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Abstract—The performance profile of local area networks has
changed over the last decade, but many practical group commu-
nication and ordered messaging tools rely on core ideas invented
over a decade ago. We present the Accelerated Ring protocol,
a novel ordering protocol that improves on the performance of
standard token-based protocols by allowing processes to pass the
token before they have finished multicasting. This performance
improvement is obtained while maintaining the correctness and
other beneficial properties of token-based protocols.

On 1-gigabit networks, a single-threaded daemon-based im-
plementation of the protocol reaches network saturation, and
can reduce latency by 45% compared to a standard token-based
protocol while simultaneously increasing throughput by 30%. On
10-gigabit networks, the implementation reaches throughputs of
6 Gbps, and can reduce latency by 30-35% while simultaneously
increasing throughput by 25-40%. A production implementation
of the Accelerated Ring protocol has been adopted as the default
ordering protocol for data center environments in Spread, a
widely-used open-source group communication system.

I. INTRODUCTION

Data center applications rely on messaging services that
guarantee reliable, ordered message delivery for a wide range
of distributed coordination tasks. Totally ordered multicast,
which (informally) guarantees that all processes receive mes-
sages in exactly the same order, is particularly useful for
maintaining consistent distributed state in systems as diverse
as financial systems, distributed storage systems, cloud man-
agement, and big data analytics platforms.

Many ordering protocols have been developed to build
such messaging services. Défago et al. survey these total
ordering protocols and classify them based on their ordering
mechanisms [1]. A particularly successful type of ordering
protocol is the class of token-based protocols.1 Token-based
protocols typically arrange the processes participating in the
protocol in a logical ring and order messages using a special
control message (called the token) that carries the information
needed to order new messages and is passed around the ring.
A participant may send messages when it receives the token
and is able to assign sequence numbers to its messages before
sending them (using the information carried by the token), so
messages are ordered at the time they are sent.

Token-based protocols are attractive because of their sim-
plicity; a single mechanism, the token, provides ordering,
stability notification, flow control, and fast failure detection.
Moreover, these protocols naturally support flexible semantics
and continuous operation with well-defined guarantees during
network partitions.

1Défago et al. split token-based protocols into moving sequencer and
privilege-based protocols. We use the term token-based to refer primarily
to privilege-based protocols.

Token-based protocols also achieved high network utiliza-
tion at the time they were introduced; for example, the Totem
Ring protocol [2] achieved about 75% network utilization on
10-megabit Ethernet using processors standard for 1995. The
simplicity, flexibility, and high performance of token-based
protocols led to their use in practical messaging services, in-
cluding the Spread toolkit [3], the Corosync cluster engine [4],
and the Appia communication framework [5], [6].

Non-token-based ordering protocols (e.g. Paxos- or
sequencer-based) are widely used in practical services, but
these approaches often offer subtly different semantics, so
the protocols are not entirely interchangeable. We discuss
successful systems based on a variety of ordering mechanisms
in Section V, commenting on their semantics and performance.

Modern data center environments present different net-
working and processing trade-offs than in the past, creating
performance challenges for protocols relying on core ideas
invented over a decade ago. When Fast Ethernet replaced 10-
megabit Ethernet, network speed increased by a factor of ten,
and network span shrank by the same factor (from 2000 to
200 meters). This kept basic network characteristics essentially
the same, allowing the same protocols to continue to utilize
the network well. However, on networks common in today’s
data centers, these protocols do not reach the same network
utilization as in the past while maintaining reasonable latency.

We were exposed to this problem through our experi-
ence with applications using Spread, a widely-used, publicly
available group communication toolkit that provides flexible
semantics for message delivery and ordering, using a variant of
the Totem Ring protocol. Spread reached about 80% network
utilization on 100-megabit Fast Ethernet, using processors
common for 2004 [7]. However, out-of-the-box, we measured
the latest Spread release prior to our work as reaching 50%
network utilization on a 1-gigabit network. Careful tuning of
the flow control parameters allows Spread to reach 800 Mbps
in throughput, but the cost in latency is very high.

One reason that protocols originally designed for 10-
megabit Ethernet maintained their high network utilization
with low latency on 100-megabit Fast Ethernet but not on
1-gigabit, 10-gigabit, and faster networks, is that these faster
networks could not use the same techniques as Fast Ethernet
to scale throughput (this would have required a 1-gigabit
network span to be limited to 20 meters). Moving to these
faster networks required changing the network architecture
and adding buffering to switches. This changed networking
trade-offs. While throughput increased by a factor of 10, 100,
or more and latency was substantially reduced, the decrease
in latency was significantly lower than the corresponding
improvement in throughput.



This change in the trade-off between a network’s throughput
and its latency alters the performance profile of token-based
protocols, as these protocols are particularly sensitive to la-
tency. The ability to multicast new messages rotates with the
token, so no new messages can be sent from the time that
one participant finishes multicasting to the time that the next
participant receives the token, processes it, and begins sending
new messages. Note that we are concerned with latency
intrinsic to the network, not with latency due to particular
machines running slowly. In production deployments, we can
ensure that the ordering middleware has the resources it needs
(e.g. with real-time priorities in Linux).

For processors common today, 10-gigabit and faster net-
works change trade-offs further by making networking con-
siderably faster relative to single-threaded processing. Unlike
in the past, this trade-off is not likely to change soon, as
the processing speed of a single core is no longer increasing
at a rate comparable to the rate of improvement in network
throughput, with Moore’s law reaching its limit.

The gap between the performance of existing protocols and
the performance that is possible in modern environments led us
to design the Accelerated Ring protocol. The Accelerated Ring
protocol compensates for, and even benefits from, the switch
buffering that limits the network utilization of other token-
based protocols. Using a simple idea, the Accelerated Ring
protocol is able to improve both throughput and latency com-
pared to existing token-based protocols without significantly
increasing the complexity or processing cost of the protocol.
The Accelerated Ring protocol is still able to take advantage of
the token mechanism for ordering, stability notification, flow
control, and fast failure detection.

Single-threaded implementations of the protocol are able to
saturate 1-gigabit networks and considerably improve perfor-
mance on 10-gigabit networks without consuming the CPU
of more than a single core. Limiting CPU consumption to
one core is important for this type of ordering service, as it
is intended to serve applications that may be CPU intensive;
a service that consumes most of the processing power of the
machine is likely to be limiting in many practical deployments.

Like other (privilege-based) token-based protocols, the Ac-
celerated Ring protocol passes a token around a logical ring,
and a participant is able to begin multicasting upon receiving
the token. The key innovation is that, unlike in other pro-
tocols, a participant may release the token before it finishes
multicasting. Each participant updates the token to reflect all
the messages it will multicast during the current rotation of
the token around the ring before beginning to multicast. It
can then pass the token to the next participant in the ring at
any point during the time it is multicasting. Since the token
includes all the necessary information, the next participant can
begin multicasting as soon as it receives the token, even if its
predecessor on the ring has not yet finished multicasting.

However, the fact that the token can reflect messages that
have not yet been sent requires careful handling of other
aspects of the protocol. For example, messages cannot be
requested for retransmission as soon as the token indicates

that their sequence numbers have been assigned, since this
may result in many unnecessary retransmissions: a participant
may not have received all the messages reflected in the token,
not because they were lost, but because they were not yet sent.

Sending the token before all multicasts are completed allows
the token to circulate the ring faster, reduces or eliminates
periods in which no participant is sending, and allows for
controlled parallelism in sending. As a result, the Accelerated
Ring protocol can simultaneously provide higher throughput
and lower latency than a standard token-based protocol.

We evaluate the Accelerated Ring protocol in a library-
based prototype, a daemon-based prototype, and a production
implementation in Spread. Spread has existed for many years,
serving production systems since 1998. Examples of current
use in 2016 include cloud management, distributed storage
products, networking hardware, and financial trading systems.
The demands of real applications introduced features that
incur significant costs, such as large group names, support for
hundreds of clients per daemon, and multi-group multicast (the
ability to send a message to all members of multiple distinct
groups, with ordering guarantees across groups). Therefore, we
also evaluate the protocol in a simple, library-based prototype
to quantify the benefit of the protocol outside of a complex
system, with no overhead for client communication.

However, part of Spread’s success is due to its client-
daemon architecture. This architecture provides a clean sepa-
ration between the middleware and the application, allows a
single set of daemons in a data center setup to support several
different applications, and allows open group semantics (a
process does not need to be a member of a group to send to that
group). Because of this, we additionally evaluate the protocol
in a daemon-based prototype that does not incur the cost of all
Spread’s complexity but provides a realistic solution, including
client communication, for a single group.

We compare each implementation of the Accelerated Ring
protocol to a corresponding implementation of the original
Totem Ring protocol. Sending messages with 1350-byte pay-
loads, on 1-gigabit networks, the Spread implementation of
the Accelerated Ring protocol reaches network saturation (over
920 Mbps measuring only payload), and can reduce latency by
45% compared to the original protocol, while simultaneously
increasing throughput by 45-60%. On 10-gigabit networks,
Spread reaches 2.3 Gbps, and can improve both throughput
and latency by 10-20%. The daemon- and library-based pro-
totypes reach 3.3 Gbps and 4.6 Gbps, respectively, and can
simultaneously improve latency by 20-35% and throughput
by 25-50%. With 8850-byte payloads, throughput reaches 5.2
Gbps for Spread, 6 Gbps for the daemon-based prototype, and
7.3 Gbps for the library-based prototype.

The contributions of this work are:
1) The invention of the Accelerated Ring protocol, a new

ordering protocol that takes advantage of the trade-offs
in modern data center environments.

2) A thorough evaluation of the protocol in a library-based
prototype, a daemon-based prototype, and Spread on 1-
gigabit and 10-gigabit networks.



A"

B"

C"

Time%

2% 3%1% 4% 5% 5%

12% 13%11% 14% 15% 15%

7% 8%6% 9% 10% 10%

17% 18%16% 19% 20% 20%

(a) Original Ring Protocol

A"

B"

C"

2% 5%1% 3% 4% 5%

7% 10%6% 8% 9% 10%

12% 15%11% 13% 14% 15%

17% 20%16% 18% 19% 20%

Time%

(b) Accelerated Ring Protocol

Fig. 1. Executions of the original Ring protocol and the Accelerated Ring protocol. White boxes are data messages; black boxes are token messages. Numbers
represent the sequence number on data messages and the sequence field on the token.

3) The release of the Accelerated Ring protocol as part
of Spread’s open-source code, and the adoption of this
protocol as Spread’s standard ordering protocol for local
area networks and data center environments.

An extended abstract about this work appeared in [8], and
additional experimental results can be found in [9].

II. SYSTEM AND SERVICE MODEL

The Accelerated Ring protocol provides reliable, totally
ordered multicast and tolerates message loss (including token
loss), process crashes and recoveries, and network partitions
and merges. We assume that Byzantine faults do not occur and
messages are not corrupted.

The Accelerated Ring protocol provides Extended Virtual
Synchrony (EVS) semantics [10]. EVS extends the Virtual
Synchrony (VS) model [11] to partitionable environments.
EVS, like VS, provides well-defined guarantees on message
delivery and ordering with respect to a series of configurations.
A configuration consists of a set of connected participants that
can communicate among themselves but not with participants
outside that set, and a unique identifier for the configuration.

The Accelerated Ring protocol provides Agreed and Safe
delivery services. These services are completely and formally
specified in [10], but the most relevant properties are:

1) Agreed delivery guarantees that messages delivered
within a particular configuration are delivered in the
same total order by all members of that configuration.
The total order respects causality.

2) Safe delivery guarantees that if a participant delivers a
message in some configuration, each member of the con-
figuration has received that message and will deliver it,
unless it crashes. This property is often called stability.

The protocol can also provide FIFO and Causal delivery
services, but their latency is similar to that of Agreed delivery.
Therefore, they are not discussed here.

III. ACCELERATED RING PROTOCOL

The complete Accelerated Ring protocol consists of an
ordering protocol and a membership algorithm. Since the

Accelerated Ring protocol directly uses the membership al-
gorithm of Spread, which is based on the Totem membership
algorithm [2], we focus on the ordering protocol, which is
novel, in this paper. However, both components are necessary
to support the above system model and service semantics.

The following description specifies the normal-case oper-
ation of the Accelerated Ring protocol with a static set of
participants. We assume that the membership of the ring has
been established, and the first regular token has been sent.
Crashes, network partitions, and token losses are not discussed
here, as they are handled by the unmodified membership
algorithm; the Accelerated Ring protocol does not introduce
any new failure modes relative to the original Ring protocol.

A. Overview

Figure 1 shows an example execution with three participants
sending a total of twenty messages in the original Totem Ring
protocol and the Accelerated Ring protocol.

In the original protocol (Figure 1a), each participant sends
five messages when it receives the token and then passes the
token to the next participant. The token carries the sequence
number of the last message that was sent, so the next partici-
pant knows exactly which sequence numbers it can assign to
its messages. For example, when Participant B receives the
token with sequence number 5 from Participant A, it can send
message 6, since it knows that no sequence number higher
than 5 has been assigned to a message.

In the accelerated protocol (Figure 1b), each participant
similarly sends five data messages upon receiving the token,
but it sends some of those messages after passing the token to
the next participant. In this example, each participant sends its
first two data messages, then sends the token, and then sends
its last three data messages. Note, however, that the token
carries exactly the same sequence numbers as in the original
protocol. Even though Participant A does not send messages
3, 4, and 5 until after it has passed the token to Participant
B, it has already decided exactly which messages it will send.
Therefore, the token that Participant B receives still carries the
sequence number 5, reflecting all the messages that Participant
A will send during the current rotation of the token around the



ring (also called a token round). Just as in the original protocol,
Participant B learns that no sequence number higher than 5
has been assigned to a message and can send messages with
sequence numbers starting at 6. Unlike protocols that improve
performance by providing a speculative result before reaching
a full agreement on ordering like Zyzzyva [12] or ToTo [13],
the Accelerated Ring protocol marks each message with its
final sequence number at the time it is sent. A participant will
not deliver message 6 until it receives all messages 1-5 and
can deliver it in the correct order.

To see how the Accelerated Ring protocol simultaneously
improves throughput and latency, notice that the accelerated
protocol takes less time to complete a token round than the
original protocol. Figure 1 clearly shows that the first 15
messages are sent and the token is returned to Participant
A earlier in the accelerated protocol than in the original
protocol. The Accelerated Ring protocol improves throughput
by sending the same 15 messages in less time and improves
latency by getting the token back to Participant A faster, so it
waits less time to send message 16. The parallelism that gives
us this performance improvement is enabled by the buffering
of modern switches discussed in Section I.

To gain an intuition for the correctness of the accelerated
protocol, notice that if Participant B receives messages 1 and
2 but not messages 3-5 before receiving the token in the
execution of the Accelerated Ring protocol in Figure 1b, then
from Participant B’s point of view, that execution is exactly
like the execution of the original Ring protocol in the case
that messages 3-5 are lost, and the original Ring protocol
copes with message loss. However, in the original protocol,
Participant B would then immediately request messages 3-5
for retransmission. In the accelerated protocol, these messages
are most likely in transit, rather than lost, so requesting
them would lead to unnecessary retransmissions and reduce
performance. Therefore, in the Accelerated Ring protocol,
we request missing messages one round after noticing them,
guaranteeing that they have already been sent and should have
arrived. Thus, the improved throughput and latency of the
Accelerated Ring protocol comes at the cost of requiring an
extra round to recover lost messages (but each round is faster).

The number of messages a participant can send when it
receives the token depends on the Personal window parameter:
the maximum number of new data messages a participant can
send in one token round. The Accelerated window specifies
the maximum number of these messages that can be sent after
passing the token. In Figure 1b, the Personal window is five
and the Accelerated window is three. If a participant has fewer
than Personal window messages to send, it still sends as many
as possible after the token. If a participant in Figure 1b only
had two messages to send, it would send both after the token.

Below we describe the Accelerated Ring protocol in detail.
During normal operation, participants take actions in response
to receiving token messages and data messages. We describe
how these messages are handled in Sections III-B and III-C.

B. Token Handling

Token messages carry control information that is used to
establish a correct total order and provide flow control. Token
messages contain the following fields:

1) seq: Last sequence number assigned to a message. When
a participant receives a token, it can multicast new
messages with sequence numbers starting at seq + 1.

2) aru (all-received-up-to): Field used to determine the
highest sequence number such that each participant has
received every message with a sequence number less
than or equal to that sequence number. Messages all
participants have received can be delivered with Safe
delivery semantics and/or garbage-collected.

3) fcc (flow control count): Total number of multicast
messages sent during the last token round (including
retransmissions). Participants use this field when deter-
mining the maximum number of messages they may
send in the current round.

4) rtr (retransmission requests): List of sequence numbers
corresponding to messages that must be retransmitted
(because they were lost by some participant).

The steps a participant executes upon receiving a token are:
1) Pre-token multicasting: calculating the total number of

messages to send and multicasting messages, including
all retransmissions and potentially some new messages
(Section III-B1)

2) Updating and sending the token (Section III-B2)
3) Post-token multicasting: multicasting new messages that

the participant decided on but did not multicast during
pre-token multicasting (Section III-B3)

4) Delivering and discarding messages (Section III-B4)
1) Pre-token Multicasting: The participant first retransmits

any messages it has that are requested in the rtr field of the
token. All retransmissions must be sent during the pre-token
phase; otherwise, they may be unnecessarily requested again.

The participant then calculates Num to send, the total
number of new messages it will multicast in the current
round. Num to send is the minimum of the number of data
messages the participant currently has to send and the number
of messages it is allowed to send while respecting the flow
control parameters: the Personal window specifies the maxi-
mum number of new data messages a single participant can
send in one token round, while the Global window specifies
the maximum total number of data messages that can be sent
in a single token round by all participants combined.

Finally, the participant may multicast some of its new
messages. Each new message is stamped with its sequence
number (assigned consecutively, starting at seq + 1) before it is
sent. The number of new messages sent in the pre-token phase
depends on the Accelerated window, which specifies the max-
imum number of messages a participant can send after passing
the token. The number of new messages a participant sends in
the pre-token phase is Num to send−Accelerated window. If
Num to send is less than or equal to the Accelerated window,
the participant sends no new messages in the pre-token phase.



2) Updating and Sending the Token: Before passing the
token to the next participant in the ring, the current token
holder updates each of the token fields.

The seq field is updated by adding Num to send to the
value of the seq field on the received token. This sets the seq
field to the highest sequence number that has been assigned
to a message.

The aru field is updated according to the rules in [2]. Each
participant tracks its local aru, which is the highest sequence
number such that the participant has received all messages
with sequence numbers less than or equal to that sequence
number. If the participant’s local aru is less than the aru
on the token it receives, it lowers the token aru to its local
aru. If the participant lowered the token aru in a previous
round, and the received token’s aru has not changed since the
participant lowered it, it sets the token aru equal to its local
aru. If the received token’s aru and seq fields are equal, and
the participant does not need to lower the token’s aru, it adds
Num to send to the aru on the token it received.

The fcc field is also updated as in [2]. The total number
of retransmissions and new messages the participant sent in
the previous round are subtracted from the received token’s
fcc value, and the total number of retransmissions and new
messages the participant is sending in the current round are
added to the received token’s fcc value.

The rtr field is updated to remove retransmission requests
that the participant answered in this round and add requests
for any messages that this participant has missed. The fact
that participants can pass the token before completing their
multicasts for the round complicates retransmission requests,
since the seq field of the token may include messages that
have not actually been sent yet. In order to avoid unneces-
sarily retransmitting messages, the participant only requests
retransmissions for missing messages up through the value of
the seq field on the token it received in the previous round,
rather than the token it just received.

The updated token is then sent to the next participant.
3) Post-token Multicasting: During this phase, the par-

ticipant completes its sending for the current round. If
Num to send is less than the Accelerated window, it sent no
new messages during the pre-token phase and sends all of
these messages (if any) during the post-token phase. Other-
wise, it sends Accelerated window data messages during this
phase.

4) Delivering and Discarding: As the final step of token
handling, the participant uses the procedure in [2] to deliver
and discard messages. A participant can deliver a Safe message
once it has received and delivered all messages with lower
sequence numbers and knows that all other participants have
received and will deliver the message (unless they crash).
Therefore, the participant delivers all messages with sequence
numbers less than or equal to the minimum of the aru on the
token it sent this round and the aru on the token it sent last
round. Since every participant had the opportunity to lower
the aru during the round, every participant must have a local
aru of at least the minimum of these two values. Since every

participant has these messages, they will never be requested
for retransmission again and can also be discarded.

C. Data Handling

Data messages carry application data to be multicast, as well
as meta-data used for ordering messages. Each data message
contains the following fields:

1) seq: Sequence number of this message. This specifies
the message’s position in the total order.

2) pid: ID of the participant that initiated this message.
3) round: Token round in which the message was initiated.
4) payload: Application data. This is not inspected or used

by the protocol.
When a participant receives a data message, it inserts it

into its buffer of messages, ordered by sequence number. If
the message allows the participant to advance its local aru
(i.e. the sequence number of the message equals its local
aru + 1), it delivers its undelivered messages in the order
of their sequence numbers until it reaches a sequence number
higher than the local aru (i.e. a message it has not received)
or a message requiring Safe delivery. Messages requiring Safe
delivery cannot be delivered until the token aru indicates that
they have been received by all participants.

D. Selecting a Message to Handle

In general, token and data messages are handled as they
arrive. However, when messages arrive nearly simultaneously,
both token and data messages can be available for processing
at the same time. The protocol decides which to handle first by
assigning logical priorities to message types. When a message
type has high priority, no messages of the other type will be
processed as long as some message of that type is available.

The key issue is that a participant should not process a token
until it has processed all the data messages reflected in the last
token it processed (or as many as it will receive, if there is
loss). If these messages have not yet been processed, but were
not lost, they will be unnecessarily requested. However, in
order to maximize performance, the token should be processed
as soon as possible. Note that decisions about when to process
messages of different types can impact performance but do not
affect the correctness of the protocol.

A participant always gives data messages high priority after
processing a token. However, two different methods may be
used to decide when to raise the token’s priority again after
processing the token for a given round. In the first method, a
participant gives the token high priority as soon as it processes
any data message its immediate predecessor in the ring sent in
the next token round (indicated by the round field of the data
message). In the second method, a participant waits to give
the token high priority until it processes a data message that
its immediate predecessor sent in the next round after having
sent the token for that round. The first method maximizes the
speed of token rotation. The second slows the token slightly
to reduce the number of unprocessed data messages that can
build up but maintains the acceleration of the token by raising
its priority as soon as it is known to have been sent.



Fig. 2. Agreed delivery latency vs throughput, 1 Gb network

E. Implementation Considerations

Our implementations of the Accelerated Ring protocol use
IP-multicast to transmit data messages and UDP unicast to
pass the token. We use IP-multicast since it is generally avail-
able in the local area networks and data center environments
for which the protocol is designed, especially when building
infrastructure (in contrast to applications hosted on the cloud).
However, if IP-multicast is not available, unicast can be used to
construct logical multicast at the cost of reduced performance;
this capability is available as an option in Spread.

In the prototypes, we use the first, more aggressive method
for giving the token high priority, since this gives the best
performance with properly tuned flow-control parameters.
However, for Spread we chose the second, less aggressive
method, because this method is less sensitive to misconfig-
uration, which is important for open-source systems used
in a wide variety of production environments. When the
Accelerated window is zero, the second method behaves like
the original Ring protocol, while the first method may still
accelerate the token by processing it as early as possible.

IV. EVALUATION

We evaluate the performance profile of the Accelerated Ring
protocol experimentally and compare it to the performance
of the original Totem Ring protocol [2]. We evaluate both
protocols in library-based and daemon-based prototypes as
well as in complete production implementations in Spread.
The performance of non-token-based ordering approaches is
discussed in Section V.

A. Benchmarks

All benchmarks use 8 Dell PowerEdge R210 II servers,
with Intel Xeon E3-1270v2 3.50 GHz processors, 16 GB of
memory, and 1-gigabit and 10-gigabit Ethernet connections.
The servers were connected using a 1-gigabit Catalyst 2960
Cisco switch and a 10-gigabit 7100T Arista switch.

To evaluate each protocol, we ran the system at varying
throughput levels (measured in clean application data only),
ranging from 100 Mbps up to the maximum throughput of the
system. At each throughput level, we measured the average
latency to deliver a message for both Agreed and Safe delivery.

Fig. 3. Safe delivery latency vs throughput, 1 Gb network

For Spread and the daemon-based prototype, each of the 8
participating servers ran one daemon, one sending client that
injected messages at a fixed rate, and one receiving client. Each
sending client sent the same number of messages, and each
receiving client received all the messages sent by all sending
clients. For the library-based prototype, each server ran one
process that injected and received messages.

A broad range of parameter settings provide good per-
formance. Personal windows of a few tens (e.g. 20-40) of
messages with Accelerated windows of half to all of the
Personal window yield good results in all environments we
tested. We report results with the smallest Personal window
and corresponding Accelerated window that let the system
reach its maximum throughput.

1) 1-gigabit Experiments: For these experiments, all data
messages contained a 1350-byte payload. This size allows the
entire message to fit in a single IP packet with a standard
1500-byte MTU, while allowing sufficient space for protocol
headers. Spread requires large headers to support features
needed by users, such as descriptive group and sender names.

Figures 2 and 3 show the relationship between throughput
and latency for Agreed and Safe delivery, respectively. These
figures show a clear difference between the profiles of the orig-
inal Ring protocol and the Accelerated Ring protocol, across
all implementations. When Spread uses the original protocol,
its latency for Agreed delivery is at least 400 µs, even for the
lowest throughput level tested (100 Mbps). In contrast, with
the accelerated protocol, Spread is able to reach 400 Mbps
throughput with latency below 400 µs. At 900 Mbps, Spread’s
latency is under 1.2 ms using the accelerated protocol, which
is about the same as the latency for the original protocol at
400 Mbps. With the original protocol, Spread supports up
to 500 Mbps, with latency around 1.3 ms, before latency
begins to climb rapidly. The accelerated protocol supports 800
Mbps with latency around 720 µs, simultaneously improving
throughput by 60% and latency by over 45%.

The accelerated protocol also improves maximum through-
put compared to the original protocol. Using the accelerated
protocol, Spread reaches over 920 Mbps. Since we measure
only clean application data, and Spread adds substantial head-
ers, this is practically saturating the 1-gigabit network.

Safe delivery shows a similar pattern. For all implementa-



Fig. 4. Agreed delivery latency vs throughput, 10 Gb network

Fig. 5. Agreed delivery latency vs throughput for 1350 byte messages and
8850 byte messages, 10 Gb network

tions, the original protocol supports up to 600 Mbps before
latency begins to rise sharply, and latency is 3.7 - 4.7 ms at
this point. The accelerated protocol supports 800 Mbps with
latency around 2 ms, improving throughput by over 30% and
latency by over 45% at the same time. The accelerated protocol
achieves throughput over 900 Mbps with latency comparable
to that of the original protocol at 600 Mbps.

2) 10-gigabit Experiments: Figures 4 and 6 show perfor-
mance profiles from the same experiments as in Figures 2
and 3, but on a 10-gigabit network. For Agreed delivery,
using the original protocol, Spread can provide throughput
up to about 1 Gbps before the protocol reaches its limits
and latency climbs. Its average latency at this throughput is
385 µs. Using the accelerated protocol, Spread can provide 1.2
Gbps throughput with an average latency of about 310 µs, for
a simultaneous improvement of 20% in both throughput and
latency. The maximum throughput Spread reaches with latency
under 1 ms using the original protocol is 1.6 Gbps, but using
the accelerated protocol, Spread is able to reach 2 Gbps with
similar latency, for a 25% improvement in throughput.

Unlike on 1-gigabit networks, on 10-gigabit networks, pro-
cessing is slow relative to the network. Therefore, the differing
overheads of the different implementations significantly affect
performance. While Spread can support 1.2 Gbps throughput
with latency around 310 µs using the accelerated protocol,
the daemon-based and library-based prototypes support up to
2.9 Gbps and 3.5 Gbps, respectively, at the same latency.

Because processing is a bottleneck for Spread on 10-
gigabit networks, the prototype implementations better show

Fig. 6. Safe delivery latency vs throughput, 10 Gb network

Fig. 7. Safe delivery latency vs throughput for 1350 byte messages and 8850
byte messages, 10 Gb network

the power of the protocol. For the daemon-based prototype, the
original protocol supports 2 Gbps with latency around 390 µs.
The accelerated protocol supports 2.8 Gbps throughput with
latency around 265 µs, for a simultaneous improvement of
40% in throughput and over 30% in latency.

The performance profile for Safe delivery is similar but
with higher overall latencies for the stronger service. Using
the original protocol, Spread supports 1.1 Gbps throughput
with an average latency of 930 µs; using the accelerated
protocol, Spread can support the same throughput with 25%
lower latency (about 700 µs), achieve 20% higher throughput
with the same latency (about 1.35 Gbps), or improve both
throughput and latency by about 10% each (with latency of
about 810 µs for 1.2 Gbps throughput).

As for Agreed delivery, the difference between the proto-
cols is even clearer for the prototype implementations. For
the daemon-based prototype, the original protocol supports
2.5 Gbps throughput with 1.5 ms latency, while the accelerated
protocol supports 3.1 Gbps with 980 µs latency, improving
throughput by 25% and latency by 35% at the same time.

Using the accelerated protocol, Spread achieves a maximum
throughput of 2.3 Gbps (a 35% improvement over the original
protocol’s maximum of 1.7 Gbps), the daemon-based proto-
type reaches 3.3 Gbps, and the library-based prototype reaches
4.6 Gbps.

The accelerated protocol always provides lower latency than
the original protocol for the same throughput in 1-gigabit
experiments or for Agreed delivery. However, Figure 8 shows
that for Safe delivery on 10-gigabit networks the original pro-



tocol can provide better latency than the accelerated protocol
at very low aggregate throughputs. This is because raising the
token aru can cost up to an extra round in the accelerated
protocol (because the aru typically cannot be raised in step
with the token’s seq value). At low throughputs on 10-gigabit
networks, token rounds are already very fast, so the accelerated
protocol cannot speed up each round as much, and the extra
round becomes significant. At 100 Mbps, Spread’s average
latency is 620 µs with the accelerated protocol, which is nearly
20% higher than the original protocol’s 520 µs. However, once
throughput reaches 4-5% of the network’s capacity (400-500
Mbps), the accelerated protocol consistently provides lower
latency.

Fig. 8. Safe delivery latency for low throughputs, 10 Gb network

3) 10-gigabit Experiments with Larger UDP Datagrams:
On 10-gigabit networks, processing power becomes the limit-
ing factor, preventing both the original Ring protocol and the
Accelerated Ring protocol from fully utilizing the network. If
higher throughput is needed, one approach is to amortize pro-
cessing costs over larger message payloads. Spread includes a
built-in ability to pack small messages into a single protocol
packet, but the size of a protocol packet is limited to fit within a
standard 1500-byte MTU; large messages are fragmented into
multiple packets. However, we can use UDP datagrams of up
to 64 kilobytes, allowing message fragmentation to be done at
the kernel level, with the trade-off that losing a single frame
causes the whole datagram to be lost.

To evaluate the performance profile of the Accelerated Ring
protocol when processing costs are amortized over larger
payloads, we ran the same experiments with message payloads
of 8850 bytes and UDP datagrams of up to 9000 bytes. This
choice is inspired by the 9000-byte jumbo frame size, allowing
the same 150 bytes for headers as in the experiments with
1350-byte payloads. We chose not to use jumbo frames at
the network level, since they may not be available in all
deployments, although they may improve performance further.

Figures 5 and 7 compare the performance profiles of the
Accelerated Ring implementations using 1350-byte payloads
(as in Figures 4 and 6) to the profiles using 8850-byte
payloads. Larger messages allow the protocol to reach consid-
erably higher throughputs. For Agreed delivery, the maximum
throughput for Spread improves 150%, from 2.1 Gbps to
5.3 Gbps; for the daemon-based prototype it improves 87%,

from 3.2 Gbps to 6 Gbps; and for the library-based protocol it
improves 58%, from 4.6 Gbps to 7.3 Gbps. Because the benefit
of larger messages comes from amortizing processing costs,
we see the biggest improvements when processing overhead
is highest. Figure 7 shows similar improvements for Safe
delivery.

4) Experiments Under Loss: To evaluate the protocols
under loss, we used the daemon-based prototypes, with each
daemon instrumented to randomly drop a certain percentage
of the data messages it received. As in the normal-case
experiments, we used 8 servers, each running a daemon,
a sending client, and a receiving client. Note that because
messages are dropped independently at each daemon, the
overall rate of retransmissions in the system is much higher
than the loss rate at each daemon. In our experiments, the
loss rate at each daemon ranged from 0-25%, but the actual
rate of retransmissions in the system was typically 5.5 - 6.8
times higher, making this an extremely demanding experiment
(the retransmission rate can be greater than 100%, since
retransmissions may also be lost). With a loss rate of 25%
at each daemon, the probability that a given message does not
need to be retransmitted at all is only 13%.

Note that we only consider data-message loss in this evalu-
ation, not token loss. Token loss is handled by the membership
algorithm, which is identical for the two protocols. Moreover,
token loss is rare, since the token is sent on a different port
than data messages and received on a separate socket; since a
process only needs to receive one token per round, it should
always have sufficient buffer space to receive the token.

Figure 9 shows the effect of loss on latency for both Agreed
and Safe delivery. In this experiment, the sending clients sent
1350-byte messages at an aggregate rate of 480 Mbps. This
rate is 20% of the throughput the original protocol supports on
a 10-gigabit network, which was chosen so that both protocols
could support the total throughput of the experiment, even
with the retransmissions. The solid lines in the figure show
the average latency over all messages, while the dashed lines
show the average latency over the worst (i.e. highest latency)
5% of messages from each sender.

Fig. 9. Latency vs loss, 480 Mbps goodput, 10 Gb network

The Figure 9 shows that for both Agreed and Safe delivery,
the accelerated protocol has higher average latency than the



original protocol once the loss rate reaches 5%. This is
expected, since the accelerated protocol waits an extra round to
request retransmissions. For Agreed delivery, the accelerated
protocol’s latency can be up to 47% higher than that of the
original protocol. However, for Safe delivery, the difference is
only 5-7%. Safe delivery takes longer overall in terms of token
rounds, so the fact that the Accelerated Ring protocol reduces
the time each token round takes has a larger impact on Safe
delivery latency and partially compensates for the extra round
needed to request retransmissions.

The highest latency messages include those that need to be
retransmitted more than once and those that wait close to a
full token round to be sent for the first time (because they
arrived from the client at the daemon just after the daemon
released the token). As the number of overall rounds increases,
the accelerated protocol’s advantage of shorter rounds has
a greater impact and offsets the additional round needed to
request retransmsissions. Therefore, for the highest latency
messages (dashed lines in Figure 9), the accelerated protocol
is slightly more similar to the original protocol in Agreed
delivery latency (with up to 26% higher latency) and provides
about the same Safe delivery latency as the original protocol.

Fig. 10. Latency vs loss, 1200 Mbps goodput, 10 Gb network

Figure 10 shows the results of the same experiment as
Figure 9, but with clients sending at an aggregate rate of
1200 Mbps, representing 50% of the throughput the original
protocol supports on a 10-gigabit network. At this through-
put level, Safe delivery latency is lower for the accelerated
protocol than for the original protocol, while Agreed delivery
latency is similar for both under all tested loss rates. At higher
throughputs, each token round takes substantially longer in the
original protocol, since each daemon has more messages to
send in each round and must send them all before releasing
the token. Because the accelerated protocol does not force
daemons to send all of their messages before releasing the
token, increased throughput has less effect on latency.

Figure 11 shows the results of the same experiment but on a
1-gigabit network, with sending clients sending at an aggregate
rate of 140 Mbps (20% of the throughput the original protocol
supports on a 1-gigabit network). On a 1-gigabit network, the
latency improvement from using the accelerated protocol is so
great that even with the additional round that the accelerated

Fig. 11. Latency vs loss, 140 Mbps goodput, 1 Gb network

protocol needs to request lost messages, the accelerated proto-
col provides better latency than the original protocol under all
tested loss rates, providing slightly lower latency for Agreed
delivery (2-45%) and 22-50% lower latency for Safe delivery,
depending on the loss rate.

Focusing on the highest latency messages or sending at
higher throughputs shows the same pattern as on 10-gigabit
networks – the overall latencies are higher, but the advantage
of the accelerated protocol over the original protocol increases.
Additional experiments under loss, including higher through-
puts on 1-gigabit networks can be found in [9].

B. Discussion

The evaluation clearly shows the benefit of the Accelerated
Ring protocol over a standard token-based protocol. Using the
accelerated protocol, Spread, with all the overhead of a real
system, practically saturates a 1-gigabit network. In fact, it
achieves similar or better network utilization than in 2004 on
100-megabit Fast Ethernet [7], with excellent latency.

Using larger UDP datagrams, a library-based prototype
is able to achieve about 73% network utilization on a 10-
gigabit network. This is comparable to the original Totem Ring
protocol, which was benchmarked similarly to our library-
based implementation on a 10-megabit network [2]. Thus, a
relatively simple but powerful protocol change, plus the use of
larger UDP datagrams, allows the same core protocol to scale
three orders of magnitude over 20 years.

The current version of Spread uses UDP datagrams that fit
in a single frame with a 1500-byte MTU. While we are not
considering using jumbo frames in the default configuration,
allowing larger UDP datagrams on 10-gigabit networks may be
beneficial. A drawback of UDP datagrams that span multiple
network frames is that losing a single frame causes the whole
datagram to be lost. However, using a protocol with good
flow control, like the Accelerated Ring protocol, in a stable
local area network, like those in data center environments, we
expect loss to be small. Therefore, larger UDP datagrams may
be a reasonable trade-off for applications that need both high
throughput and all of the features of Spread.

The Accelerated Ring protocol’s performance improvement
comes at the cost of waiting an extra token round to recover



lost messages. While this can make the accelerated protocol’s
latency higher than that of the original protocol when there is
significant loss on the network, the evaluation shows that this
effect only appears on 10-gigabit networks at relatively low
aggregate throughputs. At higher throughputs or on 1-gigabit
networks, the accelerated protocol’s latency advantage over the
original protocol compensates for the extra round, keeping its
overall latency lower than that of the original protocol.

V. RELATED WORK

The Accelerated Ring protocol builds on a large body of
work on reliable, totally ordered multicast. Existing protocols
vary in the techniques they use to achieve total ordering, as
well as the precise semantics they guarantee.

One of the earliest token-based protocols is the protocol
of Chang and Maxemchuk [14]. This protocol exemplifies a
token-based moving sequencer protocol; the process holding
the token assigns a sequence number to each message it
receives and sends that sequence number to the other pro-
cesses. The Pinwheel protocols [15] introduce performance
optimizations to the Chang and Maxemchuk protocol.

As previously discussed, the Accelerated Ring protocol is
closely related to the Totem Ring protocol [2]. Spread’s orig-
inal protocol is a variant of Totem, and the Accelerated Ring
protocol directly uses the variant of the Totem membership
algorithm implemented in Spread.

While we chose a token-based approach for its simplicity
and flexible semantics, other total ordering mechanisms exist.
Défago et al. provide an extensive survey of total ordering
algorithms and classify them by their ordering mechanisms [1].

One popular approach to ordering is to use Paxos [16] to
order messages by executing a series of consensus instances
to assign sequence numbers to messages. This approach has
been used to perform replication in many well-known systems,
including Boxwood [17], Chubby [18], and Spanner [19].

While Paxos provides total ordering, it does not offer exactly
the same semantics as the Accelerated Ring protocol. We
designed the Accelerated Ring protocol to maintain the flexible
Extended Virtual Synchrony semantics that our experience
has shown to be useful in supporting a wide variety of
applications. Paxos-like approaches lack this flexibility; they
provide a service similar to Safe delivery but cannot provide
weaker services for a lower cost, and they require a quorum
to make progress. In addition, the total order of Paxos-based
approaches does not respect FIFO ordering if a process can
submit a new message for ordering before learning that its
previous messages were ordered. However, Paxos’s semantics
are appropriate for many applications, and numerous variants
and optimizations have been designed (e.g. [20]–[23]).

Ring Paxos [22] shares our goal of high throughput and uses
ring-based communication. It achieves high performance by
using efficient communication patterns in which a coordinator
multicasts messages to all processes and acknowledgments are
forwarded around a logical ring. Multi-Ring Paxos [24] scales
throughput by running multiple rings that order messages in-

dependently. Processes can deterministically merge messages
from multiple rings to obtain a complete total order.

The popular Zookeeper [25] coordination service uses the
ZAB [26] protocol for primary-backup replication. ZAB is
similar to Paxos but enforces FIFO ordering and provides
stronger ordering guarantees across leader failures. Like Paxos,
ZAB requires a quorum to make progress.

The ISIS toolkit [27] was one of the first practical group
communication systems and was used in air traffic control
systems and the New York Stock Exchange, among many
other places. ISIS is based on the Virtual Synchrony model
and uses vector timestamps to establish causal ordering and a
sequencer-based protocol to establish total ordering.

While sequencer-based approaches like the one in ISIS can
provide a variety of service levels, their handling of network
partitions is typically limited, preventing them from cleanly
merging partitioned members. Members that do not belong to
a primary component typically need to rejoin as new members.
We focus on token-based approaches in part because they can
naturally provide rich semantics in a partionable model.

In the Trans protocol [28], used by Transis [29], pro-
cesses attach positive and negative acknowledgments to mes-
sages they multicast. These acknowledgments, along with per-
process sequence numbers, are used to build a directed acyclic
graph over the messages, which determines the total order.

These alternative approaches to ordering have also been
used to build successful practical messaging systems that
achieve good performance on modern networks. JGroups [30]
is a popular, highly-configurable messaging toolkit that in-
cludes a sequencer-based total ordering protocol, as well as
less expensive FIFO ordering. A 2008 evaluation reports that,
on a 1-gigabit network, the FIFO protocol achieves 405 Mbps
throughput with 1000-byte messages and 693 Mbps with 5000-
byte messages [31]. Using the setup in Section IV, we measure
650 Mbps throughput for the total ordering protocol on a
1-gigabit network with 1350-byte messages (880 Mbps for
FIFO) and 3 Gbps on a 10-gigabit network (4 Gbps for FIFO).

Isis2 [32], [33] is a cloud computing library that includes
totally ordered multicast using a sequencer-based protocol,
stronger safety guarantees using Paxos, and a weaker, cheaper
FIFO multicast. Isis2 allows users to work with replicated dis-
tributed objects (automatically maintaining consistent copies).

CORFU [34] is distributed shared log that can provide to-
tally ordered reliable broadcast: each new message is appended
to the log, and the order of messages in the log corresponds to
the total order. To reduce contention and improve performance,
processes reserve a specific log position from a dedicated
sequencer before attempting to write to the log. This allows
writes to distinct log positions to occur in parallel, which
resembles the parallel multicasting enabled by the Accelerated
Ring protocol.

U-Ring Paxos [35] adapts Ring Paxos and Multi-Ring Paxos
to work without IP-multicast by propagating both acknowl-
edgments and data around the ring. While providing efficient
(logical) multicast in the absence of IP-multicast is important
for certain environments (e.g. WANs), significant effort has



been spent on optimizing IP-multicast and allowing it to
support large numbers of groups; our experience has shown
that it is reasonable to take advantage of its performance when
building infrastructure in data center environments. Using a
single ring, U-Ring Paxos is reported to reach over 900 Mbps
sending 8000-byte messages on a 1-gigabit network [35],
which matches our measurements in the same 8-machine setup
described in Section IV. When sending 1350-byte messages
(but allowing batching), we measure U-Ring Paxos as reaching
over 750 Mbps with a latency profile similar to that of the
original Ring protocol for Safe delivery. On a 10-gigabit
network, we measure U-Ring Paxos as reaching close to
1.5 Gbps with 1350-byte messages. Higher throughput may be
achieved by running multiple rings in parallel, but this requires
additional processing resources.

VI. CONCLUSION

We presented the Accelerated Ring protocol, a new protocol
for totally-ordered multicast that is designed to take advantage
of the trade-offs of 1-gigabit and 10-gigabit networks. The Ac-
celerated Ring protocol significantly improves both throughput
and latency compared to standard token-based protocols, while
maintaining the correctness and attractive properties of such
protocols. The protocol is available as open-source and has
been adopted as the default protocol for local area networks
and data center environments in the Spread toolkit.
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