
Impossibility Results: or why
distributed systems are hard

Amy Babay
University of Pittsburgh

School of Computing and Information

Readings

• CAP Twelve Years Later: How the “Rules” Have
Changed, Eric Brewer

• Impossibility of Distributed Consensus with a
Single Faulty Process, Michael Fischer, Nancy
Lynch, Michael Paterson

1/10/20 Amy Babay 2

Why distribute?

• Wouldn’t our lives be easier if we just had a
single database/data store/control server/etc?

1/10/20 Amy Babay 3

Why distribute?

• Availability
– What if my single server fails?

• Scale
– What if my data can’t all fit on one server?

• Performance
– Latency: put data/services closer to geographically

distributed users
– Throughput: more servers can handle more requests

• Specialization
– Systems may be composed of different types of

components (e.g. sensors, storage servers, GPUs)

1/10/20 Amy Babay 4

Sounds good…so what’s the problem?

• Consider a database storing bank accounts
(classic example)

1/10/20 Amy Babay 5

$100
$100

$100

Sounds good…so what’s the problem?

• Consider a database storing bank accounts
(classic example)

1/10/20 Amy Babay 6

$100
$100

$100

I want to
withdraw $60

Sounds good…so what’s the problem?

• Consider a database storing bank accounts
(classic example)

1/10/20 Amy Babay 7

$40
$100

$100

I want to
withdraw $60

Sounds good…so what’s the problem?

• Consider a database storing bank accounts
(classic example)

1/10/20 Amy Babay 8

$40
$100

$100

Sounds good…so what’s the problem?

• Consider a database storing bank accounts
(classic example)

1/10/20 Amy Babay 9

$40
$40

$40

We need a
synchronization
protocol

So we synchronize the accounts.
Easy, right?

• When our replicas are connected, we can synchronize
• But, sometimes the network partitions….

1/10/20 Amy Babay 10

With this partition,
my server can’t
reach one of the
others to update it

Our account doesn’t
really have $60 left
to withdraw! What
should happen?

$40
$100

$40

I want to
withdraw $60

CAP Theorem

• Introduced by Armando Fox and Eric Brewer in
1999 HotOS paper and Brewer’s 2000 PODC
Keynote

• C = Consistency
• A = Availability
• P = Partition Tolerance
• Theorem: Pick at most 2 – It is impossible to

design a system that is always consistent and
always available, given the possibility of partitions

1/10/20 Amy Babay 11

Consistency

• Single-copy consistency (serializability): observed
behavior is the same as if there was a single server

1/10/20 Amy Babay 12

$100
$100

$100

I want to
withdraw $60

I want to
withdraw $60

Scenario 1 - OK
- Amy’s withdrawal succeeds
- Chris’s withdrawal fails
- Ending balance is $40

Scenario 2 - OK
- Chris’s withdrawal succeeds
- Amy’s withdrawal fails
- Ending balance is $40

Scenario 3 – NOT OK
- Amy’s withdrawal succeeds
- Chris’s withdrawal succeeds
- Ending balance is ???

Availability

• Users can perform operations (e.g. read and
write data)

1/10/20 Amy Babay 13

$100
$100

$100

I want to
withdraw $60

I want to
withdraw $60

Neither person should be blocked
from performing their update

(even though the result of the
update can be a failure, e.g.
insufficient balance notification)

Partition Tolerance

• Network partitions (disconnections) happen.
• We can do our best to make them as infrequent as

possible, but there’s really no way around this

1/10/20 Amy Babay 14

$40
$100

$40

So, “2 of 3” is misleading

• You don’t really get to pick CA…
• The world doesn’t end when a partition happens, so your

system has to do something in that case
– Although that may be to sacrifice availability and stop accepting

updates

• But, most of the time the network isn’t partitioned!
• So consistency and availability are both possible in the

normal case

• And, it’s not a binary choice
• There is a whole range of trade-offs we can make between

Consistency and Availability

1/10/20 Amy Babay 15

What should we do during partitions?

• Detect and manage
– How we manage depends on trade-off we want

between consistency and availability

• Note: detection isn’t completely
straightforward
– Brings up classic distributed systems issues: slow

vs. disconnected/failed, different nodes can have
different views

1/10/20 Amy Babay 16

Options for Managing Partitions

• Strongly consistent option
– Only allow operations to proceed in the part of the

system with a quorum (if one exists)
– Quorum: in distributed systems, this usually means a

set that must intersect with any other set (e.g.
majority)

1/10/20 Amy Babay 17

$40
$100

$40

Options for Managing Partitions

• More available approach – allow at least some
operations to continue
– Risky operations can be delayed
• e.g. large withdrawal in banking

– Safer operations can be applied
• e.g. deposit in banking

– Mistakes can be compensated for after recovery
• “Risky” and “Safe” operations strongly depend

on the details of the specific system

1/10/20 Amy Babay 18

Partition Recovery

• Generally requires that nodes keep a history
during partition

• Possible recovery approach: Impose a total
order on the operation history, and replay
from the beginning of the partition
– Must maintain order for causally related

operations. Non-causally related operation may
conflict

1/10/20 Amy Babay 19

Resolving Conflicts

• Approach 1: avoid conflicts
– Only allow commutative operations, so execution

order doesn’t matter
– Have some well-defined merge/convergence

procedure (shopping cart example)

• Approach 2: fix mistakes
– Simple: “last writer wins”
– Compensating transaction: undo the effects

1/10/20 Amy Babay 20

Impossibility of Distributed Consensus
with One Faulty Process (FLP result)

A closer look at synchronization

1/10/20 Amy Babay 21

Consensus

• A group of processes needs to decide on a
single value

• Every process may propose a value, and
exactly one should be chosen
– In systems that use a strongly consistent

replication approach, this can be used to impose
an ordering on submitted updates (state-machine
replication). e.g. agree on the first update, then
the second, etc.

1/10/20 Amy Babay 22

Requirements for Consensus

• Agreement: all correct processes decide on
the same value

• Validity: If a correct process decides on a
value, that value was proposed by some
process

• Termination: all correct processes eventually
decide

1/10/20 Amy Babay 23

Simple Asynchronous Model

• Each process starts with an initial input value in {0, 1}
• Processes communicate by sending messages to each

other
• Communication is reliable, but asynchronous
– Every message sent is eventually received
– No bound on how long it takes to receive a message

• Correct (nonfaulty) processes run forever (“take
infinitely many steps”)
– step = receive message, update state (based on message),

send messages
• Faulty processes stop executing at some point (fail-

stop)

1/10/20 Amy Babay 24

FLP: Requirements for Consensus

• Agreement: all correct processes that decide on a
value decide on the same value
– “No accessible configuration has more than one decision

value”
• Validity: 0 and 1 are both possible decision values
– “For each 𝑣 ∈ 0, 1 , some accessible configuration has

decision value v”
– Weaker requirement than typical (makes result stronger)

• Termination: Some correct process eventually decides
– Weaker requirement than typical (makes result stronger)

1/10/20 Amy Babay 25

Impossibility Result

• No consensus protocol is totally correct (meets
requirements on previous slide) in spite of one
fault

• What if there are no faults? How would you
solve this problem?

• Why doesn’t that work if a process may fail?

1/10/20 Amy Babay 26

Impossibility Proof: Definitions

• Definitions:
– A configuration is 0-valent if 0 is the only

reachable decision value
– A configuration is 1-valent if 1 is the only

reachable decision value
– A configuration is bivalent if both 0 and 1 are

reachable decision values

1/10/20 Amy Babay 27

Impossibility Proof: Sketch

• Lemma 1 (Lemma 2 in paper): Any consensus
protocol must have a bivalent initial configuration

• Lemma 2 (Lemma 3 in paper): For any bivalent
configuration and any pending message, we can
take some sequence of steps in the protocol that
ends with us applying that message and ending
up in another bivalent configuration

• Thus, we can keep taking steps forever and never
reach a decision (univalent configuration)

1/10/20 Amy Babay 28

Impossibility Proof: Lemma 1

• Lemma 1: Any consensus protocol that is
totally correct in spite of one fault must have a
bivalent initial configuration

1/10/20 Amy Babay 29

Proof: Lemma 1

• Assume the contrary…
• By definition, there must be a 0-valent initial

configuration and a 1-valent initial configuration
• Consider initial values (0, 0, …, 0) -> 0 decision
• Consider initial values (1, 1, …, 1) -> 1 decision
• There is a chain of configurations
– (0, 0, …, 0), (1, 0, …, 0), (1, 1, …, 0), … (1, 1, …, 1)

• At some point, there must be a pair of configurations C0
& C1 such that C0 is 0-valent and C1 is 1-valent, and their
only difference is the starting value of one processor p

1/10/20 Amy Babay 30

Proof: Lemma 1

• There must be a pair of configurations C0 & C1
such that C0 is 0-valent and C1 is 1-valent, and
their only difference is the starting value of one
processor p

• Let processor p immediately fail
– e.g. (0,0,1), (0,1,1) -> (0,X,1), (0,X,1)

• C0 & C1 must reach the same decision
– They only differed in p’s initial value
– So, if p never does anything, they look exactly the

same
• => either C0 or C1 must be a bivalent configuration

1/10/20 Amy Babay 31

Lemma 2

• Lemma 2: Let C be a bivalent configuration of P, and let
𝑒 = 𝑝,𝑚 be an event that is applicable to C. Let 𝒞 be
the set of configurations of C without applying e, and let
𝒟 = 𝑒 𝒞 = 𝑒 𝐸 𝐸 ∈ 𝒞 and 𝑒 is applicable to 𝐸}.
Then, 𝒟 contains a bivalent configuration.

• Informally, for any bivalent configuration C and pending
event e, there is some sequence of events that ends with
event e and brings us to another bivalent configuration

1/10/20 Amy Babay 32

Proof Intuition: Lemma 2

• Assume the contrary: assume that after some event e =
(p,m) we go from a bivalent configuration to only
univalent configurations being reachable
– e = (p,m) : event e, where process p receives message m

• Since the initial configuration is bivalent, both 0-valent
and 1-valent configurations must be reachable
– So there must be two “neighboring” configurations C0 and

C1 that differ in only a single event e’ at process p, which
occurs (C1) or doesn’t occur (C0) before “decision point” e

1/10/20 Amy Babay 33

Proof Intuition: Lemma 2

• C0 is bivalent. Receiving e’ then e commits to 1-valent
execution; receiving e without having received e’ commits
to 0–valent execution

1/10/20 Amy Babay 34

Impossibility of Distributed Consensus with One Faulty Process 379

FIGURE 2

FIGURE 3

by Lemma 1, e(A) = & and e(e’(A)) = E,. (See Figure 3.) Hence, A is bivalent.
But this is impossible since the run to A is deciding (by assumption), so A must be
univalent.

In each case, we reached a contradiction, so .&2 contains a bivalent configura-
tion. 0

Any deciding run from a bivalent initial configuration goes to a univalent
configuration, so there must be some single step that goes from a bivalent to a
univalent configuration. Such a step determines the eventual decision value. We
now show that it is always possible to run the system in a way that avoids such
steps, leading to an admissible nondeciding run.

The run is constructed in stages, starting from an initial configuration. We ensure
that the run is admissible in the following way. A queue of processes is maintained,
initially in an arbitrary order, and the message buffer in a configuration is ordered
according to the time the messages were sent, earliest first. Each stage consists of
one or more process steps. The stage ends with the first process in the process
queue taking a step in which, if its message queue was not empty at the start of the

Proof Intuition: Lemma 2

• A series of steps 𝜎 that doesn’t involve
process p can’t affect p’s decision, so the
ordering of 𝜎 vs e and e’ doesn’t change the
decision

• But our protocol must be fault-tolerant – so
what happens if p crashes?
– The other processes must still decide on some

value!

1/10/20 Amy Babay 35

Proof Intuition: Lemma 2

• The execution
ending in state
A (p fails after
C0) must decide
0 or 1

• But what if p
was only slow??

1/10/20 Amy Babay 36

Impossibility of Distributed Consensus with One Faulty Process 379

FIGURE 2

FIGURE 3

by Lemma 1, e(A) = & and e(e’(A)) = E,. (See Figure 3.) Hence, A is bivalent.
But this is impossible since the run to A is deciding (by assumption), so A must be
univalent.

In each case, we reached a contradiction, so .&2 contains a bivalent configura-
tion. 0

Any deciding run from a bivalent initial configuration goes to a univalent
configuration, so there must be some single step that goes from a bivalent to a
univalent configuration. Such a step determines the eventual decision value. We
now show that it is always possible to run the system in a way that avoids such
steps, leading to an admissible nondeciding run.

The run is constructed in stages, starting from an initial configuration. We ensure
that the run is admissible in the following way. A queue of processes is maintained,
initially in an arbitrary order, and the message buffer in a configuration is ordered
according to the time the messages were sent, earliest first. Each stage consists of
one or more process steps. The stage ends with the first process in the process
queue taking a step in which, if its message queue was not empty at the start of the

Implications of FLP

• Why do we care?
• Strong, fundamental result
• But, if consensus is impossible, why are we

studying consensus protocols next week?
– What can we give up in the “Requirements for

Consensus” to build a practical system?

• Discussion: How does CAP relate to FLP?

1/10/20 Amy Babay 37

