependent and predictor variables, (2) re-centering fitness at one standard deviation above and below the mean, and (3) performing the primary linear regression analysis with the re-centered fitness values.

Results

Means and standard error of the mean (SEM) are reported for demographic, fitness, and OSPAN behavioral variables in Table 1. As expected, fitness levels were higher for males (42.8 ± 1.12 ml/kg/min) compared to females (39.4 ± 1.03 ml/kg/min), $t(95) = 2.19, p \leq .05$ (see Sallis, 1993, for a review on cardiorespiratory fitness and sex differences). However, males (23.5–60.8 ml/kg/min) and females (23.1–59.8 ml/kg/min) had a similar range of fitness levels. Lastly, males (91.6 ± 1.05%)
performed more accurately than females (86.9 ± 1.91%) only for math accuracy, \(t(95) = 2.29, p < .05 \).

Bivariate correlations

Correlations (i.e. collective and parsed by sex) revealed that higher age, grade, and IQ were related to greater OSPAN accuracy, math accuracy, and shorter math RT (\(r^2 \) = 0.28). Thus, age, grade, and IQ were included as covariates in the regression models along with sex, fitness, and the interaction product of sex × fitness.

Regression analysis

The linear regression analysis for OSPAN word recall performance revealed a main effect of sex such that males performed better than females, \(\beta = -0.18, t(90) = 2.21, p < .05, 95\% \text{ CI} = [-0.870, 0.244] \). OSPAN accuracy, math accuracy, and shorter math RT were included as covariates in the regression models along with sex, fitness, and the interaction product of sex × fitness.

However, simple slope analysis revealed no main effect of sex on OSPAN word recall performance when re-centering the fitness values 1 SD above the mean, \(\beta = -0.07, t(90) = 0.56, p = .58, pr = -0.06, 95\% \text{ CI} [-0.77, 0.36] \), suggesting that sexually dimorphic differences in working memory performance emerge only at higher fitness levels and are eliminated at lower fitness levels. However, since males demonstrate greater fitness levels on average compared to females, sexually dimorphic differences might be due to the lack of higher-fit females in this sample. Thus, planned comparisons were performed to evaluate groups matched for fitness. This was accomplished by binning participants into quartiles based on female fitness measures. All participants within the upper quartile range (43.5–59.8 ml/kg/min; excluding males with fitness levels above the quartile limits) were retained for OSPAN performance comparisons. Results revealed greater accuracy for males (OSPA N = 0.36) compared to females (OSPA N = 0.18), \(t(37) = 2.33, p < .05 \), suggesting that even when matching groups based on fitness, \(t(37) = 1.29, p = .21 \), dimorphic sex differences remain for working memory performance at higher fitness levels.

Discussion

We examined whether cardiorespiratory fitness differentially modulated working memory performance in male and female children using the OSPAN task. Collectively, results revealed that higher fitness was significantly associated with greater working memory performance...
in males but not for females. Thus, we demonstrated a sexually dimorphic pattern such that higher fitness levels are related to greater working memory capacity in developing male children, but not for female children.

Study 2

The second study investigated the same relations with the exception of employing an n-back task as the index of working memory performance. The n-back measures several components of working memory that are not shared with WMS tasks such as the OSPAN. To illustrate, Kane, Conway, Miura and Coffield (2007) investigated the relation between the n-back and various WMS tasks. Consonant with previous investigations (Oberauer, 2005; Roberts & Gibson, 2002), a weak correlation was observed between the tasks, suggesting that although the WMS tasks and the n-back share some constructs such as maintenance, controlled attention under conditions of interference, and updating, they are not measuring identical constructs (Kane et al., 2007). Therefore, if the sexually dimorphic patterns of fitness are related to general constructs of working memory, then similar results would be expected for the n-back. Lastly, unlike the OSPAN, the n-back provides a clear representation of incremental increases in working memory demand (i.e. 0-back to 2-back), allowing for a more detailed replication of fitness effects on conditions that require greater working memory demand.

Methods

Participants

One hundred and eight (54 females) preadolescent children were recruited from the East-Central Illinois area. All participants stemmed from a larger clinical trial (FITKids; Hillman, Pontifex, Castelli, Khan, Raine et al., 2014). The purpose of the FITKids Trial was to investigate the effects of a 9-month physical activity intervention on changes in cognitive and brain function, and academic achievement in preadolescent children. The data presented herein were derived from the baseline assessment. Participants were excluded from Study 2 due to incomplete demographic data (n = 5), task performance below zero on the d’ measures (n = 3), and failure to achieve maximal aerobic capacity criterion during the cardiorespiratory fitness assessment (n = 5; see Cardiorespiratory Fitness Assessment methods in Study 1). Thus, analyses were conducted on the remaining 95 (45 female) preadolescent children (age range: 7.7–10 years). All participants provided written assent and their legal guardians provided written informed consent in accordance with the Institutional Review Board (IRB) of the University of Illinois at Urbana-Champaign. Prior to testing, legal guardians completed a battery of health history and demographic questionnaires on behalf of the participant. Health history documentation and prescreening information were collected utilizing the protocol employed in Study 1.

Table 2 Study 1: summary of hierarchical regression analysis for variables predicting OSPAN accuracy in male (n = 55) children

<table>
<thead>
<tr>
<th>Measure</th>
<th>B</th>
<th>SE B</th>
<th>β</th>
<th>t</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Age</td>
<td>.082</td>
<td>.066</td>
<td>.33</td>
<td>1.24</td>
</tr>
<tr>
<td>Grade</td>
<td>.000</td>
<td>.046</td>
<td>.00</td>
<td>0.01</td>
<td>(-.113, .068)</td>
</tr>
<tr>
<td>IQ</td>
<td>.005</td>
<td>.002</td>
<td>.30*</td>
<td>2.31</td>
<td>(.001, .010)*</td>
</tr>
<tr>
<td>Step 2</td>
<td>Age</td>
<td>.078</td>
<td>.063</td>
<td>.31</td>
<td>1.23</td>
</tr>
<tr>
<td>Grade</td>
<td>.002</td>
<td>.044</td>
<td>.01</td>
<td>0.05</td>
<td>(-.106, .070)</td>
</tr>
<tr>
<td>IQ</td>
<td>.005</td>
<td>.002</td>
<td>.26*</td>
<td>2.23</td>
<td>(.001, .009)*</td>
</tr>
<tr>
<td>Fitness</td>
<td>.006</td>
<td>.003</td>
<td>.26*</td>
<td>2.26</td>
<td>(.001, .013)*</td>
</tr>
</tbody>
</table>

Note: R² = .23 for Step 1; ΔR² = .07 for Step 2 (p ≤ .05). 95% CI = confidence interval of unstandardized B coefficients derived from bootstrap analysis. *p ≤ .05.

Figure 1 Scatter plot for the sexual dimorphic bivariate relation between cardiorespiratory fitness and OSPAN accuracy (r = -.10, females; r = 0.26*, males); *p ≤ .05 with two-tailed test.
n-back task

Participants performed the n-back task while seated 1 meter from a computer screen. Five different shapes of various colors (i.e. green square, red circle, blue triangle, purple star, and orange cross) were presented focally in a sequential manner. Three different conditions were performed (0-, 1-, and 2-back), with each condition presented in a fixed order for all participants. For the 0-back condition, participants were instructed to respond as quickly and accurately as possible with a right button press when the cross shape (i.e. target) appeared on the screen and a left button press when any of the other remaining four shapes (i.e. non-target) appeared. For the 1- and 2-back conditions, instructions were similar to the 0-back with the exception of correctly matching and identifying the currently presented shape with the shape presented previously either one (1-back) or two (2-back) trials. A left button press indicated that the shape was not the same (i.e. non-target) as 1 or 2 trials back, and a right button press indicated that the shape was the same (i.e. target) as 1 or 2 trials back. Prior to each condition, 10 practice trials were administered to ensure that participants achieved a sufficient level of accuracy prior to actual testing. Each trial was presented for 2900 ms with a fixed inter-stimulus interval of 3000 ms on a black background. Each condition was presented in one block containing 80 trials with 16 targets (20% probability) for the 0-back condition and 20 targets (25% probability) for the 1- and 2-back conditions. Outcome variables included hit rate (the probability of correctly identifying a target), hit rate median reaction time (RT), correct rejections (CR; the probability of correctly identifying a non-target), CR median RT, false alarm rate (FA; the probability of incorrectly identifying a non-target as a target), and d' prime (d') accuracy. Calculation of d' followed the formula provided by Sorkin (1999), $d' = \sqrt{z_{\text{hit}} - z_{\text{false alarm}}}$, where z_{hit} is the adjusted hit rate and $z_{\text{false alarm}}$ is the adjusted false alarm rate. Adjustments were implemented for perfect scores, such that if the probability of hits was 1.0 then an adjustment of $2^{-1/n}$ ($n = \text{number of trials}$) would replace the maximum probability, and if the probability of false alarm rate was 0.0 then the adjustment of $1 - (2^{-1/n})$ would replace the minimum probability. Higher values of d' indicate increased ability to discriminate between targets and non-targets with the highest possible score after adjustment equal to 4.02 for the 0-back condition, and 4.1 for the 1- and 2-back conditions. Prior to analysis, behavioral screening excluded participants with a d' score ≤ 0 for any of the three n-back conditions.

Cardiorespiratory fitness assessment

See Study 1 methods for cardiorespiratory fitness protocol.

Procedure

Experimental procedures were similar to Study 1, with the exception of administering an n-back task in place of the OSPAN task.

Statistical analysis

Statistical analysis was performed following the procedure outlined in Study 1.

Results

Means and standard error of the mean (SEM) are reported for demographic and fitness variables in Table 3, and n-back behavioral variables in Table 4. As expected, comparison of sex revealed higher mean fitness for males (41.2 ± 0.91 ml/kg/min) compared to females (37.6 ± 0.80 ml/kg/min), $t(93) = 2.97, p \leq .01$. However, ranges of fitness levels were similar for males (28.2–53.2 ml/kg/min) and females (27.6–49.1 ml/kg/min). Lastly, analysis revealed greater response accuracy for males ($83.7 \pm 2.34\%$) compared to females ($73.1 \pm 2.90\%$) only for 2-back CR trials, $t(93) = 2.87, p = .01$.

Bivariate correlations

Correlations (i.e. collective and parsed by sex) revealed that higher age and grade were consistently related to greater accuracy and shorter RT across multiple trial types ($|r| > .27$). Thus, age and grade were included as covariates in the regression models along with sex, fitness, and the interaction product of sex \times fitness.

Table 3 Study 2: Mean ± 1 SEM values for demographic and fitness measures

<table>
<thead>
<tr>
<th>Measure</th>
<th>Combined</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>95</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>Age (years)</td>
<td>8.8 \pm 0.06</td>
<td>8.6 \pm 0.08</td>
<td>8.8 \pm 0.09</td>
</tr>
<tr>
<td>Grade</td>
<td>2.9 \pm 0.08</td>
<td>2.8 \pm 0.10</td>
<td>3.0 \pm 0.12</td>
</tr>
<tr>
<td>SES</td>
<td>1.9 \pm 0.08</td>
<td>1.9 \pm 0.12</td>
<td>2.0 \pm 0.12</td>
</tr>
<tr>
<td>IQ</td>
<td>114.2 \pm 1.44</td>
<td>114.4 \pm 2.12</td>
<td>114.1 \pm 1.94</td>
</tr>
<tr>
<td>BMI (kg/m2)</td>
<td>18.3 \pm 0.37</td>
<td>18.5 \pm 0.59</td>
<td>18.1 \pm 0.42</td>
</tr>
<tr>
<td>BMI Percentile (%)</td>
<td>64.9 \pm 2.80</td>
<td>64.0 \pm 4.19</td>
<td>65.9 \pm 3.72</td>
</tr>
<tr>
<td>VO$_{2\text{max}}$ (ml/kg/min)*</td>
<td>39.5 \pm 0.63</td>
<td>41.2 \pm 0.91</td>
<td>37.6 \pm 0.80</td>
</tr>
<tr>
<td>VO$_{2\text{max}}$ Percentile (%)</td>
<td>21.3 \pm 2.29</td>
<td>20.4 \pm 3.15</td>
<td>22.2 \pm 3.37</td>
</tr>
</tbody>
</table>

Note: SES is classified as ‘low’ (score below 2), ‘moderate’ (score between 2 and 3), and ‘high’ (score greater than or equal 3); IQ = intelligent quotient; BMI = body mass index. *$p \leq .05$, independent t-test between male and female groups.
Regression analysis

For 2-back d' accuracy, analysis revealed no main effect of sex, age, grade, or fitness; however, results revealed a significant sex \times fitness interaction, $\beta = 1.55, t(89) = 2.13, p \leq .05$, 95% CI = [.003, .104]. Decomposition of the interaction revealed that for males, although Step 1 was non-significant, $R^2 = .04, F(2, 47) = 1.95, p = .15$, Step 2 was significant, $\Delta R^2 = .08, F(3, 46) = 2.82, p \leq .05$, such that higher fitness levels were associated with greater 2-back d' accuracy, with fitness accounting for an incremental amount of variance in working memory beyond associated descriptive variables, $\beta = .28, t(46) = 2.07, p \leq .05, pr = .29, 95\%$ CI [.001, .059] (see Table 5 and Figure 2). For females, results revealed no significant relation between fitness and 2-back d' accuracy, $\Delta R^2 = .04, F(3, 41) = 1.98, p = .13, 95\%$ CI = [−.067, .018].

Since the linear regression analysis revealed no main effect of sex, males and females performed statistically equivalently at mean fitness levels. However, a simple slope analysis was conducted that re-centered the fitness values 1 SD above the mean, which revealed a main effect of sex, $\beta = 0.45, t(89) = 2.87, p \leq .05, pr = .29, 95\%$ CI [0.25, 1.51], suggesting that sexually dimorphic differences in working memory performance are evident at higher fitness levels, but not at lower or mean fitness levels. Similar to the OSPAN, since males demonstrated higher fitness levels on average compared to females, these differences might be due to the lack of higher-fit females in this sample. Thus, planned comparisons were performed (see Regression Analysis in Study 1 for methods) to evaluate groups matched for fitness (40.8–49.1 ml/kg/min). Results revealed greater accuracy for males (2-back $d' = 2.06$) compared to females (2-back $d' = 1.25$), $t(29) = 3.29, p < .05$, even when matching the highest fit females with their male counterparts. This suggests that even when matching groups based on

Table 5 Study 2: Summary of hierarchical regression analysis for variables predicting 2-back d' accuracy in male (n = 50) children

<table>
<thead>
<tr>
<th>Measure</th>
<th>0-back</th>
<th>1-back</th>
<th>2-back</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>0.29</td>
<td>0.22</td>
<td>.24</td>
</tr>
<tr>
<td>Grade</td>
<td>0.05</td>
<td>0.19</td>
<td>.05</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>0.32</td>
<td>0.22</td>
<td>.26</td>
</tr>
<tr>
<td>Grade</td>
<td>0.02</td>
<td>0.18</td>
<td>.02</td>
</tr>
<tr>
<td>Fitness</td>
<td>0.03</td>
<td>0.02</td>
<td>.28*</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$SE B$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95% CI</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note. $R^2 = .06$ for Step 1; $\Delta R^2 = .08$ for Step 2 ($p \leq .05$), 95% CI = confidence interval of unstandardized B coefficients derived from bootstrap analysis. *$p \leq .05$.

Figure 2 Scatter plot for the sexual dimorphic bivariate relation between cardiorespiratory fitness and 2-back d' accuracy ($r = −.08$, females; $r = 0.29*$, males; *$p \leq .05$ with two-tailed test.)
fitness, $t(29) = 1.07, p = .29$, dimorphic sex differences remain in working memory performance at higher fitness levels.

Discussion

Results of Study 2 replicate the main findings observed in Study 1. First, both studies demonstrate that the association between higher fitness and better working memory performance is sexually dimorphic, such that the effect is evident for males and not females. Second, Study 2 provides evidence that aerobic fitness modulates general working memory constructs, such as maintenance, controlled attention under conditions of interference, and updating or active manipulation. Lastly, these sexual dimorphic relations observed in Study 2 (selective for males) were only observed for the 2-back condition, suggesting selective benefits for more demanding working memory conditions.

Study 3

The third study extends the findings of the first two studies by examining the Sternberg task. Unlike the working memory tasks in the first two studies (i.e. the n-back and OSPAN tasks) which require maintenance, controlled attention under conditions of interference, and updating; the Sternberg task places greater demand on storage and maintenance operations. As such, some researchers argue that the demands of the Sternberg task match those similar to a short-term memory task (Klein, Rauh & Biscaldi, 2010; Schooler, Caplan, Revell, Salazar & Grafman, 2008) rather than a working memory task. Regardless, the Sternberg task is advantageous for the present investigation in that interference control and active manipulation are attenuated to a greater degree compared to the tasks employed in the first two studies, allowing for further examination of shared aspects of working memory between the various tasks.

Therefore, the aim of Study 3 was to extend the sexually dimorphic relationship between fitness and working memory observed in the previous studies and further assess the general versus selective nature among shared constructs of working memory across the different tasks. If fitness modulation for males is generalized across shared working memory constructs then we would predict that the results of Study 3 would replicate the findings of the first two studies. Lastly, given that the Sternberg task incorporates various levels of difficulty in trial types (i.e. 1-letter, 3-letter, and 5-letter arrays), providing discrete representation of increasing working memory demand as letter-string length increases (from 1-letter to 5-letter), it was predicted that observed differences in sex and fitness would replicate Study 2 and demonstrate selective results for conditions that require greater working memory demand.

Methods

Participants

One hundred and twenty (50 females) preadolescent children were recruited from the East-Central Illinois area. Similar to Study 2, all participants stemmed from baseline measures of the FITKids clinical trial (Hillman et al., 2014), but represent an entirely separate sample of children compared to Studies 1 and 2. Participants were excluded from the present investigation due to incomplete demographic data ($n = 5$), task performance below zero on the d' measures ($n = 15$), and failure to achieve maximal aerobic capacity criterion during the cardiorespiratory fitness assessment ($n = 17$; see Cardiorespiratory Fitness Assessment methods in Study 1). Thus, analyses were conducted on the remaining 83 (37 female) preadolescent children (age range: 7.8–9.9 years). All participants provided written assent and their legal guardians provided written informed consent in accordance with the Institutional Review Board (IRB) of the University of Illinois at Urbana-Champaign. Prior to testing, legal guardians completed a battery of health history and demographic questionnaires on behalf of the participant. Health history documentation and prescreening information were collected utilizing the protocol employed in Study 1.

Sternberg task

Stimuli were memory sets comprising uppercase consonants (e.g. KRM), and probe letters comprising lowercase consonants flanked by '?' to match the perceptual size of the memory sets (e.g. ?m?). Participants were seated 1 meter from a computer screen as memory sets and probes, which contained an array of 1, 3, or 5 letters, were presented in a sequential and focal manner. Participants were asked to respond as quickly and accurately as possible with a right button press if the probe letter correctly matched any letter contained in the previous memory set (i.e. target), or a left button press if the probe letter did not correctly match any letter contained in the previous memory set (i.e. non-target). Prior to each task condition, 10 practice trials were given to ensure that participants achieved sufficient accuracy prior to testing. The stimulus durations were 2500 ms for encoded array (S1) and 250 ms for probe letter (S2), with a 2000 ms inter-stimulus interval (from S1 offset to S2
The highest possible score for task (see serial measure) revealed higher mean fitness levels for males (34.2\pm 0.8 kg/m²) compared to females (20.7\pm 0.08, 1.22], suggesting that sexually dimorphic differences in working memory performance were evident at higher fitness levels, but not at mean or low fitness levels. Finally, similar to the analysis performed for the OSPAN and n-back tasks, planned comparisons (see Regression Analysis in Study 1 for methods) were performed to evaluate groups matched for fitness (40.5-48.2 ml/kg/min). Results revealed greater accuracy for males (5-letter \(d' = 1.49\)) compared to females (5-letter \(d' = 0.84\), \(t(23) = 2.66, p < 0.05\)). Lastly, males and females did not differ in performance across any measure of the Sternberg, \(ts (82) \leq 1.52, ps \geq 0.13\).

Regression analysis

For 5-letter \(d'\) accuracy, analysis revealed a main effect of grade, \(\beta = 0.23, t(91) = 2.31, p \leq 0.05\), (bootstrap) 95% CI [0.039, 0.429], IQ, \(\beta = 0.44, t(91) = 4.06, p \leq 0.05\), 95% CI [0.013, 0.306], and a significant sex × fitness interaction, \(\beta = 1.15, t(76) = 1.95, p \leq 0.05\), 95% CI [0.001, 0.668]. Decomposition of the interaction revealed that for males, Step 1 was significant, \(R^2 = .31, F(3, 42) = 7.61, p \leq 0.05\), revealing an association of higher IQ with greater \(d'\) accuracy, \(\beta = 0.02, t(42) = 2.77, p \leq 0.05\), \(pr = .39, 95\% CI = [.007, .036]\). Step 2 was also significant, \(\Delta R^2 = .07, F(4, 41) = 7.45, p \leq 0.05\), such that higher grade, IQ, and fitness were associated with greater 5-letter \(d'\) accuracy with fitness accounting for an incremental amount of variance in working memory beyond associated descriptive variables, \(\beta = 0.29, t(41) = 2.21, p \leq 0.05\), \(pr = .33, 95\% CI [.004, .049]\) (see Table 8 and Figure 3). For females, although Step 1 was significant, \(R^2 = .14, F(1, 35) = 7.03, p \leq 0.05\), revealing an association of higher IQ with greater 5-letter \(d'\) accuracy, \(\beta = 0.02, t(35) = 2.65, p \leq 0.05\), \(pr = .41, 95\% CI [.006, .030]\). Step 2 did not achieve significance for fitness, \(\beta = -0.00, t(34) = 0.14, p = .89, pr = -.02, 95\% CI [-.035, .028].

Furthermore, the linear regression analysis revealed no main effect of sex, suggesting equivalent working memory performance between males and females at mean fitness levels. However, a simple slope analysis in which the fitness values were re-centered 1 SD above the mean revealed a main effect of sex, \(\beta = 0.31, t(76) = 2.04, p \leq 0.05\), \(pr = .26, 95\% CI [-0.08, 1.22]\), suggesting that sexually dimorphic differences in working memory performance were evident at higher fitness levels, but not at mean or low fitness levels. Finally, similar to the analysis performed for the OSPAN and n-back tasks, planned comparisons (see Regression Analysis in Study 1 for methods) were performed to evaluate groups matched for fitness (40.5-48.2 ml/kg/min). Results revealed greater accuracy for males (5-letter \(d' = 1.49\)) compared to females (5-letter \(d' = 0.84\), \(t(23) = 2.66, p < 0.05\)).
between fitness and working memory are selective for prepubertal male children. Specifically, results demonstrate that increased working memory performance is related to greater fitness for males but not females. In addition, these effects were generalized across several constructs of working memory (i.e. storage and active maintenance) and selective for conditions that placed greater demand on working memory. Greater performance was also observed for males compared to females but only at higher fitness levels, providing further evidence that sexual dimorphic patterns of cardiorespiratory health differentially influence aspects of working memory.

General discussion

The findings across all three studies provide compelling evidence to suggest that the beneficial relations

Table 7
Study 3: Mean ± 1 SEM values for Sternberg behavior data

<table>
<thead>
<tr>
<th>Measure</th>
<th>Male</th>
<th>Female</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-letter</td>
<td>3-letter</td>
</tr>
<tr>
<td>Hit median RT (ms)</td>
<td>1041.5 ± 53.28</td>
<td>1352.7 ± 50.38</td>
</tr>
<tr>
<td>Hit rate (%)</td>
<td>67.9 ± 2.74</td>
<td>66.6 ± 2.73</td>
</tr>
<tr>
<td>CR median RT (ms)</td>
<td>1123.1 ± 45.95</td>
<td>1332.2 ± 39.36</td>
</tr>
<tr>
<td>CR (%)</td>
<td>77.5 ± 2.73</td>
<td>72.4 ± 2.96</td>
</tr>
<tr>
<td>FA (%)</td>
<td>11.8 ± 1.66</td>
<td>9.9 ± 1.50</td>
</tr>
<tr>
<td>d'</td>
<td>1.8 ± 0.12</td>
<td>1.9 ± 0.13</td>
</tr>
</tbody>
</table>

Note: RT = reaction time; CR = correct reject; FA = false alarms. *$p \leq .05$. Independent t-test between groups on the same Sternberg measure.

Table 8
Study 3: Summary of hierarchical regression analysis for variables predicting Sternberg 5-letter d' accuracy in male (n = 47) children

<table>
<thead>
<tr>
<th>Measure</th>
<th>B</th>
<th>SE B</th>
<th>β</th>
<th>t</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td>0.22</td>
<td>0.13</td>
<td>.23</td>
<td>1.79</td>
<td>(.034, .551)</td>
</tr>
<tr>
<td>SES</td>
<td>0.12</td>
<td>0.10</td>
<td>.17</td>
<td>1.22</td>
<td>(.091, .311)</td>
</tr>
<tr>
<td>IQ</td>
<td>0.02</td>
<td>0.01</td>
<td>.39**</td>
<td>2.77</td>
<td>(.007, .036)**</td>
</tr>
<tr>
<td>Step 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grade</td>
<td>0.25</td>
<td>0.12</td>
<td>.26*</td>
<td>2.10</td>
<td>(.011, .550)</td>
</tr>
<tr>
<td>SES</td>
<td>0.04</td>
<td>0.10</td>
<td>.05</td>
<td>.37</td>
<td>(.237, .249)</td>
</tr>
<tr>
<td>IQ</td>
<td>0.02</td>
<td>0.01</td>
<td>.40**</td>
<td>2.94</td>
<td>(.009, .039)**</td>
</tr>
<tr>
<td>Fitness</td>
<td>0.03</td>
<td>0.01</td>
<td>.29*</td>
<td>2.21</td>
<td>(.004, .049)*</td>
</tr>
</tbody>
</table>

Note: $R^2 = .31$ for Step 1; $\Delta R^2 = .07$ for Step 2 ($p \leq .05$). 95% CI = confidence interval of unstandardized B coefficients derived from bootstrap analysis. *$p \leq .05$; **$p \leq .01$.
Collectively, these sex-related differences of fitness on working memory are novel and may provide a link for future research aimed at elucidating the benefits of cardiorespiratory fitness on mechanisms of brain health and cognition. As described earlier, research has demonstrated volumetric differences in the hippocampus related to fitness (Chaddock et al., 2010; Erickson et al., 2011). Such changes are supported by underlying healthy development of neurotrophic factors, specifically brain-derived neurotrophic factors (BDNF), within these subcortical regions. BDNF plays a key role in growth (i.e. neurogenesis) and longevity of synaptic efficacy, neuronal connectivity, and neural plasticity (Altar & Distefano, 1998; Lu & Chow, 1999; McAllister, Katz & Lo, 1999; Schinder & Poo, 2000). Research has demonstrated that following several days of voluntary wheel-running in mice, levels of BDNF expressed in the hippocampus increased (Neeper, Gomez-Pinilla, Choi & Cotman, 1995) with accompanying improvements in spatial learning (van Praag, Christie, Sejnowski & Gage, 1999). Interestingly, sex steroid hormones, such as estrogen, mediate this relation of exercise and hippocampal expression of BDNF and neurogenesis (Berchtold, Kesslak, Pike, Adlard & Cotman, 2001; Singh, Meyer & Simpkins, 1995). That is, when low levels of hippocampal estrogen are available in female rats, exercise fails to increase BDNF levels. Conversely, when estrogen levels were artificially increased through estrogen replacement, exercise increased BDNF levels to a greater degree than by estrogen replacement alone (Berchtold et al., 2001).

Research further demonstrates that sexually dimorphic differences in brain structure and function described earlier may be dependent on circulating sex steroid hormones during critical developmental changes (Cooke, Hegstrom, Villeneuve & Breedlove, 1998; Kawata, 1995). For example, increasing levels of testosterone (males) and estrogen (females) during puberty was related to emerging sex differences in the hippocampus and amygdala in males (Neufang, Specht, Hausmann, Güntürkün, Herpertz-Dahlmann et al., 2009), and grey matter changes in females (Peper, Brouwer, Schnack, van Baal, van Leeuwen et al., 2009). Further, animal studies have demonstrated that the production of new cells (i.e. neurogenesis) in the hippocampus is highest during peak levels of estrogen in females (Tanapat, Hastings, Reeves & Gould, 1999). In addition, not only has estrogen been shown to modulate volume in regions of the hippocampus (for review see Wnuk, Korol & Erickson, 2012), but researchers have also observed concurrent changes in cognitive behavior on tasks such as the spatial navigation task in animals (Isgor & Sengelaub, 1998). In humans, these behavioral patterns appear reciprocal in a manner that parallels estrogen and testosterone fluctuations. That is, females demonstrate poorer cognitive performance (only for tasks that typically demonstrate a male advantage) during peak estrogen levels (Hampson, 1990; Hampson & Kimura, 1988; Maki, Rich & Rosebaum, 2002; but see Kimura & Hampson, 1994, for review), whereas for males working memory performance improves when testosterone levels are high in relation to estrogen (Janowsky, Chavez & Orwoll, 2000).

Taken together, the overall pattern of potential mechanisms discussed previously reveals multiple robust similarities. Interestingly, sex steroid hormones appear to be a common variable in (1) sex dimorphic development of the hippocampus, (2) the reciprocal relation with cognitive performance in males and females, and (3) mediating fitness effects on BDNF gene expression in the hippocampus. Although the present investigation did not assess circulating sex hormones in children, previous research has demonstrated that prepubertal females have significantly higher levels of estrogen compared to age-matched males (Courant, Aksglaede, Antignac, Monteau, Sorensen et al., 2010). These increased levels of estrogen are indicative of pubertal onset in females resulting in a cascade of events associated with matura- tion. Although highly speculative, estrogen might be a common variable related to the differential findings of the present investigation given its particular contribution to pubertal onset in females at this age, its moderating effects of fitness on BDNF gene expression, and its acute interaction with cognitive outcomes associated with working memory. However, it is unclear as to whether the presence of sex steroid hormones interact in isolation from fitness to influence cognitive performance or whether estrogen-dependent hippocampal development differentiates pathways selective for fitness modulation in males. Therefore, future investigations should incorporate methods to assess sex hormones to determine whether any interactions are observed that might further our understanding of why the relation of fitness and working memory performance is selective for males and not females.

Despite replicating this effect across all studies, certain limitations should be considered. First, our samples represent a distinct age group of children (~7–10 years old), who in some cases are at the threshold of pubertal development. Future research may benefit by evaluating these relations across the developmental spectrum to better understand whether the present findings are selective for prepubertal children. Second, working memory was the only aspect of cognitive control investigated in the present investigation. Future research could benefit by incorporating other aspects of cognitive control to further parse the influence of sex on fitness for this aspect of cognition.
Third, although our samples represented a wide distribution of fitness levels, the majority of children in each study were lower-fit in comparison to national norms of fitness for this age group (less than the 30th percentile). Thus, the relation between cognitive control and fitness may be curvilinear at higher fitness levels (i.e. threshold; see Sibley & Etnier, 2003) and that the tolerance for a threshold effect may be greater for females compared to males. Regardless, given that the present investigation evaluated samples of children who are considered lower-fit, our results further demonstrate the beneficial effects of fitness on cognition among children who might benefit the most from physical activity programs. Fourth, the present results might be influenced by the inability to maintain attention (i.e. cognitive vigilance) for the duration of the task especially for lower-fit males. Therefore, future research may benefit by evaluating the impact of such factors. Lastly, our investigation was cross-sectional, thus limiting causal conclusions from the observed outcomes. Future investigations may benefit by performing randomized controlled physical activity interventions to better understand sex-related differences in programs aimed at improving fitness.

The present investigation provides new evidence that not only add to the ever-growing literature demonstrating brain health benefits associated with cardiorespiratory fitness, but further suggests that sex may modify this relationship. Future research should consider the unique contribution of sexual dimorphic patterns when evaluating benefits of fitness to brain health. These results not only provide support for the importance of regular physical activity for developing prepubertal children, but also reveal the need for individualized physical activity programs among institutions and organizations intimately involved in children’s daily activities.

Acknowledgement

This research was supported by a grant from the National Institute of Child Health and Human Development (NIH HD055352) to Charles Hillman.

Author disclosure statement

No conflicting financial interests exist.

References

Received: 29 September 2014
Accepted: 22 December 2014