Introduction to molecular biology
 Combining genetics, biochemistry, structural chemistry
Information flow in biological systems:
 The Central Dogma
 The Sequence Hypothesis
Macromolecular structures and properties
 DNA
 History : Identification of DNA as the genetic material
 Chemical composition
 Structural features: Basepairing, Antiparallel structure
 Nomenclature
 Denaturation and annealing
 G+C content
 RNA
 Chemical composition
 Structure
 Protein
 Primary, secondary, tertiary and quaternary structural features
Some useful facts:
 Average MW of a base pair=660
 Size of average bacterial gene=1000bp
 Average protein size=30kDa
 Average MW amino acid=110Da
The Genetic Code:
 Transcriptional units
 Gene-protein relationships
 Role of tRNA, tRNA synthetases
 Ribosome structure
 Degenerate genetic code
 Signals for translation initiation and termination
Molecular cloning methods
 Restriction enzymes
 Site recognition, cleavage
 Frequency of occurrence of sites
 Where they come from; modification
 Joining DNA fragments with DNA ligase
 Transformation
 Chemical treatment
 Electroporation
Vectors
 Plasmids
 Features
 Examples
Phages

Advantages
Selecting recombinants
 Use of alkaline phosphatase to reduce vector background
 Blue/white color screen
 Hybridization
 Immunological methods
Other vectors:
 Cosmids
 ssDNA phage vectors
 Phagemids
Polymerase Chain Reaction (PCR)
 Basics
 Applications

Techniques in molecular biology
 Molecular separations
 Gel Electrophoresis
 Chromatography
 Importance of radioactive labels
 Methods for labeling nucleic acids
 Southern blotting
 Northern blotting
 Site-directed mutagenesis
 Restriction Mapping
 Mapping ends of RNA
 S1 nuclease mapping
 Primer extension
 Reporter gene expression
 Methods for analyzing protein-DNA interactions
 Gel mobility shifts
 DNasel footprinting

Genomics
 DNA sequencing methods
 Sanger
 Maxam Gilbert
 Automation
 Shotgun approaches
 Sequencing Large genomes

In silico workshop
 Constructing recombinant plasmids in silico
 Restriction digestion in silico
 Translation into amino acid sequences in silico
 Identifying open reading frames in silico
 Analyzing G+C content in silico
 Start and stops of genes in silico

Prokaryotic transcription machinery
 Initiation, elongation, termination
RNA polymerase structure
\[\alpha \beta (\text{core}) + \sigma (\text{specificity}) \]

Promoters
-10, -35, consensus
UP elements and \(\alpha \)-CTD

Melting DNA (closed complex \(\rightarrow \) open complex), abortive initiation

Termination
\(\rho \)-dependent
\(\rho \)-independent (stem-loop structure)

Regulation of transcription in prokaryotes
Terms & Concepts: Operon. Regulon
Lac operon
Organization of the operon
Diauxic growth
Negative control by repressor
Mechanism of repression
Inducer
Positive control by cAMP and CAP
Interaction of CAP with \(\alpha \)-CTD
Role of DNA bending
Maltose operon; regulation; alternative binding sites
Arabinose operon; regulation; repression; repression loop; autoregulation
Trp operon
Regulation by repressor
Sensing trp as co-repressor
Regulation by attenuation (in E. coli)
Alternative secondary structures of mRNA leader
Sensing trp as charged tRNATrp
Role of termination

Global regulation
Use of alternative sigma factors
SPO1
Heat shock response
Use of alternative RNA polymerases
Phage T7
Utilizing the T7 system for regulated expression in E. coli.
Vectors such as pET21a
Strains such as BL21(DE3).

Protein-DNA interactions in prokaryotes
Structural features
Origins of DNA binding specificity
Contributions of the protein
Contributions of the DNA

Transcription in eukaryotes
Machinery
Three RNA polymerases
Identification
Functions
Common features
Unique features
Structural properties
Post-translational modification
Promoters
Roles of promoter elements for each polymerase
Locations of the promoter elements
Regulatory vs. core promoter elements
General transcription factors for each polymerase
Models for assembly
Functions of the individual factors
Common themes
Regulation
Properties of eukaryotic activators
Structural features
DNA binding domains
Dimerization domains
Activation domains
Modular structure of activators
Coactivators
Major classes
Properties
Interactions with the general transcription machinery
Mechanisms of activation
Targets of activators
Steps in initiation that are affected
Importance of coactivators
Chromatin
Structural components
Histones
Structural features
Modification
DNA
Packaging states
Effects on transcription
Strategies used by factors to contend with chromatin
Chromatin remodeling and modification factors
RNA Processing
Types of modification and evidence for each
Splicing
Alternative splicing
Capping
Polyadenylation
Importance of each to gene expression
RNA signals involved
Protein factors involved
Involvement of snRNAs
Mechanisms of RNA processing