BS1940 Course Topics
Fall 2001
Drs. Hatfull and Arndt

Introduction to molecular biology
Combining genetics, biochemistry, structural chemistry

Information flow in biological systems:
The Central Dogma
The Sequence Hypothesis

Macromolecular structures and properties
DNA
History: Identification of DNA as the genetic material
Chemical composition
Structural features: Basepairing, Antiparallel structure
Nomenclature
Denaturation and annealing
G+C content

RNA
Chemical composition
Structure

Protein
Primary, secondary, tertiary and quaternary structural features

Some useful facts:
Average MW of a base pair=660
Size of average bacterial gene=1000bp
Average protein size=30kDa
Average MW amino acid=110Da

The Genetic Code:
Transcriptional units
Gene-protein relationships
Role of tRNA, tRNA synthetases
Ribosome structure
Degenerate genetic code
Signals for translation initiation and termination

Molecular cloning methods
Restriction enzymes
Site recognition, cleavage
Frequency of occurrence of sites
Where they come from; modification

Joining DNA fragments with DNA ligase
Transformation
Chemical treatment
Electroporation
Vectors
 Plasmids
 Features
 Examples
 Phages
 Advantages
Selecting recombinants
 Use of alkaline phosphatase to reduce vector background
 Blue/white color screen
 Hybridization
 Immunological methods
Other vectors:
 Cosmids
 ssDNA phage vectors
 Phagemids
Polymerase Chain Reaction (PCR)
 Basics
 Applications
Techniques in molecular biology
 Molecular separations
 Gel Electrophoresis
 Chromatography
 Importance of radioactive labels
 Methods for labeling nucleic acids
 Southern blotting
 Northern blotting
 Site-directed mutagenesis
 Restriction Mapping
 Mapping ends of RNA
 S1 nuclease mapping
 Primer extension
 Reporter gene expression
 Methods for analyzing protein-DNA interactions
 Gel mobility shifts
 DNaseI footprinting
Genomics
 DNA sequencing methods
 Sanger
 Maxam Gilbert
 Automation
 Shotgun approaches
 Sequencing Large genomes
In silico workshop
 Constructing recombinant plasmids in silico
 Restriction digestion in silico
 Translation into amino acid sequences in silico
 Identifying open reading frames in silico
 Analyzing G+C content in silico
 Start and stops of genes in silico

Prokaryotic transcription machinery
 Initiation, elongation, termination
 RNA polymerase structure
 \(\alpha_2\beta\beta' \) (core) + \(\sigma \) (specificity)
 Promoters
 -10, -35, consensus
 UP elements and \(\alpha \)-CTD
 Melting DNA (closed complex --> open complex), abortive initiation
 Termination
 \(\rho \)-dependent
 \(\rho \)-independent (stem-loop structure)

Regulation of transcription in prokaryotes
 Lac operon
 Operon concept
 Negative control by repressor
 Mechanism of repression
 Inducer
 Positive control by cAMP and CAP
 Interaction of CAP with \(\alpha \)-CTD
 Role of DNA bending
 Trp operon
 Regulation by repressor
 Sensing trp as co-repressor
 Regulation by attenuation (in E. coli)
 Alternative secondary structures of mRNA leader
 Sensing trp as charged tRNA\(^{Trp}\)
 Role of termination
 Different (related) mechanism in B. subtilus
 TRAP protein

Protein-DNA interactions in prokaryotes
 Structural features
 Origins of DNA binding specificity
 Contributions of the protein
 Contributions of the DNA

Transcription in eukaryotes
 Machinery
 Three RNA polymerases
 Identification
 Functions
Common features
Unique features
Structural properties
Post-translational modification

Promoters
Roles of promoter elements for each polymerase
Locations of the promoter elements
Regulatory vs. core promoter elements

General transcription factors for each polymerase
Models for assembly
Functions of the individual factors
Common themes

Regulation
Properties of eukaryotic activators
Structural features
DNA binding domains
Dimerization domains
Activation domains
Modular structure of activators

Coactivators
Major classes
Properties
Interactions with the general transcription machinery

Mechanisms of activation
Targets of activators
Steps in initiation that are affected
Importance of coactivators

Chromatin
Structural components
Histones
Structural features
Modification
DNA
Packaging states
Effects on transcription
Strategies used by factors to contend with chromatin
Chromatin remodeling and modification factors

RNA Processing
Types of modification and evidence for each
Splicing
Alternative splicing
Capping
Polyadenylation
Importance of each to gene expression
RNA signals involved
Protein factors involved
Involvement of snRNAs
Mechanisms of RNA processing

Translation
Initiation
Prokaryotes
 tRNA charging: formation of fMet.tRNA
 Ribosome subunits and dissociation
 Formation of 30S initiation complex
 Roles of IF1, IF2, IF3
 Choice of initiation site
 Formation of 70S complex
Eukaryotes
 Scanning model for initiation
 Evidence; role of mRNA secondary structures
 Initiation factors
 Roles of eIF1, eIF1A, eIF4, eIF5, eIF3 etc.
 Roles of exchange factors eg. eIF2B
 Adapter role of eIF4G
Regulation of initiation
Prokaryotes
 e.g. L11 operon
Eukaryotes
 Regulation of eIF2α
 Regulation of eIF4E

Elongation
The Genetic Code: Use of termination codons
 Codons and anticodons; pairing
Ribosomes: A, P, E sites
 The elongation cycle
 Roles of elongation factors; recycling
 Uses of antibiotics; puromycin

Termination
Use of termination factors
Roles of release factors
Nonsense mutations
Nonsense suppression

DNA Replication
General features of the process and evidence for each
 Semiconservative
 Semidiscontinuous
 Primers
 Modes of replication
 Bidirectional
 Rolling circle
Fidelity

Proteins involved
- DNA polymerases and their roles in replication
 - Activities of *E. coli* DNA Pol I and III
 - Subunits of *E. coli* DNA Pol III
 - Eukaryotic DNA polymerases

Helicase
- SSB
- DNA gyrase
- Primase

Initiation of replication
- Identification of bacterial and yeast origins
 - *E. coli* priming reaction
 - OriC
 - DnaA
 - HU
 - Helicase (DnaB)
 - Primase (DnaG)
- Eukaryotic origins
 - SV40
 - Yeast

Elongation of replication
- Beta-clamp
- Processivity
- Structure
- Clamp loading
 - Structure of DNA Pol III at the replication fork
 - Role of the subunits
- Coordination of leading and lagging strand synthesis

Termination of replication in *E. coli*
- Proteins and sites
- Structural ramifications

Replication of linear chromosomes
- Telemores
 - Properties
 - Synthesis
 - Telomerase

DNA Repair
- DNA damage
 - Types
 - Causes
 - Replication errors
 - External agents
- Mechanisms of repair
 - Direct reversal mechanisms
 - Base excision repair
Nucleotide excision repair
 Uvr ABC system
 XP proteins and their activities
Mismatch repair
 Mut HLS system
 Role of DNA methylation
Recombination repair
Error prone repair
 RecA, UmuD, UmuC

Recombination
 Topological effects of recombination
 Between inverted repeats
 Between direct repeats
Homologous recombination
 Holliday model
 Central role of RecA
 RecBCD mediated formation of Holliday junction
 Branch migration (RuvA, RuvB) and resolution (RuvC)
 Alternate products
Site-specific recombination
 General features;
 Control of directionality
 Absence of DNA synthesis
Tyrosine recombinases:
 \(\lambda \) integration and excision
 Organization of attP and attB
 Structure of Int
 Role of IHF and Xis
 Protein bridges
 Mechanism of strand transfer (phosphotransfer Rx)
 Sequential strand exchange
 Directional control through DNA-protein complexes
Serine recombinases:
 Cointegrate resolution
 Organization res site
 Structure of resolvase
 Mechanism of strand transfer
 Concerted strand exchange
 Directional control through DNA topology

Transposition
 Products:
 Simple insertions
 Replication fusions (cointegrates)
Common features:
 Ubiquity
Frequency
Target duplication
Random target choice
Transposon Features
Inverted repeats
Transposase gene
Mechanism of transposition
Target duplication
Cut and paste transposition
Replicative transposition
Formation of cointegrate
Resolution