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Recall: State Machine Replication

• State Machine Replication (SMR): technique 
for implementing strongly consistent fault-
tolerant services
– Servers start in the same state
– Servers apply deterministic updates in the same 

order
– => Servers progress through exactly the same 

sequence of states
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System Model

• n replicas
• Asynchronous network
– Messages can be dropped, delayed, duplicated, delivered 

out of order
• Byzantine failures
– Faulty replicas can behave arbitrarily (e.g. crash, recover, 

lie, collude, corrupt messages, delay messages)
• But,
– At most f replicas are faulty, where 3f + 1 <= n
– Messages are authenticated (digital signatures) and faulty 

replicas are computationally bounded (cannot break 
crypto)
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Recall: Paxos (SMR with benign failures)

• Key concept: Any two majorities must 
intersect in at least one replica

• So, to guarantee agreement we:
1. Only allow a value to be chosen if it is accepted 

by a majority of replicas
2. Require new leader to communicate with a 

majority of replicas before proposing a value to 
find out what they’ve previously accepted
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Recall: Paxos
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accept_req(v, n, m): proposal 
to assign client msg m
sequence number n in view v



Recall: Paxos
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accept_resp(1, 1, m)

accept_resp(1, 1, m)
accept_resp(1, 1, m)

accept_resp(1, 1, m)

accept_resp(v, n, m): agreement to assign 
client msg m sequence number n in view v
+ promise not to accept a different m’ for n in v



Recall: Paxos
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choose(1, 1, m)

choose(1, 1, m)
choose(1, 1, m)

choose(1, 1, m)

choose(v, n, m): assign client msg m
sequence number n; it is now safe to 
execute the update in m (assuming you’ve 
executed all previous updates)



Paxos – What if our leader lies??
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choose(1, 1, m’)

choose(1, 1, m’)
choose(1, 1, m)

choose(1, 1, m)

Replicas disagree on what the first 
operation is! Clearly, we can’t just let the 
leader decide on the final result…



Paxos: Consider our other variant
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Paxos: Consider our other variant
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accept_resp(1, 1, m)
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accept_resp(1, 1, m)

replicas assign client msg m sequence number 
n (and can execute it) upon receiving a 
majority of matching accept_resp messages



Paxos: Consider our other variant

• From “Paxos for System Builders”
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Figure 1: Paxos normal-case operation. Client C sends an update to the
leader (Server 0). The leader sends a PROPOSAL containing the update
to the other servers, which respond with an ACCEPT message. The client
receives a reply after the update has been executed.

fore sending its ACCEPT. One possible variation is that the
leader can send an ACCEPT message as well, in which case
it could sync to disk in parallel with the other servers. If
disk writes are expensive with respect to the overall latency
of the ordering, then this results in a reduction of the order-
ing latency at the cost of one additional incoming message
per non-leader (andN−1 additional sends by the leader). In
either case, the initiator of an update syncs it to disk before
sending it to the leader to ensure that the update is consis-
tently identified across crashes.
Servers attempt to elect a new leader if insufficient

progress is being made – that is, if a timer expires without
the server having executed a new update. Paxos for System
Builders uses a leader election protocol similar to the one
used by the BFT protocol [3], adapted for use in benign en-
vironments. When a server’s timer expires, it sends a VIEW-
CHANGE message to the other servers. A server completes
the leader election protocol when it collects VIEW-CHANGE
messages from a majority of servers for the view it is at-
tempting to install.

3 Liveness: Theory and Practice

The liveness of a protocol reflects its ability to make for-
ward progress. Given sufficient network stability, Paxos al-
lows any majority of servers to order new updates, regard-
less of past failures. What degree of network stability is
“sufficient”? Answering this question is not straightforward
because it is difficult to define what exactly “the Paxos pro-
tocol” is. Many of the important details, some of which
play a large role in determining the liveness of the overall
protocol, were not originally specified. In this section we
discuss the liveness of both the leader election protocol and
the normal-case operation of Paxos.
Leader Election: Our work on Paxos for System

Builders revealed that Paxos is only as live as its leader elec-
tion protocol. Although many different leader election pro-
tocols can be used without impacting the safety of the sys-
tem, the choice of leader election has a significant impact on
overall system liveness. When we compared the network
stability requirements of several different Paxos specifica-
tions, we observed that there is a scale of network stability

requirements for the overall systems, resulting directly from
the choice of leader election protocol. Each leader election
protocol requires a different level of stability to remain on a
single leader (which is needed to guarantee liveness).
The network stability requirement of the leader election

protocol used in Paxos for System Builders can be stated
formally as:

DEFINITION 3.1 STABLE MAJORITY SET: There exists a
set of processes, S, with |S| > ⌊N/2⌋, that are eventually
alive and connected to each other, and which can even-
tually communicate with each other with some (unknown)
bounded message delay.

The leader election failure detector specified in [13] re-
quires a stronger degree of stability from the network to re-
main on a single leader. In the protocol, each server main-
tains a list of the servers it believes to be alive, and the leader
is chosen as the server with the highest identifier. A Paxos
system using this failure detector requires a stable majority
set whose members do not receive messages from particular
unstable servers that repeatedly crash and recover or parti-
tion (i.e., those with higher identifiers).
The leader election failure detector specified in [2] re-

quires strictly less stability than that of [13], requiring the
stable majority set to be isolated only from particular unsta-
ble servers that repeatedly partition (servers that repeatedly
crash and recover are eventually not considered as potential
leaders). The protocol used in Paxos for System Builders is
not vulnerable to disruption by any unstable servers. How-
ever, in certain cases, Paxos for System Builders requires a
slightly longer time to settle on a leader in the stable major-
ity set than [2], since our elections are not based on which
servers are believed to be alive.
We emphasize that our comparison of leader election

protocols is not exhaustive, and the purpose of the preceding
discussion is not to endorse a particular protocol. Rather,
our goal is to highlight the importance of specifying Paxos
in its entirety so that its performance and availability can be
evaluated and compared to other solutions.
Normal-case Operation: In principle, Paxos can con-

tinue to order new updates as long as the leader can com-
municate with a majority of servers, where the members of
the majority can switch very rapidly (although note that the
leader election protocol might not tolerate such rapid fluctu-
ation). However, there is a difference between the theoreti-
cal network stability requirement for ordering and the prac-
tical network stability requirement for execution. In order to
use Paxos as a replication engine, servers must be able to ex-
ecute new updates (i.e., to globally order new updates with
no holes). There seems to be little value in having servers
order updates very quickly if execution must be delayed due
to gaps in the global sequencing. To execute at full speed, a
server must either be continuously connected to a majority
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What can a malicious leader do?
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What can a malicious leader do?
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P4 executes m as 
the first operation, 
but P2 executes m’



Handling Byzantine Faults

• Simple majority is NOT enough
– Malicious replicas may not keep their promise to 

only vote once

• New idea: require a majority of correct
replicas
– How many total replicas do we need?
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Handling Byzantine Faults

• How many total replicas do we need?
– faulty replicas may never respond at all, so we 

can’t require more than n – f responses
– but, it could be that our n – f responses actually 

do include f faulty replicas
– so, we are only guaranteed n – 2f out of n – f 

responses come from correct replicas
– we need correct replicas to outnumber faulty ones 

in making our decision, so we need n – 2f > f, 
which implies n > 3f
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Handling Byzantine Faults

• Let our total number of replicas n = 3f + 1
– e.g.    f = 1 -> n = 4;    f = 2 -> n = 7

• Let a quorum = 2f + 1
– e.g.    f = 1 -> 2f+1 = 3;    f = 2 -> 2f+1 = 5

• Any 2 sets of 2f + 1 replicas MUST share at 
least 1 correct replica
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ff + 1 f2f+1 = 
No way to get 2f+1 without 
drawing at least one replica 
from other green circle



Quorums in BFT
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f = 1
3f+1 = 4
2f+1 = 3

There is no way to 
get 3 replicas to 
agree on m AND get 
3 replicas to agree 
on m’

m, m’

m
m
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Quorums in BFT
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f = 1
3f+1 = 4
2f+1 = 3

In the worst case, 
with 3f+1 replicas:
- f+1 correct 

replicas vote m
- f correct replicas 

vote m’
- f faulty replicas 

vote m AND m’

We can’t get 2f+1 
votes for conflicting 
messages!

m, m’

m
m

m’



Basic BFT Protocol
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o : operation to execute
t : timestamp
c : client id

Client

(REQUEST, o, t, c)



Basic BFT Protocol
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v : view
n : sequence number to assign
d : digest of client message
m : client messageClient

((PRE-PREPARE, v, n, d), m)



Basic BFT Protocol
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P1

P2

P3

P4

v : view
n : sequence number to assign
d : digest of client message
i : replica idClient

(PREPARE, v, n, d, i)

(PREPARE, v, n, d, i)
(PREPARE, v, n, d, i)

Upon receiving pre-prepare, if:
1. Signatures verify
2. v matches my view
3. I haven’t accepted a pre-

prep for n with d’ != d in v
4. h < n < H
then send prepare



Basic BFT Protocol
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P4

v : view
n : sequence number to assign
d : digest of client message
i : replica idClient

(PREPARE, v, n, d, i)

(PREPARE, v, n, d, i)
(PREPARE, v, n, d, i)

Upon collecting prepare 
certificate (pre-prepare + 2f 
prepares) for (n,m), I know that 
it is impossible for another 
replica to get a prepare 
certificate for (n,m’) 



Basic BFT Protocol
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v : view
n : sequence number to assign
d : digest of client message
i : replica idClient

(PREPARE, v, n, d, i)

(PREPARE, v, n, d, i)
(PREPARE, v, n, d, i)

This 
communication 
pattern worked for 
Paxos – why isn’t 
it enough here?



Consider a Malicious leader (again)

3/2/20 Amy Babay 25

P1

P2

P3

P4

f = 2
3f+1 = 7
2f+1 = 5

Client

P5

P6

((PRE-PREPARE, 1, 1, d), m)

((PRE-PREPARE, 1, 1, d’), m’) P7



Consider a Malicious leader (again)

3/2/20 Amy Babay 26

P1

P2

P3

P4

f = 2
3f+1 = 7
2f+1 = 5

Client
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(PREPARE, 1, 1, d)

(PREPARE, 1, 1, d’) P7 Correct process P6
collects prepare 
certificate for (1,m) 
(commits to m for 
seq 1)



Consider a Malicious leader (again)
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P5
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(PREPARE, 1, 1, d)

(PREPARE, 1, 1, d’) P7

Now consider that P1 and P6 get partitioned away. New leader P2 must protect P6 by 
choosing m for seq 1, but it doesn’t have enough information to know that (either m or 
m’ could have been chosen). The protocol gets stuck!



Basic BFT Protocol: Commit Phase
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v : view
n : sequence number to assign
d : digest of client message
i : replica idClient

(COMMIT, v, n, d, i)

(COMMIT, v, n, d, i)
(COMMIT, v, n, d, i)

(COMMIT, v, n, d, i)

Upon collecting 2f+1 valid 
matching prepare/pre-prepare 
from different replicas:
send commit



Basic BFT Protocol
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P3

P4

v : view
t : client request timestamp
c : client id
i : replica id
r : result of the operationClient

(REPLY, v, t, c, i, r)

Upon collecting 2f+1 valid 
matching commits from 
different replicas:
execute the operation 
(assuming all previous ops have 
been executed) and reply to the 
client

(REPLY, v, t, c, i, r)

(REPLY, v, t, c, i, r)

(REPLY, v, t, c, i, r)



Basic BFT Protocol
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We define the committed and committed-local predi-
cates as follows: committed is true if and only
if prepared is true for all in some set of

1 non-faulty replicas; and committed-local
is true if and only if prepared is true and has
accepted 2 1 commits (possibly including its own)
from different replicas that match the pre-prepare for ;
a commit matches a pre-prepare if they have the same
view, sequence number, and digest.
The commit phase ensures the following invariant: if

committed-local is true for some non-faulty
then committed is true. This invariant and

the view-change protocol described in Section 4.4 ensure
that non-faulty replicas agree on the sequence numbers
of requests that commit locally even if they commit in
different views at each replica. Furthermore, it ensures
that any request that commits locally at a non-faulty
replica will commit at 1 or more non-faulty replicas
eventually.
Each replica executes the operation requested by
after committed-local is true and ’s state

reflects the sequential execution of all requests with
lower sequence numbers. This ensures that all non-
faulty replicas execute requests in the same order as
required to provide the safety property. After executing
the requested operation, replicas send a reply to the client.
Replicas discard requests whose timestamp is lower than
the timestamp in the last reply they sent to the client to
guarantee exactly-once semantics.
We do not rely on ordered message delivery, and

therefore it is possible for a replica to commit requests
out of order. This does not matter since it keeps the pre-
prepare, prepare, and commit messages logged until the
corresponding request can be executed.
Figure 1 shows the operation of the algorithm in the

normal case of no primary faults. Replica 0 is the primary,
replica 3 is faulty, and is the client.

X

request pre-prepare prepare commit reply
C

0

1

2

3

Figure 1: Normal Case Operation

4.3 Garbage Collection
This section discusses the mechanism used to discard
messages from the log. For the safety condition to hold,
messagesmust be kept in a replica’s log until it knows that

the requests they concern have been executed by at least
1 non-faulty replicas and it can prove this to others

in view changes. In addition, if some replica misses
messages that were discarded by all non-faulty replicas,
it will need to be brought up to date by transferring all
or a portion of the service state. Therefore, replicas also
need some proof that the state is correct.
Generating these proofs after executing every opera-

tion would be expensive. Instead, they are generated
periodically, when a request with a sequence number di-
visible by some constant (e.g., 100) is executed. We will
refer to the states produced by the execution of these re-
quests as checkpoints and we will say that a checkpoint
with a proof is a stable checkpoint.
A replicamaintains several logical copies of the service

state: the last stable checkpoint, zero ormore checkpoints
that are not stable, and a current state. Copy-on-write
techniques can be used to reduce the space overhead
to store the extra copies of the state, as discussed in
Section 6.3.
The proof of correctness for a checkpoint is generated

as follows. When a replica produces a checkpoint,
it multicasts a message CHECKPOINT to the
other replicas, where is the sequence number of the
last request whose execution is reflected in the state
and is the digest of the state. Each replica collects
checkpoint messages in its log until it has 2 1 of
them for sequence number with the same digest
signed by different replicas (including possibly its own
such message). These 2 1 messages are the proof of
correctness for the checkpoint.
A checkpoint with a proof becomes stable and the

replica discards all pre-prepare, prepare, and commit
messages with sequence number less than or equal to
from its log; it also discards all earlier checkpoints and

checkpoint messages.
Computing the proofs is efficient because the digest

can be computed using incremental cryptography [1] as
discussed in Section 6.3, and proofs are generated rarely.
The checkpoint protocol is used to advance the low

and high water marks (which limit what messages will
be accepted). The low-water mark is equal to the
sequence number of the last stable checkpoint. The high
water mark , where is big enough so that
replicas do not stall waiting for a checkpoint to become
stable. For example, if checkpoints are taken every 100
requests, might be 200.

4.4 View Changes
The view-change protocol provides liveness by allowing
the system tomake progress when the primary fails. View
changes are triggered by timeouts that prevent backups
from waiting indefinitely for requests to execute. A
backup iswaiting for a request if it received a valid request
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Basic BFT Protocol

• (One) Key difference from Paxos:
– It is possible to have more than one value proposed in a given 

view (by faulty leader)
– So, we can’t rely only on view numbers to break ties

• Why does the commit phase solve our problem?
– By collecting 2f+1 valid commits for sequence number n and 

message m, a replica learns that a quorum has collected a 
prepare certificate for (n,m) in view v

– This implies that NO correct replica can collect a prepare 
certificate for (n,m’) in view v

– This also implies that ANY future quorum must include at least 
one correct replica with a prepare certificate for (n,m)
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BFT View Change

• Same principle as Paxos: new leader must 
communicate with a quorum to find out what 
might have been ordered/executed

• But,
– Quorum = 2f+1 (not n/2)
– We use prepare certificates to identify unique

operations that may have been executed in a view
– Replicas must be able to verify that the leader 

preserves ordering operations that may have been 
executed in a previous view
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BFT View Change
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P1

P2

P3

P4

v+1 : next view
n : sequence number of last stable checkpoint
C : proof for checkpoint at n
P : set of all prepare certificates I have with seq > nClient

(VIEW-CHANGE, v+1, n, C, P, i) Upon collecting 2f valid view 
change from different replicas, 
new leader sends new view

(VIEW-CHANGE, v+1, n, C, P, i)

(VIEW-CHANGE, v+1, n, C, P, i)



BFT View Change
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P1

P2

P3

P4

v+1 : next view
V : set of 2f+1 VIEW-CHANGE msgs
O : set of pre-prepares for all sequence numbers 
between min-s (highest stable seq n in a VC msg in V) 
and max-s (highest prepare cert in a VC msg in V)Client

(NEW-VIEW, v+1, V, O) Upon receiving valid new-view 
message, each replica sends 
prepare for each pre-prepare in O



Additional Considerations

• Garbage Collection
– Checkpoint state periodically to keep message log from growing indefinitely
– In Byzantine environment, checkpoints must be coordinated

• Non-determinism
– Transform non-deterministic operations into deterministic calculation 

based result from one or more replica(s)
• e.g. BFS “time-last-modified”: take max of leader’s proposed value or highest value 

seen so far + 1
• Observation: median of 2f+1 values must be >= some value proposed by a correct 

process and <= some value proposed by a correct process
• Communication Optimizations

– Reduce # of replies, tentative execution, read-only optimization
• Crypto Optimizations

– MACs vs Digital Signatures: MACs are faster but weaker; requires non-
trivial changes to view change protocol (view-change acks)

3/2/20 Amy Babay 35



Additional Considerations

• Liveness
– To guarantee progress, we need at least 2f+1 correct 

replicas in a stable view with a correct leader
– Tension: if leader fails, we want to replace quickly, 

BUT if our timeout is too aggressive, we will view 
change before a (correct) leader has a chance to make 
progress

– Solution approach: double the timeout each time we 
view change
• Clean theoretical guarantee: we make progress as long as 

message delay doesn’t grow faster than timeout forever
• Problematic in practice: that progress might be extremely 

slow 
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Summary

• Introduced the first practical state-machine 
replication protocol that tolerates Byzantine 
faults in an asynchronous network

• Optimized the protocol to achieve 
dramatically better performance than state-of-
the-art (at the time) – replacing signatures 
with MACs

• Implemented replicated NFS service on top of 
the BFT library
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