
Computers and Electrical Engineering 77 (2019) 339–353 

Contents lists available at ScienceDirect 

Computers and Electrical Engineering 

journal homepage: www.elsevier.com/locate/compeleceng 

Detecting malicious nodes via gradient descent and support 

vector machine in Internet of Things 

✩ 

Liang Liu 

a , Jingxiu Yang 

a , Weizhi Meng 

b , ∗

a College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, 211106 Nanjing, China 
b Department of Applied Mathematics and Computer Science, Technical University of Denmark, Denmark 

a r t i c l e i n f o 

Article history: 

Received 29 January 2019 

Revised 21 May 2019 

Accepted 17 June 2019 

Available online 27 June 2019 

Keywords: 

Internet of things 

Malicious node detection 

Support vector machine 

Gradient descent 

K-means 

Trust management 

Machine learning 

a b s t r a c t 

IoT devices have become much popular in our daily lives, while attackers often invade net- 

work nodes to launch various attacks. In this work, we focus on the detection of insider at- 

tacks in IoT networks. Most existing algorithms calculate the reputation of all nodes based 

on the routing path. However, they rely heavily on the assumption that different nodes in 

the same routing path have equal reputation, which may be not invalid in practice and 

cause inaccurate detection results. To solve this issue, we formulate it as a multivariate 

multiple linear regression problem and use the K -means classification algorithm to detect 

malicious nodes. Further, we optimize the routing path and design an enhanced detection 

scheme. Our results indicate that our proposed methods could achieve a detection accu- 

racy rate of 90% or above in a common case, and the enhanced scheme could reach an 

even lower false detection rate, i.e., below 5%. 

© 2019 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Currently, IoT devices are becoming more and more popular in our daily lives, and have broad application prospects in

many fields such as smart home, smart health, public safety, industrial monitoring and environmental protection [1] . Various

IoT devices are interconnected to exchange information with each other. The sensory data are usually forwarded by multiple

devices in a multi-hop ad hoc network and are sent to the aggregation node to provide data support for user decision-

making. The mesh topology has been adopted in many IoT protocols, such as Z-Wave, Thread and ZigBee/IEEE 802.15.4 [2] .

It allows devices having flexibility to communicate with other devices within its communication range, as well as with sink

through multi-hop routing. 

IoT is developing very rapidly, but IoT devices are facing many security challenges. Considering various attacks in IoT

networks, IoT devices could be vulnerable to many attacks: (i) Passive attack: an attacker can eavesdrop on communication

between nodes through a wireless channel to obtain valuable information. Since passive attack only steals information with-

out compromising the normal operation of the protocol, it is very difficult to detect. (ii) Active attack (e.g., Black hole attack

[3] , Sybil Attack [4] ): a malicious node actively destroys network protocols and violates the security policy by injecting false

information, dropping and modifying data packets, which can directly affect network availability and security. According to

the sources of active attacks, they can be divided into external attack and internal attack. The external attack is a kind of
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Fig. 1. Workflow of our proposed detection approach. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

attack on the network by a node outside the network that has not been verified; while the internal attack is a kind of attack

that some nodes are invaded or malicious within the network, i.e., have the right to access network resources. 

Malicious nodes can cause enormous damage to the network and system functions; therefore, it is very critical to identify

malicious nodes timely. In the literature, many studies focused on detecting and identifying malicious behavior and traffic.

Targeting on this issue, in this paper, we formalize the relationship between the reputation of routing paths and nodes,

by observing that a node’s reputation can be formalized as a multiple linear regression problem. Then we use the gradient

descent (GD) algorithm and the support vector machine (SVM) algorithm to learn the node’s trust value and detect malicious

nodes. Both algorithms can adjust the detection model to obtain the accurate node’s reputation according to the input

information. 

As shown in Fig. 1 , we show the workflow of our proposed approach. We first inject probe packets from trusted source

nodes into the network. The sink then analyzes the received packets and extracts all transmission paths & trust values of

the paths. Then, we use GD and SVM algorithm to learn the reputation values of all nodes and cluster the nodes into three

groups, such as benign group (BG), unknown group (UG) and malicious group (MG). To further enhance the detection, we

optimize network routing paths and re-inject the packets to collect information about those nodes in UG. We train our

learning model again using the information collected from the sink and output the final results, i.e., clustering all nodes

into two groups, like the final benign group (FBG) and the final malicious group (FMG). In our evaluation, our results show

that under the enhanced detection scheme, our proposed method could achieve higher detection accuracy and lower false

detection rate. The contributions can be summarized as follows. 

• We first formulate the detection of malicious nodes as a multivariate multiple linear regression problem. Then we pro-

pose a method of learning a node’s reputation by using both the gradient descent (GD) algorithm and the support vector

machine (SVM) algorithm. 

• We use the K -means clustering algorithm to detect the malicious nodes. Also, we optimize the routing path and design

an enhanced detection scheme to further improve the detection performance. 
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• The experimental results show that our approach could achieve better detection accuracy than similar work, i.e., the

detection accuracy of our approach is above 90%. 

The remainder of the paper is organized as follows: Section 2 introduces related work on detection of malicious nodes in

IoT networks. Section 3 describes our proposed network model and detection approach. Section 4 presents the experimental

results, and Section 5 concludes the paper. 

2. Related work 

How to detect malicious nodes in the IoT network is a challenge. In [5, 6] , network diversity was used to identify mali-

cious relay nodes in a mesh network. However, the scheme incurs a lot of overhead, and high-precision identification can

only be guaranteed based on the assumption that there is at least one reliable path between the source and the sink. In

[7] , a novel solution was proposed, called Ad Hoc On-Demand Distance Vector (AODV) black hole detection and removal

(AODV-BDR), which can detect and remove black hole attack by using the neighbor-based authentication technique. 

In recent years, there are many research studies on the detection of malicious nodes in loT based on credibility or trust

models. In [8] , Rikli and Alnasser proposed a lightweight trust-based model in which each node monitors its one-hop neigh-

bor’s behavior and information, which is ultimately collected by the base station and is evaluated under some trust mea-

sures. The trust measures are based on current and past trust values to detect any malicious nodes. In [9] , Chen et al. pro-

posed a trust evaluation model and data fusion mechanism. In the trust evaluation model, trust evaluation consists of three

parts: behavior trust, data trust, and historical trust. The authors analyzed the performance of a developed trust determi-

nation algorithm, namely, the Neighbor-Weight Trust Determination (NWTD) algorithm in [10] , which is based on weighted

voting. A node receives different trust values for the same one-hop neighbor from different nodes. They then used the

weighted average method for calculating the final trust value [9, 10] . In [11] , they used two metrics to help detect untruth-

ful information and malicious nodes: (a) the similarity of recommendations from different sources, and (b) the consistency

of the received information from a particular source. A trust management scheme was proposed in [12] , which leveraged the

Dempster-Shafer evidence theory. By taking into account spatiotemporal correlation of the data collected by sensor nodes in

adjacent area, the trust degree can be estimated. In [13] , Liu et al. proposed a hierarchical network architecture that utilized

multiple link communication technologies (dual link technology and single-link technology) with different characteristics to

infer the node reliability for identifying malicious nodes. However, their work was based on the assumption that DL nodes

are reliable and trusted. Then, a weighted trust-based malicious node detection scheme was proposed in [14] , in which the

sensor readings of neighboring nodes of each sensor node are reported to a cluster head for data aggregation. Then they

calculated the trustworthiness of the corresponding sensor readings, as weights in the weighted majority voting method to

help detect malicious nodes. 

On the other hand, machine learning methods are widely used to help identify cyber-attacks and malicious nodes. In [15,

16] , Support Vector Machine (SVM) was used to detect attacks, but it is difficult to ensure that each node is one-hop away

from a trusted node in the multi-hop network. Both studies [17, 18] applied unsupervised machine learning algorithms to

detect anomalies. All of them focused on identifying anomalous traffic in the network, but did not identify the attackers. In

[19] , the paper applied auto encoder neural networks into Wireless Sensors Networks (WSN) to identify malicious nodes. In

[20] , Ayadi et al. proposed a leakage detection model based on the Fisher Discriminant Analysis (FDA) and the SVM classifier,

which could identify outliers based on WSN in a water pipeline. Later, in [21] , Liu et al. proposed a reputation metric to

measure each routing path, and then used the unsupervised learning to identify malicious nodes in a multi-hop IoT network.

However, their scheme was based on the assumption that the reputation values of different nodes in the same routing path

are equal to each other, which may be not realistic in practice and result in inaccurate results. 

In this paper, we relax such assumption and consider a general attack model. Based on the reputation metric, we formu-

late the task of detecting malicious nodes as a multivariate multiple linear regression problem, and use the GD algorithm

and SVM algorithm to calculate the reputation of all nodes. We further design an enhanced detection (ED) scheme to im-

prove the performance of our detection method. 

3. Our proposed network model and detection approach 

According to the method in [21] , we can inject the probe packets from the trusted sources. Then probe packets transmit-

ted in the network can use data provenance [22] to record the transmission path without any support from the facilities,

and can extract its complete path information by analyzing the sink. The sink can use a hash function to check the packet’s

integrity and obtain the reputation of a path. Then, the sink learns the trust values of nodes based on the path’s informa-

tion. In the end, the sink can use the clustering algorithm to identify malicious nodes. As shown in Fig. 2 , suppose S is the

trusted source and D is the sink. When S sends a packet, D can receive a copy of the packet from each available path. We

assume that malicious nodes can launch an attack with a fixed probability P i , then P i = 1 − P i indicates the probability that

the node forwards unmodified packets. If the node is benign, then P = 0. 
i 



342 L. Liu, J. Yang and W. Meng / Computers and Electrical Engineering 77 (2019) 339–353 

Fig. 2. An example of mesh network, S is the trusted source and D is the sink. Benign nodes are in blue and malicious nodes are in red. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

3.1. Reputation of routing paths and nodes 

To start, S sends multiple probe packets to D through all possible paths. Then D receives all probe packets and checks

the integrity of each received probe packet by using a keyed hash function. Based on the information provided by D , the

sink can obtain the proportion of the unmodified packets along the path. The higher the proportion, the higher reputation

of the corresponding path. 

Let N.T denote the node’s reputation, we can have: 

N.T = 1 − P ( P is the probability of launching an attack by node N ) (1) 

We further define the Pa.T as trust value of a routing path Pa , which equals to the number of unmodified packets divided

by the number of all packets transmitted through path Pa . The reputation of path Pa also indicates to what degree each

node within a routing path contributes to the unmodified packets. Taking Fig. 2 as an example, we can have the reputation

for a path Pa = < N 1 –N 2 - N 3 –N 4 > as below: 

P a.T = N 1 .T ∗ N 2 .T ∗ N 3 .T ∗ N 4 .T = 

the number of unmodified packets transmitted through path P a 

the number of all packets transmitted through path P a 
(2) 

3.2. Problem definition and formalization 

Let Pa i (i ∈ [1, m ]) denote the i th routing path between S and D . Also, each Pa i can be expressed as a set of information

about all nodes. For example, as shown in Fig. 2 , the path 〈 N 1 –N 2 –N 3 –N 4 〉 can be represented as Pa i = {1, 1, 1, 1, 0, 0, 0}, in

which 0 and 1 indicate whether the node is contained in the path Pa i . 

Assume that there are n nodes in the network; then the set of m paths from S to D can be expressed as follows: 

P a 1 = { a 11 a 12 a 13 . . . a 1 n } 
P a 2 = { a 21 a 22 a 23 . . . a 2 n } 
P a 3 = { a 31 a 32 a 33 . . . a 3 n } 

· · ·
P a m 

= { a m 1 a m 2 a m 3 . . . a mn } 
(3) 

a i j = 

{
0 , I f node N j is not in path i 
1 , I f node N j is in path i 

(4) 

The reputation of the routing path Pa can be changed to: 

ln P a.T = ln N 1 .T + ln N 2 .T + ln N 3 .T + ln N 4 .T 

= ln 

the number of unmodified packets transmitted through the path P a 

the number of all packets transmitted through the path P a 
(5) 
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Table 1 

Evaluation metrics. 

Detection precision ( P d ) Ratio of malicious nodes correctly identified in the nodes set of detection results 

Detection accuracy ( A d ) Ratio of malicious nodes correctly identified in the real malicious set 

False positive rate ( F d ) Ratio of benign nodes misidentified in the benign nodes set 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Based on the above formula, we can formalize the relationship between the reputation of all routing paths and the

reputation of all nodes. For the set of m paths, we can follow Eq. (5) , while for all paths, we can have the followings: 

ln P a 1 .T = a 11 ∗ ln N 1 .T + a 12 ∗ ln N 2 .T + a 13 ∗ ln N 3 .T + . . . + a 1 n ∗ ln N n .T 
ln P a 2 .T = a 21 ∗ ln N 1 .T + a 22 ∗ ln N 2 .T + a 23 ∗ ln N 3 .T + . . . + a 2 n ∗ ln N n .T 
ln P a 3 .T = a 31 ∗ ln N 1 .T + a 32 ∗ ln N 2 .T + a 33 ∗ ln N 3 .T + . . . + a 3 n ∗ ln N n .T 

· · ·
ln P a m 

.T = a m 1 ∗ ln N 1 .T + a m 2 ∗ ln N 2 .T + a m 3 ∗ ln N 3 .T + . . . + a mn ∗ ln N n .T 

(6)

Then we can construct a matrix NTM (Node Trust Matrix) to represent the trust values for all nodes: 

NT M = ( ln ( N 1 .T ) , ln ( N 2 .T ) , ln ( N 3 .T ) , . . . , ln ( N n .T ) ) (7)

We can also have a matrix PM (Path Matrix) to represent the information of all paths: 

P M = ( P a 1 , P a 2 , P a 3 . . . P a m 

) = 

⎛ 

⎜ ⎝ 

a 11 a 21 a 31 . . . a m 1 

a 12 a 22 a 32 . . . a m 2 

. . . . . . . . . . . . . . . 

a 1 n a 2 n a 3 n . . . a mn 

⎞ 

⎟ ⎠ 

(8)

where 

a i j = 

{
0 , I f node N j is not in path i 
1 , I f node N j is in path i 

(9)

We can also construct a matrix PTM (Path Trust Matrix) based on the reputation of all paths: 

P T M = ( ln ( P a 1 .T ) , ln ( P a 2 .T ) , ln ( P a 3 .T ) , . . . , ln ( P a m 

.T ) ) (10)

According to (6) , we can have: 

NT M ∗ P M = P T M (11)

After we analyze the packets at the sink, PM and PTM can be known but our goal is to estimate NTM accurately. The

more accurate a node’s trust value we obtained, the more precise we can identify malicious nodes. We found that estimating

NTM is a multiple linear regression problem, and that GD algorithm and SVM algorithm can be used to solve this problem

effectively. 

3.3. GD and SVM algorithm 

The gradient descent (GD) algorithm and the support vector machine (SVM) algorithm are both optimization algorithms,

which are commonly used for solving linear regression problems. To obtain the optimal NTM, we can use PM and PTM as

inputs to learn the model. 

Previous studies like [23] indicate that the gradient descent (GD) algorithm can update the model parameters θ contin-

uously to achieve the minimum value, along the opposite direction −∇θ J( θ ) of the gradient of the loss function J ( θ ) . The

step size can also be seen as a learning rate α. 

The hypothesis function of the gradient descent algorithm can be set to: 

h θ x = θ T x = θ0 x 0 + θ1 x 1 + θ2 x 2 + . . . + θn x n (12)

The cost function is: 

J ( θ ) = 

1 

2 

m ∑ 

i =1 

(
h θ

(
x ( i ) 

)
− y ( i ) 

)2 
(13)

We should find a series of parameters θ that can minimize the cost function, where x i is the sample feature matrix and

y i is the sample target value matrix. Each parameter θ j can be updated as below: 

θ j = θ j − α
∂ 

∂ θ j 

J ( θ ) (14)

The pseudo-code of this algorithm is described in Algorithm 1 . 
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Algorithm 1 Gradient descent detection: GD_D( X, Y, α). 

1: Input sample feature matrix X , sample target value matrix Y , learning rate α; 

2: for v in Y 

3: v : = log( e ) v 

4: Repeat until convergence { 

5: for i = 1 to m (Number of samples){ 

6: θ j := θ j + α( y (i ) − h θ ( x (i ) ) ) x (i ) 
j 

( for every j to n (Number of features)) 

7: } 

8: } 

9: for v in θ

10: v : = exp( v ) 

11: return θ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The support vector machine (SVM) is a kind of supervised learning algorithm. It can help analyze data and identify

patterns. In [24] , the linear regression model is to adjust each sample data ( x i ,y i ) in the training set according to a linear

model f ( x ) = θ T x + b . The optimization objective function of SVM is min 

1 
2 ‖ θ‖ 2 2 . In this model, the loss should be zero when

f(x) is the same as y . SVM can define a constant ε as the deviation threshold between f(x) and y . To summarize, the loss

function for the SVM model is: 

err ( x i , y i ) = 

{
0 , 

∣∣y i − θ T x i − b 
∣∣ ≤ ε ∣∣y i − θ T x i − b 

∣∣ − ε, 
∣∣y i − θ T x i − b 

∣∣ > ε 
(15) 

where x i is the sample feature matrix, y i is the sample target value matrix. We need to calculate a series of parameters θ
that can minimize the loss. This can be treated as a problem of finding the minimum value under the constraint condition.

The Lagrange multiplier is introduced to solve this problem and the regression equation is shown as below. 

f ( x ) = 

m ∑ 

i =1 

(
αi − α∗

i 

)
K ( x i , x ) + b (16) 

where αi and α∗
i 

are the Lagrange multipliers, K is the kernel function. The pseudo-code of SVM algorithm is described in

Algorithm 2 . 

Algorithm 2 Support vector machine detection: SVM_D( X, Y, α, K ). 

1: Input sample feature matrix X , sample target value matrix Y , learning rate α, specific kernel function 2: K ; 

3: for v in Y 

4: v : = log( e ) v 

5: Repeat until convergence { 

6: a. Using the heuristic method to do the optimization of the two variables αi , α
∗
i 
, and use 

7: them to update the value of b ; 

8: b. Using one sample per iteration to update θ ; 

9: For i = 1 to m { 

10: θ j := θ j + α( y (i ) − f ( x (i ) ) ) x (i ) 
j 

( for every j ) 

11: } 

12: } 

13: for v in θ

14: v : = exp( v ) 

15: return θ

Fig. 3 shows an example to explain the process of our GD and SVM algorithm. The network contains six nodes and seven

paths. We assume that N 4 is a malicious node and can launch an attack with a certain probability, in which it may modify

the data packet or inject malicious data into the probe packets. We use N i .T to represent the reputation value of the node.

First, the probe packets are injected from S , and the probe packets are transmitted to D through multiple paths. By analyzing

the path recorded in the probe packets and the probe packets’ integrity, D can obtain the path information 〈 N 2 , N 4 〉 and

can update the trust value of this path Pa i .T. We assume that a total of 200 probe packets are transmitted on the path Pa i ,

in which 146 probe packets are complete and unmodified. We then have P a i . T = 

146 
200 = N 2 .T ∗ N 4 .T , the equation can also

be expressed as ln P a i .T = ln 146 
200 = ln N 2 .T + ln N 4 .T = 0 ∗ ln N 1 .T + 1 ∗ ln N 2 .T + 0 ∗ ln N 3 .T + 1 ∗ ln N 4 .T , in which 0 and 1 can

indicate whether the node is included in this path. For the entire network, the sink extracts all paths’ information from the

probe packets transmitted via the paths. 

P M = ( P a 1 , P a 2 , P a 3 , . . . , P a 6 , P a 7 ) = 

⎛ 

⎜ ⎝ 

1 1 0 0 0 0 0 

0 1 1 1 1 0 1 

0 0 0 0 1 1 1 

0 0 0 1 0 1 1 

⎞ 

⎟ ⎠ 
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Fig. 3. An example network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Then by analyzing the probe packets, the sink can obtain the trust values of all paths. 

P T M = 

(
l n 

200 

200 

, l n 

200 

200 

, l n 

200 

200 

, l n 

146 

200 

, l n 

200 

200 

, l n 

174 

200 

, l n 

134 

200 

)

The reputation matrix of all nodes can be denoted by NT M = ( lnN 1 . T , lnN 2 . T , lnN 3 . T , lnN 3 . T ), we have NTM 

∗PM = PTM . Both

PM and PTM are used as inputs to the learning model. Then we get NTM through the GD learning model, and obtain the

node’s reputation, i.e., ( N 1 . T , N 2 . T , N 3 . T , N 4 . T ) = (1.5878272192605, 1.0021171334548, 0.9961159711118, 0.7058899127776). 

3.4. K -means clustering 

After obtaining the reputation of all nodes, we can distinguish malicious nodes according to N.T . In the literature, K-

means is a widely used clustering method. In this work, we use the K -means method to cluster nodes into different groups

according to trust values. In our model, we only need to select k = 2 in K- means to directly cluster the nodes into two

groups, namely benign group (BG) and malicious group (MG). However, the reputation of a node may be affected by the

behavior of other nodes in its associated multi-hop path. For example, a malicious node could cause the trust values of some

normal nodes in the same path to decrease at an intermediate level and may be assigned to the malicious group, resulting

in a false rate. Therefore, in this work, we cluster all nodes into three groups, such as benign group (BG), unknown group

(UG) and malicious group (MG). The intermediate level of N.T can be assigned to the unknown group. To further reduce the

impact of other nodes in the same routing path on the reputation of nodes in UG, we further design an enhanced detection

scheme to calculate the trust values of all nodes in a more accurate way. 

3.5. Enhanced detection 

To avoid the influence of nodes in the same routing path, we separate nodes in UG from other nodes and assign the

nodes in UG to the discrete paths as possible. For example, assume N 1 , N 2 are two nodes with medium reputation and

there are some relevant paths: Pa 1 = 〈 S, N 1 , D 〉 , Pa 2 = 〈 S, N 2 , D 〉 and Pa 3 〈 S , N 1 , N 2 , D 〉 . In this case, we select Pa 1 and Pa 2
instead of Pa 3 because N 1 and N 2 are in the same path in Pa 3 . It is known that the fewer nodes in the UG under the

same path, the smaller the influence of other nodes could be. Then we re-inject new packets into these discrete paths, and

collect new information from the sink. Later, we can build a new set of equations to train the model again and obtain the

reputation of all nodes. Then we use the K- means method to cluster all nodes into two groups, namely, the final benign

group (FBG) and the final malicious group (FMG). 

In order to enhance detection and generate enhanced routing paths , for each node in the UG, we first should find all the

paths containing this node in the original path set, here referred to as UP, then search the path in UP containing the fewest

nodes in the MG and the fewest nodes in the UG, while adding this path to the enhanced path set. As shown in Fig. 4 ,

after calculating the values of all nodes and we can have UG = { N 4 , N 10 , N 13 } and MG = { N 7 , N 9 } based on the K -means clus-

tering. For each node in UG, we can choose Pa 1 = 〈 S , N 2 , N 4 , N 5 , N 8 , N 12 , N 14 , N 15 , D 〉 , Pa 2 = 〈 S , N 2 , N 4 , N 6 , N 10 , N 12 , N 14 , N 15 , D 〉
and Pa = 〈 S , N , N , N , N , N , N , N , D 〉 to join the enhanced path set . 
3 1 3 5 8 11 13 15 
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Fig. 4. Network nodes’ distribution and nodes’ information, BG nodes are in blue, UG nodes are in yellow and MG nodes are in red. S, D are trusted source 

and sink in green. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

4. Experimental results 

In this section, we compare the Hard Detection (HD) [21] with our proposed GD algorithm and SVM algorithm in terms

of detection performance. For the HD algorithm, the reputation of all nodes in the same path are directly solved by the

reputation of paths. Let k i denote the number of paths containing node I, k i,j denote the j th path in the k i path, | k i,j | denote

the node’s number of k i,j , and Pa.T i,j denote the reputation of k i,j . Then the node’s reputation in the HD can be calculated

as: 

N i . T = 

1 

k i 

k i ∑ 

j=1 

| k i, j | 
√ 

P a. T i, j (17) 

In order to evaluate our enhanced detection scheme, we exploit our algorithms in two different conditions: with and

without the enhanced detection scheme. To summarize, we compare the detection performance among HD, GD, the en-

hanced GD (GD_ED), SVM and the enhanced SVM (SVM_ED). 
Fig. 5. The impact of the number of nodes on accuracy A d : the number of nodes is set to 5, 10, 15 and 20 respectively in this experiment, and it is found 

that GD, GD_ED and HD have higher detection accuracy than others. 
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Fig. 6. The impact of the number of nodes on detection precision P d : the number of nodes is set to 5, 10, 15 and 20 respectively in this experiment, and 

GD_ED have higher detection precision than others. 

Fig. 7. The impact of the number of nodes on false positive rate F d : the number of nodes is set to 5, 10, 15 and 20 respectively in this experiment, and it 

is found that GD_ED and SVM_ED have a lower false positive rate. 

 

 

 

 

 

 

 

 

 

 

 

In the simulation, we assume that there are N relay nodes uniformly distributed in a 100 ×100 m 

2 rectangle. The com-

munication range of each node is r = 10 m. In our experiment, we generate 10 random networks and the experiment was

run in 10 rounds. We evaluate the performance in the aspects of detection accuracy, detection precision and false positive

rate. The detection accuracy is defined as A d indicating the number of malicious nodes correctly identified divided by the

number of malicious nodes. The detection precision is defined as P d indicating the number of malicious nodes correctly

identified divided by the number of all nodes. The false positive rate is defined as F d indicating the number of benign nodes

identified as malicious nodes divided by the number of benign nodes. These metrics are summarized as follows: 

4.1. The impact of the number of nodes 

To evaluate the impact of the number of nodes on the detection accuracy, detection precision and the false positive rate,

we set the number of nodes to 5, 10, 15 and 20, respectively. The number of our injected packets is 10,0 0 0; the probability

of attack is 0.3; the proportion of malicious nodes is 0.3 and the diversity of the network is set to use all reachable paths.

The relationship between A d ( P d , F d ) and the number of nodes is plotted in Figs. 5–7 . 

On the whole, it is found that the detection accuracy of HD, GD, GD_ED and SVM can reach 90% while SVM_ED is

relatively low. When the number of nodes increases, the detection accuracy can be achieved more accurately, i.e., higher

than 90%. Meanwhile GD_ED can reach a low false detection rate, i.e., less than 5%. 
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Fig. 8. The impact of the probability of attack on accuracy A d : the probability of attack is set to 0.1, 0.3, 0.5 and 0.7 respectively, and the detection accuracy 

of HD and GD can be higher than other detection methods. 

Fig. 9. The impact of the probability of attack on detection precision P d : the probability of attack is set to 0.1, 0.3, 0.5 and 0.7 respectively, and it is found 

that the detection precision of GD_ED is higher than the other detections method. GD_ED could keep the rate over 80%. 

 

 

 

 

 

 

 

 

 

4.2. The impact of the probability of attack 

In this experiment, we evaluate the impact of node’s attack probability on the detection accuracy, detection precision

and the false positive rate. We set the node’s attack probability to be 0.1, 0.3, 0.5 and 0.7 respectively. The node number is

set as 15; the number of injected packets is 10,0 0 0; the proportion of malicious nodes is 0.3; the diversity of the network

is set to use all reachable paths. The relationship between A d ( P d , F d ) and the node attack probability is plotted in Figs. 8–10 .

It is found that when the probability is either too low or too high, it is very difficult to reach good detection accuracy.

Given the appropriate attack probability, all methods can reach a detection accuracy rate over 90%; and GD_ED could achieve

a higher rate than others. For example, GD_ED could reach an average error rate of less than 5%. 

4.3. The impact of the proportion of malicious nodes 

In this experiment, we evaluate the impact of the number of malicious nodes on the detection accuracy, detection preci-

sion and the false positive rate. We set the proportion of malicious nodes in all nodes to be 0.1, 0.3, 0.5 and 0.7 respectively.

The number of nodes is set as 15; the number of injected packets is set as 10,0 0 0; the probability of attacks is 0.3 and the
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Fig. 10. The impact of the probability of attack on false positive rate F d : the probability of attack is set to 0.1, 0.3, 0.5 and 0.7 respectively, and it is found 

that false positive rate of GD_ED could reach an average rate of less than 5%. 

Fig. 11. The impact of the proportion of malicious nodes on accuracy A d : it is found that the detection accuracy rates of all detection methods are similar, 

while the detection accuracy of GD is stable and higher than other detection methods. 

Fig. 12. The impact of the proportion of malicious nodes on detection precision P d : it is found that the detection precision of GD_ED is stable and higher 

than other detection methods. 
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Fig. 13. The impact of the proportion of malicious nodes on false positive rate F d : it is observed that the more malicious nodes, the lower the false 

detection rate. The overall performance of GD_ED is better than other methods. 

Fig. 14. The impact of the diversity of network on accuracy A d : it is found that the detection accuracy of GD is stable and higher than other detection 

methods. 

 

 

 

 

 

 

 

 

 

diversity of the network is set to use all reachable paths. The results regarding A d ( P d , F d ) and the number of malicious nodes

are plotted in Figs. 11–13 . 

Figs. 11 and 12 show that with appropriate number of malicious nodes, the detection accuracy of all methods can reach

more than 90% in the end. While GD_ED can achieve stable and higher detection accuracy than other methods, i.e., its false

detection rate could reach less than 5%. 

4.4. The impact of the diversity of network 

In this experiment, we evaluate the impact of the diversity of network on our evaluation metrics. We set the proportion

of reachable paths in all paths to be 0.2, 0.4, 0.6 and 0.8, respectively. The number of nodes is set as 15; the number of in-

jected packets is set as 10,0 0 0; the proportion of malicious nodes is 0.3 and the probability of attack is 0.3. The relationship

between A d ( P d , F d ) and path diversity is plotted in Figs. 14–16 . 

It is found that with appropriate number of paths, the detection accuracy of GD_ED could reach a rate of more than 90%

with a better error rate than other methods, i.e., its error rate can achieve a rate of less than 5%. 

Overall, our simulation results demonstrate that our approach can achieve an overall detection rate of 90% and above in

a common scenario. While under the enhanced detection scheme, our methods can achieve both higher detection accuracy
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Fig. 15. The impact of the diversity of network on detection precision P d : it is found that the detection precision of GD_ED is stable and higher than the 

other detection methods. 

Fig. 16. The impact of the diversity of network on false positive rate F d : it is observed that GD_ED could reach the best performance, i.e., its error rate is 

less than 5%. 

 

 

 

 

 

 

 

 

 

 

 

and lower false detection rate, i.e., the detection precision of GD_ED method is stable and higher than other methods, with

a false detection rate of 5% or less. In this case, we consider that our detection methods can help identify malicious nodes

efficiently and accurately. In our future work, we plan to consider more related studies in this area like [25] and perform a

larger comparison. 

5. Concluding remarks 

IoT network is developing at a fast pace, but it is also threatened by various attacks. For example, insider attacks are

one of the big threats in an IoT network, in which cyber intruders can control an internal node to access the system and

network resources. There is a need to detect and identify internal malicious nodes in an effective way. In this paper, we

focus on insider attacks and aim to detect malicious nodes based on the reputation of both routing paths and nodes. We

propose two algorithms of gradient descent (GD) and support vector machine (SVM) to learn the reputation value of insider

nodes and then cluster these nodes into benign group and malicious group using the K -means method. In order to improve

the detection accuracy, we further enhance the process of algorithm learning by optimizing the routing path and compute

the ultimate trust values for all nodes in an IoT environment. The experimental results show that our method can detect
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malicious nodes with more than 90% accuracy, and the enhanced detection scheme could reach an even lower false detection

rate, i.e., less than 5%. For our current work, it requires reliable source nodes to inject probe packets. The data collection

and analysis also require some time to complete, which may not be able to perform the real-time detection. In our future

work, we plan to use online learning algorithm to learn the reputation of nodes in real time. 
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