
Selective Blockchain Transaction Pruning
and State Derivability

Emanuel Palm, Olov Schelén, Ulf Bodin
Luleå University of Technology,

Luleå, Sweden

E-mail: {firstname.lastname}@ltu.se

Abstract—Distributed ledger technologies, such as blockchain
systems, have in recent years emerged as promising platforms
for machine-to-machine commerce and other forms of multi-
stakeholder applications. However, despite the potential demon-
strated by projects such as Bitcoin, Ethereum, and Hyperledger
Fabric, the disk space typically required to host a copy of a
ledger may be prohibitively large for many categories of devices.
In this paper, we introduce an approach for reducing ledger
size in blockchain systems, based on arbitrary pruning predicate
functions, allowing each network participant to independently
select and remove any already applied transactions. We also show
that if only pruning certain ledger transactions, the ability to
derive an unmodified state data structure from the remaining
transactions is maintained. The approach is validated through a
supply chain use case utilizing a modified version of Hyperledger
Fabric, in which ledger size is reduced by about 84.49% via
selective transaction pruning.

I. INTRODUCTION

The release of Bitcoin at the end of 2008 [1] marked
the beginning of a major technological trend, which has
grown to encompass a plethora of derivatives and alternatives
[2] [3]. These systems, commonly referred to as Distributed
Ledger Technologies (DLTs), remove the need for using trusted
middle-men by instead relying on networks of voting com-
puters, sharing immutable histories of transactions that each
participant can verify to be correct. Bitcoin famously hosts a
distributed electronic cash platform where there is no central
authority [1], and many other use cases have since been
proposed. These include political election systems [4], self-
driving cars buying their own fuel [2], and smart factory
[5] machines autonomously buying and selling material and
goods within and between factory plants. Use cases typically
have in common that they require a shared notion of identity,
ownership, and transfer of ownership within a network of
machines controlled by different stakeholders, each with its
own incentive to maintain the system.

Although distributed ledgers could be a key enabler
for emergent technologies such as autonomous machine-to-
machine commerce, the storage space typically needed to host
a ledger might be prohibitively large for many categories of
devices. At the time of writing, the Bitcoin blockchain ledger
required about 134 gigabytes of memory, growing steadily
at a pace of about 52 gigabytes per year [6], while the
ledger of Ethereum [7], another popular blockchain system,
required almost 395 gigabytes of memory [8]. Both of these
systems are permissionless (i.e. open to public participation)
meaning that any accepted activity by any participant will

likely lead to an increase of ledger size. On the other hand,
permissioned systems, such as R3 Corda [9], Quorum [10], or
Hyperledger Fabric [11], assume that ledgers only be replicated
within closed groups of known participants. This may lead
to ledgers being smaller, but could also mean that many
ledgers are maintained at the same time. In [12], a system is
presented where each network stakeholder can maintain private
blockchains with any subsets of other network participants in
order to protect sensitive interactions.

The problem of ever-growing distributed ledgers is already
well-known. Bitcoin and Ethereum allow the use of light
clients [1] [7] that only carry limited ledger and state subsets,
but are unable to participate in the consensus process. At the
cost of more disk usage, Bitcoin Core [13] and related efforts
[14] [15] [16] retain the ability to validate transactions by first
constructing a complete state data structure, and then pruning
all but the n last ledger blocks. These approaches are, however,
lacking in that they (1) do not facilitate fine-grained control
of what transactions to keep, and (2) do not allow useful data
structures to be derived from partially pruned blocks.

In this paper, a pruning strategy applied to Hyperledger
Fabric [17] version 0.6 is presented. The strategy is similar to
the disk space reclaiming procedure proposed in the original
Bitcoin paper [1], with the significant difference that trans-
actions of interest can be left unpruned, and the ability to
rebuild a valid state data structure can be maintained if certain
conditions apply. Pruning is regulated through the use of arbi-
trary predicate functions, which can be specified such that only
transactions cancelling each other out, or are fully superseded
by later trancations, are deleted. For example, certain money
transfers may sum up to zero, or, an ownership statement may
fully replace one or more previous such. We show that if only
removing certain transactions with the mentioned properties,
the state data structures derivable from any blocks of interest
can be made to remain unaltered.

The contributions of significance presented in this paper
are: (1) A strategy for pruning blockchains relying on ar-
bitrary predicate functions for transaction selection. (2) The
identifying and outlining of significant implications of pruning,
including how it affects expected memory growth and its
impact on being able to build unmodified state data structures
from pruned blocks. And finally, (3) a supply chain use case
facilitated by a modified version of Hyperledger Fabric [17]
version 0.6 that serves to validate the presented approach and
to exemplify its impact on ledger storage requirements.

31

2018 Crypto Valley Conference on Blockchain Technology

978-1-5386-7204-4/18/$31.00 ©2018 IEEE
DOI 10.1109/CVCBT.2018.00009

The paper is organized as follows: Section II describes
related efforts in more detail. Section III outlines a general
strategy for selective blockchain transaction pruning, as well as
methods for predicting blockchain growth. Section IV presents
a modification to Hyperledger Fabric making it able to prune
its ledger, together with a use case and benchmark results.
Section V discusses related topics and suggestions for future
research. Finally, Section VI concludes the paper.

II. RELATED WORK

In the original Bitcoin white paper [1], two approaches
for reducing ledger size were presented, namely Reclaiming
Disk Space (RDS) and Simplified Payment Verification (SPV).
Even though other approaches have been developed, such as
for Bitcoin Core [13] or Cryptonite [14], all such known to the
authors are generally similar to those originally suggested. For
this reason, the names of the original approaches are used here
to represent the current state-of-the-art of ledger size reduction.

A. Reclaiming Disk Space

The key idea of the RDS approach is to remove some
transactions, from the oldest and onward, after applying them
to a state data structure [1]. To avoid losing the ability to verify
that given blocks or transactions are part of the pruned past,
block hashes and Merkle Tree roots [18] may be saved.

Systems relying on probabilistic consensus [19] are re-
quired to allow already accepted blocks of transactions to be
replaced if a chain of such with sufficient weight is presented
[1]. It is, therefore, needful to refrain from pruning the n
most recent blocks. n is chosen to represent a weight (e.g.
proof-of-work [1]) that is large enough to avoid the practical
possibility for an m > n block reorganization to occur, where
m is the number of known main blocks that are superseded
by a reorganization. An m > n reorganization leads to a given
network participant no longer being able to assume its state to
be relevant, meaning the state must be acquired again from its
network.

While this approach leaves room for keeping transactions
of interest, no strategy for choosing such is described in
any work known to the authors. Our solution, on the other
hand, gives fine-grained control over what transactions to keep,
which we also show can be used to maintain particular system
properties, such as being able to rebuild unmodified state data
structures from partially pruned blocks.

B. Simplified Payment Verification

Using SPV means that a network participant gives up the
ability to verify the validity of new transactions by itself,
and instead delegates that responsibility to other nodes of its
network [1]. Giving this ability up means that only the portions
of a blockchain that are of interest to the owner of a given SPV
node need to be saved.

In Bitcoin Core [13], SPV nodes download all block
headers, but only transactions of interest. As block headers
contain Merkle Tree [18] root hashes, any retrieved transaction
can be proved to belong to any of the known block headers.
Transactions and blocks are requested by providing a number
of regular nodes with filters [20], which are used to decide

what transactions to relay. Given that a majority of the con-
nected regular nodes convey all desired transactions, a valid
partial state can be built from them. Transactions of interest
can be selected up to the granularity of instances of addresses,
keys or script hashes within individual transactions.

Requesting other nodes to send certain transactions is, how-
ever, not the same as leaving out transactions while pruning.
Also, the procedure facilitated by Bitcoin Core does not allow
filters to consider any particular state of the data structure built
by applying all transactions, only the transactions themselves.
Our solution allows arbitrary information to be considered
while determining if an individual transaction is to be pruned,
such as derived states, blocks, significant timestamps, or any
other data of interest. Even though it could require more
storage space, our solution does not require giving up the
ability to participate in the consensus process.

C. Other Approaches

Not all distributed ledger systems store their transactions in
blocks, or even in a sequential history. Systems such as Swirlds
[21], IOTA [22], or R3 Corda [9] use graph-like ledgers rather
than chains of blocks, which could yield significantly different
pruning implications. Nodes in R3 Corda, for example, can al-
legedly prune transactions of liquid asset transfers (e.g. money
transfers) by requesting an asset issuer to re-issue a given asset,
effectively aggregating relevant previous transactions into a
single new transaction. Whether or not the pruning strategy
presented in this paper could be applied to these graph-like
ledgers is not considered, but is left as an open topic for future
research.

III. SELECTIVE TRANSACTION PRUNING

Selective transaction pruning is to be understood as the
practice of blockchain network participants independently re-
moving transactions that neither contribute with important
system properties or are of particular interest. An important
system property could be protection against not having any
main blocks after a reorganization, while interest depends on
the information needs of a given network participant. In a
supply chain scenario, transactions related to lost, damaged
or late goods could be particularly interesting to shipping
companies, terminal stations, etc, as they might be needed
when negotiating with partners or insurance agencies. Com-
puters on delivery trucks or container ships may only find
it relevant to carry transactions related to transported goods,
while statisticians may want to refrain from pruning anything
from their servers to allow for future data analysis.

In order to clarify what general properties are maintained
by a blockchain, and how these are changed as transactions
are pruned, this section begins with a general anatomy of
the blockchain data structure. It is followed by descriptions
of how significant blockchain properties may be maintained,
the definition of a selective transaction pruning algorithm, and
a description of how the presented algorithm can be used to
only remove transactions that cancel each other out or have
been superseded. Finally, a method for predicting blockchain
memory requirements is presented.

32

TABLE I: Significant parts of a general pruned blockchain.

Name Formal Name Invariant Description

Indicators
Block Height h 1 ≤ h Authoritative blocks part of a blockchain. h = 1 implies the existence of only a genesis block.

Block Position i 1 ≤ i ≤ h The index of the ith block. The genesis block is represented by i = 1.

Transaction Position j 1 ≤ j ≤ ui The jth transaction of the ith transactions set, containing ui transactions.

Reorganization Height m 1 ≤ m ≤ h Number of main blocks superseded by a reorganization.

Guard Height n 0 ≤ n ≤ h Number of consequtive blocks, beginning with the most recent, used to protect against reorganizations.

Primitives
Block bi The ith block.

Header Hi Header of ith block, containing block predecessor hash, checksum of block transactions, etc.

Transaction ti,j The jth event description out of ui belonging to the ith block.

Transaction Set ti,∗ All transactions belonging to the ith block.

State si A data structure built by applying every ti,j ∈ ti,∗ ∈ bi ∈ {b1, . . . , bi}.

Significant Blocks
Genesis Block b1 The initial block.

Current Block bh The most recent block of a currently authoritative chain of blocks.

Main Blocks b∗ All blocks, pruned or not, part of a currently authoritative chain of blocks.

Guard Blocks b∗,guard n consequtive blocks, beginning with the most recent, used to protect against reorganizations.

Free Blocks b∗,free h− n blocks thay may or may not contain pruned transactions.

Significant States
Current State sh The hth state, representing the application of all blockchain transactions.

Derivable State s′i Underived si that could be constructed from only local data.

Retrievable State s′′i Underived si that might be constructible from network peer data.

A. Blockchain Anatomy

Primitives: A blockchain is an ordered sequence of trans-
actions grouped into blocks. Each transaction describes a
change to a state, which could be any kind of data structure,
such as a table of monetary accounts or a key/value store. Each
block includes a header, which contains enough information to
identify any preceding blocks and to determine if these blocks
are unmodified. Concretely, the header could include the hash
of the preceding block and a hash of the transactions included
in the block itself (e.g., [1] [7] [14]).

Significant Blocks: Every blockchain contain two generally
significant blocks, the genesis block and the current block. The
genesis block is the first block in its chain, and does sometimes
contain special information that dictates how a blockchain can
be used. For example, Ethereum uses the genesis block to set
an initial mining difficulty and can use it to preallocate funds
to given accounts [7]. The current block is the most recent
block in its chain, and is typically special since it must have a
derived state, or the given node owning the block will not be
able to participate in the process of validating new transactions.
If a blockchain is part of a system relying on probabilistic
consensus [19], such as Bitcoin [1] or Ethereum [7], room must
be given for block reorganizations. The currently authoritative
chain of blocks is typically referred to as main blocks. If
a system with probabilistic consensus supports transaction
pruning, the n most recent blocks may serve as guard blocks,
meaning they act as protecting against m > n reorganizations
by not containing pruned transactions, where m is the number
of main blocks superseded by the reorganization. Any block
not being a guard is a free block, and could be pruned if
desired by its owner. Figure 1 depicts a blockchain with n
guard blocks and h − n free blocks. In blockchain systems
using non-probabilistic consensus algorithms (e.g. PBFT [23]),
such as Quorum [10] or Hyperledger Fabric [11], it becomes
unnecessary to make these distinctions. Technically, all blocks
are both authoritative and free, as they cannot possibly be
superseded by reorganizations.

...

...

Fig. 1: A blockchain of h blocks. The latest n blocks serve as
guard against reorganizations. See Table I for definitions.

Significant States: A state data structure, or state, is con-
structed by applying all transactions in a given block and all of
its preceding blocks. Each block could be considered having
an associated state, even if that state does not currently exist.
Currently existing states are here referred to as being derived,
while non-existing states are considered being either derivable
or retrievable. The difference in being derivable or retrievable
lies in whether or not enough information is had by a network
participant to construct a given state, or if that information has
to be acquired from other participants. It becomes relevant to
talk about retrievable states when a given blockchain system
supports pruning, as removing transactions could imply that
some states seize to be derivable. Lastly, the state derived from
the current block is referred to as the current state.

33

TABLE II: Logical descriptions of significant blockchain properties. See Table I for complementary definitions.

Expression Description

Block Predicates
Unmodified(bi) ⇐= Successor(bi+1, bi)

∨
Unmodified(ti,∗) The block bi is known to be unmodified if either bi+1 can be proved to be the successor

of bi, or if the order and state of the transactions in bi can be proved to be unmodified.

Successor(bi, bi−1) ⇐= hash(bi−1) = Hi,predecessor The block bi is provably the successor of bi−1 if the hash of the predecessor bi−1 is
equal to the predecessor field of the header of bi.

V alid(bi) ⇐= apply(si−1; ti,∗) = si The block bi is provably valid if applying all of its transactions to the derived state of
the preceding block yields a valid state si.

Transaction Predicates
Unmodified(ti,j) ⇐= Unmodified(ti,∗) ⇐=

hash(ti,∗ ·Hi,�checksum) = Hi,checksum

The transaction ti,j is provably the jth transaction of the block bi if the hash of all
block transactions and relevant block header fields (here assumed to be all fields but the
checksum) equals the checksum field of the header.

V alid(ti,j) ⇐= apply(si−1; ti,j) �= ∅ The transaction ti,j is provably valid if applying it to the derived state of its preceding
block yields any valid state.

State Predicates
Derivable(s′i) ⇐= apply(si−1; ti,∗) = si

∨
unwind(si+1; ti+1,∗) = si

si can be constructed if all transactions in bi can be applied to the state derived from
the block preceding it, or if the transactions in the successor block bi+1 can be used
to undo their changes to the successor state si+1.

Retrievable(s′′i) The state si can be retrieved if either blocks, state and blocks, or just the state in
question can be retrieved as needed from other network participants, and whatever data
is acquired can be trusted to be correct.

Auxiliary Functions

apply(si−1; ti,∗) =

{
si, if V alid(si)

∅, otherwise

Represents the application of the given set of transactions ti,∗, where each transaction
is ensured not to modify the given state si−1 such that it describes a non-permitted
outcome.

hash(x) = y A function that takes whatever arguments given, combines them and turns them into a
checksum. · denotes an argument combination function.

unwind(si; ti,∗) = si−1 Represents the undoing of the modifications made to the given state si by the given set
of transactions ti,∗.

B. Pruning and Property Changes

Removing data from a blockchain may free up computer
memory, but it could also lead to other property changes. Table
II lists properties that may be maintained by a blockchain as
logical predicates. It should be noted when reviewing the table
that pruned blocks could lead to the loss of those properties.

A Property Preserving Hashing Procedure: To be able to
prove that a block is unmodified, or that one particular block
is the successor of another, requires the use of a hashing
function hash(x) = y, as shown in Table II. Since the
hashing function is expected to change its output y with the
slightest alteration of x, pruning a block will normally lead
to its hash changing, consequently making those properties
unprovable. This could, however, be mitigated by using a
hashing procedure that accounts for missing transactions. One
such procedure combines stored hashes of pruned transactions
with calculated hashes of the remaining such. Given that · is
an arbitrary combination operator, and the definitions in Table
II, the procedure could be defined formally as:

hi = hash(Hi,�checksum · f(ti,∗))
f(ti,∗) = g(ti,1) · g(ti,2) · . . . · g(ti,u)

g(ti,j) =

{
ti,j,saved hash, if Pruned(ti,j)

hash(ti,j), otherwise

(1)

The same procedure would be used both to prove a given
block is unmodified, and that it is the predecessor of its
successor. An alternative procedure using Merkle trees [18] [1]
could likely be used to reduce the number of stored hashes,
but its definition is left as a topic for future research.

C. Selective Pruning Algorithm

The proposed selective pruning algorithm, illustrated in
Figure 2, operates in three phases, namely preparation, mark-
ing and, lastly, sweeping. The reader should note that the
algorithm is described in terms of these phases not because
they are strictly required to occur in sequence, but rather
because it makes it straightforward to describe the algorithm.

p

I II III
Prepare Mark Sweep

Fig. 2: The three phases of the selective pruning algorithm.

34

I. Preparation: The objective of the preparation phase is to
identify the set of blocks that will be pruned p, and to identify
and assemble any data d that will be required when considering
individual transactions for pruning. That data could include one
or more state data structures, which may have to be derived
to become available. It could also include actual blocks, or
external data not available through the pruned blockchain.

II. Marking: After p and d have been identified and
assembled, every transaction ti,j ∈ bi ∈ p is tested using a
predicate function T , provided by the initiator of the pruning
algorithm. T must satisfy:

T : 〈ti,j ; d〉 �→ {true, false} (2)

The position (i, j) of each transaction where T yielded
true is stored in a set R, which keeps track of all transactions
pending removal. An example of a function satisfying T is
given in Section IV-C. The formulation and analysis of other
T -functions is left as a topic for future research.

III. Sweeping: Lastly, each transaction identified by R is
removed. Additional measures may be required to ensure that
memory is practically freed when the phase is over, such as
compacting blocks to make room for additional such.

D. Selective Pruning and Maintaining Derivability

The blockchain properties presented in Section III-B and
Table II imply that removing any transaction from a block leads
to the state associated with that block to no longer be derivable,
at least in its original form. There are, however, special cases
when this is not true. Transactions may be categorized as being
generally significant, universally insignificant or retroactively
insignificant in relation to state derivability, where transactions
in the latter two categorized may be pruned subject to certain
conditions. The categories are defined below.

Significant Transactions: If the removal of a particular
transaction results in the state associated with its block, or
any succeeding block, no longer being derivable in its original
form, the transaction in question is to be regarded as generally
significant to state derivability. Given the definitions in Tables
I and II, it may be expressed formally as:

Significant(ti,j) ⇐= (Removed(ti,j) =⇒
∃s′x (x ≥ i ∧ ¬Derivable(s′x)))

(3)

For example, consider transaction t1,1 in Figure 3. If it is
removed, then [a : 1] would no longer be part of s′1, and as
a consequence [a : 11] would no longer be associated with
s′2. As neither s′1 or s′2 would be derivable in their original
forms, the transaction cannot be removed without impacting
the derivability of any state.

Universally Insignificant Transactions: If removing one
or more associated transactions in the same block does not
lead to the state associated with the block becoming different,
then those transactions are together considerable as universally
insignificant to state derivability. As each state builds upon its
predecessor state, if a set of transaction removed from the

same block does not effect the state derived from that block,
no subsequent state is affected either. Given the definitions in
Tables I and II, and that ti,J ⊂ ti,∗ ∈ bi, it may be described
formally as:

Insignificantu(ti,J) ⇐= (Removed(ti,J) =⇒
Derivable(s′i))

(4)

An example can be taken from Figure 3, where t2,3 has
no impact on c, as 3 (mod 5) = 3. If t2,3 is removed,
then s′2 remains unchanged, making the transaction universally
insignificant to state derivability. To give an example where ti,J
contains more than one transaction, consider b3 in Figure 3.
The block contains add(a, 5), add(a, 3) and sub(a, 8), which
if all applied leads to no change of a. As these transactions
effectively cancel each other out, they become insignificant
only if considered together.

Retroactively Insignificant Transactions: Given the exis-
tence of a set of states that no longer need to be derivable
R′, if removing one or more associated transactions from any
blocks directly related to any member of R′ does not lead to
any state not in R′ becoming different, then those transactions
are together considerable as being retroactively insignificant to
state derivability. Considering the definitions in Tables I and
II, and that ti,J ⊂ ti,∗ ∈ bi, it may be defined as:

Insignificantr(ti,J , R
′) ⇐= (Removed(ti,J) =⇒

∀s′x (x < i ∨ s′x ∈ R′ ∨ Derivable(s′x)))
(5)

Consider transaction t1,2 in Figure 3. If removed, then s′1
ceases to be derivable in its original form, but s′2 remains unal-
tered. The reason for this is that t1,2 is completely superseded
by t2,2, which overwrites the same b first set by t1,2. Therefore,
if s′1 ∈ R′, then t1,2 can be removed.

s'

s'

set(b, 20)

mod(c, 5)

add(a, 10)t2,1

t2,2

t2,3

c: 3
b: 20
a: 11

2

c: 3
b: 2
a: 1

1

b2

set(b, 2)

set(c, 3)

set(a, 1)t1,1

t1,2

t1,3

b1

add(a, 3)

add(a, 5)

sub(a, 8)t3,1

t3,2

t3,3

c: 3
b: 20
a: 11

b3 s'3

Fig. 3: A blockchain of 3 blocks, where each block has a
derivable state. Transactions set or modify arbitrary integers
associated with alphabetic keys. See Table I for definitions.

35

E. Predicting Blockchain Growth

Given a blockchain of h blocks, where the mean size of a
block is μb, the mean size of a block header is μH , the mean
size of a transaction is μt, the mean number of transactions
per block is μu and ε represents any sources of error, then the
size S of a blockchain may be defined as:

S = hμb + ε

μb = μH + μtμu + ε
(6)

If the mean block size is not known and cannot be esti-
mated, Equation 6 may also be formulated with μb substituted
as:

S = h(μH + μtμu) + ε (7)

It should be noted that any of the variables in Equation 6
could be expressed as functions over one or more variables,
such as time. Typical sources of error ε could include platform
or storage media restrictions, such as page or block sizes,
whether or not blocks are stored in multiple file system files,
etc.

Example 1: Some blockchain currently consist of 40000
blocks, and is expected to grow with a rate of 120 blocks per
day, where the mean size of a block is known to be constant
at 0.30 MB. Given that d is the number of days elapsed since
the current time, h = (40 000 + 120d), and ε = 0, then its
size in MB is:

S = hμb + ε

= (40 000 + 120d)0.30 + 0

= 12 000 + 36d

Accounting for Pruned Blocks: Given that n is the number
of unpruned blocks in some blockchain, that μp(b), μp(H), μp(t)

and μp(u) are the mean sizes of pruned blocks, pruned headers,
pruned transactions and average number of pruned transactions
per block, respectively, then pruned blockchain size S̃ could
be calculated using:

S̃ = nμb + (h− n)μp(b) + ε | h ≥ n

μb = μH + μtμu + ε

μp(b) = μp(H) + μt(μu − μp(u)) + μp(t)μp(u) + ε

(8)

Example 2: A blockchain is expected to grow with a pace
of 1 block every two minutes, or about 262800 block per year.
The mean sizes of both unpruned and pruned blocks are known
to be constant at 2.30 MB and 0.50 MB, respectively. Equation
8 is used to calculate the expected size of the blockchain after
19 years. Given that the last n = 1 000 blocks will need to
be kept unpruned, h = 262 800 · 19, and ε = 0, then the
blockchain size in MB is expected to be:

S̃ = nμb + (h− n)μp(b) + ε

= 1 000 · 2.30 + (262 800 · 19− 1000)0.5 + 0

= 2 498 400

If, on the other hand, the maintainers of the blockchain
would have refrained from pruning any blocks, its size in MB
would have been:

S = hμb + ε

= (262 800 · 19)2.30 + 0

= 11 484 360

The size reduction gained from pruning is in this scenario
1− (2 498 400÷ 11 484 360) ≈ 78.25%.

Blockchain Growth Linearity: Pruning a blockchain may
yield significant savings in storage space requirements, but can
only be used to limit the size of a blockchain to a desired
threshold if the mean size of a pruned block μp(b) can be
or approaches zero. Figure 4 depicts five different growth
trajectories, calculated using Equation 8, for blockchains where
pruning leads to different changes in mean block size. Only
one trajectory, where μp(b) = 0, represents a fixed storage
requirement relative to the number of unpruned blocks n.
Hence, blockchain growth may be assumed to always be linear
over time, pruning or not, unless the size of a pruned block
is effectively zero. Whether or not it is reasonable to remove
entire blocks, including their headers, would depend on the
expectation that any of the information contained in a block
will be useful in the future.

t

S~
�p(b)=�b

�p(b)=½�b

�p(b)=0

Fig. 4: The impact of pruning on blockchain size over time.
μb and μp(b) are assumed to be constants. Each line represents
a growing blockchain where n blocks are kept unpruned.

IV. SELECTIVE TRANSACTION PRUNING IN

HYPERLEDGER FABRIC

This section presents the application of the theory presented
in Section III on Hyperledger Fabric. It begins with a brief
overview of the system for readers not already familiar with it
and continues with a presentation of the modifications made to
it for it to support selective transaction pruning. Finally, it ends
with a description of an asset-delivery use case followed by
benchmark results, which are presented to verify that selective
transaction pruning is possible and yields predictable results.

36

A. Overview of Hyperledger Fabric

Hyperleger Fabric [11] is a blockchain system developed
and maintained by Hyperledger [24], a project hosted by
the Linux Foundation aimed at creating and maintaining
open source blockchain systems for enterprise applications.
The system is significantly permissioned and relies on non-
probabilistic consensus. The transactions of its blockchain
describe invocations of chaincode functions, where a chaincode
is a form of containerized application serving as a smart
contract [25]. Each valid chaincode invocation may result in
the key/value store associated with the system running the
chaincode being updated.

B. The Pruning Extension

Hyperledger Fabric was significantly extended to support
selective transaction pruning and blockchain size analysis. To
allow the abilities in Table II associated with hashing to be
preserved to some extent, the block hashing procedure was
also modified. The remainder of this subsection is dedicated
to outlining how these features were implemented. The reader
should, however, first note that when the presented features
were developed, the more stable version of Fabric was deemed
to be version 0.6 [17]. This means that details mentioned below
may not be true for more recent versions of Fabric.

Selective Transaction Pruning: The pruning algorithm de-
scribed in Section III-C requires a provided predicate function
for the purpose of determining which transactions to prune.
Hyperledger Fabric allows its blockchain to be modified only
via chaincodes, which are deployed independently by the main-
tainers of the nodes participating in the transaction validation
process. Chaincodes do only have to be functionally equivalent
for the system to operate, meaning that each maintainer could
use its own implementation. To allow each participant to also
provide its own pruning predicate function, the chaincode mes-
saging protocol and procedures were extended for the purpose.
If provided, the predicate function is called exclusively with
transactions generated or validated using the same chaincode,
meaning there is no way for one pruning predicate function
to decide whether transactions generated by other chaincodes
are to be removed. When invoked via an added REST [26]
endpoint, the implemented pruning procedure proceeds as
follows:

I. PREPARE: An effective read-only copy of the most
recently assembled state data structure is created and
used as d. All blocks, from the most recent to the
oldest, used to derive the copied state are used as p.

II. MARK: All non-pruned transactions in p are provided
together with d, one at a time, to the pruning predicate
function associated with the chaincodes first used
to generate them, if such exists. Each transaction
provided to a pruning predicate function returning
true is marked for pruning.

III. SWEEP: Each block is deserialized. Marked transac-
tions are hashed, have their contents removed, their
types changed to PRUNED, and their metadata
fields set to their hashes. Finally, the block in question
is serialized and saved over its previous version.
When no more blocks to prune remain, d is removed.

Two things should be noted by the reader about the
presented selective pruning procedure. Firstly, Hyperledger
Fabric uses a non-probabilistic consensus algorithm. Therefore,
no transactions already used to construct a state data structure
are technically required to participate in the validation of new
blocks (see Section III-A). Secondly, as pruning predicate
functions have arbitrary implementations, guarantees about
being able to derive useful state data structures from pruned
blocks depend on those implementations. An example of such
an implementation is given in Section IV-C.

Blockchain Size Analysis: Measuring the impact of pruning
requires a way for block size metrics to be collected. As
blocks are stored in serialized form in a database, Hyperledger
Fabric was extended to gather block byte sizes by iterating
through blocks and checking the number of bytes used to
represent them. In order to also measure the sizes of headers
and transactions, blocks are deserialized and their transactions
serialized and measured, one by one. To calculate the size of
each block header, the size sum of the transactions belonging to
the same block is subtracted from the size of the entire block.
Given that Si,b is the byte size of the ith block, Si,t,∗ is the byte
size of the transactions of the same block, ui is the number of
transactions it contains, Si,H is the block header byte size, and,
finally, ψ(x) is a function that serializes and determines the
byte size of x, the measurements may be expressed formally
as:

Si,b =ψ(bi)

Si,t,∗ =
ui∑
j=1

ψ(ti,j)

Si,H =Si,b − Si,t,∗

(9)

As Google Protocol Buffers [27] is used as serialization
format, there is some byte overhead associated with designat-
ing consecutive transactions as members of a collection. This
collection overhead varies with the number of transactions in
the collection and affects calculated sizes of block headers.
To make the collected metrics accessible from outside Hyper-
ledger Fabric, existing REST [26] endpoints were modified
such that blocks and transactions are served together with
information about their sizes. It should be noted that the
reported sizes do not account for any other storage space
than that of the blocks themselves. Database indexes and other
overhead is not accounted for.

Property Preserving Hashing Procedure: The Block hash-
ing procedure used by Hyperledger Fabric only entails feeding
a serialized block to a hash function. If a block is pruned,
its serialized form becomes different, which means that it
yields a new output if provided again to the hashing procedure.
Pruned blocks cannot be proved to be unmodified or to be the
predecessors of their successors unless the hashing procedure
is modified as described in Section III-B. As it was assumed
to be meaningful to retain these properties even if transactions
are pruned, the procedure described by Equation 1 was im-
plemented. Pruned transactions are replaced with only their
hashes and a PRUNED type indicator. As Hyperledger Fabric
blocks hold a nonHashData header field, the implementation
ignores this field.

37

C. Use Case: Asset Delivery Network

One proposed use case for systems such as Hyperledger
Fabric is supply chain management [12]. Supply chains may
cross political, geographical or cultural boundaries, and could
require the cooperation of stakeholders with conflicting inter-
ests. Blockchain technology could be a way to manage fairness
where trusted middle-men or other kinds of arbiters are hard to
agree on. To verify that selective transaction pruning could be
used to reduce ledger size and preserve significant transactions,
a naive supply chain scenario was formulated with the intent of
reflecting the interactions of different stakeholders in an asset
delivery network. No attempt is made to account for subjects
of contention, such as false claims about delivery times or asset
locations. The scenario, depicted in Figure 5, includes 18 sites
connected via unidirectional routes, through which assets are
delivered via different kinds of media, such as shipping or
trucking. All significant delivery events are registered with a
member of a Hyperledger Fabric cluster through a chaincode
written for the purpose.

Fig. 5: A delivery network of 5 warehouses, 8 distribution
centers and 5 delivery points connected via 33 unidirectional
routes, allowing assets to be transferred via 387 different paths.

Chaincode: The chaincode written to support the use case
allows assets to be added to warehouses, forwarded from sites
to routes, and received from routes to distribution centers
or delivery points. When assets are received the opportunity
is given to the receiving party to claim the asset has been
lost. Assets successfully received at a delivery point may be
removed. Chaincode functions also exist for adding sites and
routes, as well as for querying the state of the delivery network.
Finally, a pruning predicate function was defined as part of
the chaincode. The function is implemented such that the
state directly associated with the last main block remains fully
derivable, as defined in Section III-D, which is facilitated by
the implementation outlined in Algorithm 1.

Simulation: An external application was written to simu-
late the behavior of the stakeholders of the delivery network.
The application is started with an asset cardinality and a seed
for its pseudo-random number generator. When initiated, the

Algorithm 1 Pruning predicate function associated with use
case chaincode. The function only returns true if transaction
affects key/value pairs not present in state. This will be the
case only if state represents a point in time after which the
asset concerned by transaction was successfully delivered
and removed.

function ISPRUNABLE(transaction, state)
keys← ResolveAffectedKeys(transaction)
values← GetStateValuesByKeys(state, keys)
return IsEmpty(values)

end function

application operates in delivery rounds. Each round, assets are
generated, forwarded, lost or removed. A bounded random
number of assets are generated and assigned to a random path
through the delivery network. Assets currently in transit are
forwarded, from site to route or from route to site, via their
previously assigned paths. Each time an asset is received at
a site it has a risk of being lost, determined by a probability
property configured for each route. The first delivery round
after an asset has been successfully received at a delivery point,
it is removed. When no more assets remain to be generated or
moved, the application is terminated.

Benchmark: The simulation application was executed with
the instruction to move 1000 assets through the scenario
delivery network, out of which 120 were randomly selected
to be lost at random routes of their delivery paths. When the
simulation completed, relevant size metrics were collected, and
the one modified Hyperledger Fabric peer used to maintain
the blockchain was instructed to prune it. After pruning,
size metrics were collected again and then compiled into the
statistics available in Table III. Some of the statistics are also
illustrated in Figure 6. Significantly, the size of the entire
blockchain was reduced from about 9.51 MB to 1.47 MB,
which is a size reduction of circa 84.49%. The reader may
note that the average block header size decreased from 277.36
B to 253.22 B, despite that no header values of any block
were altered in any way. This reduction is related to the way
the header size is calculated, described in Section IV-B.

Projection: Assume that blocks are generated at a rate of
1 block per unit of time t, that the blockchain is expected
to keep growing with constant block mean size, and that the
blockchain is pruned every time a new block is added. Given
the definitions in Tables I and III, Equation 8, n = 0, h = t,
and ε = 0, then could the byte size of the blockchain S̃ be:

S̃ = nμb + (h− n)μp(b) + ε

= 0 · 22 376.50 + (t− 0)3 470.28 + 0

= 3 470.28t

At t = 425 would S̃ = 3 470.28 · 425 = 1 474 869, which
is approximately the same as S̃ in Table III. If n = 100 blocks
were kept unpruned at t = 425, then would the size have been:

S̃ = nμb + (h− n)μp(b) + ε

= 100 · 22 376.50 + (425− 100)3 470.28 + 0

= 3 365 491

38

TABLE III: Asset delivery simulation statistics. Fractional numbers are rounded to two decimal places.

Pruned Original

Block Size
Mean μp(b) = 3 470.28 B σp(b) = 1 705.41 B μb = 22 376.50 B σb = 4 862.87 B

Extremes maxp(b) = 27 407 B †minp(b) = 219 B maxb = 28 357 B †minb = 918 B

Total S̃ = 1 474 868 B S = 9 510 013 B

Block Header Size
Mean μp(H) = 253.22 B σp(H) = 24.71 B μH = 277.36 B σH = 29.56 B

Extremes maxp(H) = 313 B †minp(H) = 151 B maxH = 313 B †minH = 152 B

Total S̃H = 107 619 B SH = 117 877 B

Transaction Size
Mean μp(t) = 123.80 B σp(t) = 201.63 B μt = 850.43 B σt = 12.59 B

Extremes maxp(t) = 892 B minp(b) = 68 B maxt = 895 B mint = 815 B

Total S̃t = 1 367 249 B St = 9 392 136 B

Transactions per Block, Mean μp(u) = 25.99 σp(u) = 5.48 μu = 25.99 σu = 5.48

Cardinalities
Blocks h = 425 h = 425

Transactions unpruned = 768 pruned = 10 258 unpruned = 11 044 pruned = 0

Assets delivered = 880 lost = 120 delivered = 880 lost = 120

† The always empty genesis block, which in this case is 16 B, is not considered.

V. DISCUSSION

Limiting Blockchain Growth: It was shown in Section III-E
that pruning can only reduce, not effectually limit, the rate
of blockchain growth unless pruned blocks can be removed
completely. If this is possible in a given scenario depends on
whether older blocks contain useful data, in the context of
consensus or otherwise, as explained in Section III-A.

The Ratio of Prunable Transactions: The blockchain pro-
duced by the scenario presented in Section IV-C could be
reduced in size by about 84.49% largely because circa 92.88%
of transactions could be pruned. This ratio is high because
(1) most of the transactions were subjectively decided to
not contain interesting information, and (2) most transactions
dealt with information having limited lifespans. Assets were
introduced, moved through the sites and routes of the delivery
network, and finally removed if nothing exceptional happened.
This implies that the gains of pruning could vary greatly with
different kinds of use cases.

Identifying Prunable Transactions: In Section III-D con-
ditions for pruning transactions are presented, and in Section
IV-C an example of a working pruning predicate function
implementation is given. The example implementation is only
able to identify transactions that deal with data that has
later been removed, but any set of eligible transactions that
effectively cancel each other out, or are fully superseded by
later transactions, could be prunable. What would function im-
plementations look like for pruning other—potentially highly
complicated—sets of transactions? Could such an implemen-
tation be identified that is guaranteed to find all prunable
transactions modifying, for example, a key/value store? Further
work on these and related questions could lead to selective
transaction pruning becoming more generally applicable.

Sharing Pruned Blocks: What would happen if a
blockchain network participant, perhaps in the process of
rejoining its network, was provided with a pruned chain of
blocks? Through the use of a hashing procedure similar to

that presented in Section IV-B, the received blocks could be
decided to contain only valid remaining transactions. There
would, however, be no way for the receiver to know whether
transactions it deems significant have been pruned, meaning
that it cannot be decided whether the state data structures
derivable from the received blocks are useful or not. This could
perhaps be mitigated by having network participants collec-
tively agree on which states are significant, via state hashes or
otherwise. After applying pruned blocks, network participants
could determine if the significant states are unmodified. The
feasibility of such an approach could be a topic for future
research.

Irrevocably Lost Transactions: Even though a blockchain
network may continue to function if some transactions are
removed by all participants, it could be undesirable that infor-
mation can be irrevocably lost without any chance for it to be
detected. A solution could include assigning different portions
of the past to special historian nodes. Another could be to
make pruned transactions have a random chance of becoming
forever protected from pruning, which could be tuned to make
the event of permanent transaction loss unlikely.

Pruning Performance: In this paper, the only performance
metric of concern has been that of disk space. It could be
expected, however, that the pruning algorithm presented in
Section III-C may use significant computer resources while
being executed, such as primary memory or processor time.
As the algorithm requires the consideration of every trans-
action in every considered block, it could be assumed to
have something reminiscent of a linear relationship between
the number of considered transactions and processing time.
The implementation presented in Section IV-B is able to
execute while also participating in the process of accepting
new blocks and updating its current state. If the algorithm
cannot be modified to yield better than linear performance
characteristics, then there might be additional ways to avoid
degrading the performance of more critical systems tasks, such
as the consensus process.

39

Block

K

B

�p(b) �b

22.38

3.39

�p(t) �t

850.43

123.80

B

Transaction

�p(H) �H

277.36
253.22

B

Header

Mean Size Total Size

Blocks

MB

S

9.51

1.47

S
~

SH

117.88
107.61

KB

Headers

SH
~

St

9.39

1.38

MB

Transactions

St
~

Fig. 6: Plotted asset delivery simulation statistics. All numbers are rounded to two decimal places.

VI. CONCLUSIONS

It is shown in Sections III and IV that selective transaction
pruning is possible, theoretically and practically. The anatomy
of a general blockchain is presented, as well as descriptions of
how such maintains significant properties, a selective pruning
algorithm, conditions for selective transaction pruning to not
affect significant state derivability, and methods for predicting
blockchain growth. A modified version of Hyperledger Fabric
[17] is used to demonstrate that a blockchain with transactions
from an artificial supply chain scenario could be reduced in
size with 84.49% by pruning 92.88% of its transactions. It is
our conclusion that selective transaction pruning is a generally
viable approach to limiting blockchain growth while keeping
transactions of interest, and that it could fruitfully be applied in
any context where the benefit of freeing up memory outweighs
the gains of having a complete blockchain.

ACKNOWLEDGEMENTS

Dr. Johan Kristiansson, formerly at Ericsson Research in
Luleå, provided indispensable guidance. Also, this work was
funded via the Productive 4.0 project (EU ARTEMIS JU grant
agreement no. 737459).

REFERENCES

[1] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

[2] M. E. Peck, “Blockchains: How they work and why they’ll change the
world,” IEEE Spectrum, vol. 54, no. 10, pp. 26–35, 2017.

[3] T. Bocek, B. B. Rodrigues, T. Strasser, and B. Stiller, “Blockchains
everywhere – a use-case of blockchains in the pharma supply-chain,”
in Integrated Network and Service Management (IM), 2017 IFIP/IEEE
Symposium on. IEEE, 2017, pp. 772–777.

[4] M. Swan, Blockchain: Blueprint for a new economy. O’Reilly Media,
Inc., 2015.

[5] E. Hofmann and M. Rüsch, “Industry 4.0 and the current status as well
as future prospects on logistics,” Computers in Industry, vol. 89, pp.
23–34, 2017.

[6] Saint Bitts LLC. (2017) Blockchain size. Accessed 2017-11-22.
[Online]. Available: https://charts.bitcoin.com/chart/blockchain-size

[7] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, vol. 151, 2014.

[8] EtherScan. (2017) Ethereum ChainData size growth (FULL Sync).
Accessed 2017-11-22. [Online]. Available: https://etherscan.io/chart/
chaindatasizefull

[9] M. Hearn. (2016) Corda: A distributed ledger. Accessed 2018-02-
15. [Online]. Available: https://docs.corda.net/ static/corda-technical-
whitepaper.pdf

[10] JP Morgan Chase. (2016) Quorum white paper. Accessed 2018-
02-15. [Online]. Available: https://github.com/jpmorganchase/quorum-
docs/blob/master/Quorum Whitepaper v0.1.pdf

[11] E. Androulaki, A. Barger et al., “Hyperledger fabric: A distributed
operating system for permissioned blockchains,” in Proceedings of
the Thirteenth EuroSys Conference. ACM, 2018, pp. 30:1–30:15.
[Online]. Available: http://doi.acm.org/10.1145/3190508.3190538

[12] H. Wu, Z. Li, B. King, Z. Ben Miled, J. Wassick, and J. Tazelaar,
“A distributed ledger for supply chain physical distribution visibility,”
Information, vol. 8, no. 4, 2017, accessed 2018-01-17. [Online].
Available: http://dx.doi.org/10.3390/info8040137

[13] Bitcoin Project. (2017) Bitcoin core. Accessed 2017-11-23. [Online].
Available: https://bitcoin.org/en/bitcoin-core

[14] J. D. Bruce. (2014) The mini-blockchain scheme. Accessed 2017-11-23.
[Online]. Available: http://cryptonite.info/files/mbc-scheme-rev3.pdf

[15] R. Dennis, G. Owenson, and B. Aziz, “A temporal blockchain: a
formal analysis,” in Collaboration Technologies and Systems (CTS),
2016 International Conference on. IEEE, 2016, pp. 430–437.

[16] A. Chepurnoy, M. Larangeira, and A. Ojiganov, “Rollerchain, a
blockchain with safely pruneable full blocks,” arXiv, 2016, accessed
2018-04-20. [Online]. Available: https://arxiv.org/abs/1603.07926v3

[17] C. Cachin, “Architecture of the hyperledger blockchain fabric,” in
Workshop on Distributed Cryptocurrencies and Consensus Ledgers,
2016.

[18] R. C. Merkle, “A certified digital signature,” in Conference on the
Theory and Application of Cryptology. Springer, 1989, pp. 218–238.

[19] K. Saito and H. Yamada, “What’s so different about blockchain? –
blockchain is a probabilistic state machine,” in Distributed Computing
Systems Workshops (ICDCSW), 2016 IEEE 36th International Confer-
ence on. IEEE, 2016, pp. 168–175.

[20] M. Hearn and M. Corallo, “Connection bloom filtering,” Bitcoin
Improvement Proposal, Bitcoin Project, BIP 0037, 2012, accessed
2017-12-01. [Online]. Available: https://github.com/bitcoin/bips/blob/
master/bip-0037.mediawiki

[21] L. Baird. (2016) The swirdlds hashgraph consensus algorithm: Fair, fast,
byzantine fault tolerance. Accessed 2017-11-27. [Online]. Available:
http://www.swirlds.com/downloads/SWIRLDS-TR-2016-01.pdf

[22] S. Popov. (2017, October) The tangle. Accessed 2017-11-27. [Online].
Available: https://iota.org/IOTA Whitepaper.pdf

[23] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in
OSDI, vol. 99, 1999, pp. 173–186.

[24] Linux Foundation. (2017) Hyperledger. Accessed 2018-01-26. [Online].
Available: http://hyperledger.org

[25] K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts
for the internet of things,” IEEE Access, vol. 4, pp. 2292–2303, 2016.

[26] R. T. Fielding and R. N. Taylor, Architectural styles and the design of
network-based software architectures. University of California, Irvine
Doctoral dissertation, 2000, vol. 7.

[27] Google. (2018) Protocol buffers. Accessed 2018-01-30. [Online].
Available: https://developers.google.com/protocol-buffers

40

