
CS 3351: Paxos Made Simple?

Amy Babay
University of Pittsburgh

School of Computing and Information



Background & Motivation

• State Machine Replication (SMR): technique 
for implementing strongly consistent fault-
tolerant services
– Servers start in the same state
– Servers apply deterministic updates in the same 

order
– => Servers progress through exactly the same 

sequence of states

1/14/20 Amy Babay 2



Background & Motivation

• State Machine Replication (SMR): technique for 
implementing strongly consistent fault-tolerant 
services

1/14/20 Amy Babay 3

A1

B1

A2

B2

C1
B1A2 A1C1B2

B1A2 A1C1B2

B1A2 A1C1B2

Clients generate updates

Servers 
establish 
ordering

Servers apply updates in order



Background & Motivation

• As discussed last class, SMR can be implemented 
as a sequence of consensus instances

• Paxos is a consensus protocol that is often used 
to implement SMR
– Published in technical report in 1989, Journal paper in 

1998 (“The Part Time Parliament”)
• Described via analogy to hypothetical Greek parliament

– Work on clarifying, implementing, optimizing, or 
replacing Paxos continues in the literature today

– Foundation for some of the intrusion-tolerant 
replication protocols we’ll see later

1/14/20 Amy Babay 4



System Model

• We have a groups of processes (aka. servers, 
replicas)

• Processes communicate by sending messages
• Processes can crash and restart
– Processes have access to stable storage to record 

information
• Messages can take arbitrarily long to be 

delivered, can be duplicated, and can be lost
• Processes execute the protocol faithfully, and 

messages are not corrupted (non-Byzantine)

1/14/20 Amy Babay 5



Consensus Requirements (Safety)

• Validity: Only a value that has been proposed 
may be chosen

• Agreement (1): Only a single value is chosen
• Agreement (2): A process never learns that a 

value has been chosen unless it actually has 
been

• What about liveness (progress/termination)?

1/14/20 Amy Babay 6



Paxos Consensus Protocol
(“Single-Decree Synod”)

• Key concept: Any two majorities must 
intersect in at least one process

1/14/20 Amy Babay 7

P1

P2

P3
P5

P4



Paxos Consensus Protocol
(“Single-Decree Synod”)

• Key concept: Any two majorities must 
intersect in at least one process

• So, to guarantee agreement we:
1. Only allow a value to be chosen if it is accepted 

by a majority of (acceptor) processes
2. Require a (proposer) process to communicate 

with a majority of (acceptor) processes before 
proposing a value to find out what they’ve 
previously accepted

1/14/20 Amy Babay 8



Paxos Consensus Protocol

• Subtle points:
– But what if multiple values have been accepted?
– Can a process accept a new value after giving its 

response?

• Solutions:
– Sequence numbers on proposer’s attempts to pass a 

proposal (often called “view numbers”)
– Promises to not accept anything from lower views 

after responding

1/14/20 Amy Babay 9



Proposer Actions

• Send prepare_request(n)
• Wait for majority prepare_response(n,v,m)
– v : value of last accepted proposal (may be null if 

none)
– m: sequence number of last accepted proposal (m < n)

• If received some prepare_response(n,v,m) with 
non-null v, send accept_request(n,x) where x is 
the value associated with highest received m; else
send accept_request(n,x), where x can be any 
value

1/14/20 Amy Babay 10



Acceptor Actions

• Upon receiving prepare_request(n)
– If previously responded to prepare_request(m) s.t. m > n, 

do nothing (or “inform proposer” as performance 
optimization)

– Else if previously accepted prepare_request(m) s.t. m < n, 
send prepare_response(n,v,m)

– Else send prepare_response(n,null,0)
• Upon receiving accept_request(n,x)
– If previously responded to prepare_request(m) s.t. m > n, 

do nothing (or “inform proposer” as performance 
optimization)

– Else accept value x (and inform learners)

1/14/20 Amy Babay 11



Paxos Consensus Protocol
(“Single-Decree Synod”)

1/14/20 Amy Babay 12

P1

P2

P3

P4

P5

Prepare Request Prepare Response
(Promise)

Accept Request Accept Response
(Acknowledge) 

(option 1)

Choose/Learn
(Commit)
(option 1)



Paxos Consensus Protocol
(“Single-Decree Synod”)

1/14/20 Amy Babay 13

P1

P2

P3

P4

P5

Prepare Request Prepare Response
(Promise)

Accept Request Accept Response 
+ Choose/Learn 

(option 2)



Normal Case: Prepare Request

1/14/20 Amy Babay 14

P1

P2

P3

P4

P5

prep_req(1)

prep_req(1)

prep_req(1)

prep_req(1)

I want to submit a proposal. Let’s use 
the view (sequence) number 1 for 
this attempt at choosing a value.



Normal Case: Prepare Response

1/14/20 Amy Babay 15

P1

P2

P3

P4

P5

prep_resp(1, null, 0)

prep_resp(1,null,0)

prep_resp(1,null,0)

prep_resp(1,null,0)

Sure, I haven’t heard 
anything about a proposal 

yet



Normal Case: Accept Request

1/14/20 Amy Babay 16

P1

P2

P3

P4

P5

accept_req(1,v)

accept_req(1,v)

accept_req(1,v)

accept_req(1,v)

Upon receiving request, all 
processes “accept” the 
proposal

Alright, no proposal could have been 
accepted before, so let’s use my 

value v



Normal Case (Option 1):
Inform Distinguished Learner

1/14/20 Amy Babay 17

P1

P2

P3

P4

P5

accept_resp(1,v)

accept_resp(1,v)

accept_resp(1,v)

accept_resp(1,v)

Got it. Nothing changed 
since the last time we 

talked, so I’m accepting 
your value v (at least for 

attempt 1 at choosing 
something)



Normal Case (Option 1):
Inform Distinguished Learner

1/14/20 Amy Babay 18

P1

P2

P3

P4

P5

choose(v)

choose(v)

choose(v)

choose(v)

A majority of you accepted value v, so that’s the 
value we’ve chosen (and it’s now impossible to 

choose a different value)

Note that this whole process still 
works even if up to 2 processes 
(other than P1) fail at any point



Normal Case (Option 2):
Inform all Learners

1/14/20 Amy Babay 19

P1

P2

P3

P4

accept_resp(1,v)

accept_resp(1,v)

accept_resp(1,v)

accept_resp(1,v)

P5

Each process “chooses” the value 
v upon receiving a majority of 
accept_resp(1,v)

I’m accepting the 
value v (at least for 

attempt 1 at choosing 
something)

accept_resp(1,v)



Leader Failure Case: Prepare Request

1/14/20 Amy Babay 20

P1

P2

P3

P4

P5

I want to propose a 
value. Let’s use the 
number 1 for this 

attempt.

prep_req(1)
prep_req(1)

prep_req(1)

prep_req(1)



Leader Failure Case: Prepare Response

1/14/20 Amy Babay 21

P1

P2

P3

P4

P5

Sure, I haven’t heard of 
any proposal yet.

prep_resp(1,null,0)

prep_resp(1,null,0)

prep_resp(1,null,0)

prep_resp(1,null,0)



Leader Failure Case: Accept Request

1/14/20 Amy Babay 22

P1

P2

P3

P4

P5

Okay, no value could 
have been accepted, so 

let’s use my value v.

accept_req(1,v)

accept_req(1,v)

P1 fails in the 
middle of sending 
its accept req!



Leader Failure Case: Prepare Request 
(Attempt 2)

1/14/20 Amy Babay 23

P1

P2

P3

P4

P5

prep_req(2)

prep_req(2)

P2 takes over as 
leader

prep_req(2)



Leader Failure Case: Prepare Response 
(Attempt 2)

1/14/20 Amy Babay 24

P1

P2

P3

P4

P5

prep_resp(2,null,0)

prep_resp(2,null,0)

P2 and P3 knew about previous 
proposal with value v, so P2’s 
proposal is constrained to value v

prep_resp(2,v,1)



Leader Failure Case: Accept Request 
(Attempt 2)

1/14/20 Amy Babay 25

P1

P2

P3

P4

P5

accept_req(2,v)

accept_req(2,v)

All processes accept value v 
in attempt 2 (and can then 
learn that it was chosen via 
accept_resp+choose)

accept_req(2,v)



Simple Partition Case: Prepare Request

1/14/20 Amy Babay 26

P1

P2

P3

P4

P5

I want to propose a 
value. Let’s use the 
number 1 for this 

attempt.

I want to propose a 
value. Let’s use the 
number 4 for this 

attempt.

prep_req(1)
prep_req(1)

prep_req(4)



Simple Partition Case: Prepare Response

1/14/20 Amy Babay 27

P1

P2

P3

P4

P5

Sure, I haven’t 
heard about any 

proposal yet

prep_resp(1,null,0)

prep_resp(1,null,0)
prep_resp(4,null,0)

Sure, I haven’t 
heard about any 

proposal yet



Simple Partition Case: Accept Request

1/14/20 Amy Babay 28

P1

P2

P3

P4

P5

Alright, no proposal could 
have been accepted before, 

so let’s use my value v

accept_req(1,v)

accept_req(1,v)

I’m still waiting 
to get a majority 
of responses…

Processes P1, P2, P3 accept 
value v for attempt 1 => v is 
chosen

How can P4, P5, find out about the chosen 
value (after the partition heals)?



Simple Partition Case: Partition Repair
(one option)

1/14/20 Amy Babay 29

P1

P2

P3

P4

P5

I’m still waiting to 
get a majority of 

responses…maybe 
I should try again?

prep_req(4)

prep_req(4)

prep_req(4)

prep_req(4)



Simple Partition Case: Partition Repair
(one option)

1/14/20 Amy Babay 30

P1

P2

P3

P4

P5

Okay, 4 is greater than my 
last accepted sequence, 

but need to make sure the 
value doesn’t conflict

prep_resp(4,null,0)

prep_resp(4,v,1)

prep_resp(4,v,1)

prep_resp(4,v,1) Sure, I still 
haven’t heard 
about another 

proposal



Simple Partition Case: Partition Repair
(one option)

1/14/20 Amy Babay 31

P1

P2

P3

P4

P5

Got it, I need to 
propose value v.

accept_req(4,v)

accept_req(4,v)

accept_req(4,v)

accept_req(4,v)

All processes accept value v for 
attempt 4 (and can then learn 
that it was chosen via one of the 
two strategies shown earlier)



From Consensus to SMR (Multi-Paxos)

• Execute a sequence of separate Paxos
instances

• Value chosen in ith consensus instance is the ith

command executed
• Optimization: stable leader only needs to 

execute “prepare” phase once

1/14/20 Amy Babay 32



Proposer Actions (Prepare phase)

• Send prepare_request(n,i)
– n : sequence/“view” number
– i : ordinal of last (consecutive) consensus instance 

for which the proposer knows a chosen value

• Wait for majority 
prepare_response(n,{(j,vj,mj), (k,vk,mk), …})
– (j,vj,m) : (ordinal, value, view) for each ordinal j > i

for which the acceptor has previously accepted a 
value vj in some view mj

1/14/20 Amy Babay 33



Proposer Actions (Accept phase)

• Propose all constrained updates:
– For each ordinal j s.t. some vj was received, send

accept_request(n,j,vj) where vj is the value associated 
with highest received mj

• Fill all holes (via no-ops):
– For each ordinal j < jmax s.t. no vj was received, send 

accept_request(n,j,no-op)

• Proceed with unconstrained instances
– Incoming client requests can be assigned ordinals 

starting with jmax+1

1/14/20 Amy Babay 34



Acceptor Actions

• Upon receiving prepare_request(n,i)
– If previously responded to prepare_request(m,*) s.t.

m > n, do nothing (or “inform proposer” as 
performance optimization)

– Else construct constraining update list and send 
prepare_response(n,{(j,vj,mj), (k,vk,mk), …})

• Upon receiving accept_request(n,j,vj)
– If previously responded to prepare_request(m,*) s.t.

m > n, do nothing (or “inform proposer” as 
performance optimization)

– Else accept value vj for ordinal j (and inform learners)

1/14/20 Amy Babay 35



Multi-Paxos Example (from paper)

1/14/20 Amy Babay 36

P1

P2

P3

P4

P5

We’ve stopped making progress! I’m going 
to try to take over as leader with view #6. I 
already know commands 1-134 (plus 138 & 

139). Am I missing anything?

prep_req(6, 134)
prep_req(6,134)

prep_req(6,134)

prep_req(6,134)



Multi-Paxos Example (from paper)

1/14/20 Amy Babay 37

P1

P2

P3

P4

P5

prep_resp(6,
{(135,v,5),
(138,v’,4),
(139,v’’,4),
(140,v’’’,5)})

prep_req(6,{})

prep_req(6,
{(135,v,5),
(140,v’’’,5)})

prep_resp(6,
{(135,v,5),
(138,v’,4),
(139,v’’,4),
(140,v’’’,5)})



Multi-Paxos Example (from paper)

1/14/20 Amy Babay 38

P1

P2

P3

P4

P5

accept_req(6, 135,v)

accept_req(6, 135,v)
accept_req(6, 135,v)

accept_req(6, 135,v)



Multi-Paxos Example (from paper)

1/14/20 Amy Babay 39

P1

P2

P3

P4

P5

accept_req(6,136,no-op)

accept_req(6, 136,no-op)
accept_req(6, 136, no-op)

accept_req(6, 136, no-op)

accept_resp(6,135,v)



Multi-Paxos Example (from paper)

1/14/20 Amy Babay 40

P1

P2

P3

P4

P5

accept_req(6,137,no-op)

accept_req(6,137,no-op)
accept_req(6, 137, no-op)

accept_req(6, 137, no-op)

accept_resp(6,136,no-op)



Multi-Paxos Example (from paper)

1/14/20 Amy Babay 41

P1

P2

P3

P4

P5

accept_req(6,140,v’’’)

accept_req(6,140,v’’’)
accept_req(6, 140,v’’’)

accept_req(6, 140,v’’’)

accept_resp(6,137,no-op)



Multi-Paxos Example (from paper)

1/14/20 Amy Babay 42

P1

P2

P3

P4

P5

accept_req(6,141,X)

accept_req(6,141,X)
accept_req(6, 140,X)

accept_req(6, 140,X)

accept_resp(6,140,v’’’)



Summary

• Introduced the Paxos consensus algorithm 
(simplified from original specification)

• Key idea behind preventing inconsistency is 
simple and intuitive

• Implementation and ensuring liveness 
(especially ensuring that replicas can actually 
execute ordered events) requires non-trivial 
extensions
– Often dismissed as “engineering details”

1/14/20 Amy Babay 43


