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In Analysis
there are no theorems

only proofs
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These lecture notes take great inspiration from the lecture notes by Michael Struwe (Anal-
ysis III, German), as well as by Piotr Haj lasz (Analysis I). We will also follow the presenta-
tions in Evans-Gariepy [Evans and Gariepy, 2015] (measure theory), Grafakos [Grafakos, 2014]
(Fourier Analysis) and wikipedia. Further sources are Piotr Hajlasz’ Functional Analysis,
Clasons [Clason, 2020] and everything available on the internet. Sometimes we follow those
sources verbatim.

Pictures that were not taken from sources mentioned above (or wikipedia) are usually made
with geogebra.
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Part 1. Analysis I: Measure Theory

1. Measures, σ-Algebras

A measure is a way to measure (hence the name!) volumes. So for some set X it should
be a map

µ : 2X → [0,∞]
that to a subset A ⊂ X assigns the volume µ(A). Here 2X denotes the power set of X, i.e.
the collection of subsets of X.

2X = {A : A ⊂ X}.

What would we want from a volume in Rn? Well it seems to be a reasonable assumption
to axiomatically assume the following

• For any A ⊂ Rn we have µ(A) ∈ [0,∞]
• (Invariance under translation and rotation) For any set A ⊂ Rn, any rotation
P ∈ O(n) and any vector x ∈ Rn we have µ(x+OA) = µ(A) where we denote

x+OA := {x+Oa ∈ Rn : a ∈ A}

• For any A,B ⊂ Rn disjoint we have µ(A ∪B) = µ(A) + µ(B)

As reasonable as that sounds, there are two problems here:

• For n ≥ 3 the only map µ : 2Rn → [0,∞] that satisfies our axiom is constant
(Hausdorff, 1914)
• For n = 1, 2 there are indeed nonconstant maps µ : 2Rn → [0,∞] that satisfy

the above axioms, however even if we fix µ([0, 1]n) := 1 there is more than one
possibility for such a µ (Banach 1923).
• the whole business about disjoint sets is really tricky, as illustrated by the Banach-

Tarski-Paradoxon (1924):
Let n ≥ 3, A and B be bounded sets with int(A) and int(B) ̸= ∅. Then there

exist finitely many (xi)N
i=1 ⊂ Rn, (Oi)N

i=1 ⊂ O(n) and parwise disjoint sets (Ci)N
i=1

so that (xi +OiCi)N
i=1 are pairwise disjoint and

(1.1) A =
N⋃

i=1
Ci, and B =

N⋃
i=1

(xi +OiCi) .

That is we can deconstruct any set A in Rn into disjoint sets, move them around
(without any scaling!) and obtain another completely different set B - see Fig-
ure 1.1.

This is crazy, so the axiomatic definition of a reasonable volume in Rn has failed, and we
are back to square one.
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Figure 1.1. A ball can be decomposed into a finite number of disjoint sets
and then reassembled into two balls identical to the original

So instead of defining a volume in Rn axiomatically, let us generally define what a reason-
able notion of a volume should satisfy. Later we will then construct the Lebesgue measure
that has most of the desired properties on Rn.

Clearly µ(∅) = 0 is a reasonable assumption. Ideally we would also like µ(A ∪ B) =
µ(A) ∪ µ(B) – but this will be a surprisingly tricky, confusing, and paradox assumption,
so let us settle for the following notion
Definition 1.1. Let X be any set and 2X the potential set of X. A map µ : 2X → [0,∞]
is a measure on X if we have

(1) µ(∅) = 0
(2) µ(A) ≤ ∑∞

k=1 µ(Ak) whenever A,Ak ⊂ X, k ∈ N and A ⊂ ⋃k∈NAk

Remark 1.2. Condition (1) and (2) implies monotonicity,
µ(A) ≤ µ(B) ∀A ⊂ B.

(simply set A1 := B and Ak := ∅ for k ≥ 2).

In particular we could equivalently replace (2) above by σ-subadditivity, namely

µ(
∞⋃

k=1
Ak) ≤

∞∑
k=1

µ(Ak).

Remark 1.3. • A word of warning: we will use here the notion of an outer measure
that is defined on all of 2X , not only on its σ-algebra of measurable sets.
• In particular we have µ(A ∪ B) ≤ µ(A) + µ(B) for any set A,B ⊂ X. However,

in general, we cannot hope for all disjoint sets A and B hope that µ(A ∪ B) =
µ(A) + µ(B) (see above), this will lead to the notion of non-measurable sets.

Example 1.4 (Jordan content). • The outer Jordan content J∗(E) of a set E ⊂ Rn

is defined as follows.
For a product of bounded cubes C = [a1, b1)× [a2, b2)× . . .× [an, bn) we set

vol(C) := (b1 − a1) · (b2 − a2) · . . . (bn − an).

J∗(E) := inf
{

N∑
i=1

vol(Ci) for some N ∈ N, and cubes (Ci)N
i=1 such that E ⊂

N⋃
i=1

Ci

}
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Here we follow the convention that inf ∅ = +∞.
Jε(·) is not a measure: take any enumeratotion of Q ∩ [0, 1] = {q1, . . . , qn, . . .}.

Set Ak := {qk} and A := ⋃∞
k=1 Ak = [0, 1]∩Q. If (Ci)N

i=1 is a finite cover of [0, 1]∩Q
then ⋃

i Ci ⊃ [0, 1]1, so J∗(A) = 1. However J∗(Ak) = 0 for each k, we have
J∗(A) ̸≤ ∑∞

k=1 J
∗(Ak).

However J∗ satisfies finite additivity,
µ(A ∪B) ≤ µ(A) + µ(B),

i.e.

µ(A) ≤
N∑

k=1
µ(Ak) whenever A,Ak ⊂ X, k ∈ {1, . . . ,N}, N ∈ N, and A ⊂

⋃
k∈N

Ak.

Such a map Jε : 2X → [0,∞) is called a content.
• The countable version of the outer Jordan content, is called the Lebesgue outer

measure

(1.2) m∗(E) := inf
{ ∞∑

i=1
vol(Ci) for some , and cubes (Ci)∞

i=1 such that E ⊂
∞⋃

i=1
Ci

}

It is again clear that m∗(∅) = 0. Let now A ⊂ ⋃n
k=1 Ak. We may assume that

m∗(Ak) <∞ otherwise there is nothing to show. Fix ε > 0. For each k we can pick
(Ck;i)∞

i=1 such that ⋃∞
i=1 Ck;i ⊃ Ak and

∞∑
i=1

vol(Ck,i) ≤ m∗(Ak) + ε

2k
.

Now ⋃
k,i∈NCk,i ⊃ A and thus

m∗(A) ≤
∑

k,i∈N
vol(Ck,i) ≤

∞∑
k=1

m∗(Ak) +
∞∑

k=1

ε

2k

That is, we have shown that for any ε > 0,

m∗(A) ≤
∞∑

k=1
m∗(Ak) + ε

Taking ε→ 0 we conclude that m∗(A) ≤ ∑∞
k=1 m

∗(Ak) – that is m∗(A) is indeed a
measure.

Later the Lebesgue measure Ln will coincide with m∗(A).
• The inner Jordan content,

J∗(E) := sup
{

N∑
i=1

vol(Ci) for some N ∈ N, and cubes (Ci)N
i=1 such that

N⋃
i=1

Ci ⊂ E

}

Here we follow the convention that sup ∅ = 0.
1Indeed, take r ∈ [0, 1] then there exists qk converging to r, qk belongs infinitely often to the same

interval, so r ∈ Ci for some i
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Still J∗(·) is not a measure. Take A1 := [0, 1]\Q and for i ≥ 2 we set Ai = {qi}
for {q2, . . . , } = Q∩ [0, 1] any enumeration of Q∩ [0, 1]. Since A1 has empty interior
we have J∗(A1) = 0. Similarly, J∗(Ai) = 0 for i ≥ 2. However A := ⋃∞

i=1 Ai = [0, 1]
satisfies J∗([0, 1]) = 1. So we have J∗(A) ̸≤ ∑n

i=1 J∗(Ai).
• If we simply make the innter Jordan content countable, i.e. if we set

J̃∗(E) := sup
{ ∞∑

i=1
vol(Ci) for cubes (Ci)N

i=1 such that
∞⋃

i=1
Ci ⊂ E

}

we run into the same problem as for J∗, namely J∗([0, 1]\Q) = 0. So J̃∗(E) is still
not a measure.

Example 1.5 (Counting measure). Let X be any set. Then #2X → N ∪ {0} defined by
#A := number of elements in A,

is a measure, called the counting measure.

Exercise 1.6. Let X be a metric space and µ : 2X → [0,∞] a measure. Let A ⊂ X then
the measure µ⌞A: 2X → [0,∞] given by

(µ⌞A)(B) := µ(A ∩B)
is a measure.

1.1. Example: Hausdorff measure. Let (X, d) be a metric space.

Definition 1.7. The s-dimensional Hausdorff measure, s > 0 is defined as follows.

Let δ ∈ (0,∞], then for any A ⊂ X we define

Hs
δ(A) := α(s) inf

{ ∞∑
k=1

rs
k : A ⊂

∞⋃
k=1

B(xk, rk), rk ∈ (0, δ)
}
.

Here B(xk, rk) are open balls with radius r centered at xk, i.e.
B(xk, rk) := {y ∈ X : d(xk, y) < rk}.

Moreover2

α(s) := π
s
2

Γ( s
2 + 1) .

where Γ is the Γ-function.

Now observe that δ 7→ Hs
δ(A) is monotonce decreasing. So we can write
Hs(A) := lim

δ→0+
Hs

δ(A) ≡ sup
δ>0
Hs

δ(A) ∈ [0,∞].

Often one writes H0(A) := #A, the counting measure.

Hs
∞ is called the Hausdorff content.
2Warning: Some authors set α(s) := 1. The main reason to not do that is so that Hn = Ln in Rn
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Remark 1.8. • Observe that while Hs
δ(A) < ∞ whenever s > 0, δ > 0 and A is

any bounded set, as δ → 0 Hs(A) will be infinite whenever s is smaller than the
“dimension of A” (a notion we will define more carefully below).

Lemma 1.9. Hs is a measure in Rn.

Proof. One can show similar to the argument for m∗ that Hs
δ(·) is a measure for each δ > 0.

We clearly have Hs(∅) = 0. Moreover, since Hs
δ is a measure for any δ > 0, we have for

any A ⊂ ⋃∞
k=1 Ak,

Hs
δ(A) ≤

∞∑
k=1
Hs

δ(Ak) ≤
∞∑

k=1
Hs(Ak).

Taking the supremum over δ in this inequality we have σ-additivity for Hs.

Hs(A) ≤
∞∑

k=1
Hs(Ak).

□

Exercise 1.10. Show that
H0

δ(Q) δ→0−−→∞.

Lemma 1.11. Hs is a metric outer measure that means that if A,B ⊂ (X, d) satisfy
d(A,B) := inf

a∈A,b∈B
d(a, b) > 0.

then
Hs(A ∪B) = Hs(A) +Hs(B).

Proof. This is relatively easy to see. Take δ < d(A,B)
3 , then since any covering B(x, r) with

r < δ cannot contain points of both A or B at the same time, we have that Hs
δ is a metric

outer measure. Taking δ → 0+ we obtain that Hs is a metric outer measure. □

Remark 1.12. One can, and we will in Corollary 1.78, show that the n-dimensional
Hausdorff measure in Rn coincides with the Lebesgue measure Ln, i.e.

Ln(A) = Hn(A).

Exercise 1.13. Let f : Rn → Rm be (uniformly) Lipschitz continuous that is
|f(x)− f(y)| ≤ L|x− y| ∀x, y ∈ Rn

Then for any set Ω and any s ≥ 0,
Hs(f(Ω)) ≤ C(L)Hs(Ω)

where C(L) is a constant only depending on L.

Exercise 1.14. Show that

• H1 = L1 in R
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• Hs(λA) = λsHs(A) for all λ > 0, where λA = {λx : x ∈ A}.
• Hs(LA) = Hs(A) whenever L : Rn → Rn is an affine isometry, i.e. if Lx = Ax+ b

for A ∈ O(n) and b ∈ Rn constant.
Exercise 1.15. Let U ⊂ Rn be any non-empty open set. Then Hs(U) =∞ for all s < n.
Exercise 1.16 (translation and rotation invariant). Let A ⊂ Rn and s ∈ (0,∞). Show
the following

(1) If p ∈ Rn then Hs(p+ A) = Hs(A).
(2) If O ∈ O(n) (i.e. O ∈ Rn×n and OtO = I) then Hs(OA) = Hs(A).
(3) If A ⊂ Rℓ × {0} for 0 < ℓ < n and π : (x1, . . . , xn) := (x1, . . . , xℓ) is the projection

from Rn = Rℓ × Rn−ℓ to Rℓ, then Hs
Rn(A) = Hs

Rℓ(π(A)).
Lemma 1.17. Let 0 ≤ s < t <∞.

(1) If Hs(A) <∞ then Ht(A) = 0
(2) If Ht(A) > 0 then Hs(A) =∞.

Proof. Indeed, whenever rk ≤ δ and (B(xk, rk))k∈N cover A we have

Ht
δ(A) ≤ α(t)

∞∑
k=1

rt
k ≤ α(t)δt−s

∞∑
k=1

rs
k.

Taking the infimum over any such covering B(xk, rk) of A we find

Ht
δ(A) ≤ α(t)

α(s)δ
t−sHs

δ(A).

Taking limδ→0 on both sides we obtain

Ht(A) ≤ α(t)
α(s) 0 · Hs(A).

This implies that if Ht(A) > 0 then necessarily Hs(A) = ∞, and if Hs(A) < ∞ then
Ht(A) = 0. □

Example 1.18. If k ∈ N it is conceivable that Hk measures something of “dimension k”.
For example assume that C = [0, 1]2 × {0} ⊂ R3 is a 2D-square of sidelength 1. We need
≈ 1

δ2 many balls to cover C. Then

Hs
δ(C) ≤ α(s) 1

δ2 δ
s.

So if s > 2 we see that Hs(C) ≤ limδ→0 δ
s−2 = 0. That is C has no s-volume for s > 2.

For s = 2 one can argue that covering uniformly by balls of radius δ is optimal and thus
we have

0 < H2(C) <∞.
In particular Hs(C) =∞ for any s < 2.

(this argument is easy to generalize to a ℓ-dimensional manifold in RN)
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Indeed, with the Hausdorff measure we can define a dimension

Definition 1.19. The Hausdorff dimension is defined as
dimH A := inf {s ≥ 0 : Hs(A) = 0} .

If Hs(A) > 0 for all s > 0 then dimH(E) :=∞.

Lemma 1.20. Let C be a set in a metric space and let s ≥ 0

(1) If Hs(C) = 0 then dimH(E) ≤ s.
(2) If Hs(C) > 0 then dimH(E) ≥ s.
(3) If 0 < Hs(C) <∞ then dimH(E) = s.
(4) If Hs

∞(C) > 0 and Hs(C) <∞ then dimH(E) = s.

Proof. This follows from Lemma 1.17 and the definition of Hausdorff measure.

(1) follows from the definition of the Hausdorff measure as infimum. then dimH(E) ≤ s.
(2) If Hs(C) > 0 then by Lemma 1.17 Ht(C) = ∞ for all t < s. Again from the

definition it is clear that dimH(E) ≥ s.
(3) This is a consequence of the two above statements.
(4) Follows from the statement before since Hs

∞(C) ≤ Hs(C)

□

Exercise 1.21 (Hausdorff dimension under Lipschitz and Hölder maps). Let (X, dx) and
(Y, dY ) be two metric spaces and let f : X → Y . Assume that A ⊂ X has Hausdorff-
dimension dimH(A) = s.

(1) If f is uniformly Lipschitz continuous, i.e. for some L > 0,
dY (f(x), f(y)) ≤ Ld(x, y) ∀x, y ∈ X

then dimH(f(A)) ≤ s.
(2) Give an example where dimH(A) < s
(3) Assume f is uniformly Hölder continuous, i.e. for some L > 0 and α > 0

dY (f(x), f(y)) ≤ Ld(x, y)α ∀x, y ∈ X
What can we say about the Hausdorff dimension of f(A) ⊂ Y ?

Cf Exercise 1.13.

Example 1.22. The Cantorset is defined as follows.
C0 := [0, 1]

Let C0 := [0, 1]. In the k-th step we construct Ck by removing of each interval the open
middle interval of size 3−n. For exmaple

C1 := [0, 1
3] ∪ [13 , 1].
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Figure 1.2. The cantor set

See Figure 1.2.

Set C := ⋂∞
k=1 Ck. Observe that C is closed and bounded, so compact.

Lemma 1.23. dimH(C) = log 2
log 3 .

Proof. For each k ∈ N we have C ⊂ Ck. Observe that Ck consists of 2k disjoint intervals
each of diameter 3−k (i.e. radius 1

23−k). Thus for any δ > 0 and for any k ≫ 1 so that
1
23−k < δ we have

Hs
δ(C)≤α(s)

2k∑
ℓ=1

(1
23−k)s = 2−s

( 2
3s

)k
k→∞−−−→ α(s)


2−s s = log 2

log 3
0 s > log 2

log 3
∞ s > log 2

log 3

In particular we have

Hs(C) = 0 ∀s > log 2
log 3 .

So from the definition of the Hausdorff dimension we get

dimH C ≤
log 2
log 3 .

Now we need to show the other direction. From now on set s := log 2
log 3 . Let (B(xi, ri))∞

i=1 be
any covering of C. We claim that

(1.3)
∞∑

i=1
rs

i ≥
1

2s4 .

Once we have (1.3) we are done, because (1.3) implies

Hs∞(C) ≥ 1
2s4 .

In particular (recall that s = log 2
log 3) we have ∞ > Hs(C) ≥ Hs

∞(C) > 0.

Let us make some notation. Denote by Ak the intervals of Ck, i.e. Ak consists of pairwise
disjoint, closed intervals in R such that Ck = ⋃

I∈Ak
I. E.g.

C1 = [0, 1
3] ∪ [23 , 1], A1 = {[0, 1

3], [23 , 1]}.
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Figure 1.3. If a ball intersects three intervals of AKi
its diameter is at

least 5 · 3−Ki

Proof of (1.3) Since C is compact, we may assume that there finitely many, w.l.o.g. the
first N balls (B(xi, ri))N

i=1 already cover C. We may assume that each ri <
1
2 , otherwise

(1.3) is obvious.

Fix i ∈ {1, . . . , N}.

Let Ki ∈ N ∪ {0} so that
2ri ∈ [3−Ki−1, 3−Ki).

Now we consider the construction step CKi
. Each ball B(xi, ri) has nonempty intersection

with at most 2 intervals of CKi
. Indeed, otherwise its diameter would be at least 5 · 3−Ki ,

see Figure 1.3.

But then B(xi, ri) has nonempty intersection with at most 2 · 2j−Ki intervals of Cj for any
j ≥ Ki. Since s = log 2

log 3 we have

2 · 2j−Ki = 2j+12−Ki = 2j+13−Kis ≤ 2j+13s(2ri)s = 2j+2(2ri)s.

Set now K := max{i=1,...,N} Ki.

Then for any i ∈ {1, . . . , N} each of the balls B(xi, ri) has nonempty intersection with at
most 2K+2(2ri)s many intervals of AK .

So if we set Γi to be the number of intervals in AK that intersect Bri
(xi) we have Γi ≤

2K+2(2ri)s and thus
N∑

i=1
Γi(3−K)s ≤

N∑
i=1

(3−K)s︸ ︷︷ ︸
=2−K

2K+2(2ri)s

=4 2s
N∑

i=1
(ri)s

(1.4)

Now for each x ∈ C there is exactly one interval I in AK such that x ∈ I. Since (Bri
(xi))N

i=1
covers all of C we have the following: for each interval I in AK there exists some i ∈
{1, . . . , N} such that Bri

(xi) ∩ I ̸= ∅. That is,
N∑

i=1
Γi ≥ number of intervals in AK = 2K .
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Figure 1.4. The fat cantor set for a = 1
4 , see Example 1.24

Thus,

(1.5)
N∑

i=1
Γi3−Ks ≥ 2K3−Ks = 1.

Together, (1.4) and (1.5) imply (1.3). □

Example 1.24. The Smith–Volterra–Cantor set, aka fat cantor set is defined as follows.

Let C0 := [0, 1]. In the k-th step we construct Ck by removing of each interval the open
middle interval of size an. That is

C1 = [0, 1− a
2 ] ∪ [1 + a

2 , 1].

C2 = [0, 1− a
4 − a2

2 ] ∪ [1− a4 + a2

2 ,
1− a

2 ] ∪ [1 + a

2 ,
1 + 1+a

2
2 − a2

2 ] ∪ [
1 + 1+a

2
2 + a2

2 , 1].

Cf. Figure 1.4.

Set C := ⋂∞
k=1 Ck. For a = 1

3 this is the typical Cantor set. For a = 1
4 this is the Fat

Cantor set.

Exercise 1.25. The fat Cantor above set has positive H1-measure.

1.2. Measurable sets. As we have discussed, our definition of measure does not include
the “natural” condition that µ(B) = µ(B ∩ A) + µ(B\A) for all A,B ⊂ X – because this
“natural” condition leads to incompatibility such as the Banach-Tarski Paradoxon.

So we will denote the class of sets A ⊂ 2X where we have the above “natural” condition
as the σ-algebra of measurable sets.

Definition 1.26 (Carathéodory). Let µ be a measure on X.

A ⊂ X is called µ-measurable if
µ(B) = µ(A ∩B) + µ(B\A) for any B ⊂ X

Remark 1.27. By additivity of the measure, measurability is equivalent to
µ(B) ≥ µ(A ∩B) + µ(B\A) for any B ⊂ X

Exercise 1.28. Let X ̸= ∅ be any set
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• and assume µ(∅) = 0 and µ(A) = 1 for any A ̸= ∅. Then A is µ-measurable if and
only if A = ∅ or A = X.
• If ν = # the counting measure then any set A is ν-measurable.

Clearly, whatever choice of measure we have, ∅ and X are measurable sets. We also have

(1.6) (Ai)N
i=1 are measurable ⇒

N⋃
i=1

Ai is measurable

Proof of (1.6). We proof this by induction. Clearly this holds for N = 1. So to conclude
(1.6) we only need to show:

If A1, A2 are µ-measurable, then so is A1 ∪ A2.

So assume A1 and A2 are µ-measurable and B ⊂ X.
µ(B) =µ(B \ A1) + µ(B ∩ A1)

=µ ((B \ A1) ∩ A2) + µ ((B \ A1) \ A2)
+ µ ((B ∩ A1) ∩ A2) + µ ((B ∩ A1) \ A2)
≥µ (B \ (A1 ∪ A2)) + µ(B ∩ (A1 ∪ A2))

In the last step we have used that
µ ((B \ A1) ∩ A2) + µ ((B ∩ A1) ∩ A2) + µ ((B ∩ A1) \ A2) ≥ µ (B \ (A1 ∪ A2)) ,

by sublinearity and the fact that
B \ (A1 ∪ A2) = ((B \ A1) ∩ A2) ∪ ((B ∩ A1) ∩ A2) ∪ ((B ∩ A1) \ A2) .

By Remark 1.27 we have that (A1 ∪ A2) is also measurable. □

We have much more than that:

Lemma 1.29. Let X be a set and µ be a measure on X.

The collection A ⊂ 2X of µ-measurable functions
A := {A ⊂ X : A is µ-measurable}

is a σ-algebra, that is

(1) X ∈ A
(2) A ∈ A implies that X\A ∈ A
(3) If (Ai)∞

i=1 ⊂ A then ⋃∞
i=1 Ai ∈ A.3

In particular
3This is the σ in σ-algebra, σ means for countably many. If we only had for any N ∈ N: (Ai)N

i=1 ⊂ A
then

⋃N
i=1 Ai ∈ A, A would be merely an Algebra (no σ!)
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• ∅ ∈ A
• if (Ai)∞

i=1 ⊂ A then ⋂∞
i=1 Ai ∈ A

Proof. (1) For any B ⊂ X: since B ∩X = B and B\X = ∅ we have
µ(B) = µ(B) + µ(∅) = µ(B ∩X) + µ(B \X).

(2) Assume that A ∈ A. Set Ã := X\A. For any B ⊂ X we have
Ã ∩B = (X\A) ∩B = B\A,

and
B \ Ã = B \ (X\A) = B ∩ A.

Since A is measurable we then have
µ(B ∩ Ã) + µ(B \ Ã) = µ(B \ A) + µ(B ∩ A) = µ(B).

(3) Let (Ai)i∈N ⊂ A. Set A := ⋃∞
i=1 Ai.

Without loss of generality we have that Ai ∩Aj = ∅ for i ̸= j. Indeed, otherwise
we set Ã1 := A1 and Ãk := Ak\

⋃k−1
i=1 Ai. By the previously proven properties and

(1.6) each Ãk belongs to A and we have A = ⋃∞
k=1 Ãk – so we could work with Ãk

instead of Ak.
We have by measurability of each Ak and since AN and ⋃N−1

k=1 Ak are disjoint,

µ(B ∩
N⋃

k=1
Ak) =µ(B ∩

(
N⋃

k=1
Ak

)
∩ AN) + µ(

(
B ∩

N⋃
k=1

Ak

)
\ AN)

=µ(B ∩ AN) + µ(B ∩
N−1⋃
k=1

Ak)

Repeating this computation N − 1 times we obtain

(1.7) µ(B ∩
N⋃

k=1
Ak) =

N∑
k=1

µ(B ∩ Ak).

By (1.6) and the monotonicity of µ, Remark 1.2, we then have

µ(B) = µ(B ∩
N⋃

k=1
Ak) + µ(B \

N⋃
k=1

Ak) ≥
N∑

k=1
µ(B ∩ Ak) + µ(B\

∞⋃
k=1

Ak)

This holds for any N , so we obtain

µ(B) ≥
∞∑

k=1
µ(B ∩ Ak) + µ(B\

∞⋃
k=1

Ak)

By the σ-subadditivity of µ we then have

µ(B) ≥ µ(B ∩
∞⋃

k=1
Ak) + µ(B\

∞⋃
k=1

Ak)

In view of Remark 1.27 this implies measurability of ⋃∞
k=1 Ak.
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□

Definition 1.30. Let C ⊂ 2X any nonempty family of subsets of X, then

σ(C)

denotes the σ-Algebra generated by C, namely the smallest σ-algebra containing C.

Exercise 1.31. • {∅, X} is a σ-algebra of X
• 2X is a σ-algebra of X
• Let (X, d) be a metric space. Denote O ⊂ 2X the family of all open sets.

Let F be the family of σ-Algebras that contain all open sets. That is, A ⊂ 2X

belongs to F if and only if A is a σ-Algebra, and any open set O ∈ O belongs to
A, i.e. O ∈ A.

Define
B :=

⋂
{A : A ∈ F}.

Show that (a) F is nonempty, (b) B is a σ-algebra and (c) B is the smallest σ-
Algebra containing all open sets, i.e. show that B = σ(O).
B is called the Borel σ-Algebra and a set B ∈ B is called a Borel set.

Definition 1.32. If µ : 2X → [0,∞] is a measure on X, and Σ is the σ-algebra of µ-
measurable sets, then once calls (X,Σ, µ) a measure space.

Some author choose to define measures only on their σ-algebra Σ of measurable sets, and
call our definition of a measure an outer measure.

There is a reason for restricting µ only to act on measurable sets – a measure µ acts in a
very intuitive way on its measurable sets!

Theorem 1.33. Let (X,Σ, µ) be a measure space.

Let (Ak)k∈N ⊂ Σ (i.e. each Ak is measurable). Then we have

(1) If Ak ∩ Aℓ = ∅ for k ̸= ℓ we have

(σ-Additivity) µ(
∞⋃

k=1
Ak) =

∞∑
k=1

µ(Ak)

(2) If A1 ⊂ A2 ⊂ . . . ⊂ Ak ⊂ . . . then

µ(
∞⋃

k=1
Ak) = lim

k→∞
µ(Ak).

(3) If µ(A1) <∞ and A1 ⊃ A2 ⊃ . . . ⊃ Ak ⊃ . . . then

µ(
∞⋂

k=1
Ak) = lim

k→∞
µ(Ak).
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Proof. (1) Above in (1.7) we computed (take B = X) that for finitely many pairwise
disjoint sets

µ(
N⋃

k=1
Ak) =

N∑
k=1

µ(Ak).

By monotonicity

µ(
∞⋃

k=1
Ak) ≥ µ(

N⋃
k=1

Ak) =
N∑

k=1
µ(Ak)

Taking N →∞ we find

µ(
∞⋃

k=1
Ak) ≥

∞∑
k=1

µ(Ak).

By σ-subadditivity,

µ(
∞⋃

k=1
Ak) ≥

∞∑
k=1

µ(Ak) ≥ µ(
∞⋃

k=1
Ak).

The number on left- and right-hand side are the same so we have

∞∑
k=1

µ(Ak) = µ(
∞⋃

k=1
Ak).

(2) Let Ã1 := A1 and Ãk := Ak\Ak−1. Then (Ãk)∞
k=1 is pairwise disjoint, and each Ãk

is measurable. So

µ(
∞⋃

k=1
Ak) =µ(

∞⋃
k=1

Ãk) =
∞∑

k=1
µ(Ãk)

= lim
N→∞

N∑
k=1

µ(Ãk)

= lim
N→∞

µ(
N⋃

k=1
Ãk)

= lim
N→∞

µ(AN).

(3) Set Ãk := A1\Ak, k ∈ N. Then ∅ = Ã1 ⊂ Ã2 ⊂ . . .. Moreover we have

µ(A1) = µ(Ãk) + µ(Ak), k ∈ N.
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By the above argument (observe that µ(Ak) ≤ µ(A1) <∞)
µ(A1)− lim

k→∞
µ(Ak) = lim

k→∞
µ(Ãk)

=µ(
∞⋃

k=1
Ãk)

=µ(A1\
∞⋂

k=1
Ak)

=µ(A1)− µ(
∞⋂

k=1
Ak).

Since µ(A1) <∞ we can conclude.

□

Example 1.34. • There is no way we can assume (or should hope for) that for
uncountable unions we have (even sub-)additivity: For example R = ⋃

x∈R{x}. The
Lebesgue measure would satisfy L1{x} = 0 for all x, so

L1(R) ̸= lim
k→∞
L1{x} = 0.

• The assumption µ(A1) <∞ in Theorem 1.33(3) is necessary.
Let X = N and µ the counting measure. Set for k ∈ N

Ak = {k, k + 1, k + 2, . . .}.
Then Ak ⊃ Ak+1, but µ(Ak) =∞ for all k ∈ N. However ⋂k∈NAk = ∅, so

0 = µ(
⋂

k∈N
Ak) ̸= lim

k→∞
µ(Ak) =∞.

Lastly, from Advanced Calculus we are aware of sets of measure zero (there it was that
Riemann-integrable functions are continuous outside a set of Lebesgue-measure zero)
Definition 1.35 (Zero sets). A set N ⊂ X is called a set of µ-measure zero if µ(N) = 0.
We also say N is a µ-zeroset.

A property P (x) holds µ-a.e. in X if P (x) holds in X\N where N is a µ-zeroset.
Theorem 1.36. Let N ⊂ X be a µ-zero set. Then N is measurable.

Proof. Let B ⊂ X, by monotonicity we have µ(B ∩N) ≤ µ(N) = 0. Moreover µ(B\N) ≤
µ(B). So we have

µ(B ∩N) + µ(B\N) ≤ µ(N) + µ(B) = µ(B).
This implies measurability. □

Exercise 1.37. Let X be a set and µ be a measure on X.

(1) Let (Ni)i∈N be sets of µ-measure zero. Show that ⋃i∈NNi is a set of µ-measure zero.



ANALYSIS I & II & III VERSION: December 5, 2022 28

(2) Let N be a µ-zeroset. Show that any A ⊂ N is a µ-zeroset.
(3) Show that is a property P (x) holds for µ-a.e. x and a property Q(y) holds for µ-a.e.

y then Q(x) and P (x) hold (simultaneously) for a.e. x.

1.3. Construction of Measures: Carathéodory-Hahn Extension Theorem. While
we already have constructed in (1.2) the Lebesgue (outer) measure, we are still interested
in finding a more axiomatic approach to construct the Lebesgue measure.

The idea is to define a pre-measure on some sets (like cubes!) and build a measure out of
that.

Definition 1.38 (Algebra). Let X be a set and A ⊂ 2X . A is called an algebra if

(1) X ∈ A
(2) A ∈ A implies that X\A ∈ A
(3) If A1, A2 ∈ A then A1 ∪ A2 ∈ A.

Definition 1.39 (Pre-measure). Let X be a set, A ⊂ 2X an algebra (not necessarily a
σ-algebra!). A map λ : A → [0,∞] is a pre-measure, if

(1) λ(∅) = 0
(2) λ(A) = ∑∞

k=1 λ(Ak) for any A ∈ A such that A = ⋃∞
k=1 Ak for some parwise disjoint

(Ak)∞
k=1 ⊂ A.

A pre-measure is called σ-finite, if X = ⋃∞
k=1 Sk with Sk ∈ A and λ(Sk) <∞ for each k.

Exercise 1.40. Let λ : A → [0,∞] be a premeasure

(1) Assume A ⊂ B with A,B ∈ A then λ(A) ≤ λ(B).

Example 1.41. An interval is the set (a, b) or [a, b] or (a, b] or [a, b), where −∞ < a ≤
b <∞ (we allow ±∞ if the set is open).

A block Q in Rn is the cartesian product of n intervals Q = I1 × I2 × . . .× In.

A figure is made out of finitely many blocks

A :=
{
A ⊂ Rn : A =

N⋃
i=1

Qi some N ∈ N, Qi blocks with pairwise disjoint interior
}
.

Exercise: A is an Algebra

The volume of a block Q = I1 × . . .× In is given by the n-dimensional volume, i.e.
vol(Q) = Πn

i=1|Ii|,

where as usual, |[a, b]| = |(a, b)| = |[a, b)| = |(a, b]| := |b− a|.

Indeed, vol defines now a premeasure on A:
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Whenever A ∈ A, i.e. A = ⋃N
i=1 Qi for pairwise disjoint blocks Qi then

vol(A) :=
N∑

i=1
vol(Qi).

One can check that this is independent of the specific choice of Qi. I.e. if also A = ⋃Ñ
j=1 Q̃j

for another cobination of pairwise disjoint blocks Q̃j then

N∑
i=1

vol(Qi) =
Ñ∑

j=1
vol(Q̃j).

Indeed, now vol defines a pre-measure on A. vol is also σ-finite, simply take Sk := [−k, k]n.

The important thing is that a premeasure extends (more or less uniquely) into a real
measure. This is called Carathéodory–Hahn extension.

Theorem 1.42 (Carathéodory–Hahn extension). Let X be a set, and A ⊂ 2X an algebra
with a premeasure λ : A → [0,∞].

For A ⊂ X the Carathéodory–Hahn extension µ : 2X → [0,∞] is defined as

µ(A) := inf
{ ∞∑

k=1
λ(Ak) : A ⊂

∞⋃
k=1

Ak, Ak ∈ A
}

Then

(1) µ : 2X → [0,∞] is a measure on X,
(2) µ(A) = λ(A) for all A ∈ A,
(3) Any A ∈ A is µ-measurable.

Compare this to the definition of the Lebesgue measure, (1.2).

Proof of Theorem 1.42. (1) Clearly µ : 2X → [0,∞] is well-defined (observe that X ∈
A, so that µ(B) ≤ µ(X) for all B ⊂ X, and µ(∅) = 0.

Now let B ⊂ ⋃∞
k=1 Bk. Take any ε > 0. By definition of the infimum, for each

Bk there exist some (Ak;ℓ)∞
ℓ=1 ⊂ A such that Bk ⊂

⋃∞
ℓ=1 Ak;ℓ and

∞∑
ℓ=1

λ(Ak;ℓ) ≤ µ(Bk) + 2−kε.
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Clearly, A ⊂ ⋃∞
k,ℓ=1 Ak;ℓ so we have

µ(A) ≤
∞∑

k=1

∞∑
ℓ=1

λ(Ak; ℓ)

≤
∞∑

k=1

(
µ(Bk) + 2−kε

)

≤
( ∞∑

k=1
µ(Bk)

)
+ ε.

This holds for any ε > 0, so letting ε→ 0 we find

µ(A) ≤
( ∞∑

k=1
µ(Bk)

)
+ ε.

Thus, µ is σ-subaddive, and thus µ is a measure.
(2) For A ∈ A we clearly have µ(A) ≤ λ(A).

Now we show λ(A) ≤ µ(A). We may assume that µ(A) < ∞ otherwise there is
nothing to show.

Take any (Ak)∞
k=1 ⊂ A such that ⋃∞

k=1 Ak ⊃ A. By the usual argument we
may assume (without loosing that Ak ∈ A) that Ak ∩ Aj = ∅ for all k ̸= j. Set
Ãk := Ak ∩ A, k ∈ N. Then (Ãk)∞

k=1 ∈ A are pairwise disjoint, so since λ is
premeasure

λ(A) =
∞∑

k=1
λ(Ãk) ≤

∞∑
k=1

λ(Ak).

Here we also used Exercise 1.40 (monotonicity of λ) and Ãk ⊂ Ak.
Taking the infimum over all covers (Ak)k∈N as above we obtain that

λ(A) ≤ µ(A),
as claimed.

(3) Let A ∈ A and B ⊂ X.
Fix ε > 0 arbitrary. By the definition of µ, there exist (Bk)∞

k=1 ⊂ A such that
B ⊂ ⋃∞

k=1 Bk and
∞∑

k=1
µ(Bk) ≥ µ(B) ≥

∞∑
k=1

µ(Bk)− ε.

Since Bk ∈ A we have µ(Bk) = λ(Bk). Since A,Bk ∈ A and A is an algebra we
have B ∩ Ak and Bk\A ∈ A. These are disjoint sets, and since λ is a pre-measure
we have

µ(Bk) = λ(Bk) = λ(Bk ∩ A) + λ(Bk\A).
So we have

µ(B) ≥
∞∑

k=1
λ(Bk ∩ A) +

∞∑
k=1

λ(Bk\A)− ε.
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Now observe that B∩A ⊂ ⋃k∈NBk∩A and B\A ⊂ ⋃∞
k=1 Bk\A (and both coverings

belong to A). By the definition of µ we thus find
∞∑

k=1
λ(Bk ∩ A) ≥ µ(B ∩ A)

and
∞∑

k=1
λ(Bk \ A) ≥ µ(B\A)

Together we arrive at
µ(B) ≥ µ(B ∩ A) + µ(B\A).

That is, A is µ-measurable.

□

Definition 1.43 (Lebesgue measure). The Lebesgue measure Ln in Rn is the Caratheodory-
Hahn extension of λ in Example 1.41. Compare this with (1.2).

If the pre-measure is additionally σ-finite, then the Carathéodory-Hahn extension µ is
essentially unique (on the sets we care about: the measurable sets).

Theorem 1.44 (Uniqueness). Let λ : A → [0,∞] as in Theorem 1.42 be additionally
σ-finite and denote by µ the Carathéodory-Hahn-extension.

Whenever µ̃ : 2X → [0,∞] is another measure such that
µ̃(A) = λ(A) for all A ∈ A,

then indeed
µ̃(A) = µ(A) for all µ-measurable A

Proof. (1) We have µ̃(A) ≤ µ(A) for all A ⊂ X . Indeed, let A ⊂ ⋃
k∈NAk for Ak ∈ A.

Then by σ-subadditivity of µ̃,

µ̃(A) ≤
∞∑

k=1
µ̃(Ak) =

∞∑
k=1

λ(Ak).

Taking the infimum over all such covers (Ak)∞
k=1 ⊂ A of A we obtain

(1.8) µ̃(A) ≤ µ(A) ∀A ⊂ X

(2) Let Σ be the σ-algebra of µ-measurable sets.
We now show:
µ̃(A) = µ(A) for all A ⊂ Σ such that there is S ∈ A with λ(S) <∞, and S ⊃ A.
So fix such A and S.
Then

µ̃(S\A) ≤ µ̃(S) S∈A= λ(S) <∞.
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Consequently, since A ∈ Σ and S ∈ A,

µ̃(A) + µ̃(S\A)
(1.8)
≤ µ(A) + µ(S\A) A∈Σ= µ(S) A∈A= µ̃(S) ≤ µ̃(A) + µ̃(S\A).

So we have equality everywhere, which leads to
µ̃(A) + µ̃(S\A) = µ(A) + µ(S\A)

With (1) we conclude
µ̃(A) + µ̃(S\A) ≥ µ(A) + µ̃(S\A)

and thus µ̃(A) ≥ µ(A) (here we use that µ̃(S\A) < ∞). Again with (1) we have
shown that

(1.9) µ(A) = µ̃(A) ∀A ∈ Σ : s.t.∃S ∈ A : A ⊂ S, λ(S) <∞.
(3) µ̃(A) = µ(A) for all A ⊂ Σ

In comparison to (2) we need to remove the restriction A ⊂ S for some λ(S) <∞.
We write X = ⋃∞

k=1 Sk with (Sk)k∈N pairwise disjoint, Sk ∈ A, λ(Sk) <∞ for all
k ∈ N.

Set Ak := A ∩ Sk, which are pairwise disjoint sets that all belong to Σ. From
(1.9) we have for any m ∈ N

µ̃(
m⋃

k=1
Ak) = µ(

m⋃
k=1

Ak).

Thus, by monotonicity of µ̃, and since each Ak ∈ Σ, we have

µ̃(A) ≥ lim sup
m→∞

µ̃(
m⋃

k=1
Ak) = lim sup

m→∞
µ(

m⋃
k=1

Ak) Ak∈Σ=
∞∑

k=1
µ(Ak).

From Theorem 1.33 (1) we obtain
∞∑

k=1
µ(Ak) = µ(

∞⋃
k=1

Ak).

Thus we have shown for any A ∈ Σ,
µ̃(A) ≥ µ(A),

and we have equality in view of (1.8).

□

Remark 1.45. Observe that in Theorem 1.44 it is not said that any µ-measurable A was
also µ̃-measurable

Example 1.46. In general µ and µ̃ in Theorem 1.44 might be different for non-measurable
sets.

Let X = [0, 1], A = {∅, X}, and set
λ(∅) := 0, λ([0, 1]) := 1.
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Then λ : A → R is a pre-measure.

One can check that the Caratheodory-Hahn extension of λ is given by

µ(A) :=
0 A = ∅

1 A ̸= ∅.

If on the other hand we consider µ̃ the Lebesgue measure on [0, 1], i.e. the Caratheodory-
Hahn extension of λ̃ : A → [0,∞] where Ã are the figures from Example 1.41 and λ̃ is the
volume as defined. Then µ̃ coincides with µ on A but not in Ã, because, e.g.

1
2 = λ([0, 1/2]) = µ̃([0, 1/2]) ̸= µ([0, 1/2]) = 1.

1.4. Classes of Measures.

Definition 1.47. Let X be a metric space and µ be a measure on X. µ is called a metric
measure if

µ(E ∪ F ) = µ(E) + µ(F )
whenever dist (E,F ) > 0

Exercise 1.48. The Hausdorff measure Hs on a metric space X is metric measures for
any s ≥ 0.

Exercise 1.49. The Lebesgue measure on Rn is a metric measure.

Definition 1.50. Let X be a metric space and µ be a measure on X.

• Let B ⊂ 2X be the smallest σ-algebra that contains all open sets of Rn, that is4

B :=
⋂{
A ⊂ 2X : A is σ-algebra, all open sets belong to A

}
.

(Cf. Exercise 1.31). Any set A ∈ B is called a Borel set and B is called the Borel
σ-algebra.
• A measure µ on X for which (at least) all Borel-sets are µ-measurable is called a

Borel measure.

Exercise 1.51. If f : X → Y is homeomorphism then f(A) is Borel if and only if A is
Borel

Theorem 1.52. If µ is a metric measure on a metric space X then µ is a Borel measure,
i.e. all open sets are µ-measurable. In particular Lebesgue and Hausdorff measure are
Borel measures.

4it is an easy exercise to show that this indeed defines a σ-algebra. Observe in particular that 2X is a
σ-algebra which contains all open sets so the right-hand side is not an intersection of empty sets.
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Proof. It suffice to show that all open sets in X are µ-measurable, since then the set of
measurable sets (which is a σ-algebra) must contain the Borel sets B.

Let G ⊂ X be open and A ⊂ X arbitrary. We need to show
µ(A) ≥ µ(A ∩G) + µ(A\G).

If µ(A) =∞ this is obvious, so from now on assume µ(A) <∞.

For k ∈ N define
Gk :=

{
x ∈ G : dist (x,X\G) > 1

k

}
Then dist (Gk, X\G) ≥ 1

k
> 0.

We have by monotonicity,
µ(A ∩G) + µ(A\G) ≤ µ(A ∩Gk) + µ(A\G) + µ(A ∩ (G\Gk)).

Since µ is a metric measure and dist (A ∩Gk, A\G) > 0 we conclude
µ(A ∩G) + µ(A\G) ≤ µ(A) + µ(A ∩ (G\Gk)).

So the statement is proven once we show
(1.10) lim

k→∞
µ(A ∩ (G\Gk)) = 0.

To see (1.10) let

Dk := Gk+1\Gk =
{
x ∈ G : dist (x,X\G) ∈ ( 1

k + 1 ,
1
k

]
}
.

We then have (here we use that G is open)

(1.11) G\Gk =
∞⋃

i=k

Di so µ(A ∩ (G \Gk)) ≤
∞∑

i=k

µ(A ∩Di).

and whenever i+ 2 ≤ j we have

dist (Di, Dj) ≥
1

i+ 1 −
1
j
> 0.

Since µ is a metric measure we can sum up even and odd Di’s i.e.
k∑

i=1
µ(A ∩D2i−1) = µ(A ∩

k⋃
i=1

D2i−1) ≤ µ(A)

and
k∑

i=1
µ(A ∩D2i) = µ(A ∩

k⋃
i=1

D2i) ≤ µ(A).

In particular we have
∞∑

i=1
µ(A ∩Di) ≤ 2µ(A) <∞.
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From (1.11),

µ(A ∩ (G\Gk)) ≤
∞∑

i=k
µ(A ∩Di)

and since the series on the right-hand side converges

µ(A ∩ (G\Gk)) k→∞−−−→ 0.
That is (1.10) is established and we can conclude. □

Theorem 1.53. Let X be a metric space and µ any Borel measure. Suppose that X is a
union of countably many open sets of finite measure. Then for all Borel sets E ⊂ X

µ(E) = inf
U⊃E;U open

µ(U) = sup
C⊂E;C closed

µ(C).

The first part of Theorem 1.53 is a direct consequence of
Proposition 1.54. Let X be a metric space and µ any Borel measure. Suppose that X is
a union of countably many open sets of finite measure. If we define µ̃ : 2X → [0,∞] as
(1.12) µ̃(E) := inf

U⊃E;U open
µ(U) E ⊂ X

then µ̃ is a metric measure and we have
µ̃(E) = µ(E) ∀Borel sets E ⊂ X.

The Hausdorff measure Hs (which is metric and thus Borel) shows that we cannot skip the
assumption that X finite union of countably many open sets of finite measure.

Indeed if s < n for any nonempty open set Hs(U) =∞, so (1.12) is certainly false.

Proof of Proposition 1.54. It is easy to see that µ̃ is a measure (exercise).

We will show, it is a metric measure: let E,F ⊂ X such that δ := dist (E,F ) > 0. Set

VE :=
⋃

x∈E

B(x, 1
3δ),

and
VF :=

⋃
x∈F

B(x, 1
3δ).

VE and VF are then disjoint and open. Fix ε > 0, let U ⊃ E ∪ F be open such that
µ(U) ≤ µ̃(E ∪ F ) + ε.

Since VE ∩ U and VF ∩ U are open they are µ-measurable and since they are moreover
disjoint

µ((VE ∩ U) ∪ (VF ∩ U)) = µ(VE ∩ U) + µ(VF ∩ U).
Since E = E ∩ VE ⊂ U ∩ VE and F = F ∩ VF ⊂ U ∩ VF we have
µ̃(E) + µ̃(F ) ≤ µ(VE ∩U) + µ(VF ∩U) = µ((VE ∩U)∪ (VF ∩U)) ≤ µ(U) ≤ µ̃(E ∪ F ) + ε.
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Taking ε→ 0 we obtain that µ̃(E) + µ̃(F ) ≤ µ̃(E ∪ F ) which shows that µ̃ is metric.

Consequently, in view of Theorem 1.52, µ̃ is Borel.

It remains to show µ̃(E) = µ(E) for all Borel sets. Clearly,
µ̃(E) ≥ µ(E) ∀E ⊂ X.

and
µ̃(E) = µ(E) ∀E ⊂ X open.

By assumption we can write X = ⋃∞
k=1 Xk with Xk open and µ(Xk) < ∞. We also may

assume that Xk ⊂ Xk+1.

Then we have for all set E ⊂ X

µ(Xn\E) ≤ µ̃(Xn\E)
and

µ(Xn ∩ E) ≤ µ̃(Xn\E).
Now if E is Borel, we have
(1.13) µ(Xn\E) = µ̃(Xn\E) and µ(Xn ∩ E) = µ̃(Xn\E).
Indeed, if not, either µ(Xn\E) < µ̃(Xn\E) or µ(Xn ∩ E) < µ̃(Xn\E), which leads to

µ(Xn) = µ(E ∩Xn) + µ(Xn\En) < µ̃(E ∩Xn) + µ̃(Xn\En) = µ̃(Xn) = µ(Xn)
the second to last equation is the µ̃-measurability of E (since it is a Borel set and µ̃ is a
Borel measure), the last equation uses that Xn is open. The above estimate is impossible
(since µ(Xn), µ̃(Xn) <∞), so (1.13) is established.

So in particular we have for any Borel set E, µ(Xn ∩ E) = µ̃(Xn ∩ E). In view of
Theorem 1.33 (recall: both µ and µ̃ are Borel!)

µ̃(E) = lim
n→∞

µ̃(Xn ∩ E) = lim
n→∞

µ(Xn ∩ E) = µ(E).

That is, we have shown for any Borel set E,
(1.14) µ(E) = µ̃(E) := inf

U⊃E;U open
µ(U).

□

Proof of Theorem 1.53 last part. Having from Proposition 1.54 (1.14), it remains to prove
that for Borel sets E

µ(E) = sup
C⊂E;C closed

µ(C).

We apply (1.14) to Xn\E and find an open set Un such that
Xn\E ⊂ Un

and
µ(Un\(Xn\E)) = µ(Un)− µ(Xn\E) < ε

2n
.
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The set U := ⋃∞
n=1 Un is open and C = X\U ⊂ E is closed. Now it suffices to observe that

E\C = E ∩
∞⋃

n=1
Un ⊂

∞⋃
n=1

Gn\(Un\E)

and hence µ(E\C) = µ(E) − µ(C) < ε. Thus, µ(C) ≤ µ(E) ≤ µ(C) + ε. Taking ε → 0
the proof is complete. □

Corollary 1.55. Let X be a metric space and µ, ν Borel measure. Suppose that X is a
union of countably many open sets of finite measure. If ν and µ coincide for open sets,
namely if

ν(U) = µ(U) ∀open set U ⊂ X,

then
ν(E) = µ(E) ∀Borel sets E.

Proof. Twice applying Theorem 1.52, we find that for any Borel set E
µ(E) = inf

U⊃E;U open
µ(U) = inf

U⊃E;U open
ν(U) = ν(E).

□

On Rn we can simplify Corollary 1.55

Theorem 1.56 (Borel measures on Rn that coincide on rectangles). Let µ and ν be two
finite Borel measures on Rn such that

µ(R) = ν(R)
for all closed rectangles R of the form

R := {x ∈ Rn : ai ≤ xi ≤ bi, i = 1, . . . , n}
where −∞ ≤ ai ≤ bi ≤ ∞, i = 1, . . . , n.

Then
µ(B) = ν(B)

for all Borel sets B ⊂ Rn

For the proof of Theorem 1.56 we need a essentially combinatorial observation, called the
π-λ Theorem. π and λ-systems are families of sets which are invariant under less operations
than the σ-Algebras.

Definition 1.57. (1) A nonempty family P ⊂ 2X is called a π-system if it is closed
under (finitely many) intersections, i.e.

A,B ∈ P implies A ∩B ∈ P .
(2) A family of subsets L ⊂ 2X is called a λ-system if

• X ∈ L
• A,B ∈ L and B ⊂ A implies A \B ∈ L
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• if Ak ∈ L and Ak ⊂ Ak+1 for k = 1, . . . , then
∞⋃

k=1
Ak ∈ L.

Exercise 1.58. Show that if P is a λ-system and a π-system, then it is a σ-Algebra.

Clearly any σ-Algebra is also a π-system and a λ-system.

Theorem 1.59 (π-λ Theorem). If P is a π-system and L is a λ-system with
P ⊂ L

then5

σ(P) ⊂ L

Proof. Define S to tbe the intersection of all λ-systems L′ containing P
S :=

⋂
L′⊃P
L′,

We first claim that S is a π-system.

Indeed let A,B ∈ S. We must show A ∩B ∈ S. Define
A := {C ⊂ X : A ∩ C ∈ S} .

Since S is a λ-system, it follows that A is a λ-system. Therefore S ⊂ A. But then since
B ∈ S we see that A ∩B ∈ S.

Next we claim that S is a σ-algebra

Indeed, we only need to show that S is a λ-system (cf. Exercise 1.58).

Since X ∈ S, ∅ = X \ X ∈ S. Also A ∈ S implies X \ A ∈ S. So S is closed under
complements and under finite intersections, and thus under finite unions.

If A1, A2 ∈ S then Bn := ⋃n
k=1 Ak ∈ S. Since S is a λ-system we conclude that ⋃∞

k=1 Ak =⋃∞
n=1 Bn ∈ S. Thus S is a σ-algebra.

Since S ⊃ P is a σ-algebra it follows that
σ(P) ⊂ S ⊂ L.

□

Proof of Theorem 1.56. Let

P := {A ⊂ Rn : for some n ∈ N, A =
n⋂

k=1
Rk where (Rk)n

k=1 are a rectangles},

5Recall that σ(P) is the σ-Algebra generated by P
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which a π-system. We also set
L := {B ⊂ Rn : B Borel: µ(B) = ν(B)}.

While it is not so clear that L is a σ-Algebra, one can check it is a λ-system. Also P ⊂ L
by assumption (observe that each Rk is µ and σ-measurable).

By Theorem 1.59 we have σ(P) ⊂ L. Since σ(P) contains the Borel sets (any open set
can be written as countable union of rectangles, see Lemma 1.75 below), any Borel set B
satisfies B ∈ L and thus µ(B) = ν(B), and we can conclude. □

Definition 1.60 (Borel Regular measure). A Borel measure µ is Borel regular, if for any
A ⊂ Rn there exists some Borel set B ⊃ A such that µ(A) = µ(B).

Corollary 1.61. Let X be a metric space and µ any Borel measure. Suppose that X is a
union of countably many open sets of finite measure. If we define µ̃ : 2X → [0,∞] as

µ̃(E) := inf
U⊃E;U open

µ(U) E ⊂ X

then µ̃ is a metric, Borel-regular measure that coincides with µ on Borel sets.

Proof. In view of Proposition 1.54 we only need to show that µ̃ is Borel-regular.

Indeed, let E ⊂ X with µ(E) <∞ (otherwise µ(E) = µ(X) =∞) be arbitary. Let (Uk)∞
k=1

be open sets so that Uk ⊃ E and

µ(Uk)− 1
k
≤ µ̃(E).

Set U := ⋂∞
k=1 Uk. Then we have E ⊂ U and thus µ̃(E) ≤ µ̃(U). On the other hand we

have
µ̃(U) = µ̃(

∞⋂
k=1

Uk) ≤ µ(Uk) ≤ µ̃(E) + 1
k
.

This holds for any k ∈ N so letting k →∞ we find
µ̃(U) ≤ µ̃(E).

So µ̃(U) = µ̃(E), and since as an intersection of countably many open sets U is a Borel-set,
we can conclude. □

Example 1.62. The Lebesgue measure Ln (as defined in Definition 1.43) is Borel regular.

Proof. In view of Corollary 1.61 it suffices to show that
Ln(A) = inf {Ln(G) : G ⊂ Rn open and G ⊃ A} .

≤ is obvious by monotonicity. For ≥ assume Ln(A) <∞, let ε > 0 and take blocks (Qi)∞
i=1

such that
∞∑

i=1
vol(Qi) ≤ Ln(A) + ε.
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To each block Qi we can choose an open block Qo
i ⊃ Qi such that

vol(Qo
i ) ≤ vol(Qi) + 2−iε.

Set G := ⋃∞
i=1(Qi)o ⊃ A. Then

Ln(G) ≤
∞∑

i=1
vol(Qo

i ) ≤
∞∑

i=1
vol(Qi) +

∞∑
i=1

2−iε

≤Ln(A) + 2ε.
That is we have shown

Ln(A) + 2ε ≥ inf {Ln(G) : G ⊂ Rn open and G ⊃ A} .

which holds for any ε > 0, letting ε→ 0 we conclude. □

Example 1.63. Let X be a metric space. For any s ≥ 0, Hs(X) is Borel-regular.

Proof. In this case we cannot use Corollary 1.61, since we cannot assume that we can cover
X with countably many finite measure sets.

If s = 0 the claim is easy. Take any E ⊂ X. If H0(E) = ∞, then H0(E) = H0(X) = ∞.
If H0(E) <∞ then E contains finitely many points, thus E is closed and thus a Borel set.

Now let s > 0 and E ⊂ X. If Hs(E) = ∞ then again Hs(E) = Hs(X) = ∞ and we
conclude. So assume Hs(E) <∞. In particular Hs

δ(E) <∞ for all δ > 0.

So for each ℓ there exists a covering of E by open balls (B(rk;ℓ))∞
k=1 with radius rk;ℓ ≤ 1

ℓ
such that

(1.15) Hs
1
ℓ
(

∞⋃
k=1

B(rk;ℓ)) ≤ Hs
1
ℓ
(E) + 1

ℓ
≤ Hs(E) + 1

ℓ
.

In the last step we used again Hs(A) = supδ>0Hs
δ(A).

Then G := ⋂∞
ℓ=1

⋃∞
k=1 B(rk;ℓ) is a Borel set, and we have

Hs(G) = lim
ℓ→∞
Hs

2
ℓ
(G) ≤ lim sup

ℓ→∞
Hs

2
ℓ
(

∞⋃
k=1

B(rk;ℓ))
(1.15)
≤ Hs(E) + 0

Since on the other hand G ⊃ E we have
Hs(G) = Hs(E).

We can conclude. □

Definition 1.64. Let X be a metric space and µ : 2X → [0,∞] a Borel regular measure.
µ is called a Radon measure if µ(K) <∞ for all compact sets.

Example 1.65. • Ln is a Radon measure on Rn

• Hs is not a Radon measure in Rn whenever s < n.
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Example 1.66. Let X is a locally compact and separable metric space6 and µ is a Borel
measure such that µ(K) <∞ for all K compact.

Then X is the union of countably many open sets of finite measure and thus µ coincides
with a Radon measure µ̃ on all Borel sets; cf. Corollary 1.61.

Exercise 1.67. Let X be a metric space and µ any Radon measure. Suppose that X is a
union of countably many open sets of finite µ-measure. Let A ⊂ X be µ-measurable. Show
that µ⌞A is a Radon measure.

Theorem 1.68. Let X be a metric space and µ any Borel-regular measure. Suppose that
X is a union of countably many open sets of finite µ-measure.

(1) If µ is Borel-regular, then for any A ⊂ X we have
µ(A) = inf

A⊂G, G open
µ(G)

(2) If X = Rn and µ is a Radon measure, for any µ-measurable A ⊂ X we have
µ(A) = sup

F ⊂A, F compact
µ(F ).

Proof. (1) Let A ⊂ X. By monotonicity we always have
µ(A) ≤ inf

A⊂G, G open
µ(G).

For the other inequality, since µ is by assumption Borel-regular we find a Borel set
E ⊃ A such that µ(A) = µ(E). By Theorem 1.53 we have

µ(A) = µ(E) = inf
E⊂G, G open

µ(G) ≥ inf
A⊂G, G open

µ(G)

(2) Follows from part (1), see Exercise 1.69.

□

Exercise 1.69. Show Theorem 1.68 (2).

Use the argument as in the proof of Theorem 1.53 last part and Theorem 1.68(1). Observe
we need measurability of A because we need to use that µ(U\(Xn\A)) = µ(U)− µ(Xn\A),
which is the measurability of Xn\A.

Theorem 1.70. Let X be a metric space µ a Radon measure on X, and assume that X is
a union of countably many open sets of finite µ-measure. Then the following are equivalent
for A ⊂ X.

(1) A is µ-measurable
(2) For every ε > 0 there is an open set G ⊂ X such that A ⊂ G and µ(G\A) < ε

6Separable means, a countable set is dense. Locally compact means that ever point has a neighborhood
whose closure is compact. Rn is locally compact and separable, but also Rn \ 0 is locally compact and
separable
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(3) There is a Gδ-set, namely a set H = ⋂∞
i=1 Gi for some open sets Gi ⊂ Rn, such that

A ⊂ H and µ(H\A) = 0
(4) For every ε > 0 there is a closed set F such that F ⊂ A and µ(A\F ) < ε
(5) There is a Fσ-set, namely a set M = ⋃∞

i=1 Fi for some closed set Fi ⊂ Rn, such that
M ⊂ A and µ(A\M) = 0

(6) For every ε > 0 there is an open set G and a closed set F such that F ⊂ A ⊂ G
and µ(G\F ) < ε.

(7) A = B ∪N where B is a Borel set and N is a µ-zero-set.

Proof. By assumption we have X = ⋃∞
k=1 Xk with Xk open and µ(Xk) <∞.

(1) ⇒ (2): Let ε > 0. Set Ak := A ∩ Xk then µ(Ak) < ∞ and by Theorem 1.68 there
exists for each k an open set Gk ⊃ Ak such that

µ(Gk) ≤ µ(Ak) + ε

2k
.

Since Ak is measurable and Gk ⊃ Ak we have

µ(Gk\Ak) = µ(Gk)− µ(Ak) ≤ ε

2k
.

Hence A ⊂ G := ⋃∞
k=1 Gk and we have

µ(G \ A) ≤
∞∑

k=1
µ(Gk \ A) ≤

∞∑
k=1

µ(Gk \ Ak) ≤
∞∑

k=1

ε

2k
= ε.

Letting ε → 0 we conclude. (2) ⇒ (3). We set H := ⋂∞
i=1 Ui where Ui are open sets such

that A ⊂ Ui and µ(Ui\A) < 1
i
. Then A ⊂ H and

µ(H \ A) ≤ µ(Ui \ A) ≤ 1
i

i→∞−−−→ 0.

(3) ⇒ (1) Let A ⊂ H for some Gδ-set H with µ(H \A) = 0. Then for any B ⊂ X we have
by monotonicity

µ(B ∩ A) ≤ µ(B ∩H)
and since B ∩H ⊂ (B ∩ A) ∪ (H\A),

µ(B ∩H) ≤ µ(B ∩ A) + µ(H\A) = µ(B ∩ A).
thus we actually have

µ(B ∩H) = µ(B ∩ A).
Similarly,

µ(B \H) ≤ µ(B \ A)
and since B \ A ⊂ (B \H) ∪ (H \ A),

µ(B \ A) ≤ µ(B \H) + µ(H \ A) = µ(B \H).
Thus

µ(B \H) = µ(B \ A).
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Now since any Gδ-set is a Borel set and µ is in particular a Borel measure we have that H
is µ-measurable. Consequently

µ(B) = µ(B ∩H) + µ(B \H) = µ(B ∩ A) + µ(B \ A).
Thus A is µ-measurable.

(1) ⇔ (4) ⇔ (5) this equivalence follows from the equivalence of the conditions (1), (2),
and (3) applied to X\A.

(1) ⇒ (6) If A is µ-measurable, the existence of the sets F andG follows from the conditions
(2) and (4).

(6) ⇒ (3) Take closed and open sets Fi, Gi such that Fi ⊂ A ⊂ Gi, µ(Gi\Fi) < 1
i
. Then

the set H := ⋂∞
i=1 Gi is Gδ and µ(H\A) = 0.

(7) ⇒ (1) If A = B ∪N where B is a Borel set and N is a µ-zero-set, then clearly A is it
is the union of two µ-measurable sets.

(5) ⇒ (7) We have A = M ∪ A\M , where M is a Fσ-set, in particular a Borel set. and
A \M is a µ-zero set. □

From Theorem 1.56 we obtain the following uniqueness result

Theorem 1.71 (Radon measures on Rn that coincide on rectangles). Let µ and ν be two
Radon measures on Rn such that

µ(R) = ν(R)
for all closed rectangles R of the form

R := {x ∈ Rn : ai ≤ xi ≤ bi, i = 1, . . . , n}
where −∞ ≤ ai ≤ bi ≤ ∞, i = 1, . . . , n.

Then
µ(A) = ν(A) ∀A ⊂ Rn.

Proof. By Theorem 1.56 we have
µ(K) = ν(K)

for all compact set K (observe that then the measure is w.l.o.g. finite). By Theorem 1.68(2)
we obtain that

µ(A) = ν(A)
for all Borel sets (which are both µ- and ν-measurable).

If A ⊂ Rn is any set, then there exists two Borel sets Bµ ⊃ A and Bν ⊃ A such that
µ(A) = µ(Bµ)

and
ν(A) = ν(Bν).
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Observe that we have

µ(A) ≤ µ(Bν ∩Bµ) = ν(Bν ∩Bµ) ≤ ν(Bν) = ν(A).

Similarly we find ν(A) ≤ µ(A). That is µ(A) = ν(A) and we can conclude. □

Proposition 1.72. Let µ be a Radon measure on Rn. Then for each x ∈ Rn there are at
most countably many r > 0 such that

µ(∂B(x, r)) > 0.

Exercise 1.73. Construct a Radon measure µ on Rn such that for countably many r > 0,

µ(∂B(x, r)) > 0.

Proof of Proposition 1.72. For simplicity let us assume that x = 0.

Now consider
f(r) := µ(B(r)).

Clearly f : (0,∞) → [0,∞) is increasing, so f has at most countably many points of
discontinuity.

Moreover we observe that
µ(B(r)) = lim

r̃→r−
f(r̃).

Indeed, this follows since for any increasing sequence r1 < r2 < . . . < r with lim ri = r, so
by Theorem 1.33(2)

µ(B(r)) = µ(
∞⋃

i=1
B(ri)) = lim

i→∞
µ(B(ri)) = lim

i→∞
f(ri).

Next we claim that whenever r is a point of continuity for f then µ(∂B(r)) = 0. Indeed,
since B(r) and ∂B(r) are compact and B(r) open (thus all are measurable),

0 ≤ µ(∂B(r)) = µ(B(r))− µ(B(r)) = f(r)− lim
r̃→r−

f(r̃).

So if r is a point of continuity, then limr̃→r− f(r̃) = f(r) and thus

µ(∂B(r)) = 0.

□

Similarly we have

Exercise 1.74. Let µ be a Radon measure on Rn and g ∈ C0(Rn,R) such that g ≡ 0
outside a compact set K. Then there exist at most countable r ∈ R such that

µ(g−1(r)) > 0.
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Figure 1.5. An open set can be represented by a countable union of dyadic cubes.

1.5. More on the Lebesgue measure.

Lemma 1.75 (Dyadic decomposition of open sets). Any open set Ω ⊂ Rn can be written
as

Ω =
∞⋃

i=1
Qi

where Qi are closed cubes with pairwise disjoint interior and each cube has sidelength 2−k

for some k ∈ N.

Proof. See Figure 1.5 for a picture proof. We consider dyadic cubes of sidelength 2−ℓ,
ℓ ∈ N ∪ {0} which cover Rn:

Rn =
⋃

a∈2ℓZn

a+ [0, 2−ℓ]n.

Let

Qℓ :=

Q = a+ [0, 2−ℓ]n : a ∈ 2ℓZn and Q ⊂ Ω\

 ⋃
Q̃∈Qℓ−1

Q̃


o .

Each Qℓ is a countable family of cubes, so Q := ⋃∞
ℓ=0Qℓ is a countable family of cubes.

By construction we have ⋃
Q∈Q

Q ⊂ Ω.

Observe also that by construction two cubes in Q intersect only along their boundary.

Now assume by contradiction that ⋃Q∈Q Q ̸= Ω, i.e.

Ω \
⋃

Q∈Q
Q ⊃ {x0}.

Observe that any point x ∈ ⋃Q∈Q Q belongs to at most 2n many cubes Q ∈ Q.

We conclude that ⋃Q∈Q Q is a closed set, even though it may be a countable union of closed
cubes. Indeed assume (xi)i∈N ⊂

⋃
Q∈Q Q converges to some x̄. Then all but finitely many

xi belong to the same cube Q̃ which is closed, so x̄ ∈ Q̃.
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By the argument from above, Ω \⋃Q∈Q Q is open thus there exists a small ball B(x0, ρ) ⊂
Ω \ ⋃Q∈Q Q ⊃ {x0}. Let k0 such that 2−k0 < ρ

1000 . Then we can find a tiny cube
Q̄ = a + [0, 2−k0 ] ⊂ B(x0, ρ) (each component of x0 lies between some [2−k0(γ+1), 2−k0(γ)]).
Contradiction because that cube would belong to Q̃. □

Exercise 1.76. Show that any open set U ⊂ Rn can be written as a countable union of
open cubes.

The Lebesgue measure is essentially built from blocks, the dyadic decomposition shows that
the Lebesgue measure is then the only natural volume notion on Rn: any other translation
invariant volume notion is the same.

Theorem 1.77 (Uniqueness of the Lebesgue measure). If µ is a Borel-measure on Rn

such that

• µ(a+E) = µ(E) for all a ∈ Rn and all Borel-sets E ⊂ Rn (translation invariance)
• µ([0, 1]n) = 1

then µ(E) = Ln(E) for all Borel-sets E.

If µ is moreover Borel-regular (and thus a Radon measure) then µ(E) = Ln(E) for all
E ⊂ Rn.

Proof. Consider an open cube Qk = (0, 2−k)n where k is a positive integer. There are 2kn

pairwise disjoint cubes contained in the unit cube [0, 1]n, each being a translation of Qk.
Since the measure µ is invariant under translation we have

µ(Qk) ≤ 2−kn.

Now we can use a similar argument to cover ∂Q by translations small cubes in such a
way that the sum of µ-measures of the cubes covering ∂Q goes to zero as k → ∞. Thus
µ(∂Q) = 0 for any cube Q.

Now [0, 1]n can be covered by 2kn cubes which are translations of Qk. So,
1 = µ([0, 1]n) ≤ 2knµ(Qk).

Thus, µ(Qk) ≥ 2−kn and µ(Qk) ≤ 2−kn. Since µ(∂Qk) = 0 we find that µ(Qk) = µ(Qk) =
2−kn for all k.

In conclusion: any cube Q of sidelength 2−k satisfies
µ(Q) = Ln(Q).

By dyadic decomposition, Lemma 1.75, any open set E can be written as E = ⋃∞
i=1 Qi for

cubes which are translations of Qk for some k, and with pairwise disjoint interior. Thus
µ(E) =

∑
i

µ(Qi) =
∑

i

Ln(Qi) = Ln(E).
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In view of Theorem 1.53 applied to µ and the Lebesgue measure we conclude that µ(E) =
Ln(E) for all Borel sets E.

If µ is Borel regular then the additional claim follows from Theorem 1.71. □

Since the n-Hausdorf measure Hn a translation invariant, Exercise 1.16, Borel measure, we
obtain that it essentially coincides with the Lebesgue measure.

Corollary 1.78. Let n ∈ N. Then n-th Hausdorff measure and Lebesgue measure coincide
in Rn up to a multiplicative factor Cn for all Borel sets. That is

Hn(E) = Ln(E) ∀E ⊂ Rn.

Proof. From Example 1.63, Exercise 1.16, Theorem 1.77 we have Hn(E) = CLn(E) for
some constant C. The fact that C = 1 one can check in by testing for E = B(0, 1). □

Proposition 1.79. A set E ⊂ Rn has Lebesgue measure zero if and only if for every ε > 0
there is a family of balls (B(xi, ri))∞

i=1 such that

E ⊂
∞⋃

i=1
B(xi, ri)

and
∞∑

i=1
rn

i < ε.

Proof. ⇐. Assume

(1.16) E ⊂
∞⋃

i=1
B(xi, ri)

and

(1.17)
∞∑

i=1
rn

i < ε.

Obserserve that if Q(xi, 2ri) denotes the cube with sidelength 2ri centered at xi then
B(xi, ri) ⊂ Q(xi, 2ri) and thus by the definition of the Lebesgue measure, Definition 1.43,

Ln(B(xi, ri)) ≤ vol(Q(xi, 2ri)) = (4ri)n.

Consequently, by monotonicity

Ln(E) ≤
∞∑

i=1
4nrn

i ≤ 4nε.

Thus if for every ε > 0 there is a family of balls (B(xi, ri))∞
i=1 such that (1.16) and (1.16)

holds, we have
Ln(E) = 0.

That is E is a Ln-zero set.
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⇒: Assume Ln(E) = 0.

By definition of the Lebesgue measure, Definition 1.43, for any ε > 0 there exist (Ak)∞
k=1

figures which each can decomposed into blocks of pairwise disjoint interior Ak = ⋃Nk
i=1 Qk;i,

such that
E ⊂

∞⋃
k=1

Ak ≡
∞⋃

k=1
Qk;i

and
∞∑

k=1
vol(Ak) ≡

∞∑
k=1

Nk∑
i=1

vol(Qk;i) < ε.

Denote by Lk;i the sidelength of the cube Qk;i, and by xk;i the center of the cube Qk;i.
Then Qk;i ⊂ B(xk;i, Lk;i) and

vol(Qk;i) = cn(Lk;i)n

for some dimensional constant cn. Thus,

E ⊂
∞⋃
k

Nk⋃
i=1

B(xk;i, Lk;i)

and
∞∑

k=1

∞∑
i=1

(Lk;i)n = 1
cn

∞∑
k=1

∞∑
i=1

vol(Qk;i) <
ε

cn

.

□

Exercise 1.80. Use Proposition 1.79 to show that

(1) if f : Rn → Rn is uniformly continuous, then for any A ⊂ Rn with Ln(A) = 0 we
also have Ln(f(A)) = 0. This property of f is called the Lusin property.

(2) Whenever Σ ⊂ Rn with Ln(Σ) = 0 then Rn \ Σ is dense in Rn, i.e. Rn \ Σ = Rn.

So we know the Lebesgue measure is translation invariant (and that its pretty much the
only measure that does that). But we have not verified that this means that it is rotation
invariant. Namely what is the Ln measure of a cube Q rotated? The following result shows
(in particular) that rotations do not change the measure.

Theorem 1.81. Let Lx := Ax+b be an affine linear map Rn → Rn with a non-degenerate
matrix A ∈ Rn×n, i.e. det(A) ̸= 0, and b ∈ Rn. Then

(1) E ⊂ Rn is a Borel set if and only if L(E) ⊂ Rn is a Borel set.
(2) E is Ln-measurable if and only if L(E) is Ln-measurable
(3) We have Ln(L(Ω)) = | det(L)|(Ω) for all Ω ⊂ Rn.

Proof. (1) L is a homeomorphism, so E ⊂ Rn is a Borel set if and only if L(E) ⊂ Rn

is a Borel set, see Exercise 1.51.
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(2) In view of Theorem 1.70(7), a set A is Ln-measurable if and only if A = B ∪ N
where B is a Borel set and N is a zero set. Since L and L−1 are both Lipschitz
maps they map zero sets into zero sets, Exercise 1.13 and Corollary 1.78. Since L
and L−1 also preserve the Borel property of set we get the claim.

(3) By Theorem 1.68 applied to the Lebesgue measure Ln it suffices to show
Ln(L(Ω)) = det(L)(Ω) for all open Ω ⊂ Rn

Let
µ(A) := Ln(L(A)) A ∈ Rn.

Then µ is a Borel measure, and it is still translation invariant. So we apply Theo-
rem 1.77 to µ̃ := 1

a
µ where a := µ([0, 1]n) and have that

Ln(L(Ω)) = Ln(L([0, 1]n))Ln(Ω) for all open sets Ω.
So it remains to show that

Ln(A([0, 1]n)) = | det(A)| ∀A ∈ GL(n).
So consider f : GL(n) → (0,∞), f(A) := Ln(A([0, 1]n)). We observe two proper-
ties: first,

(1.18) f(AB) = f(A)f(B) ∀A,B ∈ GL(n).
Indeed, we have
f(AB) = Ln(AB([0, 1]n)) = f(A)Ln(B([0, 1]n)) = f(A)f(B)Ln(([0, 1]n)).

Secondly, for the identity matrix I ∈ Rn×n

(1.19) f(λI) = λn, ∀λ > 0.
This is immediate from the definition of the pre-measure of the Lebesgue measure.

We conclude with the following Lemma, Lemma 1.82

□

Lemma 1.82. Let f : GL(n)→ (0,∞) satisfy (1.18) and (1.19). Then
f(A) = | det(A)|.

Proof. Let Ai(s) be the diagonal matrix with −s on the ith place and s on all other places
on the diagonal. Since Ai(s)2 = s2I we have f(Ai(s))2 = f(Ai(s)2) = s2n and hence
f(Ai(s)) = |sn| = | detAi(s)|. For k ̸= ℓ let Bkℓ(s) = (aij)ij be the matrix such that
akℓ = s, aii = 1, i = 1, 2, . . . , n and all other entries equal zero. Multiplication by the
matrix Bkl(s) from the right (left) is equivalent to adding kth column (ℓth row) multiplied
by s to ℓth column (kth row).

It is well known from linear algebra (and easy to prove) that applying such operations
to any nonsingular matrix A it can be transformed to a matrix of the form tI or An(t).
Since multiplication by Bkℓ(s) does not change determinant, t = | detA|1/n. It remains to
prove that f(Bkl(s)) = 1. Since Bkl(−s) = Ak(1)Bkl(s)Ak(1) we have that f(Bkl(−s)) =
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Figure 1.6. Let a11 = 3, a12 = 1, a21 = 1 and a22 = 2 then [0, 1]2 (blue)
is transformed into A[0, 1]2 (purple). The purple area is det(A) = 5.

f(Bkl(s)). On the other hand Bkℓ(s)Bkℓ(−s) = I and hence f(Bkl(s))2 = 1, so f(Bkl(s)) =
1. The proof of Lemma 1.82 and hence the proof of Theorem 1.81 is complete. □

Example 1.83. Let A ∈ Rn×n, and let I = [0, 1]n. Set
AI := {Ax, x ∈ I}.

Then the volume (in the elementary geometrical sense) of AI is
|AI| = | det(A)||I|.

Exercise 1.84. Let Lx := Ax + b be an affine linear map Rn → Rn for any matrix
A ∈ Rn×n and any b ∈ Rn. Show the following:

(1) If E is Ln-measurable then L(E) is Ln-measurable
(2) We have Ln(L(Ω)) = | det(L)|(Ω) for all Ω ⊂ Rn.

Hint: If det(A) ̸= 0 this follows from Theorem 1.81. If det(A) = 0, what is L(E) or L(Ω)?
(compare to the Hausdorff measure Hs for s = rankA)
Corollary 1.85. The Lebesgue measure Ln is translation and rotationally invariant on
Rn. Namely if A ⊂ Rn then Ln(A) = Ln(Φ(A)) where for some x0 ∈ Rn and R ∈ O(n) we
have

Φ(x) := x0 +Rx

then Ln(Φ(A)) = Ln(A).

1.6. Nonmeasurable sets. Corollary 1.85 combined with the Banach-Tarski paradoxon,
(1.1) and Figure 1.1, implies the existence of nonmeasurable sets (w.r.t. Ln) in Rn: Any
set A and B such that for some pairwise disjoint and measurable Ci they are represented
by

A =
N⋃

i=1
Ci, and B =

N⋃
i=1

(xi +OiCi) .
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(where Oi ∈ O(n) is a rotation and xi a point, and (xi + OiCi)N
i=1 are pairwise disjoint)

would satisfy

Ln(A) =
N∑

i=1
Ln(Ci) =

N∑
i=1
Ln(xi +OiCi) = Ln(B),

so if A = [0, 1]n and B = [0, 2]n this would mean the impossible Ln(A) = Ln(B) – so one
of the Ci must be nonmeasurable.

We will not prove the Banach-Tarski-paradox, but instead show the R1-version.Observe
below that the existence of nonmeasurable sets requires the the axiom of choice (and
suitable invariances of the underlying measure).

Theorem 1.86 (Vitali). Let µ : 2R → R be translation invariant7, i.e.
µ(x+ A) = µ(A) ∀x ∈ R, A ⊂ R.

If moreover µ([0, 1]) ∈ (0,∞) then there exists a Vitali-set A ⊂ [0, 1] that is not µ-
measurable.

Proof. Construction (Vitali) Fix ξ ∈ R\Q, and set
Gξ := {k + ℓξ; k, ℓ ∈ Z}

We use Gξ to define an equivalence relation ∼ on R.
x ∼ y :⇔ x− y ∈ Gξ.

For x ∈ R denote by [x] the set
[x] := x+Gξ = {y ∈ R : y = x+ k + ℓξ k, ℓ ∈ Z}.

Let A ⊂ R be a set such that for each class [x] there exists exactly one element y ∈ A∩ [x].
The set A exists by the axiom of choice: if we set

X := {[x] ⊂ R : x ∈ R}
then the axiom of choice says there exists a choice function f : X → R such that f([x]) ∈ [x]
for all [x] ∈ X. Then A := f(X).

Without loss of generality, A ⊂ [0, 1]. Indeed if we can adapt the choice function f above
such that

f̃([x]) := f([x])− k,
where k ∈ Z is chosen such that f([x]) ∈ [k, k + 1).

The Vitali-set A is not µ-measurable

Since ξ ̸∈ Q the set Gξ ∩ [−1, 1] contains infinitely many points. Indeed: if k+ ℓξ = k′ + ℓ′ξ

then k = k′ and ℓ = ℓ′ (otherwise ξ = k−k′

ℓ′−ℓ
∈ Q). Thus we can find infinitely many different

k + ℓξ ∈ [−1, 1] (choosing k = −⌊ℓξ⌋ or similar)
7yes, if µ is moreover Borel then it is pretty much the Lebesgue measure, Theorem 1.77, but the main

point of this theorem is: invariances mean non-measurable sets
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Also, Gξ is clearly countable we can write Gξ∩ [−1, 1] = ⋃∞
k=1 gk where (gk)∞

k=1 are pairwise
different points. Set Ak := gk + A ⊂ [−1, 2], k ∈ N.

We claim
(1.20) Ak ∩ Aℓ = ∅ k ̸= ℓ.

Indeed, assume that x ∈ Ak ∩ Aℓ then
x− gk, x− gℓ ∈ A.

Observe that x− gk ∼ x− gℓ, that is [x] = [x− gk] = [x− gℓ]. But by definition of A there
is exactly one element of [x− gk] = [x− gℓ] in A, which implies that x− gk = x− gℓ, that
is gk = gℓ, that is k = ℓ. This establishes (1.20).

Next we claim that

(1.21) [0, 1] ⊂
∞⋃

k=1
Ak.

Indeed, let y ∈ [0, 1]. By the construction of A there must be exactly one x ∈ A ∩ [y]. In
particular y− x ∈ Gξ. Since x, y ∈ [0, 1] we have y− x ∈ [−1, 1]∩Gξ, and thus there must
be some gk = y − x. Consequently

y = x+ gk ⊂ A+ gk = Ak.

This establishes (1.21).

Now assume A is µ-measurable, i.e.
µ(B) = µ(A ∩B) + µ(B \ A) ∀B ⊂ R.

Then by translation invariance, so is Ak, indeed for any B ⊂ R,
µ(B) =µ(B − gk) = µ(A ∩ (B − gk)) + µ((B − gk) \ A)

=µ(gk + A ∩ (B − gk)) + µ(gk + (B − gk) \ A)
=µ((A+ gk) ∩B) + µ(B \ (A+ gk))
=µ(Ak ∩B) + µ(B \ Ak).

Then we have by (1.20) and σ-additivity of disjoint measurable sets, Theorem 1.33,
∞∑

k=1
µ(Ak) = µ(

∞⋃
k=1

Ak).

Since [0, 1] ⊂ ⋃Ak ⊂ [−1, 2] we have again by translation invariance

µ([0, 1]) ≤
∞∑

k=1
µ(Ak) ≤ µ([0, 3]) ≤ µ([0, 1]) + µ([1, 2]) + µ([2, 3]) = 3µ([0, 1]).

On the other hand, again by translation invariance
µ(Ak) = µ(A).
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That is if A was measurable we’d have

µ([0, 1]) ≤
∞∑

k=1
µ(A) ≤ 3µ([0, 1]).

This is only possible if µ([0, 1]) =∞ or µ([0, 1]) = 0, both are ruled out by assumption. □

So in general even for very ‘reasonable’ measures µ (in the sense that they measure indeed
something like area, volume, length etc.) we cannot really hope to avoid the existence of
non-measurable sets. The way to deal with that fact is to shun non-measurable sets, and
only work with measurable sets.

This strategy will propagate throughout this course: we only care about functions that
stay (in a reasonable way) within the category of measurable sets.

2. Measurable functions

Our goal is integration, and for this purpose it is convenient with functions that can be
infinite (think of 1

|x|2 ). We will use the notation

R̄ := R ∪ {+∞} ∪ {−∞}.

Definition 2.1. Let (X,Σ, µ) be a measure space. We say that f : X → R is a measurable
function, if f−1 maps open sets of R into µ-measurable sets (where we consider {+∞},
{−∞} as open sets). That is

f−1(U) ∈ Σ ∀open sets U ⊂ R and U = {+∞} and U = {−∞}.

More generally if Ω is µ-measurable then f : Ω→ Y is a measurable function if f−1(U) is
µ-measurable for any open set U ⊂ Y (and U = {+∞} and U = {−∞})

For consistency we observe

Lemma 2.2. Let (X,Σ, µ) be a measure space Ω ⊂ X µ-measurable and f : Ω → R.
Recall the notation of the measure µ⌞Ω,

µ⌞Ω(A) := µ(Ω ∩ A).

Denote the µ⌞Ω-measurable sets by ΣΩ. Then

ΣΩ := {A ⊂ Ω : A µ-measurable} = {Ω ∩B : B µ-measurable}

And in particular the following are equivalent

(1) f is µ-measurable with respect to (X,Σ, µ)
(2) f is µ⌞Ω-measurable with respect to (Ω,Σ, µ⌞Ω).
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Exercise 2.3. Let X be some set, µ a measure on X. Assume f : X → R.

Show that
G :=

{
B ⊂ R : f−1(B) : is µ-measurable

}
⊂ 2R

is a σ-Algebra in R.

Lemma 2.4. Let (X,Σ, µ) be a measure space Ω ⊂ X µ-measurable and f : Ω→ R.

The following are equivalent

(1) f−1(U) is µ-measurable for any open set U ⊂ R
(2) f−1(B) is µ-measurable for any Borel set B ⊂ R
(3) f−1((−∞, a]), f−1((−∞, a)), f−1((−∞, a]) f−1([a,∞)) are µ-measurable for any

a ∈ R.

Proof. (1) ⇒ (2) Observe that

G :=
{
B ⊂ R : f−1(B) : is µ-measurable

}
is a σ-Algebra (Exercise 2.3) which in view of (1) contains the open sets. So G contains
the Borel sets.

(2) ⇒ (1) and (2) ⇒ (3) are obvious since any open set and any interval is a Borel set.

(3) ⇔ (2) follows the same way as above, since the Borel σ-algebra are generated by the
infinite intervals. □

We can (usually we don’t want to) extend a bit the notion of measurability to a topological
space as target.

Definition 2.5 (Topological space). A topological space is a set X and a collection τ ⊂ 2X

of “open sets” which satisfies the following axioms

• ∅ ∈ τ and X ∈ τ .
• Let I be a (finite or infinite) index set and let Ai ∈ τ for all i ∈ I. Then ⋃i∈I Ai ∈ τ .
• Let N ∈ N and Ai ∈ τ for i ∈ {1, . . . , N} then

N⋂
i=1

Ai ∈ τ.

τ is called a topology.

For two topological spaces (X, τX) and (Y, τY ) a map f : X → Y is continuous if f−1 maps
open sets to open sets, i.e. f−1(U) ∈ τX for any U ∈ τY .

If (X, d) is a metric space then the collection of open sets (w.r.t. the metric) form a
topology.
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Continuity between two metric spaces (w.r.t. topology) is the same as continuity w.r.t
metric structure.

Remark 2.6. When talking about measurability of a map f : Ω→ R we actually consider
R as a topological space, where the open sets A ⊂ R are

• the open sets in R
• the “open neighborhoods” of +∞ and −∞, i.e. [−∞, a) and (a,∞] for a ∈ R

and unions thereof.

Then f : Ω→ R is µ-measurable if and only if f−1(U) is µ-measurable whenever U ⊂ R is
open.

In particular we have that f : Ω → R is measurable if and only if f−1([−∞, a)) and
f−1((a,+∞]) are measurable for all a ∈ R.

This leads to the following definition:

Definition 2.7. Let (X,Σ, µ) be a measure space, Ω ⊂ X measurable, and (Y, τ) a
topological space. A map f : Ω → Y is called measurable if f−1(U) is measurable for
any open set U ⊂ Y (i.e. for any set U ∈ τ).

Example 2.8. Let (X, d) be a metric space and µ be a Borel-measure. Then any contin-
uous function f : X → R is µ-measurable.

Proof. f−1(+∞) = f−1(−∞) = ∅ which is clearly µ-measurable. Moreover since f is
continuous f−1(U) is open whenever U is open, so f−1(U) is µ-measurable since µ is
Borel. □

Exercise 2.9. Let (X,Σ, µ) be a measure space, Y and Z topological spaces. Assume
f : X → Y is a measurable function and g : Y → Z is continuous. Then g ◦ f : X → Z is
measurable.

Example 2.10. Let (X,Σ, µ) be a measure space and Y a topological space. If the
functions u1, u2, . . . , un : X → R are measurable and Φ : Rn → Y is continuous, then the
function

h(x) = Φ(u1(x), u2(x), . . . , un(x)) : X → Y

is µ-measurable.

Proof. We only discuss the case n = 2, and write u1 = u and u2 = v.

Set f(x) := (u(x), v(x)). In view of Exercise 2.9 it suffices to prove that f is measurable.
We observe that if R = (a, b)× (c, d) is an open rectangle, then

f−1(R) = u−1((a, b)) ∩ u−1((c, d))is measurable.
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Since any open set U ⊂ R2 can be written as a countable union of open rectangles (Exer-
cise 1.76))

U =
∞⋃

i=1
Ri

we have

f−1(U) =
∞⋃

i=1
f−1(Ri),

so f−1(U) is µ-measurable. □

Exercise 2.11. (1) If f = (f 1, f 2, . . . , fn) : X → Rn where f 1, . . . , fn : X → R are
µ-measurable, then f is µ-measurable (take Φ(f 1, . . . , fn) := (f 1, . . . , fn)t).

(2) If f : X → Rn is µ-measurable, then its components f i : X → R are µ-measurable,
i = 1, . . . , n. (take Φi(f) := f i).

Also |f | is µ-measurable (take Φ(f) := |f |).
(3) If f, g : X → R are µ-measurable then so are f + g, f − g, −f , and fg : X → R 8

Example 2.12. (1) A set E ⊂ X is µ-measurable if and only if its characteristic
function χE

χE(x) :=
1 if x ∈ E

0 otherwise
is µ-measurable. Indeed

(χE)−1(U) =


∅ if 0 ̸∈ U and 1 ̸∈ U
E if 0 ̸∈ U and 1 ∈ U
X\E if 0 ∈ U and 1 ̸∈ U
X if 0 ∈ U and 1 ∈ U

(2) There are non-L1-measurable functions f : R → R. Indeed take the Vitali-Set V
from Theorem 1.86. Then f := χV is not measurable.

Theorem 2.13. Let fk : Ω→ R µ-measurable, k ∈ N. Then

F1(x) := inf
k
fk(x)

F2(x) := sup
k
fk(x)

F3(x) := lim inf
k→∞

fk(x)

F4(x) := lim sup
k→∞

fk(x)

are all µ-measurable.

8observe that product is pointwise defined since f(x), g(x) ̸= ±∞, so we have no problem with 0 · ∞
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Proof. Observe that

(inf
k∈N

fk)−1([−∞, a)) =
∞⋃

k=1
f−1

k ([−∞, a)),

(inf
k∈N

fk)−1((a,∞]) =
∞⋂

k=1
f−1

k ((a,∞]),

so F1 is measurable. Since
sup

k
fk(x) = − inf

k
(−fk)(x)

we see that F2 is measurable. For F3 and F4 observe

lim inf
k→∞

fk(x) = lim
ℓ→∞

(
inf
k≥ℓ

fk(x)
)

= sup
ℓ∈N

(
inf
k≥ℓ

fk(x)
)
,

and similarly

lim sup
k→∞

fk = inf
ℓ∈N

(
sup
k≥ℓ

fk

)
.

□

The following theorem says that any µ-measurable function can be approximated by simple
functions. Simple functions (sometimes called step functions) are functions

f(x) =
n∑

i=1
λiχAi

where λi ̸= λj for i ̸= j and Ai are disjoint measurable sets.

Theorem 2.14. Let f : (X, d) → [0 ,∞] be a µ-measurable function. Then there are
µ-measurable sets Ak ⊂ X, for all k ∈ N such that9

f(x) =
∞∑

k=1

1
k
χAk

(x) ∀x ∈ X.

Proof. Let
A1 := {x ∈ X : f(x) ≥ 1} = f−1([1,∞]).

Since f is µ-measurable, A1 is µ-measurable. Now define inductively the µ-measurable sets

Ak :=
x ∈ X : f(x) ≥ 1

k
+

k−1∑
j=1

1
j
χAj

(x)
 =

f − k−1∑
j=1

1
j
χAj

−1

([ 1
k
,∞]), k = 2, 3, . . . .

Now let x ∈ X. We first show

(2.1) f(x) ≥
∞∑

k=1

1
k
χAk

(x) ∀x ∈ X.

9observe that the sum of the right hand side either converges absolutely or is infinite
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If #{k ∈ N : x ∈ Ak} =∞ then f(x) ≥ ∑k
j=1

1
j
χAj

(x) for infinitely many k, and thus

f(x) ≥
∞∑

k=1

1
k
χAk

(x).

If 1 ≤ #{k ∈ N : x ∈ Ak} <∞ then set k0 := max{k ∈ N : x ∈ Ak} ∈ N. Since
x ∈ Ak0 and x ̸∈ Ak for k > k0 we have

f(x) ≥ 1
k0

+
k0−1∑
j=1

1
j
χAj

(x) = 1
k0
χAk0

(x)︸ ︷︷ ︸
=1

+
k0−1∑
j=1

1
j
χAj

(x) +
∞∑

j=k0

1
j
χAj

(x)︸ ︷︷ ︸
=0

=
∞∑

j=1

1
j
χAj

(x).

If {k ∈ N : x ∈ Ak} = ∅ then

f(x) ≥ 0 =
∞∑

k=1

1
k
χAk

(x)︸ ︷︷ ︸
=0

.

(2.1) is now established.

We can conclude once we show that also

(2.2) f(x) ≤
∞∑

k=1

1
k
χAk

(x) ∀x ∈ X.

Let x ∈ X. If f(x) =∞ then x ∈ Ak for all k, so

f(x) =∞ =
∞∑

k=1

1
k

=
∞∑

k=1

1
k
χAk

(x)︸ ︷︷ ︸
=1

.

If f(x) = 0 (2.2) is obvious since the right-hand side is nonnegative.

If 0 < f(x) <∞, then we may assume that x ̸∈ Ak for infinitely many k ∈ N. Indeed,
otherwise there exists some k0 such that x ∈ Ak for all k ≥ k0 and thus

∞∑
k=1

1
k
χAk

(x) ≥
∞∑

k=k0

1
k
χAk

(x)︸ ︷︷ ︸
=1

=
∞∑

k=k0

1
k

=∞ ≥ f(x),

and (2.2) is established.

So the only remaining case is that f(x) ∈ (0,∞) and x ̸∈ Ak for infinitely many k ∈ N.
Now take an increasing sequence ki → ∞ with x ̸∈ Aki

for each i. With the definition of
Ak we then have

f(x) ≤ 1
ki

+
ki−1∑
j=1

1
j
χAj

(x) ∀i.

That is,

f(x) ≤ lim sup
k→∞

1
k

+
k−1∑
j=1

1
j
χAj

(x)
 =

∞∑
j=1

1
j
χAj

(x)
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(2.2) is now established. □

Another way to approximate by simple functions is

Exercise 2.15. Let f : X → [0,∞) be µ-measurable and bounded

sup
x∈X

f(x) <∞

Set

sn(x) :=
n if f(x) ≥ n

k
2k if k

2n ≤ f(x) < k+1
2n ≤ n.

Show that sn converges uniformly to f .

So we can approximate nonnegative measurable function f : X → [0,∞] by step functions,

f(x) = lim
L→∞

L∑
k=1

1
k
χAk

(x).

• Observe that this approximation is monotone increasing.
• Splitting a µ-measurable function f : X → R̄ into f = f+ − f− and we can

approximate any measurable function by step-functions.

Exercise 2.16. Let X be a metric space. A function f : X → R̄ is upper semicontinuous

lim sup
x→x0

f(x) ≤ f(x0) ∀for all x0 ∈ X

A function is lower semicontinuous if

lim inf
x→x0

f(x) ≥ f(x0) for all x0 ∈ X.

(1) Show that upper semicontinuity is equivalent to saying

f−1([a,∞])is closed ∀a ∈ R.

and this in turn is equivalent to

f−1([−∞, a))is open ∀a ∈ R.

(2) Show that any step function f(x) = ∑K
k=1 χAk

is upper semicontinuous if Ak are
closed

(3) Show that any step function f(x) = ∑K
k=1 χAk

is lower semicontinuous if Ak are
open

(4) Show that if µ is Borel measure then any upper or lower semicontinuous function
is µ-measurable.
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3. Integration

In integration theory we will follow the notation that 0 · ∞ = 0.
Definition 3.1. Let X be a metric space and µ a measure.

• Let f : X → [0,∞) be a (nonnegative!) simple function of the form

f(x) =
n∑

i=1
αiχAi

(x)

where αi ̸= αj for i ̸= j and Ai are pairwise disjoint µ-measurable sets.
For any µ-measurable set Ω ⊂ X we define∫

Ω
f dµ :=

n∑
i=1

αiµ(Ai ∩ Ω).

(Recall that if µ(A) = ∞ we still, by assumption, set 0 · µ(A) = 0. And if α = ∞
but µ(Ai ∩ Ω) = 0 then still αµ(Ai ∩ Ω) := 0.)
• It is easy to see that if f is a simple function represented by two different sums

f(x) =
n∑

i=1
αiχAi

(x) =
m∑

j=1
βjχBj

(x)

then
n∑

i=1
αiµ(Ai ∩ Ω) =

m∑
j=1

βjµ(Bi ∩ Ω),

so the integral notion is well-defined.
• Clearly if f(x) ≤ g(x) for all x and both f and g are simple functions, then∫

Ω
fdµ ≤

∫
Ω
gdµ.

• Thus, if f : X → [0,∞) is a (nonnegative!) simple function as above then∫
Ω
f dµ = sup

s

∫
Ω
sdµ

where the supremum is taken over all simple functions s such that 0 ≤ s ≤ f .
• So we can extend the above notion to all nonnegative measurable functions. If
g : X → [0,∞] is a µ-measurable function and Ω ⊂ X is µ-measurable we define
the Lebesgue integral of g over Ω by∫

Ω
gdµ := sup

s

∫
Ω
sdµ

where the supremum is taken over all simple functions s such that 0 ≤ s ≤ g a.e.

It is worth to note that this defines the Lebesgue integral for all nonnegative measurable
functions (it may just be infinite). This is reminiscient of the lower Darboux sum approxi-
mation of the Riemann integral, the main difference here being that we use step functions
not on blocks but on measurable sets.
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We observe the following properties

Exercise 3.2. • If 0 ≤ f ≤ g then
∫

E fdµ ≤
∫

E gdµ
• If A ⊂ B and f ≥ 0 then

∫
A fdµ ≤

∫
B fdµ.

• If f(x) = 0 for all x ∈ E then
∫

E fdµ = 0, even if µ(E) =∞.
• If µ(E) = 0 then

∫
E fdµ = 0 even if f(x) =∞ for all x ∈ E.

• if f ≥ 0 then
∫

E dµ =
∫

X χEf dµ.

The following is an easy observation

Exercise 3.3. Let g and g be nonnegative, µ-measurable simple functions on X and λ ≥ 0
a constant. Then ∫

X
(f + g)dµ =

∫
X
fdµ+

∫
X
gdµ

and ∫
X
λfdµ = λ

∫
X
fdµ.

It is easy to conclude homogeneity

Exercise 3.4 (homogeneity of the integral). Let f : X → [0,∞] be µ-measurable and
λ ≥ 0. Show, without using the Lebesgue monotonce convergence theorem, that∫

X
λfdµ = λ

∫
X
fdµ.

So we have reason to believe the integral is linear, i.e.∫
X
λf + gdµ = λ

∫
X
fdµ+

∫
X
gdµ.

We will prove this below, Corollary 3.7, with a technique that can be generalized to one of
the most fundamental theorems of integration theory, the Lebesgue monotone convergence
theorem

Theorem 3.5 (Lebesgue monotone convergence theorem). Let (fn)n be a sequence of µ-
measurable functions on X such that

• 0 ≤ f1 ≤ f2 ≤ . . . ≤ ∞ for almost every10 x ∈ X
• limn→∞ fn(x) = f(x) ∈ [0,∞] for almost every x ∈ X.

Then f is µ-measurable and
lim

n→∞

∫
X
fndµ =

∫
X
fdµ.

Before we can prove Theorem 3.5 we need the following

10recall Definition 1.35
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Lemma 3.6. Let f be a nonnegative µ-measurable simple functions on X. Denote by Σ
the µ-measurable sets. The map ν̃ : Σ→ [0,∞] given by

ν̃(E) :=
∫

E
f dµ ∀E µ-measurable

is a premeasure, cf. Definition 1.39.

Its Carathéodory-Hahn Extension ν of ν̃, cf. Theorem 1.42, in symbols

ν := f⌞µ,

is called the concatenation of f and µ.

In particular any µ-measurable set E is f⌞µ-measurable.

Proof. Since Σ is a σ-Algebra, it is is in particular an algebra.

To confirm that ν̃ is a premeasure, let A = ⋃∞
k=1 Ak, where (Ak)∞

k=1 are pairwise disjoint
µ-measurable functions.

We need to show

ν̃(A) =
∞∑

k=1
ν̃(Ak).

Let f be given as

f =
n∑

i=1
αiχBi

.

Then

ν̃(Ak) =
∫

Ak

fdµ =
n∑

i=1
αiµ(Bi ∩ Ak).

For each i ∈ {1, . . . , n}, the collection (Ak ∩ Bi)k∈N consists of measurable and pairwise
disjoint sets. By Theorem 1.33(1) we find

∞∑
k=1

ν̃(Ak) =
∞∑

k=1

n∑
i=1

αiµ(Bi ∩ Ak) =
n∑

i=1
αiµ(Bi ∩ A) =

∫
A
fdµ = ν̃(A).

This proves that ν̃ is a pre-measure. □

Proof of Theorem 3.5. f is measurable in view of Theorem 2.13. We can replace the “al-
most every” in the assumption by “every”, by changing fi and f on zero sets (observe that
a countable union of zeroset is a zeroset).

By monotonicity of
∫
dµ the sequence

αn :=
∫

X
fndµ ∈ [0,∞]
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is monotonically increasing and hence it has a limit α = limn→∞
∫

X fndµ ∈ [0,∞]. Since
fn(x) ≤ f(x) everywhere we have

(3.1) α = lim
n→∞

∫
X
fndµ ≤

∫
X
fdµ.

To conclude we need to show “≥” in the above inequality.

Let 0 ≤ s ≤ f be a simple function. For a fixed constant 0 < c < 1 we define
En := {x ∈ X : fn(x) ≥ c s(x)}, n ∈ N.

Since fn is increasing, E1 ⊂ E2 ⊂ . . .. Since c < 1 and fn(x) n→∞−−−→ f(x) for each x we have
that ⋃n En = X.

Since the En are µ-measurable sets (fn(·)− cs(·) is measurable!) we have

(3.2)
∫

X
fndµ ≥

∫
En

fndµ ≥ c
∫

En

sdµ = cs⌞µ(En).

Now we have by Lemma 3.6 that s⌞µ is a measure and each En is s⌞µ-measurable. Since
En ⊂ En+1 we find by Theorem 1.33

s⌞µ(En) n→∞−−−→ s⌞µ(
∞⋃

n=1
En) = s⌞µ(X) =

∫
X
sdµ.

Taking the limit in (3.2) we have

α = lim
n→∞

∫
X
fndµ ≥ c

∫
X
sdµ.

Recall that this holds whenever s is a simple function with s ≤ f . Taking the supremum
over such s we conclude

α ≥ c
∫

X
fdµ.

This holds for any c ∈ (0, 1), taking the limit as c→ 1 we find

α ≥
∫

X
fdµ.

Combining this with (3.1) we conclude. □

Corollary 3.7 (Linearity of the integral). Let f, g : X → [0,∞] µ-measurable and λ, σ ≥ 0.
Then ∫

X
λf + σgdµ = λ

∫
X
fdµ+ σ

∫
X
gdµ.

Proof. We only show ∫
X
f + gdµ =

∫
X
fdµ+

∫
X
gdµ.

the general case then follows from this and Exercise 3.4.

Let si and ti be monotonically increasing sequence of simple nonnegative functions such
that si

i→∞−−−→ f and ti
i→∞−−−→ f2 (existence follows from Theorem 2.14). Then si + ti

i→∞−−−→
f + g.
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From Lebesgue monotone convergence theorem, Theorem 3.5 and Exercise 3.3∫
X
f + gdµ = lim

i→∞

∫
X

(si + ti)dµ = lim
i→∞

∫
X
sidµ+

∫
X
tidµ =

∫
X
fdµ+

∫
X
gdµ

□

Indeed, we have more than Corollary 3.7 we can take out infinite sums (recall that all
functions considered are nonnegative, so series always absolute converge (or are infinity))

Corollary 3.8. Let fn : X → [0 ,∞] be a sequence of µ-measurable functions and set for
x ∈ X

f(x) :=
∞∑

n=1
fn(x) ∈ [0,∞].

Then f is measurable and we have∫
X
fdµ =

∞∑
i=1

∫
X
fndµ.

Proof. By induction and Corollary 3.7 we have
N∑

i=1

∫
X
fndµ =

∫
X

N∑
i=1

fndµ

Now observe that fn are nonnegative so ∑N
i=1 fn is a monotonce sequence in N with

limN→∞
∑N

i=1 fn = ∑∞
i=1 fn. So by Lebesgue monotone convergence we conclude that

∞∑
i=1

∫
X
fndµ = lim

N→∞

N∑
i=1

∫
X
fndµ = lim

N→∞

∫
X

N∑
i=1

fndµ =
∫

X

∞∑
i=1

fndµ.

□

Then next important consequence is called Fatou’s lemma, which essentially tells us lower
semi-continuity of the integral under pointwise convergence

Corollary 3.9 (Fatou’s Lemma). Let fn : X → [0 ,∞] be a sequence of µ-measurable
functions, then ∫

X

(
lim inf

n→∞
fn

)
dµ ≤ lim inf

n→∞

∫
X
fndµ.

Proof. Let gn := inf{fn, fn+1, . . .}. Then gn ≤ fn and hence∫
X
gndµ ≤

∫
X
fndµ

Since 0 ≤ g1 ≤ g2 ≤ . . ., all the functions gn are measurable, Theorem 2.13. Taking the
lim inf in the above inequality we have

lim inf
n→∞

∫
X
gndµ ≤ lim inf

n→∞

∫
X
fndµ.
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By Theorem 3.5
lim inf

n→∞

∫
X
gndµ =

∫
X

lim
n→∞

gndµ.

We conclude since limn→∞ gn = lim infk→∞ fk. □

Exercise 3.10. Construct a sequence of measurable functions fn : R → [0,∞] such that
the inequality in Fatou’s Lemma, Corollary 3.9, is sharp.

Hint: the conditions in Theorem 3.26 below must be violated.

We can also extend Lemma 3.6

Theorem 3.11. Let f be a nonnegative µ-measurable function on X. Denote by Σ the
µ-measurable sets. The map ν̃ : Σ→ [0,∞] given by

ν̃(E) :=
∫

E
f dµ ∀E µ-measurable

is a premeasure, cf. Definition 1.39.

As before, we denote by f⌞µ its Carathéodory-Hahn Extension (concatenation of f and µ).

Moreover for every measurable function g : X → [0,∞] we have

(3.3)
∫

X
g d (f⌞µ) =

∫
X
gf dµ.

Proof. As in the proof of Lemma 3.6 we only need to show that whenever E1, E2, . . . ∈ Σ
are disjoint µ-measurable sets and E = ⋃∞

n=1 En then

f⌞µ(E) =
∑

n

f⌞µ(En).

Now observe that
χEf(x) =

∞∑
n=1

χEnf(x) ∀x ∈ X.

Thus
(f⌞µ)(E) =

∫
X
χEfdµ =

∫
X

∞∑
n=1

χEnf.

By Lebesgue Monotone Convergence theorem, Theorem 3.5, we can take out the sum, and
have

(f⌞µ)(E) =
∞∑

n=1

∫
X
χEnf =

∞∑
n=1

(f⌞µ)(En).

For (3.3) observe that it holds by definition if g = χE whenever E is µ-measurable. Since
any nonnegative µ-measurable function can be approximated by simple functions, The-
orem 2.14, we conclude the (3.3) again from Lebesgue Monotone Convergence theorem,
Theorem 3.5. □
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3.1. Lp-spaces and Lebesgue dominated convergence theorem. We now want to
discuss not only nonnegative measurable functions f : X → [0,∞], but want to integrate
general measurable functions f : X → R̄.

Definition 3.12. Let (X,Σ, µ) be a measure space and f : X → R̄.

• We say that f is µ-integrable if |f | : X → [0,∞]11 if

∥f∥L1(X,µ) :=
∫

X
|f | <∞.

If f is integrable we write∫
X
fdµ :=

∫
X
f+dµ−

∫
X
f−dµ

where as usual f+ := max{f, 0} and f− = −min{f, 0}. Observe that f integrable
assures us that

∫
X f+dµ <∞ and

∫
X f−dµ <∞ so there is no issue with ∞−∞.

• More generally for p ∈ (1,∞) set

∥f∥Lp(X,µ) :=
(∫

X
|f(x)|p dx

) 1
p
.

If ∥f∥Lp(X,µ) <∞ we say that f ∈ Lp(X,µ).
• We also have the L2-scalar product or the L2-pairing

⟨f, g⟩ :=
∫

X
f(x) g(x) dµ

Let us remark (although we make no substantial use of this) that for complex
functions f, g : X → C the scalar product is

⟨f, g⟩ :=
∫

X
f(x) g(x) dµ

where g is the complex conjugation.
Clearly

⟨f, f⟩ = ∥f∥2
L2(X,µ).

• For p =∞ we define the essential supremum (often still denoted by sup)
∥f∥L∞(X,dµ) := sup

X
|f | := inf {Λ ∈ [0,∞] : µ{x ∈ X : |f(x)| > Λ} = 0}

In words, supX |f | is the smallest number Λ such that the superlevel set of {f > Λ}
has zero measure.
• If X ⊂ Rn and µ is the Lebesgue measure we drop the µ and simpy write Lp(X).

Exercise 3.13. Let p ∈ [1,∞], f, g ∈ Lp(X,µ) and λ ∈ R. Show that

(1) (Homogeneity) ∥λf∥Lp(X,µ) = |λ|∥f∥LP (X,µ),
(2) (Minkowski-inequality) ∥f + g∥Lp(X,µ) ≤ ∥f∥Lp(X,µ) + ∥g∥Lp(X,µ),

11which is µ-measurable
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(3) (Hölder-inequality) ∥fg∥Lp(X,µ) ≤ ∥f∥Lq(X,µ)∥g∥Lr(X,µ), where q, r ∈ [1,∞] are such
that

1
p

= 1
q

+ 1
r
.

(Here 1
∞ := 0).

In particular,
∥f∥Lp(X,µ) ≤ µ(X) 1

r ∥f∥Lq(X,µ)

(4) (generalized Hölder’s inequality) ∥f1 · . . . · fn∥Lp(X,µ) ≤ ∥f1∥Lq1 (X,µ) · . . . ∥fn∥Lqn (X,µ),
where qi, p ∈ [1,∞] are such that

1
p

=
n∑

i=1

1
qi

(5) (Jensen) Let µ(X) <∞, f : X → (−∞,∞) and φ : R→ R convex, then

φ
(
µ(X)−1

∫
X
f(x)dµ

)
≤ µ(X)−1

∫
X
φ(f(x))dµ

Hint: Adv.Calc or Wikipedia

Exercise 3.14. Let p ∈ [1,∞). Assume (fk)k∈N ⊂ Lp(X,µ) with

sup
k∈N
∥fk∥Lp(X,µ) <∞.

Assume moreover there exists f : X → R̄ such that f(x) = limk→∞ fk(x) for µ-a.e. x ∈ X.

Using Fatou’s Lemma, Corollary 3.9, show that f ∈ Lp(X,µ) and we have

∥f∥Lp(X,µ) ≤ lim inf
k→∞

∥fk∥Lp(X,µ).

Exercise 3.15. (1) If f is continuous and µ is the Lebesgue measure on an open set Ω
show that the essential supremum coincides with the usual supremum. (Show also
this is not the case if Ω contains e.g. isolated points)

(2) Give an example of measurable f where essential supremum and supremum is not
the same.

Exercise 3.16. Assume µ(X) <∞ and f : X → R is µ-measurable. Show that

lim
p→∞

(
µ(X)−1

∫
X
|f |pdµ

) 1
p

= ∥f∥L∞(X).

Exercise 3.17. We have

(1)
|f(x)| ≤ ∥f∥L∞(µ) µ-a.e. x.

(2) If |f(x)| ≤ Λ for µ-a.e. x, then ∥f∥L∞ ≤ Λ.
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Exercise 3.18. Let 1 ≤ p ≤ r ≤ q ≤ ∞ and assume f ∈ Lp(X) and f ∈ Lq(X). Then
f ∈ Lr(X) and we have

∥f∥r
Lr(X) ≤ ∥f∥

q
Lq(X) + ∥f∥p

Lp(X).

Hint: Let A := {x : f(x) ≤ 1}. Then f(x) = f(x)χA(x) + f(x)χX\A(x)

So the collection of µ-measurable functions f : X → R̄ such that f ∈ Lp(X,µ) is a linear
space: if f, g : X → R̄ satisfy ∥f∥Lp(X,µ), ∥g∥Lp(X,µ) < ∞ then for any λ1, λ2 ∈ R we have
∥λ1f + λ2g∥Lp(X,µ) <∞.

∥ · ∥Lp(X,µ) is a pseudonorm on this linear space. Recall that for a linear space L a map
∥ · ∥ : L→ [0,∞) is a norm iff

(1) ∥f∥ = 0 if and only if f = 0
(2) ∥f + g∥ ≤ ∥f∥+ ∥g∥ for all f, g ∈ L
(3) ∥λf∥ = |λ|∥f∥ for all f ∈ L, λ ∈ R.

If the first property (1) fails, i.e. if there are f ∈ L such that ∥f∥ = 0 but f ̸= 0, then ∥ · ∥
is a pseudonorm.

We don’t want to work with pseudonorms. (Don’t worry, this looks more complicated
than it is). We will instead work with classes of functions. From now on we say that two
µ-measurable functions f, g : X → R are equal

f = g ⇔ f(x) = g(x) µ-a.e..
(check: this is an equivalence relation).

In particular we will often define a function only in X\N where µ(N) = 0.

The integral does not see differences on zero-sets.

Exercise 3.19. Let f, g : X → R̄ be µ-measurable and f = g in the above sense. Then∫
X
fdµ =

∫
X
gdµ

in the following sense:

• f ∈ L1(X) if and only if g ∈ L1(X).
• If f ∈ L1(X) (or equivalently g ∈ L1(X)) then∫

X
fdµ =

∫
X
gdµ.

Then we define
Lp(X,µ) :=

{
f : X → R̄ : µ-measurable and ∥f∥Lp(X,µ) <∞

}
/ =

That is: an element in Lp(X,µ) is not a single function, but a class of functions (two
functions belong to the same class if they only differ on a zero set). We often brush over
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this fact by saying f is a function (but actually meaning f ’s class). We don’t even need to
define a function everywhere, defining it outside a zero-set is enough. A specific function
f in a class [f ] is called a representative.

While most of the time we don’t bother whether we talk about a specific representative f
or its class [f ] – sometimes we do care. For example if f is a continuous representative of its
class [f ]. The good news is that there cannot be two different continuous representatives
of a class [f ], Exercise 4.51 for the Lebesgue measure.

Example 3.20. • The function

f(x) = 1
|x|

is Ln-measurable in Rn and Lp-integrable in B(0, 1) ⊂ Rn if p < n.
Clearly the f(0) is not defined, but {0} is a Ln-zeroset, so it does not matter. A

proper representative of 1
|x| could be

g(x) :=


1
|x| x ̸= 0
0 x = 0

or

g(x) :=


1
|x| x ̸= 0
∞ x = 0

or

g(x) :=


1

|x| x ̸= 0
∞ x = 0
736 x = (7, 0, 0, . . . , 0).

• Let f ∈ C0(Ω) for some bounded open set Ω. Take any set A with µ(A) = 0, and
set

g := f + χA.

Then g = f µ-a.e. – that is not every representative of a class containing a contin-
uous representative is continuous. Indeed, quite the opposite: there is at most one
continuous representative in each class if µ is the Lebesgue measure, Exercise 4.51.

Lemma 3.21. Assume f ∈ Lp(X,µ) for some p ∈ [1,∞]. Then (for any representative of
f), |f(x)| <∞ µ-a.e.

Proof. Set A := {x : |f(x)| =∞}. Then we have (assume p <∞, exercise for p =∞!)

µ(A) · ∞ =
∫

A
|f(x)|pdµ ≤

∫
X
|f(x)|pdµ = ∥f∥p

Lp(X,µ) <∞.

The only way this is possible is if µ(A) = 0. □

Lemma 3.22. (1) Suppose f : X → [0 ,∞] is measurable and E is measurable. Then∫
E fdµ = 0 if and only if f = 0 a.e. in E.
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(2) Suppose f ∈ L1(X,µ) and
∫

E fdµ = 0 for all E measurable. Then f = 0 a.e. in X

Proof. (1) Set An := {x ∈ E : f(x) ≥ 1
n
}. Then12

1
n
µ(An) =

∫
An

1
n
dµ ≤

∫
An

fdµ
f≥0
≤

∫
E
fdµ = 0.

Thus µ(An) = 0 for all n ∈ N. Therefore the set {x ∈ E : f(x) > 0} = ⋃∞
n=1 An has

measure zero.
(2) Define E = {x ∈ X : f(x) ≥ 0}. Then

0 =
∫

E
fdµ.

By part (1) we conclude that f = 0 a.e. in E. Arguing the same way for X\E =
{f(x) < 0} we conclude.

□

Exercise 3.23. For the classes of functions f ∈ Lp(X,µ), ∥ · ∥Lp is indeed a norm. (Hint:
Use Lemma 3.22)

Definition 3.24. Let p ∈ [1,∞] and f : X → RN µ-measurable. We say f ∈ Lp(X,µ,Rn)
(meaning there is a class of which f is a representative) if and only if |f | ∈ Lp(X,µ). We
can also define the integral componentwise∫

X
f dµ =

(∫
X
f 1 dµ, . . . ,

∫
X
fn dµ

)
.

Lemma 3.25. If f ∈ L1(X,µ,Rn) then∣∣∣∣∫
X
f dµ

∣∣∣∣ ≤ ∫
X
|f |dµ.

Proof. Since
∫

X f dµ ∈ RN there exists13 a vector v ∈ RN with |v| = 1 such that

|
∫

X
f | = ⟨v,

∫
X
fdµ⟩ =

n∑
i=1

vi
∫

X
f idµ.

So we have
|
∫

X
f | =

∫
X

n∑
i=1

vif idµ =
∫

X
⟨v, f⟩dµ

Now pointwise (Cauchy-Schwarz)
|⟨v, f⟩| ≤ |f |,

which implies the claim. □

12The first inequality will later be called the Chebycheff inequality, Lemma 3.48
13if w ∈ Rn is a vector then v := w

|w| (if |w| ≠ 0) or v with |v| = 1 if w = 0) satisfies ⟨v, w⟩ = |w|
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Theorem 3.26 (Lebesgue dominated convergence theorem). Suppose (fn)n∈N is a sequence
of µ-measurable functions fn : X → R and f : X → R a function with f(x) = limn→∞ fn(x)
for µ-almost every x ∈ X14.

If there exists g ∈ L1(X,µ) such that
|fn(x)| ≤ g(x) µ-a.e. x ∈ X, ∀n ∈ N

then f ∈ L1(µ) and
lim

n→∞
∥f − fn∥L1(X,µ) = 0,

in particular
lim

n→∞

∫
X
fndµ =

∫
X
fdµ.

Proof. By setting fn, f , g to be zero on a zeroset we can assume that all the “almost
everywhere” above can be replaced by everywhere.

f as a pointwise limit of measurable functions fn is measurable, and clearly |f | ≤ g
everywhere in X. Thus

∫
X |f |dµ ≤

∫
X gdµ <∞, i.e. f ∈ L1(X,µ).

Moreover we have 2g − |f − fn| ≥ 0, so we can apply Fatou’s lemma, Corollary 3.9,∫
X

2gdµ =
∫

X
lim

n→∞
(2g − |f − fn|) dµ

≤ lim inf
n→∞

∫
X

(2g − |f − fn|) dµ

=
∫

X
2gdµ+ lim inf

n→∞

(
−
∫

X
|f − fn|dµ

)
=
∫

X
2gdµ− lim sup

n→∞

(∫
X
|f − fn|dµ

)
The integral

∫
X 2gdµ <∞. Subtracting it form both sides of the above inequality we find

lim sup
n→∞

(∫
X
|f − fn|dµ

)
≤ 0.

Since the integral is nonnegative we conclude

lim
n→∞

∥f − fn∥L1(X,µ) = lim
n→∞

(∫
X
|f − fn|dµ

)
= 0.

The last claim follows from Lemma 3.25,∣∣∣∣∫
X
fndµ−

∫
X
fdµ

∣∣∣∣ ≤ ∫
X
|fn − f | dµ

n→∞−−−→ 0.

□

The next theorem, while it is now not extremely difficult anymore, is one of the main
advantages of the Lebesgue integral: it leads to complete Lp-spaces.

14observe without additional assumptions there is no hope of having limn→∞
∫

X
fndµ =

∫
X

fdµ, Exer-
cise 3.10
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Theorem 3.27 (Lp is complete). Let (fk)k∈N be a Cauchy sequence in Lp(X,µ), that is

∀ε > 0 ∃K ∈ N : ∥fk − fℓ∥Lp < ε ∀k, ℓ ≥ K.

Then there exists f ∈ Lp(X,µ) such that

∥fk − f∥Lp(X,µ)
k→∞−−−→ 0.

Proof. By assumption, for each k there exists a number φ(k) such that

∥fℓ − fj∥Lp < 2−k ∀ℓ, j ≥ φ(k).

W.l.o.g. φ(k) ≤ φ(k + 1).

We claim that
f(x) := lim

k→∞
fφ(k)(x)

exists µ-a.e., and that this limit is actually an Lp-limit. To show that we write

fφ(k) =
k−1∑
j=1

(
fφ(j+1) − fφ(j)

)
+ fφ(1).

Now define
G(x) :=

∞∑
j=1

∣∣∣fφ(j+1)(x)− fφ(j)(x)
∣∣∣

As a limit of µ-measurable functions, G is µ-measurable.

Either by monotonce convergence theorem (if p <∞ or by hand if p =∞) we have

∥G∥Lp(X,µ) ≤
∞∑

j=1
∥fφ(j+1) − fφ(j)∥Lp(X,µ) ≤

∞∑
j=1

2−j <∞.

That is G ∈ Lp(X,µ). Thus G is µ-a.e. finite, Lemma 3.21. Consequently, we have
absolute convergence of the series

F (x) :=
∞∑

j=1

(
fφ(j+1)(x)− fφ(j)(x)

)
∈ R µ-a.e.,

so F is µ-measurable as limit of µ-measurable functions. And we also have

|F (x)| ≤ G(x) µ-a.e..

In particular, ∥F∥Lp(X,µ) < ∞. Since the series is µ-a.e. absolute convergence we can set
for µ-a.e. x

f(x) := lim
k→∞

fφ(k)(x) = lim
k→∞

k−1∑
j=1

(
fφ(j+1)(x) − fφ(j)

)
(x) + fφ(1)(x) = F (x)) + fφ(1)(x),

which exists and is a finite number µ-a.e.. As a sum of Lp-functions f ∈ Lp(X,µ).
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Using again the telescoping sum we have

|f − fφ(ℓ)| =
∞∑

k=ℓ

|fφ(k+1) − fφ(k)| ≤ F ∀ℓ ∈ N

Then we can apply dominated convergence, Theorem 3.26, and have
lim
ℓ→∞
∥f − fφ(ℓ)∥Lp(X) = ∥ lim

ℓ→∞

(
f − fφ(ℓ)

)
∥Lp(X) = 0.

That is (fφ(ℓ))ℓ converges in Lp to f .

This is only a subsequence, but with the Cauchy-condition we can conclude. Fix ε > 0,
then there must be some K such that

∥fk − fℓ∥Lp ≤ ε ∀k, ℓ ≥ K.

Now let k ≥ K and pick any ℓ such that φ(ℓ) ≥ K. Then
∥fk − f∥Lp ≤ ∥fk − fφ(ℓ)∥Lp + ∥fφ(ℓ) − f∥Lp ≤ ε+ ∥fφ(ℓ) − f∥Lp .

Taking ℓ→∞ we find
∥fk − f∥Lp ≤ ε ∀k ≥ K.

Thus fk converges to f in Lp. □

Theorem 3.28. Let X be a locally compact metric space and µ a Radon measure on X.
Then the class of compactly supported continuous functions Cc(X) is dense in Lp(µ) for
all 1 ≤ p <∞.

Exercise 3.29. Show that Theorem 3.28 is false for p =∞ (hint: L∞ is uniform conver-
gence. What do we know about continuity under uniform convergence?)

For the proof of Theorem 3.28 we need the following Lemma:

Lemma 3.30. Let S be the class of finite, measurable, simple functions s on X such that
µ({x : s(x) ̸= 0}) <∞.

If 1 ≤ p <∞, then S is dense in Lp(µ).

Proof. Clearly S ⊂ Lp(µ). If f ∈ Lp(µ) and f ≥ 0, let sn be a sequence of simple functions
such that 0 ≤ sn ≤ f , sn → f pointwise. Since sn ∈ Lp it easily follows that sn ∈ S. Now
inequality 0 ≤ |f − sn|p ≤ fp and the dominated convergence theorem implies that sn → f
in Lp. In the general case we write f = (u+ − u−) and apply the above argument to each
of the functions u+ , u− separately. □

Proof of Theorem 3.28. According to Lemma 3.30 it suffices to prove that the characteristic
function of a set of finite measure can be approximated in Lp by compactly supported
continuous functions. Let E be a measurable set of finite measure. Given ε > 0 let K ⊂ E
be a compact set such that µ(E \ K) < (ε/2)p – this is possible by Theorem 1.68. Let
U be an open set such that K ⊂ U , U is compact and µ(U \ K) < (ε/2)p. Finally let
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φ ∈ Cc(X) be such that suppφ ⊂ U , 0 ≤ φ ≤ 1, φ(x) = 1 for x ∈ K – for example if we
set d := 1

2dist (K,X \ U) we can choose φ(x) := (d−dist (x,K))+
d

. We then have

∥χE − φ∥Lp =
(∫

X\K
|χE − φ|pdµ

) 1
p

≤
(∫

X\K
|χE|pdµ

) 1
p

+
(∫

X\K
|φ|pdµ

) 1
p

≤µ(E \K)1/p + µ(U \K)1/p < ε.

□

If X = Rn (or any smooth manifold) it is easy to change C0
c (X) to C∞

c (X) in Theorem 3.28,
by choosing a suitable smoother version of φ (see also Exercise 4.34).

Definition 3.31. A set A ⊂ X for a metric space X is called dense if for any x ∈ X and
any ε > 0 there exists a ∈ A with d(a, x) < ε.

A metric space X is separable if there is a countable dense set.

Theorem 3.32. Let Ω ⊂ Rn be open, µ a nonzero-Radon measure, and 1 ≤ p<∞, then

(1) Lp(Ω, µ) is separable
(2) C0

c (Ω) is dense in Lp(Ω, µ), where

C0
c (Ω) := {f ∈ C0(Ω) : supp f ⊂ Ω},

and supp f denotes the support of f ,

supp f = {x ∈ Ω : f(x) ̸= 0}.

(3) C∞
c (Ω) is dense in Lp(Ω, µ), where

C∞
c (Ω) := {f ∈ C∞(Ω) : supp f ⊂ Ω}.

Exercise 3.33. Show Theorem 3.32.

Hint: for (1) use Theorem 3.28 and Stone-Weierstrass. (2) and (3) can be proven similarly
to Theorem 3.28.

By Stone-Weierstrass C0(Ω) is a separable space if Ω is a bounded open set, moreover
C0(Ω) is a closed subset of L∞(Ω) with Lebesgue measure. It is a strict subset, because
L∞(Ω) is not separable (so C0

c is not dense, and the Theorem 3.32 does not hold for p =∞).

Exercise 3.34. Let Ω = [0, 1], µ = L1. Set ft := χ[0,t], 0 < t ≤ 1. Show that

(1) ∥ft − fs∥L∞ = 1 whenever s ̸= t.
(2) (ft)t∈[0,1] is uncountable
(3) Thus L∞ is not separable.
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3.2. Lebesgue integral vs Riemann integral. How do we actually compute the Lebesgue
integral? Well, if we really want to compute the Lebesgue integral chances are we can just
use the Riemann integral. They coincide on Riemann-integrable functions.
Theorem 3.35. Let f : −∞ < a < b < ∞ → R be Riemann-integrable (in the clas-
sical Darboux sense. No improper Riemann integrability allowed!). Then f is Lebesgue
integrable, i.e. f ∈ L1([a, b],L1) and we have

Ri−
∫

[a,b]
f(x)dx =

∫
[a,b]

f(x)dL1(x).

Proof. W.l.o.g. a = 0 and b = 1. Clearly Riemann integral and Lebesgue integral coincide
on constant functions.

Since f is Riemann-integrable it is bounded, and by adding a constant to f (changing the
integrals equally), we may assume w.l.o.g. that f is nonnegative.

The Riemann-Lebesgue theorem states that a function f is Riemann integrable if and only
if f is bounded, and f is continuous outside of a set N of zero Lebesgue measure.

Then f : [0, 1]\N → [0,∞) is continuous and thus L1-measurable (because f−1 maps open
sets to open sets). But then f : [0, 1]→ [0,∞) is also measurable since

f−1(A) =
(
f
∣∣∣∣
[0,1]\N

)−1

(A) ∪ (f−1(A) ∩N)︸ ︷︷ ︸
zeroset

.

Thus f is measurable and nonnegative, and since it is also bounded it is indeed L1-
integrable with ∫

[0,1]
f(x)dL1(x) ≤ sup

[0,1]
f L1([0, 1]) <∞.

We still need to show that the two integrals coincide.

Fix ε > 0. By the Darboux sum definition there exists a partition 0 = x0 < x1 < . . . <
xN = 1 such that for mi := infz∈[xi−1,xi] f(z) and Mi := supz∈[xi−1,xi] f(z) we have

N∑
i=1

(xi − xi−1)Mi − ε ≤ Ri
∫

[0,1]
f(x)dx ≤

N∑
i=1

(xi − xi−1)mi + ε

Set
g(x) := mi where i is such that x ∈ (xi−1, xi)

and
G(x) := Mi where i is such that x ∈ (xi−1, xi)

(observe gi and Gi are a.e. defined only, but that is enough).

Since gi and Gi are step functions, we have∫
[0,1]

gdL1(x) =
N∑

i=1
L1 ((xi−1, xi))mi =

N∑
i=1

(xi − xi−1)mi
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and ∫
[0,1]

GdL1(x) =
N∑

i=1
L1 ((xi−1, xi))Mi =

N∑
i=1

(xi − xi−1)Mi.

That is we have ∫
[0,1]

GdL1(x)− ε ≤ Ri
∫

[0,1]
f(x)dx ≤

∫
[0,1]

gdL1(x) + ε

Now observe that by definition g ≤ f ≤ G a.e. . So we end up with∫
[0,1]

fdL1(x)− ε ≤ Ri
∫

[0,1]
f(x)dx ≤

∫
[0,1]

fdL1(x) + ε

This implies that ∣∣∣∣∣
∫

[0,1]
fdL1(x)− Ri

∫
[0,1]

f(x)dx
∣∣∣∣∣ < ε.

This holds for any ε > 0 and by letting ε→ 0 we obtain∫
[0,1]

fdL1(x) = Ri
∫

[0,1]
f(x)dx.

□

So we conclude that for many situations the Lebesgue-integral is just the Riemann integral.
But the Lebesgue integral allows often for more functions (they have usually no practical
meaning, but are theoretically important).

Example 3.36. The Dirichlet function

f(x) =
1 x ∈ Q

0 x ̸∈ Q

is not Riemann-integrable, however since f(x) = 0 L1-a.e. (exercise!) we have that f is
Lebesgue integrable and

∫
f(x)dL1 = 0.

Since the n-dimensional Riemann integral is just (by Fubini’s theorem) several 1-dimension
integrals one can extend this theorem to any dimensions and domains as long as they are
Riemann-measurable domains (once we have the Fubini theorem for measures, Section 4).

One can also conclude that the improper integrals for nonnegative functions coincide (by
dominated convergence theorem for the Lebesgue integral and definition for the Riemann
integral).

However this is not true for general improper integrals:

Exercise 3.37. Show that Ri −
∫
R

sin(x)
x

dx is finite, but show that sin(x)
x

is not Lebesgue-
integrable.
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So we conclude that Lebesgue integral and Riemann integral are pretty much the same
from a practical point of view (i.e. “I want to compute the integral” – indeed the Riemann
integral is easier to compute e.g. numerically).

The Lebesgue integral however are better theoretical spaces, the main advantage being
that many limits of integrable functions are integrable (under mild assumptions – because
even the a.e.-limit stays measurable), whereas for Riemann-integral you need something
like uniform convergence. So one of the main reasons of doing all of this is the completeness
above Theorem 3.27. Another reason is that we have much more variety for measures (and
thus integrals), we can integrate w.r.t Hausdorff measure etc.

3.3. Theorems of Lusin and Egorov. We have seen in Theorem 2.14 that measurable
functions are “infinite step functions”. But more is true. Measurable functions are continu-
ous on large parts of their domain (Lusin). Moroever pointwise convergence of measurable
functions is uniform convergence on a large set (Egorov).

Theorem 3.38 (Egorov). Let X be a metric space and µ any Radon measure. Suppose
that µ(X) <∞.

Let fk, f : X → R̄ µ-measurable and µ-a.e. finite15, i.e. |f(x)| <∞ for µ-a.e. x ∈ X.

Moreover for µ-a.e. x ∈ X assume

lim
k→∞

fk(x) = f(x).

Then for any δ > 0 there exists a compact set F ⊂ X such that

µ(X\F ) < δ

and we have uniform convergence fk

∣∣∣∣
F

k→∞−−−→ f
∣∣∣∣
F

, namely

sup
x∈F
|fk(x)− f(x)| k→∞−−−→ 0.

Remark 3.39. • Taking fk := χB(0,k) which converges pointwise to f ≡ 1 in Rn,
however there is no compact set Ln(Rn\F ) <∞. So the assumption µ(X) <∞ is
in general needed necessary.
• The result of Theorem 3.38 is not possible for δ = 0 (i.e. uniform convergence

outside of a zero-set may not be true), take the usual fk(x) = xk in [0, 1] which
does converge pointwise but not uniformly in [0, 1], nor any dense subset of [0, 1],
Exercise 1.80.

15Alternatively we could assume fk or f in L1(X, µ). Indeed, if f ∈ L1(X, µ) then f is µ-a.e. finite,
Lemma 3.21.
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Proof of Theorem 3.38. Fix δ > 0. For each i, j ∈ N set

Ci,j :=
∞⋃

k=j
{x ∈ X : |fk(x)− f(x)| > 2−i}.

Observe that pointwise convergence fk to f a.e. µ(⋂j Ci,j) = 0 for each i. Indeed, if
x ∈ ⋃∞

k=j{z ∈ X : |fk(z)− f(z)| > 2−i} for every j, then there are infinitely many k such
that x ∈ {z ∈ X : |fk(z)− f(z)| > 2−i}, so there is a subsequence (fkℓ

)ℓ∈N such that
|fkℓ

(x)− f(x)| ≥ 2−i .

But by a.e. convergence of fk this means that x belongs to a zero set.

The pointwise limit of measurable functions is measurable, so f and also Ci,j is measurable,
Theorem 2.13.

Moroever we have Ci,j+1 ⊂ Ci,j.

Since µ(X) <∞ we can apply Theorem 1.33 (3) and have

lim
j→∞

µ(Ci,j) = µ(
∞⋂

j=1
Ci,j) = 0.

In particular for any i ∈ N there exists N(i) such that
µ(Ci,N(i)) < δ2−i−1.

Set A := X\⋃∞
i=1 Ci,N(i) then we have

µ(X\A) ≤
∞∑

i=1
µ(Ci,N(i)) <

δ

2 .

Also, by definition of C(i, N(i)) we have
sup
x∈A
|fk(x)− f(x)| ≤ sup

x ̸∈C(i,N(i))
|fk(x)− f(x)| ≤ 2−i, ∀k ≥ N(i).

That is: fk converges uniformly to f in A!

Since A is measurable and µ(A) ≤ µ(X) < ∞, we apply Theorem 1.68 and find some
compact F ⊂ X such that

µ(A) ≤ µ(F ) + δ

2 ,

i.e. (as a Radon measure, µ is Borel-measure, so F is µ-measurable)

µ(A\F ) ≤ δ

4 .

In particular we have
µ(X\F ) ≤ µ(X\A) + µ(A\F ) < δ.

Since fk uniformly converges to f in A we can conclude. □



ANALYSIS I & II & III VERSION: December 5, 2022 79

Theorem 3.40 (Lusin). Let X be a metric space and µ any Radon measure. Suppose that
µ(X) <∞.

Let f : X → R̄ be a µ-measurable and µ-a.e. finite, i.e. |f(x)| <∞ µ-a.e.

Then there exists δ > 0 and F ⊂ X compact such that

• µ(X\F ) < δ

• f
∣∣∣∣
F

: F → R is continuous.

Remark 3.41. Observe that

f

∣∣∣∣
F

: F → R is continuous

and
f : X → R is continuous in F

are not the same.

For example if we take X = [0, 1], f := χ[0,1]\Q then f is nowhere continuous in [0, 1].
However f :

∣∣∣∣
[0,1]\Q

is constant and thus continuous as map [0, 1]\Q→ R.

In particular this example also shows (for the Lebesgue measure) that Theorem 3.40 may
not hold for δ = 0 (i.e. outside of a zero-set) because in general one cannot find a compact
F for δ = 0.

Proof of Theorem 3.40. Step 1 We show the statement for simple functions

g :=
I∑

i=1
biχBi

,

where Bi are measurable, pairwise disjoint sets with X = ⋃I
i=1 Bi, and bi ∈ R.

Fix δ > 0. By Theorem 1.68 for each Bi (since µ(Bi) <∞) there exists a compact Fi ⊂ Bi

such that
µ(Bi) ≤ µ(Fi) + δ2−i.

In particular Fi is µ-measurable since Fi is a Borel set and µ is Borel measure. Thus,
µ(Bi\Fi) < δ2−i 1 ≤ i ≤ I.

Since (Bi)i are pairwise disjoint, so are the sets (Fi)i. Since each Fi is compact this implies
dist (Fi, Fj) > 0 for each i ̸= j. So if we set

F :=
I⋃

i=1
Fi ⊂ X
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then we have that g
∣∣∣∣
F

is locally constant (namely: for each x0 ∈ F there exists a radius

ρ = ρ(x0) > 0 such that g
∣∣∣∣
F ∩B(x0,ρ)

is constant). This implies g
∣∣∣∣
F

is continuous as a map

F → R (and thus in particular bounded).

Moreover,

µ(X\F ) = µ(
I⋃

i=1
(Bi\Fi)) ≤

I∑
i=1

µ(Bi\Fi) < δ.

Step 2 Since |f(x)| < ∞ for µ-a.e. x, up to changing f on a µ-zero set (which does not
influence the result, because we can always pass to a smaller (compact) set if needed to
get rid of the zero-set). Now if we write f = f+ − f− and apply Theorem 2.14 to f+ and
f− then we have

f(x) =
∞∑

ℓ=1

1
ℓ
χA+

ℓ
(x)−

∞∑
ℓ=1

1
ℓ
χA−

ℓ
(x) everywhere in X

In particular by writing

fk(x) =
∞∑

ℓ=k

1
ℓ
χA+

ℓ
(x)−

k∑
ℓ=1

1
ℓ
χA−

ℓ
(x).

Since these are finitely many sets, we can make them disjoint, that is we can write

fk(x) =
Ik∑

i=1
biχBi

where (Bi)∞
i=1 are pairwise disjoint, and by adding X\⋃Ik

i=1 Bi (which still has finite mea-
sure) we have that fk satisfies the conditions of Step 1.

So fix again δ > 0, apply Step 1 to fk and we find compact sets Fk ⊂ X such that for each
k ∈ N.

µ(X\Fk) < δ2−k−1

and
fk

∣∣∣∣
Fk

: Fk → R is continuous

We furthermore find a compact set F0 ⊂ X from Egorov’s theorem, Theorem 3.38, such
that

µ(X\F0) < δ

2
and

sup
x∈F0

|fk(x)− f(x)| k→∞−−−→ 0.

Now set F := ⋂∞
k=0 Fk ⊂ X. Then F is compact and

µ(X\F ) ≤ µ(
∞⋃

k=0
(X\Fk)) ≤

∞∑
k=0

µ(X\Fk) < δ.
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Since F ⊂ F0 we have uniform convergence of fk

∣∣∣∣
F

to f
∣∣∣∣
F

. Since each fk

∣∣∣∣
F

is continuous,

its uniform limit f
∣∣∣∣
F

: F → R is continuous. □

Corollary 3.42 (Lusin in Euclidean space). Let E ⊂ Rn be Lebesgue-measurable. Then a
function f : E → R (i.e. f is pointwise finite!) is Lebesgue measurable if and only for any
ε > 0 there is a closed16 set F ⊂ E such that f

∣∣∣∣
F

: F → R is continuous and Ln(E\F ) < ε.

Proof. ⇒ Fix δ ∈ (0, 1).

Let A0 := B(0, 1) and Ak := B(0, kδ)\B(0, k(1− 2−k−2)δ), k ≥ 1.

Observe that this way

Ln(Ak ∩ Aℓ)
= 0 |ℓ− k| ≥ 2
≤ C(n)2−kkδn |ℓ− k| = 1.

Apply Theorem 3.40 to each Ak. We then find a compact F̃k ⊂ Ak such that Ln(Ak\Fk) <
2−kδ and f

∣∣∣∣
F̃k

is continuous. Setting Fk := F̃k ∩ B(0, kδ(1− 2−k−1) we have that the (Fk)

are pairwise disjoint compact sets, so f
∣∣∣∣⋃

k
Fk

is continuous and still we have

Ln(Ak\Fk) ≤ Ln(Ak\F̃k) + Ln(B(0, kδ)\B(0, k(1− 2−k−1δ)) ≤ C(n)δ2−k(1 + k).

In particular Rn = ⋃∞
k=1 Ak so if we set F̃ := ⋃∞

k=1 Fk then f
∣∣∣∣
F̃

is continuous and

Ln(Rn\F̃ ) ≤
∞∑

k=1
Ln(Ak\Fk) ≤ C(n)δ.

However F̃ may not be closed. But in view of Theorem 1.68 there exists an open set
G ⊃ Rn\F̃ such that

Ln(G) ≤ 2Ln(Rn\F̃ ).

Set F := Rn\G then F is closed and F ⊂ F̃ . So f
∣∣∣∣
F

is continuous and

Ln(Rn\F ) = Ln(G) ≤ 2C(n)δ.

If we chose δ so that 2C(n)δ < ε we can conclude.

⇐ f is measurable iff Ea := {x : f(x) ≥ α} is measurable for each α, (cf. Lemma 2.4, and
observe that f is pointwise finite)

16it clearly can’t be compact. Namely Ln(Rn\F ) =∞ for any bounded set F
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Let F be a closed set such that f
∣∣∣∣
F

is continuous and Ln(E\F ) < ε. Then the set

F ′
a := {x ∈ F : f

∣∣∣∣
F

(x) ≥ a} = Ea ∩ F

is closed (this follows from the continuity of f). Thus
Ln(Ea\F ′

a) = Ln(Ea\F ) ≤ Ln(E\F ) < ε.

Since this argument works for any ε > 0, from Theorem 1.70(3) we obtain that Ea is
measurable.

□

3.4. Convergence in measure. For sequences of µ-measurable functions fk : X → R,
we have learned about pointwise convergence

fk(x) k→∞−−−→ f(x) ∀x
slighly weaker, µ-almost everywhere convergence

fk(x) k→∞−−−→ f(x) µ-a.e. x,
then (way stronger) than a.e. uniform convergence

∥fk − f∥L∞(X,µ) = sup
x∈X
|fk(x)− f(x)| k→∞−−−→ 0.

Recall that from now on we consider sup to be the essential sup ess sup .

From the definition of Lp-spaces we also have Lp-convergence,

∥fk − f∥Lp(X,µ) =
(∫

X
|fk(x)− f(x)|pdµ

) 1
p k→∞−−−→ 0.

Uniform convergence is then very similar to L∞-convergence if the functions in question
are continuous and the domains are open sets.

Now we introduce a weaker notion of convergence than pointwise, namely convergence in
measure.

Definition 3.43. Let (X,µ) be a metric measure space. We say that a sequence of µ-
measurable functions (fk)k∈N, fk : X → R converges in measure to f : X → R is for every
ε > 0

lim
n→∞

µ ({x ∈ X : |fn(x)− f(x)| > ε}) = 0.

Some people (us including) will write sometimes fn
µ−→ f . As usual we assume that the

functions fn and f are defined a.e.

Theorem 3.44 (Lebesgue). Assume µ(X) < ∞ and a sequence of measurable functions
fn : X → R converges to f : X → R µ-almost everywhere. Then fn

µ−→ f .
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Proof. Fix any ε > 0. Set
Ei := {x ∈ X : |fi(x)− f(x)| ≥ ε}.

The sequence of sets An := ⋃∞
i=n Ei is decreasing sequence of measurable sets, all with

finite measure, and hence, Theorem 1.33,

µ

( ∞⋃
i=n

Ei

)
n→∞−−−→ µ

( ∞⋂
n=1

∞⋃
i=n

Ei

)
= 0.

The last set has measure zero, because if x ∈ ⋃∞
i=n Ei for every n, then x belongs to

infinitely many Ei’s, so there is a subsequence fni
such that

|fni
(x)− f(x)| ≥ ε

which is only true on a set of measure zero, by the a.e. convergence.

Hence
µ({x : |fn(x)− f(x)| ≥ ε}) = µ(En) ≤ µ(

∞⋃
i=n

Ei) n→∞−−−→ 0,

which proves convergence in measure. □

The converse of Theorem 3.44 does not hold (see Exercise 3.47 below), but it holds up to
subsequence.

Theorem 3.45 (Riesz). If fn
µ−→ f then there is a subsequence (fni

)i∈N such that fni
→ f

a.e.

Observe that here µ(X) =∞ is permissible.

Proof. For every i ∈ N there exist ni such that

µ
(
{x : |fni (x)− f(x)| ≥ 1

i
}
)
≤ 2−i.

We can assume that n1 < n2 < n3. Let

Fk := X\
∞⋃

i=k

{x : |fni (x)− f(x)| ≥ 1
i
}

and
F :=

∞⋃
k=1

Fk.

Then
µ(X\Fk) ≤

∞∑
i=k

2−i = 21−k.

and thus
µ(X \ F ) ≤ lim sup

k→∞
µ(X \ Fk) ≤ lim sup

k→∞
21−k = 0.
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We claim that

(3.4) fni
(x) i→∞−−−→ f(x) for any x ∈ F .

Since X \ F is a µ-zeroset we can conclude once we have proven this.

It suffices to prove (3.4) for each Fk, and actually we will show that for each Fk we have
uniform convergence.

Indeed, if x ∈ Fk then x then x ̸∈ ⋃∞
i=k{x : |fni (x)− f(x)| ≥ 1

i
}. That is

|fnj (x)− f(x)| ≤ 1
j ∀j ≥ k, ∀x ∈ Fk

This is uniform convergence in Fk. □

Remark 3.46. We actually proved not only convergence a.e. but also uniform convergence
on subsets of X whose complement has arbitrary small measure. Note that Lebesgue’s the-
orem Theorem 3.44 combined with this stronger conclusion of Riesz’ theorem Theorem 3.45
implies Egorov’s theorem for sequences of real valued functions, Theorem 3.38.

One does indeed need to pass to a subsequence in Theorem 3.45, as the following example
shows.

Exercise 3.47. Let f(x) := χ[0,1]. For each n ∈ N there exists exactly one m ∈ N and
k ∈ {0, . . . , 2m − 1} such that n = 2m + k. Set

fn(x) := f(2mx− k).

Show

• fn converges to 0 in L2([0, 1])
• fn(x) does not converge to 0 for any x ∈ (0, 1).

3.5. Lp-convergence and weak Lp. Next we want to consider convergence in Lp-norm.
For this we first show

Lemma 3.48 (Chebyshev’s inequality). Let f : X → R be µ-integrable. Then for any
λ > 0, any p ∈ [1,∞)

µ({x : f(x) > λ}) ≤ 1
λp

∫
{x:f(x)>λ}

|f(x)|p dx,

and in particular

µ({x : f(x) > λ}) ≤ 1
λp
∥f∥p

Lp(X).
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Proof. Since f is measurable the set {x : f(x) > λ} is measurable and thus

µ({x : f(x) > λ}) =
∫

{x:f(x)>λ}
dµ

=λ−p
∫

{x:f(x)>λ}
λpdµ

≤λ−p
∫

{x:f(x)>λ}
|f |pdµ.

□

As a slight digression, Chebyshev’s inequality leads to a space very similar to Lp, but
weaker – hence called weak Lp-space, denoted by L(p,∞).
Definition 3.49 (weak Lp). We say that a µ-measurable f : X → R belongs to weak Lp,
f ∈ L(p,∞)(X,µ) if there exists Λ ≥ 0 such that for all λ > 0

µ({x : f(x) > λ}) ≤ 1
λp

Λp.

The minimal value of Λ such that the above inequality holds is denoted by ∥f∥L(p,∞)(X,µ).

∥f∥L(p,∞)(X,µ) := sup
λ>0

λ (µ({x : f(x) > λ}))
1
p

One can check that ∥f∥L(p,∞)(X,µ) is not a true norm (triangle inequality is only true up to
a multiplicative constant).

Chebyshev’s inequality implies that ∥f∥L(p,∞) ≤ ∥f∥Lp . The other direction is not true.
Exercise 3.50. Show that for σ ∈ (0, n] the function f(x) = |x|−σ belongs to L( n

σ
,∞)(Rn).

Show that f ̸∈ Lq(Rn) for any q ∈ [1,∞].

Weak Lp-spaces become very important in Harmonic Analysis, they can also be generalized
to so-called Lorentz spaces L(p,q).

As a corollary of Chebyshev inequality we get

Theorem 3.51. Let p ∈ [1,∞] and assume that fk
k→∞−−−→ f ∈ Lp(X,µ), i.e.

∥fk − f∥Lp(X,µ)
k→∞−−−→ 0.

Then

• fk
µ−→ f

• there exists a subsequence ki →∞such that fki

i→∞−−−→ f µ-a.e.

Proof of Theorem 3.51. The second claim follows from the first one from Riesz theorem,
Theorem 3.45. For the first claim observe that by Lemma 3.48

µ{|fk − f | > ε} ≤ ε−p∥fk − f∥p
Lp

k→∞−−−→ 0.
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□

Here is another criterion for convergence

Theorem 3.52. Let p ∈ [1,∞) and assume f, fk ∈ Lp(X,µ) for some metric space X.
Then the following are equivalent

(1) ∥fk − f∥Lp(X)
k→∞−−−→ 0

(2) fk
µ−→ f and ∥fk∥Lp(X)

k→∞−−−→ ∥f∥Lp(X).

Exercise 3.53. Show Theorem 3.52 is false for p =∞ (hint: continuous functions)

Proof of Theorem 3.52. (1) ⇒ (2): The convergence in measure follows from Theorem 3.51.
Moreover we have by reverse triangle inequality∣∣∣∥fk∥Lp(X) − ∥f∥Lp(X)

∣∣∣ ≤ ∥fk − f∥Lp(X)
k→∞−−−→ 0.

(2) ⇒ (1): First assume that fk(x) k→∞−−−→ f(x) for µ-a.e. x.

Observe that by convexity (here we need 1 ≤ p <∞)
2p−1|fk|p + 2p−1|f |p − |fk − f |p ≥ 0.

Moreover, by pointwise convergence
lim inf

k→∞
2p−1|fk(x)|p + 2p−1|f(x)|p − |fk(x)− f |p = 2 ∗ 2p−1|f(x)| µ-a.e. x

By assumption (2) we have
lim inf

k→∞

∫
Ω
|fk|p =

∫
Ω
|f |p,

so by Fatou’s Lemma, Corollary 3.9,

2p
∫

Ω
|f |pdµ− lim sup

k→∞

∫
Ω
|fk − f |pdµ

= lim inf
k→∞

∫
Ω

(
2p−1|fk|p + 2p−1|f |p − |fk − f |p

)
dµ

≥
∫

Ω
lim inf

k→∞

(
2p−1|fk|p + 2p−1|f |p − |fk − f |p

)
dµ

=2p
∫

Ω
|f |pdµ

Subtracting the (finite!) 2p
∫

Ω |f |pdµ from both sides of this inequality we find

lim sup
k→∞

∥fk − f∥p
Lp(Ω,µ) = lim sup

k→∞

∫
Ω
|fk − f |pdµ = 0.

This proves (1) under the assumption that fk(x) k→∞−−−→ f(x) for µ-a.e. x and ∥fk∥Lp(X)
k→∞−−−→

∥f∥Lp(X).
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Assume now fk
µ−→ f and ∥fk∥Lp(X)

k→∞−−−→ ∥f∥Lp(X). Assume to the contrary that there
exists some subsequence fki

such that
(3.5) ∥fki

− f∥Lp(X) > ε ∀i ∈ N.

By Theorem 3.45 we can find a subsubsequence (fkij
)j such that fkij

(x) j→∞−−−→ f(x) for
µ-a.e. x. But then we have by the above arguments that

∥fkij
− f∥Lp(X)

j→∞−−−→ 0.

This contradicts (3.5). □

We will later discuss another way to decide when the convergence in measure implies
Lp-convergence in Theorem 3.59 below, but first we need to talk about absolute continuity.

3.6. Absolute continuity. Let f : X → [0,∞) µ-integrable. For µ-measurable A ⊂ Ω
set

ν(A) := µ⌞f =
∫

A
fdµ.

Cf. Theorem 3.11. Observe that then µ(A) = 0 implies ν(A) = 0 – an effect which we call
absolute continuity.

Definition 3.54. Let µ, ν be measures on X such that

• any µ-measurable set is also ν-measurable
• if µ(A) = 0 then ν(A) = 0.

Then we say that ν is absolutely continuous with respect to µ, and write ν ≪ µ.

Lemma 3.55. Let µ and ν be Radon measures on Rn17

Then

(1) Assume that for all A ⊂ Rn it holds that if µ(A) = 0 then also ν(A) = 0. Then
any µ-measurable set is also ν-measurable.

(2) In particular, µ≪ ν if and only if for all A ⊂ Rn if µ(A) = 0 then also ν(A) = 0.

Proof. We use Theorem 1.70: any µ-measurable set A can be written as A = B ∪N where
B is Borell and µ(N) = 0. So ν(N) = 0 and consequently A = B ∪N is ν-measurable.

□

The notion of continuity is justified by the following (important on its own) absolute con-
tinuity of the integral, and Exercise 3.57.

17easily extendable to more general sets that satisfy the assumptions of Theorem 1.70
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Theorem 3.56. Let f ∈ L1(µ). Then for every ε > 0 there is δ > 0 such that
∫

E |f |dµ < ε
whenever E is measurable and µ(E) < δ.

Proof. We argue by contradiction. If the claim was false, there would exist ε0 > 0 and
µ-measurable sets En such that µ(En) < 2−n but

∫
En
|f |dµ ≥ ε0.

The sequence of sets Ak := ⋃∞
n=k En is decreasing and

µ(
∞⋂

k=1
Ak) = 0,

since
µ(

∞⋂
k=1

Ak) ≤ µ(An) ≤
∞∑

i=n

µ(Ei) ≤ 21−n n→∞−−−→ 0.

Now
|f |⌞µ(E) =

∫
E
|f |dµ

is a measure, Theorem 3.11, so we have∫
Ak

|f |dµ = |f |⌞µ(Ak) k→∞−−−→ |f |⌞µ(
∞⋂

k=1
Ak) =

∫⋂∞
k=1 Ak

|f |dµ = 0,

since µ(⋂∞
k=1 Ak) = 0.

On the other hand from the choice of En we have∫
Ak

|f |dµ ≥
∫

Ek

|f |dµ ≥ ε0,

a contradiction. □

More generally we can reformulate Theorem 3.56 in the following way

Exercise 3.57. Let µ, ν : 2X → [0,∞] be two measures with ν ≪ µ and assume ν(X) <∞.
Then

∀ε > 0, ∃δ > 0 : ∀A ⊂ X µ-measurable:µ(A) < δ ⇒ ν(A) < ε.

3.7. Vitali’s convergence theorem. We know that if fk converges to f in Lp then the
convergence is also in measure, Theorem 3.51. Vitali’s convergence theorem is a charac-
terization when the other direction is true, i.e. when convergence in measure (or in view
of Theorem 3.44 a.e. convergence if on a sets of finite measure) implies Lp-convergence.

Definition 3.58. A family F of µ-integrable functions f : X → R̄ is said to have uniformly
absolutely continuous integrals if

∀ε > 0∃δ > 0 : ∀f ∈ F : ∀A ⊂ X : µ-measurable : µ(A) < δ ⇒
∫

A
|f |dµ < ε.

(Compare this notion with Arzela-Ascoli!)
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Theorem 3.59 (Vitali convergence theorem). Let X be a metric space and µ a Radon
measure. Assume µ(X) <∞ and let (fk)k∈N be a sequence in L1(X, dµ) and f ∈ L1(X, dµ).
Then the following are equivalent

(1) fk
µ−→ f and (fk)k∈N has uniformly absolutely continuous integrals

(2) limk→∞
∫

X |fk − f |dµ = 0.

Example 3.60. The assumption µ(X) <∞ is needed in general. E.g. take µ = Ln, X =
Rn, fk = k−nχB(0,k). Then fk

µ−→ 0 (because the convergence is a.e.). (fk)k has uniformly
absolutely continuous integrals, but

∫
Rn |fk|dµ = c > 0 with a constant c = Ln(B(0, 1))

independent of k, but
∫

0 = 0.

Proof of Theorem 3.59. (2) ⇒ (1): If ∥fk − f∥L1
k→∞−−−→ 0 then fk

µ−→ f by Theorem 3.51.
To get the uniform absolute continuous integral property fix ε > 0.

In view of L1-convergence there exists a K ∈ N such that

∥fk − f∥L1(X) ≤
ε

2 ∀k ≥ K.

Moreover, by absolute continuty of the integral, Theorem 3.56, there exists a δ > 0 such
that any µ-measurable set A ⊂ X with µ(A) < δ satisfies

max
k∈{1,...,K}

∫
A
|fk|+

∫
A
|f | < ε

2 .

Since ∫
A
|fk| ≤

∫
A
|fk − f |+

∫
A
|f |dµ ≤ ∥fk − f∥L1(X) +

∫
A
|f |dµ,

we find that for all k ≥ K we have ∫
A
|fk| < ε.

The same holds also for k ∈ {1, . . . , K}, so we have shown the uniform absolute continuity
of (fk)k.

(1) ⇒ (2): Let fk
µ−→ f with uniform absolute continuous integrals.

Assume by contradiction that

lim sup
k→∞

∫
Ω
|fk − f |dµ > 0.

By passing to a subsequence we can assume w.l.o.g.

(3.6) lim inf
k→∞

∫
Ω
|fk − f |dµ > 0.

Passing yet to another subsequence, applying Theorem 3.45, we may assume that

fk
k→∞−−−→ f a.e. in X.
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Fix ε > 0. Since fk are uniformly absolutely continuous and f is integrable we can find
δ > 0 such that for any µ-measurable A ⊂ X with µ(A) < δ we have∫

A
|f |dµ < ε,

∫
A
|fk|dµ < ε ∀k ∈ N.

For this δ we can apply Egorov’s theorem, Theorem 3.38, and find a compact set F ⊂ X
with µ(X\F ) < δ and

sup
x∈F
|fk(x)− f(x)| k→∞−−−→ 0.

In particular there must be K ∈ N such that

sup
k≥K

sup
x∈F
|fk(x)− f(x)| < ε

2µ(X)
Consequently, for any k ≥ k0 we have∫

X
|fk − f |dµ =

∫
X\F
|fk − f |dµ+

∫
F
|fk − f |dµ

≤
∫

X\F
|fk|+ |f |dµ+

∫
F

sup
k≥K

sup
x∈F
|fk − f |dµ

≤ε+ ε+ ε,

the first two estimates are because of absolute continuity, the last one because of uniform
convergence.

In particular we conclude that

lim inf
k→∞

∫
X
|fk − f |dµ ≤ 3ε,

since ε > 0 was arbitary this is a contradiction to (3.6). □

Exercise 3.61. Formulate and prove a Vitali-type condition for Lp-convergence.

In the calculus of variations Vitali’s theorem can be used for minimization.

Definition 3.62. Let Ω ⊂ Rn. A map F = F (x, y) : Ω×R→ R is a Carathéodory-function
if

• for all y ∈ R the function x 7→ F (x, y) is µ-measurable
• for µ-a.e. x ∈ Ω the function y 7→ F (x, y) is continuous.

Exercise 3.63. If F is a Carathéodory function and u : Ω → R is µ-measurable then
f(x) := F (x, u(x)) is µ-measurable.

Example 3.64. Let Ω ⊂ Rn with µ(Ω) < ∞, F = F (x, y) : Ω × R → R a Carathéodory-
function as above. Assume moreover that F has a p-growth for p ∈ [1,∞), namely

|F (x, y)| ≤ C(1 + |y|p) µ-a.e. x ∈ Ω, y ∈ R.
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Let furthermore u, uk : Ω→ R be µ-measurable functions with∫
Ω
|u|pdµ <∞∫

Ω
|uk|pdµ <∞ ∀k∫

Ω
|uk − u|pdµ

k→∞−−−→ 0.
Then ∫

Ω
F (x, uk(x))dµ k→∞−−−→

∫
Ω
F (x, u(x))dµ

(This is much easier if F is also Lipschitz or Hölder continuous in y but we assume only
continuity (and uk(Ω) is not a k-uniformly bounded set!) We also cannot use dominated
convergence, since we do not have a dominating function.

Solution. Set
f(x) = F (x, u(x)), fk(x) := F (x, uk(x)).

In view of Exercise 3.63 f and fk are µ-measurable.

Also ∫
Ω
|fk(x)|dµ ≤ C

∫
Ω

(1 + |uk(x)|p)dµ <∞,
so fk (and similarly f) are µ-integrable.

We want to argue with Theorem 3.59 and thus need to check its assumptions. fk
µ−→ f .

Assume this is not the case, then there exists some c > 0 such that
lim sup

k→∞
µ({x : |fk − f | > ε}) ≥ c > 0

By the definition of lim sup there must be a subsequence fki
such that

(3.7) lim inf
i→∞

µ({x : |fki
− f | > ε}) ≥ c > 0.

We will find that this leads to a contradiction.

Since uki
converges in Lp to u by Chebyshev inequality, more precisely by Theorem 3.51,

we have uki

µ−→ u.

Since uki

µ−→ u there exists a further subsequence ukij
such that ukij

j→∞−−−→ u µ-a.e. in Ω,
see Theorem 3.45. Since F is continuous in the second entry we see that fkij

j→∞−−−→ f µ-a.e.

Since µ-a.e. convergence implies convergence in measure, Theorem 3.44 we found that
fkij

µ−→ f – but this implies
lim

j→∞
µ({x : |fkij

− f | > ε}) = 0,

a contradiction to (3.7).
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So indeed fk
µ−→ f .∫

|fk|dµ is uniformly absolutely continuous

Fix ε > 0. Since uk L
p-converges to u by Vitali’s theorem, Theorem 3.59, we have that∫

|uk|p is uniformly absolutely continuous, i.e. there exists δ > 0 (and w.l.o.g. δ < ε
2) such

that for all µ-measurable sets A

µ(A) <∞⇒
∫

A
|u|pdµ+ sup

k

∫
A
|uk|pdµ <

ε

2 .

Then we have ∫
A
fkdµ ≤

∫
A

1 + |uk|pdµ = µ(A) +
∫

A
|uk|pdµ <

ε

2 + ε

2 = ε.

This proves uniform absolute continuity for
∫

A fkdµ.

□

4. Product Measures, Multiple Integrals – Fubini’s theorem

Fubini’s theorem is essentially saying that if we want to integrate on a cube [0, 1]2 then we
can write this as an integral on [0, 1]× [0, 1],∫

[0,1]2
f(x, y)dxdy =

∫
[0,1]

∫
[0,1]

f(x, y)dxdy.

Since we now work with more abstract measures, we first need to discuss what is dx dy...

Recall that the cartesian product of two spaces X and Y is given by
X × Y = {(x, y) : x ∈ X : y ∈ Y }.

When measuring a set A×B it is easy to think that we somehow should multiply µ(A)ν(B).
But not all sets S ⊂ X × Y are of the form A × B. What do we do? We take the best
cover!

Definition 4.1 (Product measures). Let µ : 2X → [0,∞] and ν : 2Y → [0,∞] be two
measures. The product measure µ× ν : 2X×Y → [0,∞] for S ⊂ X × Y is defined as

(µ×ν)(S) := inf
{ ∞∑

i=1
µ(Ai)ν(Bi) : S ⊂

∞⋃
i=1

Ai ×Bi; Ai ⊂ X µ-measurable, Bi ⊂ Y ν-measurable
}

In the (most relevant) case of Lebesgue measure one can see now easily that Lk × Lℓ on
Rk × Rℓ is indeeed Lk+ℓ on Rk+ℓ.

Theorem 4.2 (Fubini’s theorem). Let µ, ν be Radon measures on metric spaces X and Y .

(1) If A ⊂ X is µ-measurable, B ⊂ Y is ν-measurable then A×B is µ× ν-measurable
and we have

(µ× ν)(A×B) = µ(A)ν(B).
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(2) Let S ⊂ X × Y be µ× ν-measurable and µ× ν(S) < ∞. Define for y ∈ Y the set
Sy ∈ X as

Sy := {x : (x, y) ∈ S}
then Sy is µ-measurable for ν-a.e. y. Moreover the map

y 7→ µ(Sy) =
∫

X
χS(x, y)dµ(x)

is ν-integrable and

(µ× ν)(S) =
∫

Y
µ(Sy)dν(y) =

∫
Y

(∫
X
χS(x, y)dµ(x)

)
dν(y).

Similarly for Sx.
(3) µ× ν is a Radon measure
(4) Is f : X × Y → R̄ µ× ν-integrable then

y 7→
∫

X
f(x, y)dµ(x)

is integrable w.r.t ν, and

x 7→
∫

Y
f(x, y)dν(y)

is integrable w.r.t. µ and we have∫
X×Y

f d(µ× ν) =
∫

X

(∫
Y
f(x, y) dν(y)

)
dµ(x) =

∫
Y

(∫
X
f(x, y) dµ(x)

)
dν(y).

This is a very technical statement, and we shall not go through the proof here (see
[Evans and Gariepy, 2015, Theorem 1.22] for this). More instructive is to look at warnings:

Example 4.3. • A set S ⊂ X × Y such that
x 7→ χS(x, y) is µ-measurable for ν-a.e. y

and
y 7→ µ(Sy) ≡

∫
X
χS(x, y)dµ(x) is ν-measurable

may not be measurable.
Indeed let X = Y = R and µ = ν = L1 and take A ⊂ [0, 1] the non-measurable

Vitali set. Set

S := {(x, y) : |x− χA(y)| < 1
2 , y ∈ [0, 1]}.

We have Sy either |x| < 1
2 or |x− 1| < 1

2 (both measurable), so Sy is µ-measurable
for all y with µ(Sy) ≡ 1.

However when x > 1
2 then Sx = A. So Sx is not measurable for L1-a.e. x.

If S was L2-measurable then both Sx and Sy would need to be measurable (by
Fubini’s theorem).
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• Similarly (take for example f := χS for the S from above) there is no reason that
if
∫
fdµ exists and is integrable that then f : X × Y → R is integrable (or even

measurable).

A slight variant of Fubini’s theorem is the following Tonelli’s theorem

Theorem 4.4 (Tonelli). Let f : X × Y → [0 ,∞] be µ × ν-measurable, and assume that
the iterated integral ∫

X

(∫
Y
f(x, y)dν(y)

)
dµ(x)

exists. Then f is ν × µ integrable and we have∫
X×Y

fdµ× ν =
∫

X

(∫
Y
f(x, y)dν(y)

)
dµ(x) =

∫
Y

(∫
X
f(x, y)dµ(x)

)
dν(y)

For the Lebesgue measure and f ∈ L1(Rn,Ln) we often use as an application from Fubini’s
theorem ∫

Rn
f(x)dLn(x) =

∫
R
. . .
∫
R
f(x1, . . . , xn)dL1x1 dL1x2 . . . dL1xn

This uses

Theorem 4.5. The Lebesgue measure Ln on Rn satisfies

Ln = Lk × Ln−k ∀κ ∈ {0, . . . , n}

In particular
Ln = L1 × L1 × . . .× L1.

Proof. Both measures coincide on rectangles R (by construction), so for the application of
Theorem 1.71 we only need that both measures are indeed Radon measures, which follows
from Fubini’s theorem Theorem 4.2. □

A consequence of Fubini’s theorem

Proposition 4.6 (Slicing). Assume f ∈ L1((0, R)2) (take a representative and fix it).
Then there exists r ∈ (0, R) such that x 7→ f(x, r) belongs to L1((0, R)) and moreover∫

(0,R)
|f(x, r)|dx ≤ 1

R

∫
(0,R)2

|f(x, y)|d(x, y).

More precisely, consider for λ > 1 the set Yλ ⊂ R

Yλ :=
{
r ∈ (0, R) :

∫
(0,R)
|f(x, r)|dx ≤ λ

R

∫
(0,R)2

|f(x, y)|d(x, y)
}
.

then L1(Yλ) > (1− 1
λ
)R.
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Proof. If ∫
(0,R)2

|f(x, y)|d(x, y) = 0

from Fubini’s theorem we have∫
(0,R)
|f(x, r)|dx = 0 L1-a.e. r ∈ (0, R),

and we can conclude.

So assume from now on ∫
(0,R)2

|f(x, y)|d(x, y) > 0.

Let
Xλ =

{
r ∈ (0, R) :

∫
(0,R)
|f(x, r)|dx> λ

R

∫
(0,R)2

|f(x, y)|d(x, y)
}
.

By Fubini’s theorem Xλ is L1-measurable and L1(Xλ) = L1((0, R)) − L1(Yλ). For any
r ∈ Xλ we have

λ

R

∫
(0,R)2

|f(x, y)|d(x, y) ≤
∫

(0,R)
|f(x, r)|dx

So integrating this in r we find

L1(Xλ) λ
R

∫
(0,R)2

|f(x, y)|d(x, y) ≤
∫

Xλ

∫
(0,R)
|f(x, r)|dxdr ≤

∫
(0,R)2

|f(x, y)|dxdy

Dividing the integral on both sides we find

L1(Xλ) ≤ R

λ
.

Consequently, for any λ > 1

L1(Yλ) ≥ L1((0, R))− L1(Xλ) = R− R

λ
> 0

□

The measure estimate L1(Yλ) > (1− 1
λ
)R in Proposition 4.6 is useful to show that several

slicing properties hold on the same set simultaneously.

Exercise 4.7. Show that there exists a uniform Λ > 0 such that the following holds:

Take any (representative of) f, g ∈ L1((0, 1)2). There exists an L1-measurable set Y ⊂
(0, 1) with L1(Y ) > 0 (depending on f and g) such that for each r ∈ Y we have

(1) x 7→ f(x, r) belongs to L1((0, 1))
(2) x 7→ g(x, r) belongs to L1((0, 1))
(3)

∫
(0,1) |f(x, r)|dx ≤ Λ

∫
(0,1)2 |f(x, y)|d(x, y).

(4)
∫

(0,1) |g(x, r)|dx ≤ Λ
∫

(0,1)2 |f(x, y)|d(x, y).
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Hint: Use Proposition 4.6 for both f and g and obtain Yf and Yg where the above state-
ments hold. To show that L1(Yf ∩ Yg) > 0 use Exercise 4.8

Exercise 4.8. Let (X,µ) be a measure space with µ(X) < ∞. Assume A,B ⊂ X are
µ-measurable with µ(A) > 2

3µ(X) and µ(B) > 2
3µ(X). Show that µ(A ∩B) ≥ 1

6µ(X).

Exercise 4.9. Let f ∈ L1((0, 1)2) then for L1-a.e. r ∈ (0, 1) we have f(r, ·) ∈ L1(0, 1).

Hint: Apply Proposition 4.6 to

Yk :=
{
r ∈ (0, 1) :

∫
(0,1)
|f(x, r)|dx ≤ 2k

∫
(0,1)2

|f(x, y)|d(x, y)
}

and show (0, 1) \ ⋃k Yk is a zero-set.

4.1. Application: Interpolation between Lp-spaces – Marcienkiewicz interpola-
tion theorem. If f ∈ Lp1(Rn)∩Lp2(Rn) then f ∈ Lp(Rn) for p ∈ (p1, p2), cf. Exercise 3.18.

So what if we have some information about a map T acting on Lp1(Rn) and acting on
Lp2(Rn) – do we know something about how the maps acts on Lp(Rn). Under certain
conditions yes.

As a first step observe that any Lp-map can be decomposed into an Lp1-map and Lp2-map.

Lemma 4.10. Assume 1 ≤ p1 ≤ p ≤ p2 ≤ ∞ and assume f ∈ Lp(Rn).

For each fixed λ > 0 there exists f1, f2 with the following conditions

• fi ∈ Lpi(Rn), i = 1, 2.
• f = f1 + f2 a.e. in Rn.

Moreover we have
∥fi∥Lp1 (Rn) ≤ λ

1− p
pi ∥f∥

p
pi

Lp(Rn) i = 1, 2.
fi can be chosen explicitely:

f1(x) := f(x)χ|f |>λ =
f(x) if |f(x)| > λ

0 if |f(x)| ≤ λ

and

f2(x) := f(x)χ|f |≤λ =
f(x) if |f(x)| ≤ λ

0 if |f(x)| > λ

Proof. We may assume p1 < p < p2 otherwise there is nothing to show.

Observe that since {f > λ} etc. are measurable sets, so f1 and f2 are measurable functions,
and we have f = f1 + f2 a.e..
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It remains to compute (and here is where we use p1 < p < p2)

∥f1∥Lp1 (Rn) =
(∫

{|f |>λ}
|f(x)|p1dx

) 1
p1

=λ1− p
p1

(∫
{|f |>λ}

λp−p1 |f(x)|p1dx

) 1
p1

≤λ1− p
p1

(∫
{|f |>λ}

|f(x)|pdx
) 1

p1

≤λ1− p
p1

(∫
Rn
|f(x)|pdx

) 1
p1

=λ1− p
p1 ∥f∥

p
p1
Lp(Rn).

Similarly,

∥f1∥Lp2 (Rn) =
(∫

{|f |≤λ}
|f(x)|p2dx

) 1
p2

≤
(∫

{|f |≤λ}
λp2−p|f(x)|pdx

) 1
p2

≤λ1− p
p2

(∫
Rn
|f(x)|pdx

) 1
p2

=λ1− p
p2 ∥f∥

p
p2
Lp(Rn).

□

Now assume T is a linear operator from Lpi(Rn) to Lqi(Rn) for i = 1, 2. That is, for i = 1, 2
if f, g ∈ Lpi(Rn) and λ, µ ∈ R then

T (λf + µg) = λTf + µTg.

(this definition assumes that for f ∈ Lp1 ∩ Lp2(Rn) the Tf is well-defined).

Then if p ∈ (p1, p2) the operator T naturally is defined for f ∈ Lp(Rn). Namely if we split
f = f1 + f2 where fi ∈ Lpi(Rn) (we can always do that in view of Lemma 4.10) we set

Tf := Tf1 + Tf2.

Now assume that f = f̃1 + f̃2 is another decomposition but still f̃i ∈ Lpi(Rn), i = 1, 2. To
make the operator well-defined we need to ensure that
(4.1) T f̃1 + T f̃2 = Tf1 + Tf2 a.e. in Rn.
Equivalently, we need to show

Tf1 − T f̃1 = T f̃2 − Tf2.
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Observe that
f1 − f̃1 = f − f2 − (f − f̃2) = f̃2 − f2.

In particular, f1 − f̃1 ∈ Lp1 ∩ Lp2 .

So, by linearity,
Tf1 − T f̃1 = T (f1 − f̃1) = T (f̃2 − f2) = T f̃2 − Tf2.

This establishes (4.1), that is Tf is well defined for each f ∈ Lp(Rn) as long as p ∈ (p1, p2).
There is more, we get also an estimate on ∥Tf∥Lp(Rn).

Theorem 4.11 (Marcienkiewicz Interpolation Theorem (“diagonal”)). Let 1 ≤ p1 < p2 ≤
∞18.

Assume that T is a bounded linear operator from Lpi(Rn) to Lpi(Rn) for i = 1, 2. That is,
for i = 1, 2

• There exists Λi > 0 such that for any f ∈ Lpi(Rn) we have Tf ∈ Lpi(Rn) and
moreover

∥Tf∥Lpi (Rn) ≤ Λi∥f∥Lpi (Rn).

• if f, g ∈ Lpi(Rn) and λ, µ ∈ R then
T (λf + µg) = λTf + µTg.

Then for each p ∈ (p1, p2) the operator T is a bounded linear operator from Lp(Rn) →
Lp(Rn), and we have

∥Tf∥Lp(Rn) ≤ Λp∥f∥Lp(Rn)

where Λqis a constant depending only on Λ1 and Λ2 and θ.

Remark 4.12. • The constant Λp here is not sharp in general, a technique called
complex interpolation gives a sharper estimate
• We don’t need linearity for T , only sublinearity, i.e. Tf ≤ Tf1 + Tf2.
• Of course this works in much more generality.

Before we come to the proof of Theorem 4.11 we record a crucial tool, an amazing appli-
cation of Fubini’s theorem.

Proposition 4.13. Fix p ∈ [1,∞) and Ω ⊂ Rn be an open set.

Let f : Ω→ R be Ln-measurable. Then f ∈ Lp(Ω) if and only if
λ 7→ λp−1Ln ({x ∈ Ω : |f(x)| > λ}) in L1((0,∞)).

Moreover, in either case∫
Ω
|f(x)|pdx = p

∫ ∞

λ=0
λp−1Ln ({x ∈ Ω : |f(x)| > λ}) dλ.

18diagonal refers to the fact that qi = pi
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Proof. Since |f | is Ln-measurable, also
λ 7→ λp−1Ln ({x ∈ Ω : |f(x)| > λ})

is L1-measurable (exercise).

So all we have to obtain is the identity.

p
∫ ∞

λ=0
λp−1Ln ({x ∈ Ω : |f(x)| > λ}) dλ

=p
∫ ∞

λ=0
λp−1

∫
Ω
χ{|f(·)|>λ}(x)dx dλ

Now we use Fubini’s theorem (rather: Tonelli), Theorem 4.4. One easily checks that
λ× x 7→ λp−1χ{|f(·)|>λ}(x) is L1 × Ln-measurable (and nonnegative). So,

=p
∫

Ω

∫ ∞

λ=0
λp−1χ{|f(·)|>λ}(x)dλ dx

=p
∫

Ω

∫ |f(x)|

λ=0
λp−1dλ dx

=
∫

Ω
λp
∣∣∣∣|f(x)|

λ=0
dx

=
∫

Ω
|f(x)|p dx.

□

Proof of Theorem 4.11. Observe that p ∈ (1,∞).

Fix f ∈ Lp(Rn). For a fixed λ > 0 we apply Lemma 4.10 and split f = f1 + f2. Then
Tf = Tf1 + Tf2 which is measurable.

Since |Tf | ≤ |Tf1|+ |Tf2|,

{|Tf | > λ} ⊂ {|Tf1| >
λ

2} ∪ {|Tf2| >
λ

2}
so

Ln ({|Tf | > λ}) ≤ Ln

(
{|Tf1| >

λ

2}
)

+ Ln

(
{|Tf2| >

λ

2}
)
.

By Chebyshev inequality, Lemma 3.48, for i = 1, 2 and boundedness of T ,

Ln

(
{|Tfi| >

λ

2}
)
≤
(
λ

2

)−pi

∥Tfi∥pi

Lpi (Rn)

≤
(
λ

2

)−pi

∥fi∥pi

Lpi (Rn)

By the definition of fi we have(
λ

2

)−p1

∥f1∥p1
Lp1 (Rn) =

(
λ

2

)−p1 ∫
{|f(·)|>λ}

|f(x)|p1dx
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λ

2

)−p2

∥f2∥p2
Lp2 (Rn) =

(
λ

2

)−p2 ∫
{|f(·)|≤λ}

|f(x)|p2dx

And thus

Ln ({|Tf | > λ}) ≤
(
λ

2

)−p1 ∫
{|f(·)|>λ}

|f(x)|p1dx+
(
λ

2

)−p2 ∫
{|f(·)|≤λ}

|f(x)|p2dx

This estimate holds for any λ > 0. In view of Proposition 4.13 we then have

∥Tf∥p
Lp(Rn) ≤p

∫ ∞

λ=0
λp−1Ln ({x ∈ Ω : |Tf(x)| > λ}) dλ

≤C
∫ ∞

λ=0
λp−1

(
λ−p1

∫
{|f(·)|>λ}

|f(x)|p1dx+ λ−p2
∫

{|f(·)|≤λ}
|f(x)|p2dx

)
dλ

Again by Fubini

∥Tf∥p
Lp(Rn) ≤C

∫
Rn
|f(x)|p1

(∫ |f(x)|

λ=0
λp−1λ−p1dλ

)
dx

+ C
∫
Rn
|f(x)|p2

(∫ ∞

λ=|f(x)|
λp−1λ−p2dλ

)
dx

Since p1 < p < p2 the integrals in λ converge and we have

∥Tf∥p
Lp(Rn) ≤C

∫
Rn
|f(x)|p1

(
|f(x)|p|f(x)|−p1

)
dx

+ C
∫
Rn
|f(x)|p2

(
|f(x)|p|f(x)|−p2dλ

)
dx

=C̃
∫
Rn
|f(x)|pdx

=C̃∥f∥p
Lp(Rn).

We can conclude. □

Exercise 4.14. Prove Theorem 4.11 under the weakened assumptions
∥Tf∥Lpi (Rn) ≤ Λi∥f∥Lpi,∞(Rn).

(Cf. Definition 3.49)

The ideas of the Marcienkiewicz-interpolation theorem can be vastly generalized. As partic-
ular version we record (without proof) the following “off-diagonal” version of Theorem 4.11.
“off-diagonal” means that the Lp-spaces in the domain and target may not be the same.
For a proof see [Grafakos, 2014, §1.4.4].

Theorem 4.15 (Marcienkiewicz Interpolation Theorem (off-diagonal)). Let 1 ≤ p1 < p2 ≤
∞ and 1 ≤ q1 < q2 ≤ ∞.

Assume that T is a bounded linear operator from Lpi(Rn) to Lqi(Rn) for i = 1, 2. That is,
for i = 1, 2
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• There exists Λi > 0 such that for any f ∈ Lpi(Rn) we have Tf ∈ Lqi(Rn) and
moreover

∥Tf∥Lqi (Rn) ≤ Λi∥f∥Lpi (Rn).

• if f, g ∈ Lpi(Rn) and λ, µ ∈ R then
T (λf + µg) = λTf + µTg.

Then for each p ∈ (p1, p2), i.e. whenever θ ∈ (0, 1) and
p = (1− θ)p1 + θp2,

then for
q := (1− θ)q1 + θq2

we that T is a bounded linear operator from Lp(Rn)→ Lq(Rn), and we have
∥Tf∥Lq(Rn) ≤ Λq∥f∥Lp(Rn)

where Λq is a constant depending only on Λ1 and Λ2 and θ.

4.2. Application: convolution. Let us start with an observation that since the Lebesgue
measure in invariant under translations and under the mapping x 7→ −x for any f ∈ L1(Rn)
and any y ∈ Rn we have∫

Rn
u(x)dx =

∫
Rn
u(x+y)dx =

∫
Rn
u(−x)dx.

Also, since for every measurable set E and any t > 0 the set tE = {tE : x ∈ E} has
measure Ln(tE) = tnLn(E), Theorem 1.81, we conclude that the Lebesgue integral has the
following scaling property∫

Rn
u(x/t)dx = tn

∫
Rn
u(x)dx ∀t > 0.

Observe that in the case of the Riemann integral the above equalities are direct con-
sequences of the change of variables formula. We will prove a corresponding change of
variables formula for the Lebesgue integral later, but as for the proof of the above equalities
we do not have to refer to the general change of variables formula as they follow directly
from the properties of the Lebesgue measure mentioned above.

Definition 4.16. For measurable functions f and g on Rn we define the convolution by

f ∗ g(x) :=
∫
Rn
f(x− y) g(y) dy

The convolution plays a crucial role in Analysis, in particular in Partial Differential equa-
tions,

• convolutions can be used to “mollify functions” (approximating non-differentiable
functions by differentiable ones, we will discuss this below)
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• representing solutions to linear differential equations, e.g. for n ≥ 3
∆u(x) = f(x) in Rn

is (under suitable assumptions on f and u equivalent) to

u(x) = c
∫
Rn
|x− y|2−nf(y) dy.

(where c is a suitable constant)

To start with our analysis, the first question is under what conditions the convolution is
well defined. If f ∈ L1(Rn) and g is bounded, measurable and vanishes outside a bounded
set, then the function y 7→ f(x−y)g(y) is integrable, so (f ∗g)(x) is well defined and finite
for every x ∈ Rn . If f, g ∈ L1(Rn), then it can happen that for a given x the function
y 7→ f(x − y)g(y) is not integrable and hence (f ∗ g)(x) is not defined. However as a
powerful application of the Fubini theorem we can prove the following surprising result.
Theorem 4.17. If f, g ∈ L1(Rn) then for a.e. x ∈ Rn the function y 7→ f(x − y)g(y) is
integrable and hence f ∗ g(x) exists. Moreover f ∗ g ∈ L1(Rn) and

∥f ∗ g∥L1(Rn) ≤ ∥f∥L1(Rn) ∥g∥L1(Rn).

Proof. The function |f(x − y)g(y)| as a function of a variable (x, y) ∈ R2n is measurable
(because (x, y) 7→ f(x − y) and (x, y) 7→ g(y) are both L2-measurable). Hence Fubini’s
theorem (rather: Tonelli Theorem 4.4), implies∫

Rn

∫
Rn
|f(x− y)g(y)|dx dy =

∫
Rn

(∫
Rn
|f(x− y)g(y)|dx

)
dy

=
∫
Rn

(∫
Rn
|f(x− y)|dx

)
|g(y)|dy = ∥f∥L1(Rn) ∥g∥L1(Rn).

Therefore
∥f ∗ g∥L1(Rn) ≤

∫
Rn

∫
Rn
|f(x− y)g(y)|dx dy ≤ ∥f∥L1(Rn) ∥g∥L1(Rn).

□

Theorem 4.17 is a special case of Young’s convolution inequality

Theorem 4.18 (Young’s convolution inequality). Let p, q, r ∈ [1,∞] satisfy the following
relation

1 + 1
r

= 1
p

+ 1
q

(where 1
∞ = 0).

If f ∈ Lp(Rn), g ∈ Lq(Rn) then f ∗ g ∈ Lr(Rn) and
∥f ∗ g∥Lr(Rn) ≤ ∥f∥Lp(Rn) ∥g∥Lq(Rn).

Exercise 4.19. Proof the statement for p = ∞ or q = ∞ and r = ∞ (what does each
imply for the other coefficients?).
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Proof. We consider only the case 1 < p, q, r <∞.

Set s := p
1− p

r
, t = q

1− q
r
. Observe that then

1
r

+ 1
s

+ 1
t

= 1
r

+
(

1
p
− 1
r

)
+
(

1
q
− 1
r

)
= 1.

We write
|f(x− y)g(y)| = |f(x− y)|1− p

r︸ ︷︷ ︸
∈Ls(dy)

|g(y)|1− q
r︸ ︷︷ ︸

∈Lt(dy)

|f(x− y)|
p
r |g(y)|

q
r︸ ︷︷ ︸

Lr(dy)

.

From (generalized) Hölder’s inequality we then have
∫
Rn
|f(x− y)g(y)| dy ≤

(∫
Rn
|f(x− y)|pdy

) 1− p
r

p
(∫

Rn
|g(y)|qdy

) 1− q
r

q
(∫

Rn
|f(x− y)|p|g(y)|qdy

) 1
r

=∥f∥1− p
r

Lp(Rn) ∥g∥
1− q

r

Lq(Rn) (|f |p ∗ |g|q)
1
r

Now from the L1-case,

∥ (|f |p ∗ |g|q)
1
r ∥Lr(Rn) =∥|f |p ∗ |g|q∥

1
r

L1(Rn) ≤
(
∥|f |p∥L1(Rn) ∥|g|q∥L1(Rn)

) 1
r

=∥f∥
p
r

Lp(Rn) ∥g∥
q
r

Lq(Rn)

Plugging all this together we find∫
Rn

(∫
Rn
|f(x− y)g(y)| dy

)r

dx ≤
(
∥f∥1− p

r

Lp(Rn) ∥g∥
1− q

r

Lq(Rn) ∥ (|f |p ∗ |g|q)
1
r ∥Lr(Rn)

)r

≤
(
∥f∥1− p

r

Lp(Rn) ∥g∥
r− q

r

Lq(Rn) ∥f∥
p
r

Lp(Rn) ∥g∥
q
r

Lq(Rn)

)r

=
(
∥f∥Lp(Rn)∥g∥Lq(Rn)

)r

Thus,

∥f ∗ g∥r
Lr(Rn) ≤

∫
Rn

(∫
Rn
|f(x− y)g(y)| dy

)r

dx ≤
(
∥f∥Lp(Rn)∥g∥Lq(Rn)

)r
.

Taking this inequality to the power () 1
r we conclude. □

Now let us look at algebraic properties of the convolution

Exercise 4.20. (L1(Rn), ∗) is a commutative algebra. Namely, if α, β ∈ R, f, g, h ∈
L1(Rn) then

(1) f ∗ g = g ∗ f
(2) f ∗ (g ∗ h) = (f ∗ g) ∗ h
(3) f ∗ (αg + βh) = αf ∗ g + βf ∗ h.

Hint: Fubini
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Let us also record

Exercise 4.21. Let f, g ∈ L1(Rn) and h ∈ C∞
c (Rn) then∫

Rn
(f ∗ g) h =

∫
Rn
f (ḡ ∗ h)

where
ḡ(x) := g(−x).

Hint: Fubini

So, nice algebraic structure, nice! But now lets move towards serious business, namely
“mollification”.

For the “mollification aspect” we need a further definition

Definition 4.22. (1) We say that f ∈ Lp
loc(Rn) if for any x ∈ Rn there exists some

ball B(x, r) such that f ∈ Lp(B(x, r)).
(2) For g ∈ C0(Rn) the support is “where the function lives”, more precisely

supp g := {x ∈ Rn : g(x) ̸= 0}.
A continuous function g is said to have compact support if supp g is compact.

(3) This can be generalized for Ln-measurable g : Rn → R.
Fix such a g, and define the family of (measurable!) S as follows

S ∈ S :⇔ S is closed and g(x) = 0 for Ln-a.e. x ∈ Rn \ S

supp g :=
⋂

S∈S
S.

So a Ln-measurable function is said to have compact support if and only if supp g
is compact.

Exercise 4.23. Show that whenever f ∈ Lp
loc(Rn) then f ∈ Lq

loc(Rn) for any 1 ≤ q ≤ p

Hint: Hölder’s inequality.

Exercise 4.24. Show that the two definitions of support in Definition 4.22 coincide for
continuous functions.

If f ∈ L1
loc(Rn) and g is bounded, measurable and vanishes outside a bounded set, then

the function y 7→ f(x−y)g(y) is integrable, so (f ∗g)(x) is well defined and finite for every
x ∈ Rn. If g is better, then f ∗ g is as good as g.

Theorem 4.25. If f ∈ L1
loc(Rn) and g is continuous with compact support then

(1) f ∗ g is continuous on Rn

(2) If additionally g ∈ Ck(Rn) then f ∗ g ∈ Ck(Rn), k ∈ N, and we have
∂α(f ∗ g)(x) = (f ∗ ∂αg)(x) α multiindex: |α| ≤ k.
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Proof. (1) Since g is bounded and has compact support, (f ∗ g)(x) is well defined and
finite for all x ∈ Rn. Fix x ∈ Rn . The function y 7→ f(y)g(x− y) vanishes outside
a sufficiently large ball B (because g as compact support). Let xn → x. Then there
is a ball B (perhaps larger than the one above), so that all the functions

y 7→ f(y)g(xn − y)
vanish outside B. Hence

|f(y)g(xn − y)| ≤ ∥g∥L∞ |f(y)|χB(y) ∈ L1(Rn)
and the dominated convergence theorem, Theorem 3.26, yields

(f ∗ g)(xn) =
∫
Rn
f(y)g(xn − y)dy →

∫
Rn
f(y)g(x− y)dy = (f ∗ g)(x)

which proves continuity of f ∗ g.
(2) Pick i ∈ {1, . . . , n} and |h| ≤ 1 and fix x ∈ Rn

We have (observe all terms exists since g ∈ C1(Rn) and ∂ig still has compact
support)

(f ∗ g)(x+ hei)− (f ∗ g)(x)− (f ∗ ∂ig)(x)h

=
∫
Rn
f(y) (g(x+ hei − y)− g(x− y)− ∂ig(x− y)h) dy

Observe that if supp g is compact then supp g(z− ·) is still compact (for a fixed z).
It is easy to check that the following set is compact

Kx :=
⋃

|z|≤1
supp g(x+ z − ·).

Moreover,
g(x+ hei − y)− g(x− y)− ∂ig(x− y)h = 0 y ̸∈ Kx.

Since g is continuously differentiable on Rn we have
|g(x+ hei − y)− g(x− y)− ∂ig(x− y)h| ≤ Cx|h| ∀y ∈ Rn, |h| ≤ 1.

and moreover by differentiability for every y
|g(x+ hei − y)− g(x− y)− ∂ig(x− y)h|

|h|
|h|→0−−−→ 0.

Thus
(f ∗ g)(x+ hei)− (f ∗ g)(x)− (f ∗ ∂ig)(x)h

|h|

=
∫
Rn
f(y)g(x+ hei − y)− g(x− y)− ∂ig(x− y)h

|h|
dy

and

f(y)g(x+ hei − y)− g(x− y)− ∂ig(x− y)h
|h|

|h|→0−−−→ 0pointwise for a.e. y
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and
|f(y)g(x+ hei − y)− g(x− y)− ∂ig(x− y)h

|h|
| ≤ C|f(y)|

We conclude by the dominated convergence theorem that
(f ∗ g)(x+ hei)− (f ∗ g)(x)− (f ∗ ∂ig)(x)h

|h|
|h|→0−−−→ 0.

Thus f ∗ g has a partial derivative at every x. That by itself is not enough to
conclude differentiability! However, since morevoer f ∗ ∂ig is continuous (by (1))
we can conclude that f ∗g is continuously differentiable everywhere. Repeating this
argument for higher derivatives gives the claim.

□

Let η ∈ C∞
c (B(0, 1)) be a function such that η ≥ 0 and

∫
Rn η(x) = 1. E.g. take

(4.2) η̃(x) :=
e

1
|x|2−1 |x| ≤ 1

0 |x| ≥ 1

One can show that η̃ ∈ C∞
c (B(0, 1)), and we set η := (

∫
Rn η̃)−1 η̃. η is often called a bump

function (because thats what it is) or a mollifier (reason: below).

For ε > 0 we set
ηε(x) := ε−nη(x/ε)

Exercise 4.26. Show that supp ηε ⊂ B(0, ε), ηε ≥ 0 and
∫
Rn ηε = 1.

For f ∈ L1
loc(Rn) we set

fε := f ∗ ηε.

In view of Theorem 4.25, fε ∈ C∞(Rn). This is called the mollification of f .

Observe that as ε→ 0 we have in a very handwaving sense

ηε(x) ε→0−−→

0 x ̸= 0
∞ · “η(0)′′ x = 0

More precisely we have for any measurable A ⊂ Rn

Ln⌞ηε
∗−→ η(0)δ0

where δ0 is the Dirac measure

δ0(A) =
1 0 ∈ A

0 otherwise.

Above, (weak*) convergence is understood in the following sense:
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Lemma 4.27. For any f ∈ C0(Rn) ∩ L∞(Rn) we have∫
Rn
fd (Ln⌞ηε) ε→0−−→

∫
Rn
fdδ0 = f(0).

Proof. We have ∫
Rn
fd (Ln⌞ηε) =

∫
Rn
f(x)ηε(x) dLn.

So all we need to show is that ∫
Rn
f(x)ηε(x) dLn ε→0−−→ f(0).

Now observe since
∫
ηε = 1 we have∫
Rn
f(x)ηε(x)dx− f(0) =

∫
Rn

(f(x)− f(0)) ηε(x)dx.

Since f is continuous at 0, for any δ > 0 there exists a radius r > 0 such that |f(x)−f(0)| ≤
δ for all x ∈ B(0, r). If we take ε < r we then have∣∣∣∣∫

Rn
(f(x)− f(0)) ηε(x)dx

∣∣∣∣ ≤ δ
∫
Rn
ηε(x)dx = δ.

This holds for any δ and ε < r(δ) so we have

lim
ε→0

∣∣∣∣∫
Rn
f(x)ηε(x)dx− f(0)

∣∣∣∣ = 0.

□

What does this mean for fε(x) = f ∗ ηε(x) =
∫
f(x − y)ηε(y)? It converges to f(x). And

it does so quite nicely.

Theorem 4.28. Let f : Rn → R.

(1) If f is continuous then fε converges uniformly to f on compact sets as ε→ 0, i.e.
for all K compact

∥f − fε∥L∞(K)
ε→0−−→ 0.

(2) If f ∈ Ck(Rn) then Dαfε converges uniformly to Dαf on compact sets for any
|α| ≤ r as ε→ 0, i.e. for all K compact

max
|α|≤k
∥Dαf −Dαfε∥L∞(K)

ε→0−−→ 0.

Proof. (1) Uniform continuity of f on compact sets implies that for any compact set
K

sup
|y|<ε

sup
x∈K
|f(x)− f(x− y)| → 0 as ε→ 0.
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Since
∫
Rn ηε(y)dy = 1 we have

∫
Rn f(x)ηε(y)dy = f(x) and hence for any compact

set K,

sup
x∈K
|f(x)− fε(x)| = sup

x∈K

∣∣∣∣∫
Rn

(f(x)− f(x− y))ηε(y)dy
∣∣∣∣

≤ sup
x∈K

∫
B(0,ε)

|f(x)− f(x− y)| ηε(y)dy → 0 as ε→ 0.

(2) Follows from (1) by an induction argument and the fact tat Dα(f ∗ηε) = (Dαf)∗ηε.

□

Exercise 4.29. (1) If f ∈ Cα for α ∈ (0, 1] show that fε converges to f in Cβ for any
β < α, i.e.

sup
x ̸=y

|f(x)− fε(x)− f(y)− fε(y)|
|x− y|β

ε→0−−→ 0.

(2) Show that this may not be true for β = α = 1 (it is also not necessarily true for
β = α < 1)

Hint: Lipschitz functions may not be everywhere differentiable

Now we want to get convergence also in Lp(Rn).
Lemma 4.30. If f ∈ Lp(Rn), 1 ≤ p ≤ ∞ then fε ∈ Lp(Rn) and ∥fε∥Lp(Rn) ≤ ∥f∥Lp(Rn).

Proof. Follows from Theorem 4.18:
∥fε∥Lp(Rn) = ∥f ∗ ηε∥Lp(Rn) ≤ ∥f∥Lp(Rn) ∥ηε∥L1(Rn)︸ ︷︷ ︸

=1

.

□

Theorem 4.31. If f ∈ Lp(Rn) and 1 ≤ p<∞ then fε ∈ Lp(Rn) and ∥f − fε∥Lp(Rn)
ε→0−−→ 0.

For the proof of Theorem 4.31 we need the following lemma
Lemma 4.32. If f ∈ Lp(Rn), 1 ≤ p <∞ then

lim
y→0

∫
Rn
|f(x+ y)− f(x)|pdx = 0.

Proof. For y ∈ Rn let τy : Lp(Rn)→ Lp(Rn) be the translation operator defined by
(τyf)(x) = f(x+ y) for f ∈ Lp(Rn).

The lemma claims that τy is continuous, i.e. ∥τyf−f∥Lp
y→0−−→ 0 as y → 0. Given ε > 0 let g

be a compactly supported continuous function such that ∥f−g∥Lp < ε/3, see Theorem 3.28.
Then
∥τyf − f∥Lp ≤∥τyf − τyg∥Lp + ∥τyg − g∥Lp + ∥f − g∥Lp = 2∥f − g∥Lp + ∥τyg − g∥Lp

<2ε/3 + ∥τyg − g∥Lp
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Since τyg → g converges uniformly, and K := ⋃
|y|≤1 supp τyg is bounded, there is δ > 0

such that

∥τyg − g∥Lp(Rn) = ∥τyg − g∥Lp(K)
Hölder
≤ C(K) ∥τyg − g∥L∞(Rn) < ε/3 for |y| < δ.

Hence,
∥τyf − f∥Lp <

ε

3 for |y| < δ,

which proves the lemma. □

Proof of Theorem 4.31. Assume first that 1 < p < ∞. Hölder’s inequality and Fubini’s
theorem yield

∥f − fε∥Lp =
∫
Rn

∣∣∣∣∫
Rn

(f(x)− f(x− y))ηε(y)dy
∣∣∣∣p dx

≤
∫
Rn

(∫
Rn
|f(x)− f(x− y)|ηε(y)1/pηε(y)1/qdy

)p

dx

≤
∫
Rn

(|f(x)− f(x− y)|pηε(y)dy)
(∫

Rn
ηε(y)dy

) p
q

︸ ︷︷ ︸
=1

dx

=
∫
Rn

∫
B(0,ε)

|f(x)− f(x− y)|pηε(y)dydx

=
∫

B(0,ε)

(∫
Rn
|f(x)− f(x− y)|pdx

)
ηε(y) dy ε→0−−→ 0.

In the last step we used Lemma 4.32. If p = 1, then the above argument simplifies, because
we do not have to use Hölder’s inequality. □

Corollary 4.33. Let 1 ≤ p < ∞. If f ∈ Lp(Ω) for an open set Ω then for any open
compactly contained Ω′ ⊂⊂ Ω (i.e. Ω′ is open, Ω′ is compact and Ω′ ⊂ Ω) we have
fε ∈ C∞(Ω′) for all small ε≪ 1 and ∥fε − f∥Lp(Ω′)

ε→0−−→ 0.

Proof. Set d := dist (Ω′,∂Ω)
100 > 0. Let η̄ ∈ C∞

c (B(Ω′, 50d), [0,∞)) be a bump function with
η̄ ≡ 1 in B(Ω′, 20d)19

Set
f̄ := η̄f.

Clearly f̄ ∈ Lp(Rn), and by Theorem 4.31 we have that f̄ ∈ C∞(Rn) and

∥f̄ε − f̄∥Lp(Rn)
ε→0−−→= 0.

In particular f̄ε ∈ C∞(Ω′) and (using that η̄ ≡ 1 in Ω′)

∥f̄ε − f∥Lp(Ω′) = ∥f̄ε − f̄∥Lp(Ω′)
ε→0−−→= 0.

19Here: B(A, r) := {x ∈ Rn : dist (x, A) < r}
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We now claim that for ε < d we have f̄ε = fε for x ∈ Ω′. Indeed if x ∈ Ω′ then
denoting the mollification kernel for fε by η ∈ C∞

c (B(0, 1)), fε = f ∗ ε−nη(·/ε) then
supp ε−nη((x− ·)/ε) ⊂ B(x, ε) ⊂ B(Ω′, d). Consequently, for any x ∈ Ω′

fε(x) =ε−n
∫
Rn
f(y)η((x− y)/ε)dy = ε−n

∫
B(Ω′,d)

f(y)η((x− y)/ε)dy

=ε−n
∫

B(Ω′,d)
η̄(y)f(y)η((x− y)/ε)dy = f̄ε(x).

Thus
∥fε − f∥Lp(Ω′) = ∥f̄ε − f∥Lp(Ω′)

ε→0−−→= 0.
The proof is complete. □

One can use convolution to obtain another proof of density, see Theorem 3.32(3). See
Lemma 4.38 for a version for any open set Ω ⊂ Rn.

Exercise 4.34. Use convolution to give another proof of Theorem 3.32(3) on Rn:

Namely show that C∞
c (Rn) is dense in Lp(Rn) for all 1 ≤ p < ∞. That is for any

f ∈ Lp(Rn) there exists (gk)k∈N ∈ C∞
c (Rn) such that

∥gk − f∥Lp(Rn)
k→∞−−−→ 0.

(1) Approximate f by convolution with some fε ∈ C∞(Rn) (but there is no reason that
fε ∈ C∞

c (Rn))
(2) Take η̄ ∈ C∞

c (B(0, 2)), η̄ ≡ 1 in B(0, 1) and ∥η̄∥L∞(Rn) ≤ 1 a bump function and
set

gk(x) := η̄(x/k) f 1
k
(x).

(3) Show that
∥η̄(x/k)

(
f1/k − f

)
∥Lp(Rn)

k→∞−−−→ 0.
(4) Show (Hint: dominated convergence!)

∥(1− η̄(x/k))f∥Lp(Rn)
k→∞−−−→ 0.

(5) Conclude that
∥gk − f∥Lp(Rn)

k→∞−−−→ 0.

Exercise 4.35. Show that Exercise 4.34 is false for p =∞

(Hint: continuous functions)

Exercise 4.36. Let p ∈ [1,∞). Show that for any f ∈ Lp(Rn) with f ≥ 0 a.e. there exists
fk ∈ C∞

c (Rn), fk ≥ 0 everywhere such that

∥fk − f∥Lp(Rn)
k→∞−−−→ 0.

Proposition 4.37. Let p ∈ [1,∞) and f : Rn → R be any function. Then the following
are equivalent:
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(1) f ∈ Lp(Rn)
(2) There exists fk ∈ C∞

c (Rn) with fk → f a.e. and
sup

k
∥fk∥Lp(Rn) <∞.

In either case we have
(4.3) ∥f∥Lp(Rn) = inf

(fk)k

lim inf
k→∞

∥fk∥Lp(Rn)

where the infimum is taken over all sequences (fk)k as in (2).

Proof. ⇒ This follows from Theorem 4.31. Since f ∈ Lp(Rn) we find approximations
fk ∈ C∞

c (Rn) and
∥fk∥Lp(Rn) ≤ ∥f − fk∥Lp(Rn) + ∥f∥Lp(Rn).

We also get one part of the inequality
inf

(f̃k)k

lim inf
k→∞

∥f̃k∥Lp(Rn) ≤ lim inf
k→∞

∥fk∥Lp(Rn) ≤ lim inf
k→∞

∥f−fk∥Lp(Rn)+lim inf
k→∞

∥f∥Lp(Rn) = 0+∥f∥Lp(Rn).

⇐ Let fk be as in (2). In particular fk are Ln-measurable, so as a pointwise limit f is
Ln-measurable, Theorem 2.13. In particular |f | is Ln-measurable.

We can apply Fatou’s lemma, Corollary 3.9, to |fk|p and by pointwise convergence∫
Rn
|f |p =

∫
Rn

lim
k→∞
|fk|p ≤ lim inf

k→∞

∫
Rn
|fk|p.

Since
∫
Rn |f |p <∞ we have f ∈ Lp(Rn). The above inequality holds for any approximating

sequence (fk)k so we get the remaining part of (4.3), namely
∥f∥Lp(Rn) ≤ inf

(fk)k

lim inf
k→∞

∥fk∥Lp(Rn)

□

One can also get another proof of Theorem 3.32(3) on any Ω.

Lemma 4.38. Let Ω ⊂ Rn open and f ∈ Lp(Ω). Then there exist fk ∈ C∞
c (Ω) such that

∥fk − f∥Lp(Ω)
k→∞−−−→ 0.

Proof. Extend f by zero outside of Ω. We first show that there exist gk ∈ Lp(Rn) with
supp gk ⊂ Ω and

∥f − gk∥Lp(Rn)
k→∞−−−→ 0.

Any open set can be decomposed into a countable union of closed dyadic cubes ⋃∞
i=1 Qi

with pairwise disjoint interior. Let gk := χ⋃k

i=1 Qi
f . By the dominated convergence theorem

∥gk − f∥Lp(Rn)
k→∞−−−→ 0. Observe that supp gk ⊂

⋃k
i=1 Qi which is a closed subset inside Ω.

Since Ω is open δ := dist (supp gk,Rn\Ω) > 0.
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Now set fk,σ := ησ ∗ gk, for σ < δ. Fix ε > 0. Then there exists σ > 0 so small such that

∥ησ ∗ f − f∥Lp(Rn) ≤
ε

2 .

Also we can take k ∈ N (independent of σ actually) such that

∥ησ ∗ gk − ησ ∗ f∥ ≤ ∥gk − f∥ <
ε

2 .

Then we have fk,σ ∈ C∞
c (Ω) and

∥fk,σ − f∥Lp(Rn) ≤ ∥ησ ∗ gk − ησ ∗ f∥+ ∥ησ ∗ f − f∥ < ε.

□

Exercise 4.39 (Censored Mollification). Take three radii 0 < r < ρ < R and assume
u ∈ C0(B(0, R)). Show that there is an approximation uk ∈ C0(B(0, R)) with

∥uk − u∥L∞(B(0,R))
k→∞−−−→ 0

that satisfies the following conditions for all k ∈ N

• uk ≡ u in B(0, R) \B(0, ρ)
• uk ∈ C∞(B(0, r))

For this use the following definition of a “censored” mollification

uδ(x) :=
∫
Rn
η(z)u(x+ δθ(x)z)dz,

for some choice of θ ∈ C∞
c (B(0, ρ), [0, 1]) and θ ≡ 1 in B(0, r), and a typical bump function

η ∈ C∞
c (B(0, 2)), η ≡ 1 in B(0, 1) and

∫
η = 1.

4.3. A first glimpse on Sobolev spaces. From the approximation Exercise 4.34 we
have the following equivalent definition of Lp(Rn).

Proposition 4.40. Let p ∈ [1,∞).

Consider the space Lp(Rn) as all f ∈ C∞
c (Rn) with the norm ∥f∥Lp(Rn). Every norm

induces a metric dLp(f, g) := ∥f − g∥Lp(Rn). Denote by L̃p(Rn) the metric completion of
Lp(Rn) under the metric dLp(f, g).

Then L̃p(Rn) = Lp(Rn) in the following sense:

The uniformly continuous linear functional id : Lp(Rn) → Lp(Rn) given by id f := f
extends to a (unique) isometric isomorphism L̃p(Rn)→ Lp(Rn).

Proof. Since (by definition) Lp(Rn) is dense in L̃p(Rn) and id is clearly Lipschitz contin-
uous with Lipschitz constant 1 (and thus uniformly continuous) id extends uniquely to
a continuous map id : L̃p(Rn) → Lp(Rn), given by id f := limk→∞ id fk where fk is any
sequence in Lp(Rn) converging to f .



ANALYSIS I & II & III VERSION: December 5, 2022 113

Clearly id is injective and isometric. It only needs to be shown that it is onto. So let
f ∈ Lp(Rn) then by Exercise 4.34 there exists fk ∈ Lp(Rn) with ∥fk− f∥Lp → 0. But then
fk is a Cauchy sequence also in Lp, and thus id fk = fk converges on both sides. □

Exercise 4.41. Let p ∈ [1,∞]. Show that (C∞
c (Rn), ∥ · ∥W 1,p(Rn)) is a normed space where

∥f∥W 1,p(Rn) := ∥f∥Lp(Rn) + ∥∇f∥Lp(Rn).

This leads to a (first, there are several) definition of Sobolev spaces W 1,p(Rn).
Definition 4.42. Let p ∈ [1,∞). Consider C∞

c (Rn) equipped with the norm
∥f∥W 1,p(Rn) := ∥f∥Lp(Rn) + ∥∇f∥Lp(Rn).

We denote W 1,p(Rn) as the metric completion of C∞
c (Rn) under this norm.

So what kind of functions are in this Sobolev space W 1,p(Rn)? Since the ∥f∥Lp(Rn) ≤
∥f∥W 1,p(Rn) we see that W 1,p(Rn) must be a subspace of Lp(Rn), i.e. a first equivalent
notion is
Definition 4.43. Let p ∈ [1,∞). f ∈ W 1,p(Rn) if and only if f ∈ Lp(Rn) and there exists
fk ∈ C∞

c (Rn) such that fk is a W 1,p(Rn)-Cauchy sequence and

∥fk − f∥Lp(Rn)
k→∞−−−→ 0.

Alright, so what does that mean: W 1,p consists of Lp-functions that satisfy an additional
condition: their distributional derivative belongs also to Lp. That needs some explanation.
Definition 4.44. A distribution is a linear map T : C∞

c (Rn) → R (it should also be
continuous, but we discuss this later, when we talk about distributions in detail).

The (distributional) derivative of a distribution T is given by
∂αT (φ) := (−1)αT (∂αφ), φ ∈ C∞

c (Rn).

Every L1
loc-function f is (equivalent) to a distribution:

Usually we think of functions f : Rn → R as function evaluated at some point x.

If we know for all x ∈ Rn what f(x) looks like, then we know what f is. More precisely,
we can test when to functions are the same: f = g if f(x) = g(x) for all x ∈ Rn

But we can evaluate functions differently, with other test-functions. For example, for
φ ∈ C∞

c (Rn), we can consider f as distribution, i.e.

f [φ] := ⟨f, φ⟩ :=
∫
f(x)φ(x)dx

Still: if we know for all φ ∈ C∞
c (Rn) what ⟨f, φ⟩ looks like, then we know what f is.

More precisely we can test when to functions are the same: f = g if ⟨f, φ⟩ = ⟨g, φ⟩ for all
φ ∈ C∞

c (Rn)
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Lemma 4.45 (Fundamental lemma of the Calculus of Variations). Let f, g ∈ L1
loc(Rn) and

assume that
⟨f, φ⟩ = ⟨g, φ⟩ ∀φ ∈ C∞

c (Rn)
then f = g almost everywhere.

In particular if
⟨f, φ⟩ = 0 ∀φ ∈ C∞

c (Rn),
then f = 0 almost everywhere.

Proof. Since
⟨f, φ⟩ = ⟨g, φ⟩ ⇔ ⟨f − g, φ⟩ = 0,

we only need to show that if
⟨f, φ⟩ = 0 ∀φ ∈ C∞

c (Rn),
then f = 0 a.e.

First assume that f is continuous around a point x0 ∈ Rn. If f(x0) ̸= 0 then w.l.o.g. f(x0) >
0. By continuity there exists a small ball B(x0, r) such that f(x) ≥ 1

2f(x0) for all
x ∈ B(x0, r).

Now let φ be a bump function in B(x0, r), i.e. φ ∈ C∞
c (B(x0, r)), φ ≥ 0 everywhere and

infB(x0,r/2) φ > 0; e.g. φ = φ̃((x− x0)/r) where φ̃ is from (4.2).

Then
0 = ⟨f, φ⟩ =

∫
B(x0,r)

fφ ≥ 1
2f(x0)

∫
B(x0,r)

φ > 0,

a contradiction. So f(x0) = 0. This holds for all x0 ∈ Rn where f is continuous.

General case: In the general case we cannot argue with continuity – but we will argue with
convolution.

Let η be a typical bump function, η ∈ C∞
c (B(0, 1)), η ≥ 0,

∫
η = 1 and set ηε := ε−nη(·/ε).

Fix x ∈ Rn. Then the assumption imply
fε(x) = ⟨f, ηε(x− ·)⟩ = 0.

That is fε(x) = 0 for all x ∈ Rn. On the other hand we have by Corollary 4.33,

∥f∥L1(K) = ∥0− f∥L1(K) = ∥fε − f∥L1(K)
ε→0−−→= 0.

That is f = 0 Ln-a.e. in K, and since K was arbitary f = 0 in a.e. in Rn. □

Alright, so we can describe L1
loc-functions as distributions. And all distributions have

distributional derivatives.

What is the relation to Sobolev space? Here it is.

Theorem 4.46. Let p ∈ [1,∞) and f ∈ Lp(Rn). The following are equivalent.
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(1) f ∈ W 1,p(Rn)
(2) for each α ∈ {1, . . . , n} there exists gα ∈ Lp(Rn) such that the distributional deriv-

ative ∂αf coincides with gα in the following sense:

∂αf [φ] ≡ −⟨f, ∂αφ⟩ =
∫

R
Rngαφ.

We will simply write this as ∂αf = gα.

Proof. ⇒ Let f ∈ W 1,p(Rn). By definition there exists fk ∈ C∞
c (Rn) which is a W 1,p-

Cauchy sequence converging in Lp(Rn) to f .

Let gα,k := ∂αfk. These are Lp-Cauchy sequences! So they have a limit gα ∈ Lp(Rn).

Now let φ ∈ C∞
c (Rn). We have from the integration by parts formula (for Riemann

Integrals!) ∫
Rn
∂αfkφ = −

∫
Rn
fk∂αφ

Taking the limit k →∞ we find∫
Rn
gαφ = −

∫
Rn
f∂αφ = ∂αf [φ].

That proves the first direction.

⇐ Now assume that ∫
Rn
gαφ = −

∫
Rn
f∂αφ ∀φ ∈ C∞

c (Rn).
Since gα and f are Lp-maps we can approximate them with convolutions

gα,ε := gα ∗ ηε

and
fε := f ∗ ηε.

We may assume that η(x) = η(−x), and then we have by Exercise 4.21∫
Rn

(gα ∗ ηε)φ =
∫
Rn
gα (φ ∗ ηε)

Since (φ ∗ ηε) ∈ C∞
c (Rn) we have

= −
∫
Rn
f ∂α (φ ∗ ηε) =

∫
Rn
∂α(f ∗ ηε)φ.

That is, we have
⟨gα ∗ ηε, φ⟩ = ⟨∂α(f ∗ ηε), φ⟩.

This holds for all φ ∈ C∞
c (Rn), so by the fundamental theorem of Calculus of Variations,

Lemma 4.45,
gα ∗ ηε = ∂α(f ∗ ηε).

Thus we have
∥∂α(f ∗ ηε)− gα∥Lp(Rn) = ∥gα ∗ ηε − gα∥Lp(Rn)

ε→0−−→ 0.
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That is f ∗ ηε is a W 1,p-Cauchy sequence that converges to f .

However f ∗ ηε ∈ C∞(Rn) , not in C∞
c (Rn). But this can be remedied easily.

Let χ ∈ C∞
c (B(0, 2), [0, 1]), χ ≡ 1 in B(0, 1) (this can be done similar to the bump

functions). Set
fk(x) := χ(x/k) (f ∗ η1/k)(x).

We have
∥fk − f∥Lp(Rn) ≤ ∥(1− χ(x/k))f∥Lp(Rn) + ∥χ(x/k)

(
f − (f ∗ η1/k)

)
∥Lp(Rn).

The first term tends to zero by dominated convergence, the second by the Lp-convergence
of the convolution.

∥∂αfk − gα∥Lp(Rn) ≤∥(1− χ(x/k))gα∥Lp(Rn) + ∥χ(x/k)
(
gα − ∂α(f ∗ η1/k)

)
∥Lp(Rn)

+ ∥∂α(χ(x/k))∥L∞∥(f ∗ η1/k)(x)− f∥Lp(Rn)

Observe that |∂αχ(x/k)| ≤ C/k
k→∞−−−→ 0. So everything converges.

□

So for now we take with us: Sobolev functions f ∈ W 1,p(Rn) are maps f ∈ Lp(Rn) such
that ∂αf ∈ Lp(Rn) (where ∂α denotes the distributional derivative).

Let us stress that distributional derivatives are not the same as a.e. derivatives. “a.e.
derivatives are not a good object, since they “forget” things.

Example 4.47. Let h be the Heaviside function

H(x) :=
1 x > 0

0 x ≤ 0.

Then clearly for almost all x ∈ R we have H ′(x) exists and H ′(x) = 0 a.e. – however H is
not a constant map.

What is the distributional derivative? By definition for φ ∈ C∞
c (R),

H ′[φ] := −
∫
R
H(x)φ′(x)dx = −

∫ ∞

0
φ′(x)dx = φ(0)− φ(∞) = φ(0).

(Here we can use the Riemann integral since φ is continuous).

What does that tell us? Well if we denote δ0 again the Dirac delta, then

φ(0) =
∫
R
φ(x)dδ0(x).

That is we have
H ′ = δ0

in distributional sense.
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Proposition 4.48. Let 1 ≤ p < ∞ and assume that f ∈ W 1,p(Rn) satisfies ∂αf = 0 for
all α = 1, . . . , n. Then f is constant a.e., that is for some c ∈ R we have

f(x) = c a.e. x ∈ Rn

(actually c = 0 since any constant function in Lp(Rn) is zero).

Proof. By definition there must be fk ∈ C∞
c (Rn) such that

∥fk − f∥Lp(Rn) + ∥Dfk∥Lp(Rn) <
1
k

By the classical fundamental theorem we have

fk(x)− fk(y) =
∫ 1

0

n∑
α=1

∂αfk(x+ t(y − x))(y − x)α dt.

Integrating this inequality in both x and y in B(0, R) (for some fixed R) we have∫
B(0,R)

∫
B(0,R)

|fk(x)− fk(y)|dxdy

≤2R
(∫ 1

2

0

∫
B(0,R)

∫
B(0,R)

|Dfk(x+ t(y − x))|dxdydt+
∫ 1

1
2

∫
B(0,R)

∫
B(0,R)

|Dfk(x+ t(y − x))|dy dxdt
)

Now for t ∈ (0, 1
2) by the substitution rule (we use also the convexity of B(0, R)) and

Hölder’s inequality∫
B(0,R)

|Dfk(x+t(y−x))|dx ≤ 1
(1− t)n

∫
B(0,R)

|Dfk(z))|dz ≤ 2n

(∫
B(0,R)

|Dfk(z))|pdz
) 1

p

(Ln(B(0, R)))1− 1
p

Doing a similar argument for the
∫ 1

1
2
-integral we obtain∫

B(0,R)

∫
B(0,R)

|fk(x)− fk(y)|dxdy ≤ C(R)∥Dfk∥Lp(B(0,R)).

Now since fk converges to f in Lp(Rn) we have that fk converges to f in L1(B(0, R))
(Hölder inequality again!), so by taking the limit we find∫

B(0,R)

∫
B(0,R)

|f(x)− f(y)|dxdy ≤ lim
k→∞

C(R)∥Dfk∥Lp(B(0,R)) = 0.

Consequently, |f(x)− f(y)| = 0 for L2n-a.e. (x, y). By Fubini’s theorem (e.g. the version
in Proposition 4.6)there must be some x ∈ B(0, R) such that f(y) = f(x) for Ln-a.e.
y ∈ B(0, R). Setting c := f(x) we find that f(y) = c a.e., that is f is constant in B(0, R).
This holds for any R > 0 so f = c a.e. in Rn. □

Exercise 4.49. Use Proposition 4.48 to show that χ[0,1] ̸∈ W 1,p(R) for any p ∈ [1,∞),
where as usual

χ[0,1](x) =
1 x ∈ [0, 1],

0 x ∈ R \ [0, 1].
More precisely show that
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(1) χ[0,1] ∈ Lp(R) for any p ∈ [1,∞]
(2) If there was f ∈ L1

loc(R) such that

χ[0,1][−φ′] = −
∫
f(x)φ ∀φ ∈ C∞

c (R)

then f(x) = 0 for L1-a.e. x ∈ R (Hint: Fundamental theorem: Lemma 4.45)
(3) Conclude with Proposition 4.48.

We will treat Sobolev functions in way more detail later (next semester), let us just give
one more application of the approximation.

Lemma 4.50. Let f ∈ W 1,1(R) (1 dimension only!) then f is continuous. That is, there
exists f̄ : R→ R continuous such that f = f̄ a.e.

Proof. Let fk ∈ C∞
c (R) be the approximation of f . By the fundamental theorem we have

fk(x)− fk(y) =
∫ y

x
f ′

k(z)dz.

That is
|fk(x)− fk(y)| ≤

∫
[x,y]
|f ′

k(z)|dz.

Restricting ourselves to a ball [−R,R] we can apply Vitali’s convergence theorem, The-
orem 3.59: since f ′

k converges in L1[−R,R] to f ′ we have that the integral is uniformly
absolutely continuous. That is, for any ε > 0 there exists a δ > 0 such that for all
x, y ∈ [−R,R] with |x− y| < δ we have∫

[x,y]
|f ′

k(z)|dz < ε.

Thus for any ε > 0 there exists a δ > 0 such that
|fk(x)− fk(y)| < ε x, y ∈ [−R,R] : |x− y| < δ.

This is uniformly equicontinuity of (fk)∞
k=1 : [−R,R]→ R. If only we had uniform bound-

edness, then we could use Arzela-Ascoli!

But don’t despair. Since fk converges to f in L1([−R,R]), by Theorem 3.51 there exists
a subsequence fki

which converges a.e. to f in [−R,R]. Let x0 ∈ [−R,R] be a point such
that fki

(x0)→ f(x0). Then we have from the equicontinuity
|fki

(x)− fki
(x0)| ≤ C,

or rather
|fki

(x)| ≤ C + sup
i
|fki

(x0)| <∞ ∀x ∈ [−R,R].

This is uniform boundedness, so by Arzela-Ascoli, taking yet another subsequence if neces-
sary we conclude that fkij

uniformly converges to a continuous limit function g : [−R,R]→
R. Since on the other hand fkij

converges a.e. to f we have that f = g a.e. in B(0, R).
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Since the continuous representative20 of a Lebesgue-integrable function is unique, Exer-
cise 4.51, we can let R→∞ to find a continuous representative of f . □

Exercise 4.51. Let f ∈ L1
loc(Ω) for some open set Ω ⊂ Rn (and the Lebesgue measure).

Assume there exist g, h : Ω→ R which are continuous and f = g a.e. and f = h a.e. Show
that g = h everywhere.

Exercise 4.52. Use Lemma 4.50 to essentially reprove Exercise 4.52: show that χ[0,1] ̸∈
W 1,p(R) for any p ∈ [1,∞), where as usual

χ[0,1](x) =
1 x ∈ [0, 1],

0 x ∈ R \ [0, 1].

5. Differentiation of Radon measures - Radon-Nikodym Theorem on Rn

5.1. Preparations: Besicovitch Covering theorem. If a set A is covered by closed
balls, we would sometimes like it to be covered by countably many disjoint closed balls
(e.g. so we can sum of µ(B)). One very useful theorem is the

Theorem 5.1 (Besicovitch Covering theorem). There exists a constant Nn depending only
on the dimension n with the following property.

If F is a family of closed balls B(x, r), r > 0 in Rn with finite maximal radius, i.e.
sup {diamB : B ∈ F} <∞,

and if A is the set of centers of balls in F , then there exist Nn countable families G1, . . . ,GNn

of balls where each family Gi ⊂ F consists of pairwise disjoint balls in F such that

A ⊂
Nn⋃
i=1

⋃
B∈Gi

B.

Proof. The proof is lengthy and technical and we skip it here. See [Evans and Gariepy, 2015,
Theorem 1.27]. □

As an application of Besicovitch covering theorem we have

Theorem 5.2. Let µ be a Borel measure on Rn and F any collection of closed balls B(a, r)
for a ∈ Rn and r ∈ (0,∞).

Let A denote the set of centers of the balls in F and assume µ(A) <∞.

Moreover assume that for each a ∈ A
inf{r : B(a, r) ∈ F} = 0.

20more on this later: see Definition 5.17
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Then for each open set U ⊂ Rn there exists a countable collection G of disjoint balls in F
such that ⋃

B∈G
B ⊂ U

and

µ

(A ∩ U) \
⋃

B∈G
B

 = 0.

(observe there are no assumptions on the measurability of A).

Proof. See [Evans and Gariepy, 2015, Theorem 1.28]. □

5.2. The Radon-Nikodym Theorem. In this section21 let ν and µ be always two Radon
measures on Rn. Extremely formally we could hope to write

(5.1) µ(A) =
∫

A
dµ =

∫
A

dµ

dν
dν.

And then (as we do in calculus), we could interpret dµ
dν

as the derivative of µ in direction ν
dµ

dν
= Dµν.

In some sense (5.1) is the fundamental theorem of calculus for measures.

Definition 5.3. For each point x ∈ Rn set

Dµν(x) :=
lim supr→0

ν(B(x,r))
µ(B(x,r))

if µ(B(x, r)) > 0 for all r > 0
+∞ if µ(B(x, r)) = 0 for some r > 0

and

Dµν(x) :=
lim infr→0

ν(B(x,r))
µ(B(x,r))

if µ(B(x, r)) > 0 for all r > 0
+∞ if µ(B(x, r)) = 0 for some r > 0

If Dµν(x) = Dµν(x) < ∞ we say that ν is differentiable with respect to µ. We also call
Dµν the density of ν with respect to µ. 22

Example 5.4. • If ν(B) := λµ(B) then Dµν(x) = λ.

21We follow to a substantial extend [Evans and Gariepy, 2015].
22This indeed has some features of a derivative, because we could believe that for “a.e.” x, ν(B(x, 0)) =

µ(B(x, 0)) = 0 (where B(x, 0) = {x}) and then write

lim inf
r→0

ν(B(x, r))
µ(B(x, r))

= lim inf
r→0

ν(B(x, r))− ν(B(x, 0 )
µ(B(x, r))− µ(B(x, 0 ))



ANALYSIS I & II & III VERSION: December 5, 2022 121

• We will later see (Theorem 5.15, as a consequence of the Radon-Nikodym theorem
Theorem 5.13) that if for a µ-integrable function f

ν = f⌞µ

i.e. for µ-measurable A,
ν(A) :=

∫
A
fdµ

then
Dµν(x) = f(x) µ− a.e..

This is easy to see for µ = Ln and f continuous in x:
Then

ν(B(x, r)) =
∫

B(x,r)
fdµ = µ(B(x, r))f(x) +

∫
B(x,r)

(f − f(x)) dµ.

By continuity for any ε > 0 there exists r > 0 such that supz∈B(x,r) |f(z)−f(x)| < ε,
so we have ∣∣∣ν(B(x, r))− µ(B(x, r))f(x)

∣∣∣ ≤ εµ(B(x, r))
So we have ∣∣∣∣∣ν(B(x, r))

µ(B(x, r))
− f(x)

∣∣∣∣∣ r→0−−→ 0.

Our first goal is to understand when Dµν exists and when (5.1) holds.

For this the following observation is useful

Lemma 5.5. Let µ be a Radon measure on Rn and ν be any other measure on Rn (not
necessarily Borel regular or anything).

Assume that A ⊂ Rn is a (possibly not measurable) set such that
ν(A ∩ V ) ≤ µ(A ∩ V ) for all bounded Borel sets V ⊂ Rn

Then
ν(A) ≤ µ(A).

Proof. If µ(A) =∞ there is nothing to show. So assume µ(A) <∞. Then there must be
an open set U ⊃ A such that

µ(U) ≤ µ(A) + ε.

We can write Rn = ⋃∞
i=1 Vi where each Vi is a bounded Borel set and Vi ∩ Vj = ∅ and thus

µ(Vi) <∞ for i ̸= j (e.g. take partially open and closed cubes).

We then have

ν(A) ≤
∞∑

i=1
ν(A ∩ Vi) ≤

∞∑
i=1

µ(A ∩ Vi) ≤
∞∑

i=1
µ(U ∩ Vi) = µ(U).
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In the last step we used the measurability of U ∩Vi (but A may not be measurable!) Thus,
ν(A) ≤ µ(A) + ε.

This holds for any ε > 0 and we can conclude by letting ε→ 0. □

Lemma 5.6. Let µ, ν be Radon measures on Rn. Fix 0 < α <∞. Let A ⊂ Rn

(1) If A ⊂ {x ∈ Rn : Dµν(x) ≤ α} then ν(A) ≤ αµ(A)
(2) If A ⊂ {x ∈ Rn : Dµν(x) ≥ α} then ν(A) ≥ αµ(A)

Observe that we don’t assume A to be ν or µ measurable!

Proof. (1) Fix ε > 0 and assume A ⊂ {x ∈ Rn : Dµν(x) ≤ α}.
Let V ⊂ RN be any bounded Borel set (in particular µ(V ), ν(V ) <∞).
We are going to show

(5.2) ν(A ∩ V ) ≤ (α + ε)µ(A ∩ V ).
Since this holds for any bounded Borel set V , in view of Lemma 5.5, we find ((α+ε)µ
is still a Radon measure!)

ν(A) ≤ (α + ε)µ(A).
Letting ε→ 0 we can then conclude.

Take any bounded open set U ⊂ Rn with A ∩ V ⊂ U (this exists, because V is
bounded). Then ν(U) <∞.

We define a family of balls:

F :=
{
B(a, r) : where a ∈ A ∩ V, r > 0 : B(a, r) ⊂ U, ν(B(a, r)) ≤ (α + ε)µ(B(a, r))

}
Since for each a ∈ A we have

lim inf
r→0

ν(B(a, r))
µ(B(a, r))

≤ α

we find that in particular for each a ∈ A ∩ V

inf{r > 0 : B(a, r) ∈ F} = 0.
By Theorem 5.2 there is a countable subfamily G ⊂ F of pairwise disjoint balls
such that ⋃

B∈G
B ⊂ U

and
ν((A ∩ V ) ∩ U \

⋃
B∈G

B) = ν((A ∩ V ) \
⋃

B∈G
B) = 0

Then, for each B ∈ G ⊂ F

ν(B) ≤ (α + ε)µ(B)
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and summing this up over B ∈ G (observe the B are all measurable as closed balls)
we have

ν(A∩V ) = ν(A∩V ∩U) ≤
∑
B∈G

ν(B)+0 ≤
∑
B∈G

(α+ε)µ(B)+0 = (α+ε)µ(
⋃

B∈G
B) ≤ (α+ε)µ(U).

We have this inequality for any bounded open set U ⊂ Rn with A∩V ⊂ U . Taking
the infimum over all such U we find in view of Theorem 1.68 Equation (5.2) holds
and we can conclude.

(2) (similar)

□

Theorem 5.7 (Differentiating measures). Let µ and ν be Radon measures on Rn. Then

(1) Dµν(x) exists and is finite for µ-a.e.23 x ∈ Rn and
(2) Dµν is µ-measurable.

We may assume that µ(Rn) and ν(Rn) < ∞. Otherwise we consider µ⌞K and ν⌞K for
compact sets and show (1) and (2) in open sets U ⊂ K with dist (U,K) > 0. Then we can
argue by exhaustion.

We split the proof of Theorem 5.7 into different parts.

Lemma 5.8. Assumptions as in Theorem 5.7. Then Dµν exists and is finite µ-a.e.

Proof. Let A := {x ∈ Rn : Dµν(x) =∞}. Then for each α > 0
A ⊂ {x ∈ Rn : Dµν(x) ≥ α},

and we can apply Lemma 5.6(2) to obtain

µ(A) ≤ 1
α
ν(A).

If ν(A) < ∞ we can let α → ∞ to conclude µ(A) = 0. If ν(A) = ∞ then since ν(A ∩
(B(0, R))) < ∞ (ν is Radon) we find µ(A ∩ B(0, R)) = 0 for all R > 0 and thus again
µ(A) = 0.

That is
Dµν(x) <∞ µ-a.e.

Now let 0 < a < b and set
R(a, b) := {x ∈ Rn : Dµν(x) < a < b < Dµν(x) <∞}.

We apply again Lemma 5.6 and have
bµ(R(a, b)) ≤ ν(R(a, b)) ≤ aµ(R(a, b)).

23this µ-a.e. takes care of pathological examples. E.g. assume µ(Rn) = 0 then Dµν ≡ ∞, but still
Dµν(x) = 0 for µ-a.e. x ∈ Rn since µ(Rn) = 0
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Since b > a and (w.l.o.g. otherwise again intersect with balls) µ(R(a, b)) <∞ we conclude
µ(R(a, b)) = 0. Thus{

x ∈ Rn : Dµν(x) < Dµν(x) <∞
}

=
⋃

a∈Q

⋃
b∈Q∩(a,∞)

R(a, b).

The right-hand side is a countable union of µ-zerosets, so

µ
({
x ∈ Rn : Dµν(x) < Dµν(x) <∞

})
= 0.

Since we always have Dµν(x) ≥ Dµν(x) we conclude that

µ
({
x ∈ Rn : Dµν(x) ̸= Dµν(x)

})
= 0.

That is Dµν(x) ̸= Dµν(x) <∞ for µ-a.e. x. □

One ingredient is the upper semicontinuity of x 7→ µ(B(x, r)).

Lemma 5.9. Let µ be a Radon measure, x ∈ Rn and r > 0. Then
lim sup

y→x
µ(B(y, r)) ≤ µ(B(x, r))

Proof. Since B(x, r) is Borel, it is measurable and χB(x,r) is µ-integrable since B(x, r) is
compact.

Let yk → y and set fk := χB(yk,r) and f := χB(x,r). While it is not so clear whether fk → f

everywhere we certainly have for any z ∈ Rn

(5.3) lim sup
k→∞

fk(z) ≤ f(z)

Indeed, the only case we need to consider is z ∈ Rn with f(z) = 0, otherwise the inequality
is obvious. But then z ∈ Rn\B(x, r), and thus dist (z, B(x, r)) > δ for some δ > 0. Now if
|yk − x| < δ

2 then z ̸∈ B(yk, r), so since yk → x we have fk(z) = 0 for all but finitely many
k ∈ N. So (5.3) is established.

From (5.3) we conclude
lim inf

k→∞
(1− fk) ≥ (1− f).

Applying Fatou’s lemma Corollary 3.9 on X = B(x, 2r)∫
B(x,2r)

(1− f)dµ ≤
∫

B(x,2r)
lim inf

k→∞
(1− fk)dµ ≤ lim inf

k→∞

∫
B(x,2r)

(1− fk)dµ

That is
µ(B(x, 2r))︸ ︷︷ ︸

<∞

−µ(B(x, r)) ≤ lim inf
k→∞

(µ(B(x, 2r))− µ(B(yk, r))) .

Subtracting the constant µ(B(x, 2r)) from both sides we conclude. □

Lemma 5.10. Assumptions as in Theorem 5.7. Then Dµν is µ-measurable.
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Proof. By Lemma 5.9, the functions x 7→ µ(B(x, r)) and x 7→ ν(B(x, r)) are upper semi-
continuous. In view of Exercise 2.16 both functions are then µ-measurable. Consequently
for each r > 0

fr(x) :=


ν(B(x,r))
µ(B(x,r))

if µ(B(x, r)) > 0
+∞ if µ(B(x, r)) = 0

is µ-measurable. Since by Lemma 5.8 Dµν(x) = limr→0 fr(x) for µ-a.e. we have by
Theorem 2.13 that Dµν is µ-measurable. □

Exercise 5.11. Let µ, ν1, ν2 be Radon measures. Show that
Dµ(ν1 + ν2) = Dµν1 +Dµν2 µ-a.e.

We recall the definition of absolute continuity from Definition 3.54 (see also Lemma 3.55)
and somewhat (as we shall see) define the opposite: mutually singular.

Definition 5.12. Assume µ and ν are Borel measures on Rn.

(1) The measure ν is absolutely continuous with respect to µ, in symbols ν ≪ µ, if
µ(A) = 0 implies ν(A) = 0 for all A ⊂ Rn.

(2) The measures ν and µ are mutually singular, in symbols ν ⊥ µ if there exists a
Borel set B ⊂ Rn such that

µ(Rn \B) = ν(B) = 0.

Here is the fundamental theorem for measures, also called the Radon-Nikodym Theorem.

Theorem 5.13. Let ν, µ be Radon measures on Rn with ν ≪ µ.

Then for all µ-measurable sets A we have

ν(A) =
∫

A
Dµν dµ.

Proof. Let A ⊂ Rn be µ-measurable. Then, by Lemma 3.55, A is also ν-measurable.

Set
Z := {x ∈ Rn : Dµν(x) = 0}

and
I := {x ∈ Rn : Dµν(x) = +∞}

By Theorem 5.7 µ(I) = 0 and thus since ν ≪ µ we have ν(I) = 0. Also ν(I) = 0 by
Lemma 5.6. In particular

ν(Z) = 0 =
∫

Z
Dµν dµ

ν(I) = 0 =
∫

I
Dµν dµ.
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Now let A be µ-measurable and fix t ∈ (1,∞) and set for m ∈ Z

Am := A ∩ {x ∈ Rn : tm ≤ Dµν(x) < tm+1}.
Then Am is also µ-measurable, and thus ν-measurable, Lemma 3.55, and we have

tmµ(Am) ≤
∫

{x: tm≤Dµν(x)}
tmdµ ≤

∫
Am

Dµνdµ

Since
A \

⋃
m∈Z

Am ⊂ Z ∪ I ∪ {x ∈ Rn : Dµν(x) ̸= Dµν(x)}

we have that µ(A \ ⋃m∈ZAm) = 0 and thus ((Am)m∈Z are pairwise disjoint!)∑
m∈Z

tmµ(Am) ≤
∑
m

∫
Am

Dµνdµ =
∫

A
Dµν dµ.

Since ν ≪ µ we also have ν(A \ ⋃m∈ZAm) = 0 and thus

ν(A) =
∑
m∈Z

ν(Am).

With the help of Lemma 5.6 we find

ν(A) =
∑
m∈Z

ν(Am) ≤
∑
m

tm+1µ(Am) ≤ t
∫

A
Dµν dµ

and similarly

ν(A) =
∑
m∈Z

ν(Am) ≥
∑
m

tmµ(Am) = t−1∑
m

tm+1µ(Am) ≥ t−1
∫

A
Dµν dµ.

That is for any t > 1 we have

t−1
∫

A
Dµν dµ ≤ ν(A) ≤ t

∫
A
Dµν dµ.

Letting t→ 1 we conclude. □

If ν ̸≪ µ we can get also the following refinement

Theorem 5.14 (Lebesgue Decomposition Theorem). Let ν and µ be Radon measures on
Rn.

(1) Then we can decompose
ν = νac + νs

where the absolutely continuous part νac ≪ µ and the singular part νs ⊥ µ.
(2) Furthermore,

Dµν = Dµνac, Dµνs = 0 µ-a.e.
and consequently

ν(A) =
∫

A
Dµνdµ+ νs(A)
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for each Borel set A ⊂ Rn24.

Proof. Again assume µ(Rn), ν(Rn) <∞ or argue with compact exhaustion.

We begin by constructing the singular measure. For this we are going to find a suitable
Borel set B and set

νac := ν⌞B, νs := ν⌞(Rn \B).
To find B define E the set of “good candidates”, i.e. Borel sets A where µ(Rn \A) = 0, i.e.

E := {A ⊂ Rn : A Borel, µ(Rn \ A) = 0} .
We are going to choose B such that

ν(B) = min
A∈E

ν(A).

But for this we have to show that such a B exists. Certainly, E ̸= ∅ so there must be some
Bk ∈ E with

ν(Bk) ≤ inf
A∈E

ν(A) + 1
k

k = 1, . . .

Write B := ⋂∞
k=1 Bk. Then

µ(Rn \B) ≤
∞∑

k=1
µ(Rn \Bk) = 0.

That is B ∈ E and thus
(5.4) ν(B) = inf

A∈E
ν(A).

Define
νac := ν⌞B

and
νs := ν⌞(Rn \B).

Both, νac and νs are Radon measures, see Exercise 1.67.

We now show that νac ≪ µ. Assume A ⊂ Rn with µ(A) = 0. Since µ is a Borel regular
measure we may assume that A is Borel (otherwise we pass to A ⊂ Ã with µ(Ã) = µ(A)).
Then νac(A) = ν(A ∩B). Observe that

µ(Rn \ (B \ A)) ≤ µ(Rn \B) + µ(A) = 0,
so B \ A ∈ E . Then by (5.4) (observe both A and B are Borel, so ν-measurable)

ν(B) ≤ ν(B \ A) = ν(B)− ν(A ∩B).
Thus ν(A ∩B) = 0, i.e. νac(A) = 0. I.e., we have established νac ≪ µ.

Now fix α > 0 and set
Cα := {x ∈ B : Dµνs(x) ≥ α}

24so A is µ and ν-measurable
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In view of Lemma 5.6 we have
αµ(Cα) ≤ νs(Cα) = ν(Cα ∩ (Rn \B)) = ν(∅) = 0.

That is µ(Cα) = 0 for all α > 0, that is Dµνs(x) = 0 for µ-a.e. x ∈ B (and since
Dµνs(x) = Dµ(ν⌞B) we have that Dµνs(x) = 0 for µ-a.e. x ∈ Rn \ B by Theorem 5.7(1).
So Dµνs(x) = 0 for a.e. x ∈ Rn, and thus (with the help of Exercise 5.11)
(5.5) Dµνac = Dµν µ-a.e.
By the first Radon-Nikodym theorem, Theorem 5.13 we then have for any Borel set (thus
νac-measurable)

νac(A) =
∫

A
Dµνacdµ

(5.5)=
∫

A
Dµνdµ

Thus, by the definition of νs and νac, for any Borel measure

ν(A) = νac(A) + νs(A) =
∫

A
Dµνdµ+ νs(A)

□

5.3. Lebesgue differentiation theorem. The integral average of f over a measurable
set E of finite, strictly positive measure will be denoted by

fE ≡
∫

E
dµ := µ(E)−1

∫
E
fdµ

Theorem 5.15. Let µ be a Radon measure on Rn and f ∈ L1
loc(Rn, µ). Then for µ-a.e.

x ∈ Rn

lim
r→0

∫
B(x,r)

f dµ = f(x)

Exercise 5.16. Show Theorem 5.15 for continuous f (using only continuity, no deep
theorem).

Proof of Theorem 5.15. For µ-measurable sets E set

ν+(E) :=
∫

E
f+dµ

and
ν−(E) :=

∫
E
f−dµ.

Since f ∈ L1
loc(Rn) we see that ν± extend to Radon measures, and ν± ≪ µ.

By the Radon-Nikdoym theorem, Theorem 5.13

ν+(A) =
∫

A
Dµν+dµ =

∫
A
f+dµ for all µ-measurable A ⊂ Rn

ν−(A) =
∫

A
Dµν−dµ =

∫
A
f−dµ for all µ-measurable A ⊂ Rn
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Since ν+, ν− are Radon measures, we see thatDµν± are L1
loc(dµ)-functions, so by Lemma 3.22(2),

f+ = Dµν+ and f− = Dµν− µ-a.e. in Rn.

By the definition of the Radon-Nikodym derivative we have∫
B(x,r)

fdµ =ν+(B(x, r))
µ(B(x, r)) −

ν−(B(x, r))
µ(B(x, r))

r→0+
−−−→Dµν

+(x)−Dµν
−(x) = f+(x)− f−(x) = f(x),

which holds for µ-a.e. x in Rn – we can pass to B(x, r) by Proposition 1.72. □

Definition 5.17. Let f ∈ L1
loc(µ).

The precise representative of f is the (pointwise!, not a.e., not a class) defined function

f ∗(x) :=
limr→0+

∫
B(x,r) f dµ when the limit exists

0 otherwise

By Theorem 5.15 the limit exists µ-a.e.

We say that x ∈ Rn is a Lebesgue point of f if

lim
r→0

∫
B(x,r)

|f(y)− f ∗(x)|dµ(y) = 0.

Theorem 5.18. Let µ be a Radon measure and f ∈ L1
loc(µ). Then µ-a.e. point x ∈ Rn is

a Lebesgue point of f

Proof. By Theorem 5.15 for any c ∈ R there exists a set Nc ⊂ R with µ(Nc) = 0 such that

lim
r→0

∫
B(x,r)

|f(y)− c|dµ(y) = lim
r→0

∫
B(x,r)

|f ∗(y)− c|dµ(y) = |f ∗(x)− c| for all x ∈ Rn\Nc.

Let
M := {x : |f ∗(x)| =∞}

which is a zeroset, since f ∗(x) = f(x) µ-a.e. and f ∈ L1
loc.

Let
N := M ∪

⋃
c∈Q

Nc.

Since Q is countable, µ(N) = 0. Let x ∈ Rn \N and let cn ∈ Q such that cn
n→∞−−−→ f ∗(x).

Then∫
B(x,r)

|f(y)−f ∗(x)|dµ(y) ≤
∫

B(x,r)
|f(y)−cn|dµ(y)+|cn−f ∗(x)| r→0+

−−−→ |f ∗(x)−cn|+|cn−f ∗(x)|,

that is
lim sup

r→0+

∫
B(x,r)

|f(y)− f ∗(x)|dµ(y) ≤ |f ∗(x)− cn|+ |cn − f ∗(x)|
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This holds for any n ∈ N and letting n→∞ we have

lim sup
r→0+

∫
B(x,r)

|f(y)− f ∗(x)|dµ(y) = 0,

and thus
lim

r→0+

∫
B(x,r)

|f(y)− f ∗(x)|dµ(y) = 0.

We can conclude since this holds for any x ∈ Rn \N , where N satisfies µ(N) = 0. □

Sometimes one wants to work with cubes or ellipsoids shrinking to zero instead of balls.
This is possible, as long as they are regular (and µ is doubling). We will restrict here our
attention to the Lebesgue measure.

Definition 5.19. We say that a family F of measurable sets in Rn is regular at x ∈ Rn if
there is a constant C > 0 such that for every S ∈ F there is a ball B(x, rS) such that

S ⊂ B(x, rS), Ln(B(x, rS)) ≤ CLn(S),

and for every ε > 0 there is a set S ∈ F with Ln(S) < ε.

Theorem 5.20. f ∈ L1
loc(Rn,Ln). If x ∈ Rn is a Lebesgue point of f and F is a regular

family at x ∈ Rn, then
lim

S∈F,Ln(S)→0

∫
S
fdLn = f(x).

Proof. For S ∈ F let rS be defined as above. Observe that if Ln(S)→ 0, then rS → 0. We
have ∣∣∣∣∫

S
fdLn − f(x)

∣∣∣∣ ≤∫
S
|f(y)− f(x)|dLn(y)

≤Ln(S)−1
∫

B(x,rs)
|f(y)− f(x)|dLn(y)

=L
n(B(x, rS))
Ln(S)

∫
B(x,rS)

|f(y)− f(x)|dLn(y)

≤C
∫

B(x,rS)
|f(y)− f(x)|dLn(y) Ln(S)→0−−−−−→ 0.

□

Corollary 5.21. If f ∈ L1
loc(Rn) and x ∈ Rn is a Lebesgue point of f , then for any

sequence of cubes Qi such that x ∈ Qi, diamQi → 0 we have

lim
i→∞

∫
Qi

fdLn = f(x).

Corollary 5.22. Let F (x) =
∫ x

a f(t)dt where f ∈ L1(a, b). Then F ′(x) = f(x) for a.e.
x ∈ (a, b).
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Proof. We have
F (x+ h)− F (x)

h
=
∫

x

x+hf(t)dt h→0−−→ f(x)

whenever x is a Lebesgue point of f . □

Exercise 5.23. Show the following: if A ⊂ Rn is a Ln-measurable set, then for almost all
x ∈ A

lim
r→0+

|B(x, r) ∩ A|
|B(x, r)| = 1

and for almost all x ∈ Rn \ A

lim
r→0+

|B(x, r) ∩ A|
|B(x, r)| = 0.

Hint: f := χA

Definition 5.24. Let A ⊂ Rn be a measurable set. We say that x ∈ Rn is a density point
of A if

lim
r→0

|A ∩B(x, r)|
|B(x, r)| = 1.

Thus the above theorem says that almost every point of a measurable set A ⊂ Rn is a
density point.

5.4. Signed (pre-)measures – Hahn decomposition theorem. We want to apply now
and then the Radon-Nikodym theorem to measures which can be positive and negative.
For example

µ⌞f(A) :=
∫

A
fdµ A µ-measurable

where f ∈ L1(X, dµ) but f may be positive or negative.

This leads to the so-called signed measures. Since e.g. µ⌞f is only defined on measurable
sets, we will actually work with pre-measures.

Definition 5.25. Let Σ be a σ-algebra and µ : Σ → [−∞,∞]. µ is called a signed
premeasure if

(1) µ(∅) = 0
(2) µ attains at most one of the values ±∞.
(3) µ is countably additive, i.e. if (Ek)k∈N are disjoint sets in Σ then

µ(
⋃
Ek) =

∑
k∈N

µ(Ek)

Example 5.26. • If µ1 and µ2 are (positive) measures and one of them is finite then
µ := µ1 − µ2 is a signed premeasure on the intersection of the measurable sets of
µ1 and µ2.
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• If ν is a (positive) measure and f ∈ L1(ν) then

µ(E) := ν⌞f =
∫

E
fdν

is a signed premeasure on the set of ν-measurable sets. Indeed, if f ∈ L1 then
f+, f− ∈ L1, so

µ(E) =
∫

E
f+dν −

∫
E
f−dν

and each of the terms is a (positive) measure.

Theorem 5.27 (Hahn’s decomposition theorem). Let µ : Σ → R̄ be a signed premeasure
on X. Then there are two disjoint sets X+, X− ⊂ Σ such that

X = X+ ∪X−, X+ ∩X− = ∅,
such that

µ+ = µ⌞X+, µ− := −µ⌞X−

then µ = µ+ − µ− and µ+, µ− : Σ→ [0,∞] are nonnegative premeasures on X.

Exercise 5.28. Prove that the decomposition X = X+ ∪ X− is unique up to sets of
µ-measure zero, i.e. if X = X̃+ ∪ X̃− is another decomposition, then

µ(X+ \ X̃+) = µ(X̃+ \X+) = µ(X− \ X̃−) = µ(X̃− \X−) = 0

Example 5.29. Let µ := f⌞ν, for f ∈ L1(ν), i.e.

µ(E) =
∫

E
fdν

for ν-measurable f . Then µ is a signed premeasure and

µ(E) =
∫

E
f+dν −

∫
E
f−dν

Hence we can take
X+ = {x : f(x) ≥ 0}
X− = {x : f(x) < 0}

but we can also take
X̃+ = {x : f(x) > 0}
X̃− = {x : f(x) ≤ 0}

In general X+ ̸= X̃+, and X− ̸= X̃−. But the sets differ by the set where f = 0 and this
set has µ-measure zero,

µ({x : f(x) = 0}) =
∫

{f=0}
fdν = 0.

For the proof of Theorem 5.27 we need the notion of positive sets.

Definition 5.30. Let µ : Σ→ R̄ be a signed premeasure. A set E ∈ Σ is called positive if

• µ(E) > 0
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• µ(A) ≥ 0 for any A ∈ Σ, A ⊂ E.

Example 5.31. If E = E1 ∪ E2 and E1 ∩ E2 = ∅, µ(E1) = 7, µ(E2) = −3 then µ(E) =
4 > 0, but E is not positive.

Lemma 5.32. If µ : Σ → R̄ is a signed measure then every measurable set E such that
0 < µ(E) <∞ contains a positive set A with µ(A) > 0.

Proof. If E itself is positive we can take A = E.

Otherwise there is B ⊂ E with µ(E) < 0. Let n1 ∈ N be the smallest positive integer such
that there is B1 ⊂ E with

µ(B1) ≤ − 1
n1
.

Observe that A1 := E \B1 satisfies

Also observe that µ(A1) <∞, indeed if µ(A1) =∞ then µ(B1) = −∞, but then µ attains
both +∞ and −∞ which is ruled out. That is 0 < µ(A1) <∞.

So either A1 is positive and we take A1, or we can repeat this construction. Namely in the
next step we take n2 ∈ N the smallest positive integer such that there is B2 ⊂ A1 = E \B1
with

µ(B2) ≤ − 1
n2
.

As above, either A2 = E \ (B1 ∪ B2) is positive, then we can take A = A2, if not we
continue.

If Am = E \ ⋃m
j=1 Bj is positive for some m, we take A = Am (and have 0 < µ(Am) <∞),

otherwise we obtain an infinite sequence Bj and we set

A := E \
∞⋃

j=1
Bj ∈ Σ

We claim that 0 < µ(A) <∞ and A is positive.

Firstly, µ(E) = µ(A) + µ(E \ A). Since µ(E) ∈ (0,∞) we conclude that if µ(A) = +∞
then µ(E \ A) = −∞ which is not allowed for a signed measure. So µ(A) < ∞, and we
have (observe: (Bj)j and A are by definition pairwise disjoint!)

0 < µ(E) = µ(A) +
∞∑

j=1
µ(Bj) ≤ µ(A)−

∞∑
j=1

1
nj

.

That is
∞ > µ(A) >

∞∑
j=1

1
nj

> 0.

It remains to prove that A is positive. From the above inequality we conclude that in
particular the series on the right-hand side must converge, that is limj→∞ nj =∞.
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If C ∈ Σ and C ⊂ A = E \⋃∞
j=1 Bj then for every m ∈ N we have C ⊂ E \⋃m

j=1 Bj = Am.
Since nm+1 is the smallest positive integer such that there is a set B̃ ⊂ Am with µ(B̃) ≤
− 1

nm+1
we must have

µ(C) > − 1
nm+1 − 1

m→∞−−−→ 0.

That is µ(C) ≥ 0. Thus A is positive. □

Proof of Theorem 5.27. W.l.o.g. assume that µ does not attain the value +∞, otherwise
we work with −µ.

Let
M := sup

{
µ(Ã) : Ã ∈ Σ, Ã positive

}
∈ (−∞,∞].

Then there is a sequence of positive sets
A1 ⊂ A2 ⊂ A3 ⊂ . . .

with
µ(Ai) i→∞−−−→M.

Set A := ⋃∞
i=1 Ai then

• A is positive
• µ(A) = M <∞

It remains to prove that X \ A is negative (then we take X+ = A, X− = X \ A).

Assume by contradiction that X\A is not negative, there is E ⊂ X\A with 0 < µ(E) <∞.
Hence Lemma 5.32 implies that there is a positive subset C ⊂ E of positive measure. Now
A ∪ C is positive and

µ(A ∪ C) = µ(A) + µ(C) > M

which is an obvious contradiction. □

5.5. Riesz representation theorem. We will apply now the Radon-Nikodym theorem
to classify all continuous linear functionals on Lp(Rn) for 1 ≤ p<∞. Let us start first with
some general facts about continuous linear mappings between normed spaces.

Theorem 5.33. Let L : X → Y be a linear mapping between normed spaces. Then the
following conditinos are equivalent

(1) L is continuous;
(2) L is continuous at 0;
(3) L is bounded, i.e. there is C > 0 such that

(5.6) ∥Lx∥ ≤ C∥x∥ for all x ∈ X
(4) L is uniformly Lipschitz continuous, i.e. there is C > 0 such that ∥Lx − Ly∥ ≤

C∥x− y∥ for all x ∈ X.
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Remark 5.34. Formally we should use different symbols to denote norms in spaces X and
Y . Since it will always be clear in which space we take the norm it is not too dangerous
to use the same symbol ∥ · ∥ to denote apparently different norms in X and Y .

Proof. The implication (1)⇒(2) is obvious.

(2)⇒(3). Suppose L is continuous at 0 but not bounded. Then there is a sequence xn ∈ X
such that

∥Lxn∥ ≥ n∥xn∥.
In particular ∥xn∥ ≠ 0, so

0←
∥∥∥∥∥L xn

n∥xn∥

∥∥∥∥∥ ≥ 1

which is a contradiction25.

(3)⇒(1). Let xn → x. Then
∥Lx− Lxn∥ = ∥L(x− xn)∥ ≤ C∥x− xn∥ → 0

and hence Lxn → Lx which proves continuity of L.

(3) ⇔ (4) is obvious, simply take y = 0 (so Ly = 0) and use linearity of L. □

Definition 5.35. The number ∥L∥ = sup∥x∥≤1∥Lx∥ is called the norm of L. It is often
called the operatornorm

Exercise 5.36. Let X and Y be two normed vector spaces. Denote by
L(X, Y ) := {T : X → Y : T linear and continuous}

the space of linear continouts (aka bounded) maps from X to Y .

For two linear continuous operators T, S : X → Y and λ, µ ∈ R we set
(λT + µS) : X → Y

defined via
(λT + µS)x := λTx+ µSx.

(1) Show that for T, S ∈ L(X, Y ) we also have λT + µS ∈ L(X, Y ).
(2) Show that the operatornorm ∥ · ∥ from Lemma 5.37 is indeed a norm on L(X, Y ).

Lemma 5.37. If L : X → Y is a linear continuous operator then the norm ∥L∥ is the
smallest number C for which the inequality (5.6) is satisfied.

That is
∥Lx∥ ≤ ∥L∥ ∥x∥ ∀x ∈ X

and for each C ≥ 0 if
∥Lx∥ ≤ C ∥x∥ ∀x ∈ X

25Convergence to 0 follows from the continuity of L at 0.
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then C ≥ ∥L∥.

Proof. Clearly, if x = 0 then
∥Lx∥ = 0 ≤ ∥L∥∥0∥.

If x ≥ 0 then
∥Lx∥ = ∥L x

∥x∥
∥ ∥x∥ ≤ ∥L∥∥x∥.

Now assume that ∥Lx∥ ≤ C∥x∥ for all x ∈ X.

If ∥x∥ ≤ 1, then ∥Lx∥ ≤ C∥x∥ ≤ C and hence ∥L∥ = sup∥x∥≤1∥Lx∥ ≤ C. □

Now we want to consider linear bounded functionals, which are continuous linear maps
L : X → R.

Example 5.38. If 1
p

+ 1
q

= 1, 1 < p, q <∞ are Hölder conjugate, and g ∈ Lq(X), then

Lg(f) :=
∫

X
fgdµ

defines a bounded linear functional on Lp(µ) and |Lg| ≤ ∥g∥Lq . Indeed, Hölder’s inequality
yields

|Lgf | =
∣∣∣∣∫

X
fgdµ

∣∣∣∣ ≤ ∥g∥Lq∥f∥Lp .

Similarly if g ∈ L∞(µ), then
Lgf =

∫
X
fgdµ

defines a bounded linear functional on L1(µ) and ∥Lg∥ ≤ ∥g∥L∞ .

The following theorem states that these are the only linear functionals on Lp(Rn) as long
as 1 ≤ p<∞ (similar statement hold for reasonable µ).

Theorem 5.39 (Riesz representation theorem). Let 1 ≤ p <∞ and L : Lp(Rn)→ R be a
bounded linear functional.
(5.7) |L[f ]| ≤ ∥T∥∥f∥Lp(Rn)

Denoting by p′ = p
p−1 the Hölder conjugate there exists g ∈ Lp′(Rn) such that

L[f ] =
∫
Rn
fg ∀f ∈ Lp(Rn).

and
(5.8) ∥g∥Lp′ (Rn) = ∥T∥.

The function g is unique in the sense that if there are g1 and g2 satisfying the above then
g1 = g2 a.e..
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Remark 5.40. • The set of bounded linear functionals on Lp(Rn) is usually denoted
by (Lp(Rn))∗. It is a vector space (we will discuss more properties in Functional
Analysis) and called the dual space to Lp(Rn). What Theorem 5.39 says is that
there exists an isometric isomorphism from the space of bounded linear functionals
L on Lp(Rn) with Lp′(Rn), i.e.

(Lp(Rn))∗ ∼= Lp′(Rn).
Often one says that the dual space to Lp(Rn), i.e. (Lp(Rn))∗, is Lp′(Rn). What
is important here (but often this is not so explicitely clear for other spaces) is the
pairing, i.e. in which sense this “identity” holds. We observe this is the L2-scalar
products (even if Lp-functions do not in general belong to L2. Any element in
L ∈ (Lp(Rn))∗ can be identified with some g ∈ Lp′(Rn) via the L2-pairing

L(f) = ⟨f, g⟩.

Proof of Theorem 5.39. Uniqueness Assume that there are g1 and g2 that both satisfy the
claims, then ∫

(g1 − g2)f = 0 ∀f ∈ Lp(Rn).
In particular ∫

(g1 − g2)φ = 0 ∀φ ∈ C∞
c (Rn).

By the fundamental theorem of the calculus of variations, Lemma 4.45 we have g1 = g2
a.e.

Existence Let K ⊂ Rn be compact with Ln(∂K) = 0 and consider for Ln-measurable
A ⊂ Rn

ν(A) := L[χA∩K ].
Observe that |ν(A)| ≤ ∥χK∥Lp(Rn) <∞.

We claim that ν is a signed pre-measure on the σ-Algebra of Ln-measurable sets. For this
let (Ak)∞

k=1 be disjoint Ln-measurable sets and set A := ⋃
k Ak. Then for all x ∈ Rn we

have
f(x) := χA∩K(x) = lim

k→∞
fk(x)

where fk := ∑k
i=1 χAi∩K . Since K is compact, f ∈ Lp(Rn). Moreover, since the (Ai)i are

pairwise disjoint, so by Lebesgue monotone convergence, Corollary 3.8,

∥fk∥p
Lp(Rn) = ∥

k∑
i=1

χAi∩K∥L1(Rn)
k→∞−−−→ ∥f∥L1(Rn) = ∥f∥p

Lp(Rn).

Sine p <∞26, in view of Theorem 3.52, we then have

(5.9) ∥fk − f∥Lp(Rn)
k→∞−−−→ 0

26here we use this crucially
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and thus
ν(

∞⋃
i=1

Ai) = L(f) = lim
k→∞

L(fk) =
∞∑

i=1
ν(Ai).

That is ν is a signed premeasure.

By Hahn decomposition theorem, Theorem 5.27, we can split ν into two pre-measures ν+
and ν−,

ν = ν+ − ν−.

Then ν+, ν− both extend to a Radon measure, which by (5.7) satisfies ν± ≪ Ln. Indeed,
since ν is a signed premeasure and |ν(Rn)| <∞ we have that ν+(Rn), ν−(Rn) <∞ (because
otherwise they would both be infinite which would contradict |ν(Rn)| <∞).

By Radon-Nikodym theorem for gK := χKDLnν+ − χKDLnν− which is Ln-a.e. finite and
Ln-integrable (because each ν+ and ν− are finite measures), we have

ν(A) = ν(A ∩K) =
∫
Rn
χAgK(x) dLn(x).

In particular we have gK(x) ∈ L1(RN), and for all A ⊂ Rn Ln-measurable

L(χA∩K) =
∫
Rn
χAgK(x) dLn(x).

Now let f ∈ L∞(Rn) ∩ L1(Rn), f ≥ 0 a.e. in Rn then there exists an approximation

fk(x) =
∞∑

i=1
akχAk

(x)

such that fk → f a.e. in Rn. In particular
|f(x)|p = lim

k→∞
|fk(x)|p a.e. in Rn.

By the monotone convergence theorem we conclude that limk→∞ ∥fk∥Lp(Rn) = ∥f∥Lp(Rn) <

∞. Here we used Exercise 3.18. Thus from Theorem 3.52 we find that ∥fk−f∥Lp(Rn)
k→∞−−−→

0.

We then have

L(χKf) = L (χK (f − fk)) + L (χKfk) = L(χK(f − fk)) +
∫
Rn
fkgK dLn.

Since L is uniformly Lipschitz and f−fk
k→∞−−−→ 0 in Lp(Rn) we have L(χK(f−fk)) k→∞−−−→ 0.

Also, by the monotone convergence theorem

lim
k→∞

∫
Rn
fkgK dLn = lim

k→∞

∫
Rn
fk(gK)+ dLn − lim

k→∞

∫
Rn
fk(gK)− dLn

=
∫
Rn
f(gK)+ dLn +

∫
Rn
f(gK)+ dLn =

∫
Rn
fgK dLn.

In the last step we have used that ∥fgK∥L1(Rn) ≤ ∥f∥L∞(Rn)∥gK∥L1(Rn) <∞.
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Thus, we have shown

L(χKf) =
∫
Rn
fgK dLn ∀f ∈ L∞(Rn) ∩ L1(Rn), f ≥ 0 .

Splitting f = f+ + f− we conclude that we don’t need the sign condition on f .

L(χKf) =
∫
Rn
fgK dLn ∀f ∈ L∞(Rn) ∩ L1(Rn).

For now we have gK ∈ L1(Rn) only. Next we need to show ∥gK∥Lp′ (Rn) ≤ ∥T∥.

If p = 1 and thus p′ =∞ let x ∈ Rn\∂K be any Lebesgue point of gK . If we choose
f := χB(x,r) for r < dist (x, ∂K)∣∣∣∣∣

∫
B(x,r)

gK dLn

∣∣∣∣∣ =
∣∣∣LχK∩B(x,r)

∣∣∣ ≤ ∥T∥Ln(K ∩B(x, r)).

By the assumptions on r if x ∈ K then Ln(K ∩ B(x, r)) = Ln(B(x, r)). If x ̸∈ K then
Ln(K ∩ B(x, r)) = 0. In either case by the Lebesgue differentiation theorem we can let
r → 0 and have

|gK(x)| ≤ ∥T∥
which holds for any Lebesgue point x ∈ Rn\∂K. Since Ln(∂K) = 0 we have gk(x) ≤ ∥T∥
for Ln-a.e. x ∈ Rn, and thus

∥gK∥L∞ ≤ ∥T∥.

Now assume p ∈ (1,∞). We argue by duality.

Formally, this is easy: For p′ = p
p−1 ∈ (1,∞) we have

∥gK∥p′

Lp′ =
∫
Rn
gK gK |gK |p

′−2 = T [|gK |p
′−2gK ] ≤ ∥T∥∥|gK |p

′−2gK∥Lp = ∥T∥∥gK∥p′−1
Lp(p′−1)

so that (since p(p′− 1) = p′, we can divide on both sides ∥gK∥p′−1
Lp(p′−1) ≡ ∥gK∥p′−1

Lp′ )) we have
found

∥gK∥Lp′ ≤ ∥T∥.
Essentially that will be our argument, but the above only works if we already know that
|gK∥p′−1

Lp′ ) <∞ (which is pretty much what we want to show). The above type of argument
is called an a priori estimate. To make this precise we need mollification (a technique
which is often sweeped under the rug by saying by approximation or by density):

Let f ∈ L1(Rn) with f = 0 a.e. outside a compact set K̃. For ε > 0 we denote by fε the
usual convolution fε = f ∗ ε−nη(·/ε) (with symmetric kernel η). Then by Exercise 4.21

L(χKfε) =
∫
Rn
fε gK dLn =

∫
Rn
f(gK)ε dLn.

Observe that since supp gK ⊂ K we have that (gK)ε ∈ C∞
c (Rn).
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Then we may pick (here we use that p ∈ (1,∞)

(5.10) f(x) :=
|(gK)ε(x)|

p
p−1 −1 if (gK)ε(x) ≥ 0

− |(gK)ε(x)|
p

p−1 −1 if (gK)ε(x) < 0

(you can check this is measurable). Then we have f ∈ L1(Rn) ∩ L∞(Rn). Indeed, this
follows from (observe: p

p−1 − 1 > 0)

|f(x)| ≤ |(gK)ε(x)|
p

p−1 −1 ≤ ∥(gK)ε(x)∥
p

p−1 −1
L∞ ,

so f ∈ L∞(Rn), but also f has compact support. Thus we have∫
Rn
|(gK)ε|p

′ =
∫
Rn
f(x) (gK)ε

=L(χKf) ≤ ∥T∥ ∥ ((gK)ε)
p

p−1 −1 ∥Lp(Rn)︸ ︷︷ ︸
<∞

.

A short computation yields
(p′ − 1)p = p

p− 1 = p′

and thus
∥ ((gK)ε)

p
p−1 −1 ∥Lp(Rn) = ∥(gK)ε∥

p′
p

Lp′ (Rn)

We conclude that

∥(gK)ε∥p′

Lp′ (Rn) =
∫
Rn
|(gK)ε|p

′ ≤ ∥T∥∥(gK)ε∥
p′
p

Lp(Rn)

Observing that p′ − p′

p
= p′(1− 1

p
) = p′

p′ = 1 we have shown that

∥(gK)ε∥Lp′ (Rn) ≤ ∥T∥.

This holds for all ε > 0. Since gK ∈ L1(RN) we have that (gK)ε converges to gK in L1

as ε → 0, which means for some εi → 0 the functions (gK)εi
converge a.e. to gK . From

Exercise 3.14 we finally obtain
∥gK∥Lp′ (Rn) ≤ ∥T∥.

Removing the K. Now from the construction of gK we see that if K ⊂ K ′ both compact
with ∂K and ∂K ′ both zero sets, then gK = gK′ a.e. in K and |gK | ≤ |gK′| a.e. in Rn.

So g(x) := gK(x) where K is a large compact set containing x makes g well defined and
we have

∥χKg∥Lp′ (RN ) = ∥gK∥Lp′ (RN ) ≤ ∥T∥ ∀K ⊂ Rn compact.

By monotonce convergence theorem we have
∥g∥Lp′ (Rn) = ∥ |g| ∥Lp′ (Rn) = lim

k→∞
∥χB(0,k) |g| ∥Lp′ (Rn) ≤ ∥T∥
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and we have
L(f) =

∫
Rn
gf dLn(Rn) ∀f ∈ L1(Rn) ∩ L∞(Rn) : supp f compact.

(simply take K to contain supp f).

It remains to show that
(5.11) L(f) =

∫
Rn
gf ∀f ∈ Lp(Rn).

We do this by density (here we use that p <∞). Any f ∈ Lp(Rn) can be approximated by
fk ∈ C∞

c (Rn). Then we have

L(f) =L(f − fk) + L(fk) = L(f − fk) +
∫
Rn
gfk

=L(f − fk) +
∫
Rn
gf +

∫
Rn
g(fk − f).

Now by boundedness of L

|L(f − fk)| ≤ ∥T∥∥f − fk∥Lp(Rn)
k→∞−−−→ 0.

Moreover by Hölder’s inequality∣∣∣∣∫
Rn
g(fk − f)

∣∣∣∣ ≤ ∥g∥Lp(Rn)∥fk − f∥Lp(Rn)
k→∞−−−→ 0.

So we have established (5.11).

The last thing to establish is (5.8). We have already
∥g∥Lp′ ≤ ∥T∥.

On the other hand by Hölder’s inequality

|T (f)| =
∣∣∣∣∫ fg

∣∣∣∣ ≤ ∥f∥Lp(Rn)∥g∥Lp′ (Rn) ∀f ∈ Lp(Rn).

In view of Lemma 5.37 we find ∥g∥ ≤ ∥T∥. □

Remark 5.41. Theorem 5.39 is not true for p = ∞, since (5.9) may fail for p = ∞
(cf. Exercise 3.53). Indeed any linear functional L on L∞(Rn) can be written as an
integration L(f) =

∫
fdµ where µ is a finite additive signed measures, which are absolutely

continuous with respect to Ln. The Radon-Nikodym theorem does not apply for finite
additive measures, but for infinitely additive measures.

See also Lemma 11.12.

Exercise 5.42. Use Theorem 5.39 and Exercise 4.34 to prove the following slight (but
useful!) generalization of Riesz representation theorem.

Assume 1 ≤ p ≤ ∞ and assume L : C∞
c (Rn) → R is a linear map that satisfies for some

Λ ≥ 0
|Lφ| ≤ Λ∥φ∥Lp(Rn) ∀φ ∈ C∞

c (Rn).
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Denoting by p′ = p
p−1 the Hölder conjugate there exists g ∈ Lp′(Rn) such that

L[f ] =
∫
Rn
fg ∀f ∈ C ∞

c (Rn).

and
∥g∥Lp′ (Rn) = ∥T∥.

The function g is unique in the sense that if there are g1 and g2 satisfying the above then
g1 = g2 a.e..

Hint: Show that the following functional L̃ : Lp(Rn) → R is well-defined, linear, and
bounded. For f ∈ Lp(Rn) take any approximation fk ∈ C∞

c (Rn), fk
k→∞−−−→ f in Lp(Rn).

Then we define
L̃f := lim

k→∞
Lfk.

(You have to check that L̃(f) ∈ R and that this value is independent of the choice of
approximation!)

Exercise 5.43 (Minkowski’s integral inequality). Let f ∈ C∞
c (Rk+ℓ) and assume that

1 < p <∞. We denote variables in Rk+ℓ by (x, y), x ∈ Rk, y ∈ Rℓ. Show the following(∫
Rk

(∫
Rℓ
|f(x, y)|dy

)p

dx
) 1

p

≤
∫
Rℓ

(∫
Rk
|f(x, y)|pdx

) 1
p

dy

Use the duality characterization of Lp as in (5.10), and Fubini’s theorem.

Let us also record (without proof) the following version of the Riesz representation theorem
that classify the set of Radon measures wiht linear functions on

Cc(Rn) := {f ∈ C0(Rn) : supp f bounded}.

Theorem 5.44 (Riesz Representation Theorem). Let
L : Cc(Rn;Rm)→ R

be a linear functional satisfying
sup {L(f) : f ∈ Cc(Rn;Rm), |f | ≤ 1, supp f ⊂ K} <∞

for every compact set K ⊂ Rn.

Then there exists a Radon measure µ on Rn and a µ-measurable function σ : Rn → Rm

such that
|σ(x)| = 1 µ-a.e. x

and
L(f) =

∫
Rn
f · σdµ ∀f ∈ Cc(Rn,Rm).

For a proof see Cf. [Evans and Gariepy, 2015, Theorem 1.38]



ANALYSIS I & II & III VERSION: December 5, 2022 143

6. Transformation Rule

In this section we discuss the transformation rule, and will assume always µ = Ln.

The change of variables formula is a general version of the substitution rule. If Φ′ ̸= 0 we
have ∫

[a,b]
f(Φ(x))|Φ′(x)|dx =

∫
Φ([a,b])

f(x)dx.

Why do we write |Φ′(x)| not Φ′(x) (as we learned in Calculus)?

Assume that Φ(x) = −x then for a < b (i.e. −a > −b),

(6.1)
∫

[a,b]
f(−x)dx =

∫ b

a
f(−x)dx = −

∫ −b

−a
f(x)dx =

∫ −a

−b
f(x)dx =

∫
[−b,−a]

f(x)

I.e. orientation is accounted for differentily with the notation
∫ b

a than with
∫

[a,b].

The one-dimensional Φ′(x) becomes det(DΦ(x)) because (as we have also seen in Theo-
rem 1.81), this is the change of volume of the unit cube under the linear map DΦ(x), cf.
Figure 6.1 and Figure 1.6.

Definition 6.1. Let X, Y ⊂ Rn be open.

Φ : X → Y is a Ck-diffeomorphism if

• Φ : X → Y is bijective
• Φ, Φ−1 are Ck

One can show that this implies
det(DΦ(x)) ̸= 0 in X.

Theorem 6.2 (Change of variables formula/transformation rule). Let Φ : X → Φ(X) be
a C1-diffeomorphism between open and bounded sets X, Φ(X) ⊂ Rn.

(1) for any measurable Ω ⊂ X we have

Ln(Φ(Ω)) =
∫

Ω
| det(DΦ(x))|dx.

(2) f : Y → R̄ is integrable in Y if and only if f ◦ Φ| det(DΦ)| is integrable in X and
if that is the case, ∫

Y
fdx =

∫
X
f ◦ Φ| det(DΦ(x))|dx.

or equivalently ∫
Φ(X)

fdx =
∫

X
f ◦ Φ| det(DΦ(x))|dx.
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Figure 6.1. A nonlinear map f : R2 → R2 sends a small square (left, in
red) to a distorted parallelogram (right, in red). The Jacobian at a point
gives the best linear approximation of the distorted parallelogram near that
point (right, in translucent white), and the Jacobian determinant gives the
ratio of the area of the approximating parallelogram to that of the original
square. By Blacklemon67 - Own work, CC BY-SA 3.0, wikipedia

Lemma 6.3. Under the assumptions of Theorem 6.2 for any Ω ⊂ X measurable

Ln(Φ(Ω)) =
∫

Ω
| det(DΦ(x))|dx.

Proof. Set
µ(A) := Ln(Φ(A ∩X)) A is Ln-measurable

Since Φ is a C1-diffeomorphism this induces a Radon measure and µ ≪ Ln, cf. Exer-
cise 1.80, Exercise 1.13 and Corollary 1.78.

By Radon-Nikdoym theorem, Theorem 5.13, we have

µ(A) =
∫

A
DµLn dLn.

and
DµLn(x) = lim

r↓0

µ(B(x, r))
Ln(B(x, r)) for Ln − a.e. x.

So fix x ∈ X (by exhaustion argument using the monotone convergence theorem we may
assume dist (x, ∂X) > 0) and r ≪ 1. We then have from Taylor’s theorem for each
z ∈ B(x, r), since Φ ∈ C1

|Φ(z)− Φ(x)−DΦ(x)(z − x)| ≤ o(r).
Thus, since DΦ(x) is invertible matrix,

Φ(B(x, r)) ⊂ Φ(x)+DΦ(x)︸ ︷︷ ︸
∈Rn×n

(B(x, r)−x)+Bo(r)(0) = Φ(x)+DΦ(x)
(
(B(x, r)− x) +DΦ(x)−1Bo(r)(0)

)

https://en.wikipedia.org/wiki/File:Jacobian_determinant_and_distortion.svg
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Consequently by translation invariance of the Lebesgue measure and Theorem 1.81.

µ(B(x, r)) =Ln(Φ(B(x, r))) ≤ Ln
(
DΦ(x)

(
(B(x, r)− x) +DΦ(x)−1Bo(r)(0)

))
=| det(DΦ(x))| Ln

(
(B(x, r)− x) +DΦ(x)−1Bo(r)(0)

)
=| det(DΦ(x))| Ln

(
B(x, r) +DΦ(x)−1Bo(r)(0)

)
≤| det(DΦ(x))|Ln(B(x, r + o(r))).

Thus
µ(B(x, r))
Ln(B(x, r)) ≤ | det(DΦ(x))|L

n(B(x, r + o(r)))
Ln(B(x, r)) .

Now Ln(B(x,R)) = cnR
n, so we have

µ(B(x, r))
Ln(B(x, r)) = | det(DΦ(x))|

(
r + o(r)

r

)n
r→0+
−−−→ | det(DΦ(x))|.

So
DµLn(x) = | det(DΦ(x))| for Ln-a.e. x

and we can conclude. □

Lemma 6.4. Under the assumptions of Theorem 6.2 assume that f : Y → R̄ is measurable.
Then ∫

Y
fdLn =

∫
X
f ◦ Φ| det(DΦ(x))|dx.

Proof. First we assume f ≥ 0. Since Φ is a diffeomorphism (and in particular maps open
sets into open sets) f ◦ Φ is Ln-measurable, and so is f ◦ Φ| detDΦ|.

We approximate f by simple functions

fk(x) :=
k∑

i=1
aiχAi

(x)

wher ai ≥ 0 and Ai ⊂ Y are measurable, and

fk(x)→ f(x) for every x ∈ Y , and monotonely.

Set Bi := Φ−1(Ai) (which is measurable) and Bi ⊂ X.

Then

fk ◦ Φ(x) =
k∑

i=1
aiχAi

◦ Φ(x)

=
k∑

i=1
aiχBi

(x)
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So with Lemma 6.3, ∫
Y
fkdx =

k∑
i=1

aiLn(Ai)

=
k∑

i=1
aiLn(Φ(Bi))

=
k∑

i=1
ai

∫
Bi

| det(DΦ)|

=
∫

X
fk ◦ Φ

∫
Bi

| det(DΦ)|

We conclude the case f ≥ 0 by using monotone convergence theorem.

For general f we set f = f+ − f− and use twice the above argument. □

We will not go into applications here (the polar coordinates and related coordinate changes
one being the most prominent ones and we did those in Advanced Calculus).

6.1. Area formula and integration on manifolds. Let M ⊂ RN be a (subset of an)
n-dimensional manifold. For f :M→ R we can then define∫

M
fdHn :=

∫
RN
fd (M⌞Hn) ,

because f is defined on (M⌞Hn)-a.e. point. In Advanced Calculus I we talked about
another way of defining the integral on M:

Assume that there is θ0 ∈M and an open neighborhood U ⊂ Rn such that Φ : U →M is
a parametrization of a neighborhood θ0 ∈ ∂Ω then we defined∫

M∩Φ(U)
f(θ)dθ :=

∫
U
f(Φ(z))|Jac(Φ)(z)| dz.

Here we defined the Jacobian |Jac(Φ)(z)| as follows

|Jac(Φ)(z)| :=
√√√√∣∣∣ det

Rn×n
(DΦt(z)︸ ︷︷ ︸

Rn×N

DΦ(z)︸ ︷︷ ︸
RN×n

)
∣∣∣ ≡ √∣∣∣∣ det

Rn×n

(
(⟨∂αΦ(z), ∂βΦ(z)⟩RN )α,β=1,...,n

)∣∣∣∣
We want to show that this coincides with the Hausdorff-measure integral. This is usually
referred to as the area formula.

Theorem 6.5 (Area formula). Let Φ ∈ C1(Rn,RN) where n ≤ N . For each f ∈ L1(Rn)
and each Ln-measurable subset A ⊂ Rn such that Φ : A→ Φ(A) is one-to-one∫

Φ(Rn)⊂RN
f ◦ Φ−1(y)dHn(y) :=

∫
Rn
f(z)|Jac(Φ)(z)| dLn(z).

Remark 6.6. • There exist generalizations for Φ which are not one-to-one.
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• Having f : Rn → R instead of f : M → R avoids dealing with integrability. But
this can be done with density arguments

Proof. By the usual approximation arguments (see the transformation rule) it suffices to
prove the statement for f = χA, so we need to prove for Ln-measurable sets A,

Hn(Φ(A)) =
∫

A
|Jac(Φ)(z)| dLn(z).

Observe that since Φ is Lipschitz and Hn = Ln in Rn we have that
ν(A) := Hn(Φ(A)) A ⊂ Rn is Ln-measurable

extends to a Radon measure in Rn. By Radon-Nikodyn we then have

Hn(Φ(A)) = ν(A) =
∫

A

dν

dLn
(z)dLn(z).

where for µ-a.e. z ∈ Rn,
dν

dLn
(z) = lim

r→0+

Hn(Φ(B(z, r)))
Ln(B(z, r)) .

As in the argument for the transformation rule, since Φ is smooth, Hn is translation
invariant, the claim follows by Tailor’s theorem once we can show

Hn(DΦ(x)A) = Jac(Φ)(x)Ln(A).
This is the content of the following Lemma 6.7. □

Lemma 6.7. Let L : Rn → RN be a linear map, i.e. L ∈ RN×n. Then

Hn(L(A)) =
√

det(LtL)Ln(A).

Proof. By polar decomposition (cf. [Evans and Gariepy, 2015, Theorem 3.5] there exists a
matrix O ∈ RN×n and S ∈ Rn×n such that O ∈ O(n,N), i.e. OtO = In×n, i.e.

⟨Ox,Oy⟩RN = ⟨x, y⟩Rn ∀x, y ∈ Rn,

and
St = S,

and we have
L = OS.

We then have
det(LtL) = det(StOtOS) = det(StS) = (det(S))2 ,

that is √
det(LtL) = |det(S)| .

The conditions on O simply mean that
O = (o1, . . . , on) ∈ RN×n
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for orthonormal vectors oi ∈ RN , i = 1, . . . , n. We can extend (oi)n
i=1 to a orthonormal

basis (oi)N
i=1 of RN . Set

Õ := (o1, . . . , on, on+1, . . . , oN) ∈ RN×N .

Then Õ ∈ O(n), i.e. ÕtÕ = IN×N . By Exercise 1.16
Hn(LA) = Hn(ÕtOSA).

Now

ÕtO =



1 0 . . . 0
0 1 . . . 0
... . . . 0
0 0 . . . 1
0 0 . . . 0
... ...
0 0 . . . 0


=
(

In×n

0N−n×n

)
∈ RN×n

In particular ÕtLA ⊂ Rn × {0}. So again by Exercise 1.16
Hn(LA) = Hn(SA︸︷︷︸

⊂Rn

).

Since Hn = Ln in Rn we have by the transformation rule on Rn,

Hn(LA) = Ln(SA) = | det(S)|Ln(A) =
√

det(LtL)Ln(A).
□
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Part 2. Analysis II: Lp & Sobolev spaces (with sprinkles of Functional
Analysis)

For the Functional Analysis parts we use texts from [Brezis, 2011], lecture notes by Michael
Struwe (Funktionalanalysis; in German), and Haj lasz (Functional Analysis), as well as
[Clason, 2020]. An excellent (readable) source for Fourier Analysis is [Grafakos, 2014].
For Sobolev spaces a standard reference is [Adams and Fournier, 2003]. For very deli-
cate problems one might also consult [Maz’ya, 2011]. More introductory monographs are
[Evans and Gariepy, 2015] (for Geometric Measure Theory), [Evans, 2010] (for PDEs, see
also the classics: [Gilbarg and Trudinger, 2001], and [Ziemer, 1989]).

7. Normed Vector spaces

There is an order of concepts of spaces
Topological spaces ⊃ metric spaces ⊃ normed vector spaces ⊃ Pre-Hilbert-spaces

Definition 7.1. Let X be a set and τ ⊂ 2X a collection of subsets of X satisfying the
following axioms.

(1) ∅ ∈ τ and X ∈ τ
(2) If τ ′ ⊂ τ is any arbitrary (finite or infinite, countable or uncountable) union of

members of τ , then A := ⋃
B∈τ ′ B belongs to τ .

(3) If (Ak)N
k=1 ⊂ τ then ⋂N

k=1 Ak ∈ τ for every finite N ∈ N.

The elements of τ are called open sets. The collection τ is called a topology on X.

Definition 7.2. (1) Let X be a set and d : X → X → [0,∞) be a map with the
following properties for all x, y, z ∈ X
(a) d(x, y) ≥ 0 and equality holds if and only if x = y (non-degeneracy)
(b) d(x, y) = d(y, x) (symmetry)
(c) d(x, y) ≤ d(x, z) + d(z, y) (triangular inequality)

Then d is called a metric or distance, and (X, d) is called a metric space.
(2) Let (X, d) be a metric space. For x ∈ X and r > 0 the open ball B(x, r) is defined

as
B(x, r) := {y ∈ X : d(x, y) < r}.

A set A ⊂ X is called open if for each x ∈ A there exists r > 0 such that B(x, r) ⊂
A.

Exercise 7.3. Let (X, d) be a metric space and set
τ := {A ⊂ X : A open}

Then (X, τ) is a topological space.

τ is sometimes called the associated metric topology.
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Functional analysis (well: linear functional analysis) deals with linear spaces.

Definition 7.4 (linear space). A linear space, or vector space, (X, ∗,+) is a set with a
scalar multiplication ∗ : R × X → X, an vector addition + : X × X that satisfy the
following properties:

• u+ (v + w) = (u+ v) +W (associativity of vector addition)
• u+ v = v + u (commutativity of vector addition)
• there exists 0 ∈ X (called the origin or zero) such that v + 0 = v for all v ∈ V

(identity element of the group (V,+)
• For every v ∈ V there exists an element −v ∈ V , called the additive inverse of v

such that v + (−v) = 0 (inverse element)
• for every λ, µ ∈ R and v ∈ V we have λ(µv) = (λµ)v
• 1v = v where 1 ∈ R is the real number 1
• λ(u+ v) = λu+ λv (distributivity)
• (λ+ µ)v = λv + µv (distributivity).

(we often write λv instead of λ ∗ v).

A norm ∥ · ∥ on a linear space X is a map ∥ · ∥ : X → R with the properties

• ∥v∥ ≥ 0 for all v ∈ X and equality holds if and only if v = 0
• ∥λv∥ = |λ| ∥v∥ for all λ ∈ R, v ∈ X
• ∥v + w∥ ≤ ∥v∥+ ∥w∥ for all v, w ∈ X.

A vector space X equipped with a norm is called a normed space.

Two norms ∥ · ∥1 and ∥ · ∥2 are equivalent norms if there exists C > 0 such that
C−1∥x∥2 ≤ ∥x∥1 ≤ C∥x∥2 ∀x ∈ X.

Exercise 7.5. Let (X, ∥ · ∥) be a normed vector space. Show that
d(x, y) := ∥x− y∥

is a metric. d is often called the induced metric for a normed vector space.

Show that two equivalent norms induce two equivalent metrics.

Definition 7.6. Let (X, ∗+) be a linear space, or vector space, (X, ∗,+). A scalar product
or inner product is a map ⟨·, ·⟩ : X → R with the following properties

(1) ⟨x, y⟩ = ⟨y, x⟩ ∀x, y ∈ X
(2) ⟨x, x⟩ ≥ 0 and ⟨x, x⟩ = 0 if and only if x = 0
(3) ⟨λx+ µy, z⟩ = λ⟨x, z⟩+ µ⟨y, z⟩ for all λ, µ ∈ R, x, y, z ∈ X.

A vector space equipped with a scalar product is called a inner product space or pre-Hilbert
space
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Exercise 7.7. Let (X, ⟨·, ·⟩) be an inner product space and denote

∥x∥ :=
√
⟨x, x⟩

Show that ∥ · ∥ is a norm.

∥ · ∥ is then called the induced norm.

Exercise 7.8 (Cauchy-Schwarz). We have
⟨x, y⟩ ≤ ∥x∥ ∥y∥

equality holds if and only if x and y are linearly dependent, i.e.
x = λy, or y = λx

for some λ ∈ R.

Hint: Extend the proof of Advanced Calculus.

We can also check if a norm belongs to a scalar product.

Exercise 7.9 (Parallelogram law). Let (X, ∥ · ∥) be a normed vector space. Then there
exists a scalar product ⟨·, ·⟩ inducing ∥ · ∥ if and only if

2∥x∥2 + 2∥y∥2 = ∥x+ y∥2 + ∥x− y∥2 ∀x, y ∈ X.

Hint: Set ⟨x, y⟩ := ∥x+y∥2−∥x−y∥2

4 .

Definition 7.10. A normed vector space is complete, if it is metrically complete. A
normed vector space is called Banach space. If space is additionally an inner product
space, then we call it Hilbert space.

We now recall the definition of the two spaces we want to talk about most of the time in
this course Lp(Ω) and W 1,p(Ω).

Example 7.11. (Lp-spaces) Let Ω ⊂ Rn be a µ-measurable set, where for simplicity we
assume that µ is a Radon measure (most of the time µ will be the Lebesgue measure). Let
p ∈ [1,∞]. Let f : Ω→ R be a µ-measurable function. We say that f ∈ Lp(Ω) if and only
if

∥f∥Lp(Ω,µ) :=
(∫

Ω
|f |pdµ

) 1
p

<∞.

This makes sense only if p <∞, but for p =∞ we set
∥f∥L∞(Ω,µ) := sup

x∈Ω
|f(x)|,

where sup is to be understood as the µ-essential supremum, i.e.
sup
x∈Ω
|f(x)| = inf{Λ > 0 : µ{x ∈ Ω : |f(x)| > Λ} = 0}.

∥ · ∥Lp(Ω,µ) is in general not a norm, since ∥f∥Lp(Ω,µ) = 0 implies that f = 0 only µ-a.e.
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We solve this issue by always assuming that f = g (in the sense of Lp(Ω, µ)) if f(x) = g(x)
for µ-a.e. x ∈ Ω. (i.e. the set µ{x : f(x) ̸= g(x)} = 0).

Then ∥ · ∥Lp(Ω,µ) is a norm on all Lp(Ω, µ)-functions (modulo equality). And it is complete,
Theorem 3.27.

Also L2(Ω) is a Hilbert space with the scalar product

⟨f, g⟩ =
∫
fgdµ.

Example 7.12 (Sobolev space W 1,p). Let Ω ⊂ Rn be any open set. The space W 1,p(Ω)
consists of maps f ∈ Lp(Ω) such that any first-order distributional derivative ∂αf ∈ Lp(Ω),
and equipped with the norm

∥f∥W 1,p(Ω) := ∥f∥Lp(Ω) + ∥Df∥Lp(Ω).

Here ∂αf ∈ Lp(Ω) means that (cf. Theorem 4.46)∫
Ω
f∂αφ = −

∫
Ω
gαφ ∀φ ∈ C∞

c (Ω),

for some gα ∈ Lp(Ω). We identify ∂αf := gα, and set Df = (∂1f, ∂2f, . . . , ∂nf) ∈ Lp(Ω,Rn).

We will later see that this Sobolev space is complete, Proposition 13.8, and indeed it
is equivalent to the following metric closure of smooth functions under the W 1,p-norm,
(observe that C∞(Ω) and C∞(Ω) are two different spaces!),

W 1,p(Ω) =
{
f ∈ C∞(Ω) : ∥f∥Lp(Ω) + ∥Df∥Lp(Ω) <∞

}∥·∥W 1,p(Ω)

(We have proven this for Ω = Rn in Theorem 4.46, we will prove this for any open set in
Theorem 13.16).

Let us remark that often (not always) H1,p is used instead of W 1,p (H being for Hardy, W
being for Weill). And H1 often (not always) refers to W 1 ,2.

W 1,2 is a Hilbert space, if we use the following norm (which is equivalent to the original
norm) (

∥f∥2
L2(Rn) + ∥∇f∥2

L2(Rn)

) 1
2 ,

i.e. the following scalar product

⟨f, g⟩W 1,2 :=
∫
fg +

∫
∇f · ∇g.

Definition 7.13. A vector space X is called finite or finite dimensional if there exists a
finite basis, X = span{b1, . . . , bn} for some n ∈ N and some b1, . . . , bn ∈ X, and (bi)n

i=1
linear independent, i.e. whenever (λi)n

i=1 ⊂ R,
n∑

i=1
λibi = 0 ⇒ λi = 0 ∀i = 1, . . . , n.



ANALYSIS I & II & III VERSION: December 5, 2022 153

Equivalently, for any x ∈ X there exists exactly one sequence (λi)n
i=1 such that

x =
n∑

i=1
λibi.

Exercise 7.14. Let (X, ∥ · ∥) be a finite dimensional normed vector space with basis
b1, . . . , bn. I.e. for any x ∈ X there exists exactly one sequence of (λi)n

i=1 ⊂ R such
that

x =
n∑

i=1
λibi.

Define a new norm ∥ · ∥2 on X as follows

∥x∥2 :=
√√√√ n∑

i=1
|λi|2.

Show that ∥ · ∥2 is indeed a norm on X and show that ∥ · ∥2 is equivalent to ∥ · ∥. Namely
there exist Λ > 0 such that

Λ−1∥x∥2 ≤ ∥x∥ ≤ Λ∥x∥2 ∀x ∈ X.
Hint: To see Λ−1∥x∥2 ≤ ∥x∥ you can use a blowup proof and Bolzano Weierstrass. Assume
that there is no such Λ, then there must be a sequence xk ∈ X

∥xk∥2 > k∥xk∥.
W.l.o.g. ∥xk∥2 = 1. Use Bolzano-Weierstrass to conclude that xk is actually converging in
X and conclude that the limit x̄ satisfies ∥x̄∥2 = 1 and ∥x̄∥ = 0 simultaneously, which is a
contradiction.

Exercise 7.15. If X is a finite dimensional vector space and ∥·∥1 and ∥·∥2 are two norms.
Show that they are equivalent.

Hint: Exercise 7.14.

Exercise 7.16. Show that any normed vector space (X, ∥·∥) with countably many (ci)∞
i=1 ⊂

X such that ∥ci∥ ≤ 1 and
∥ci − cj∥ ≥

1
100 ∀i ̸= j.

is infinite dimensional.

Hint: Assume not, then we can assume (7.15) that X = Rn for some n. Find a contradic-
tion to Bolzano-Weierstrass.

Exercise 7.17. Let (X, ∥ · ∥) be a normed vector space (identified with its metric space).

Show that
X is finite dimensional ⇔ any closed and bounded set in X is compact.

Hint: For one direction you can use the Riesz’ Lemma, Lemma 7.18 to apply Exercise 7.16.
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Lemma 7.18. Let U ⊊ X be a closed subspace of a normed vector space X. For any
δ ∈ (0, 1) there exists xδ ∈ X, ∥xδ∥ = 1, such that

∥xδ − u∥ ≥ δ ∀u ∈ U.

Exercise 7.19. Find proof online for Lemma 7.18

Exercise 7.20. In a normed space of infinite dimension no closed ball is compact.

Exercise 7.21. Let Ω ⊂ Rn be any nonempty open set and 1 ≤ p ≤ ∞. Show that Lp(Ω)
and W 1,p(Ω) are both infinite dimensional.

Hint: You can construct functions as in Exercise 7.16 using e.g. cutoff functions on small
sets.

8. Linear operators, Dual space

We already defined the notion of bounded linear operators L : X → Y between two normed
vector spaces X and Y , see Theorem 5.33.

The linear operator L : X → Y is continuous (often also called bounded), if and only if the
operatornorm ∥L∥L(X,Y ) defined in Definition 5.35 is finite,

∥L∥L(X,Y ) := sup
∥x∥X≤1

∥Lx∥Y ,

or equivalently if for some Λ <∞
∥Lx∥Y ≤ Λ∥x∥X ∀x.

(∥L∥L(X,Y ) is then the smallest Λ for which this inequality holds).

Exercise 8.1. Show that for all finite-dimension vector spaces X, Y any linear operator
L : X → Y is continuous.

Exercise 8.2. Show that T : C1([0, 1]) → C0([0, 1]) given by Tφ := φ′ is continuous, if
C1 is equipped with the C1-norm, but discontinuous if we equip C1 with the C0-norm.

Exercise 8.3. Let Ω ⊂ Rn be an open set. Show that the partial derivative ∂α

• As map from (W 1,p(Ω), ∥ · ∥W 1,p(Ω)) → (Lp(Ω), ∥ · ∥Lp(Ω)) is a linear continuous
operator.
• As map from (C∞(Ω), ∥ · ∥W 1,p(Ω))→ Lp(Ω) is a linear continuous operator.
• As map from (C∞(Ω), ∥ · ∥Lp(Ω))→ Lp(Ω) is not a linear continuous operator.
• As map from (W 1,p(Ω), ∥ · ∥Lp(Ω)) → (Lp(Ω), ∥ · ∥Lp(Ω)) is not a linear continuous

operator.

Clearly if L and T are two linear operators from X to Y we can define for λ, µ ∈ R
λL+ Tµ : X → Y ; (λL+ µT ) (x) = λL(x) + µT (x) ∈ Y.
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That is the space of bounded linear operators from X to Y is a linaer space, and we denote
it by L(X, Y ).
Exercise 8.4. Show that the operatornorm ∥ · ∥ is indeed a norm on this space

Exercise 8.5. Let (X, ∥ · ∥X,1), (Y, ∥ · ∥Y,1) be a normed space and assume that ∥ · ∥X,2 is
an equivalent norm to ∥ · ∥X,1 and ∥ · ∥Y,2 is an equivalent norm to ∥ · ∥Y,1.

(1) Show that any linear bounded function from X → Y w.r.t the first norms is also
linear bounded function with respect to the second norm.

(2) Show that the operator norms with respect to the first norms is equivalent to the
operatornorm w.r.t second norms.

That is L(X, Y ) is independent of the specific (equivalent!) choice of norms.

Exercise 8.6. Let X, Y, Z be normed spaces and T ∈ L(X, Y ), S ∈ L(Y, Z). Define
S ◦ T (X) := S(T (x)).

Show that S ◦ T ∈ L(X,Z) and
∥S ◦ T∥L(X,Z) ≤ ∥S∥L(Y,Z)∥T∥L(X,Y ).

Definition 8.7. The space of bounded linear operators from X to Y equipped with the
operatornorm is denoted by L(X, Y ). The operator norm is usually denoted by ∥ · ∥L(X,Y ).

If Y = R then we write X∗ := L(X,R), and call X∗ the dual space to X. The operator
norm is ∥ · ∥X∗ .
Exercise 8.8. Assume that a normed space (X, ∥ · ∥X) can be written as X = X1 × X2
where (Xi, ∥ · ∥Xi

) are two normed spaces. Assume furthermore that the norm ∥ · ∥X is
equivalent to

X = X1 ×X2 ∋ (x1, x2) 7→ ∥x1∥X1 + ∥x2∥X2

Show that
X∗ = X∗

1 ⊕X∗
2 ,

in the following sense

(1) every x∗ ∈ X∗ can be written as
x∗[(x1, x2)] = x∗

1(x1) + x∗
2(x2).

where x∗
i ∈ X∗

i for i = 1, 2.
(2) every pair x∗

i ∈ X∗
i , i = 1, 2, induce an element x∗ ∈ X∗ via

x∗[(x1, x2)] = x∗
1(x1) + x∗

2(x2).
(3) Show that x∗

1 and x∗
2 are uniquely determined, i.e. if

x∗
1(x1) + x∗

2(x2) = x̃∗
1(x1) + x̃∗

2(x2)∀(x1, x2) ∈ X
then x∗

i = x̃∗
i for i = 1, 2.

(4) The norms ∥x∗∥X∗ and ∥x∗
1∥X∗

1
+ ∥x∗

2∥X∗
2

are equivalent.
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Theorem 8.9. If X is a normed vector space and Y is complete, then L(X, Y ) is complete.
In particular, X∗ is always complete.

Proof. Let Tn be a Cauchy-Sequence in L(X, Y ). Then for each fixed x, (Tnx)n ⊂ Y is a
Cauchy sequence, and thus we can define

Tx := lim
n→∞

Tnx.

It is easy to check that T is now linear and continuous. (exercise!) □

Example 8.10. We have discussed in Theorem 5.39 (Riesz Representation Theorem) that
for 1 ≤ p < ∞ any element in f ∗ ∈ (Lp(Rn))∗ can be represented by some f ∈ Lp′(Rn)
(recall p′ = p

p−1 is the Hölder dual!), via

f ∗[φ] =
∫
Rn
fφ.

A possible element in (W 1,p(Rn))∗ is

f ∗[φ] :=
∫
R
f1φ+

∫
R
f2 ·Dφ,

wher f1 ∈ Lp(Rn) and f2 ∈ Lp(Rn,Rn). We will need Hahn-Banach theorem, Theorem 10.2
below, to show that this is the generic form of a dual element, Corollary 10.12.

8.1. Compact operators. Let us also define compact operator.
Definition 8.11. • Let (X, d) be a metric space. A set A ⊂ X is called precompact,

if any sequence (ak)k∈N ⊂ A has a convergent subsequence in X.
• Let (X, dX) and (Y, dY ) be two metric spaces. A compact operator T is called a

compact operator if it maps bounded sets A ⊂ X to precompact sets T (A) ⊂ Y 27.
Exercise 8.12. Show that a set A ⊂ X is pre-compact if and only if its closure A is
compact.
Exercise 8.13. • Show that in general, a compact operator L : (X, dx) → (Y, dY )

may not be continuous.
• Show that if (X, dx) and (Y, dY ) are normed vector spaces (with dx deriving from

the X-norm, and dy deriving from the Y -norm) then any compact linear operator
T : X → Y is actually continuous.

Compact operators are somewhat lower order, cf. Theorem 13.51. As we shall later see,
the identity map I : (W 1,p(Ω), ∥ · ∥W 1,p(Ω)) → (Lp(Ω), ∥ · ∥Lp(Ω)) is compact if Ω is a
smoothly bounded set, Theorem 13.35, which is called the Rellich-Kondrachov Theorem.
That is whenever (fk)k∈N is bounded in W 1,p(Ω), i.e. supk ∥fk∥W 1,p < ∞ there exists a
subsequence (fki

)i∈N such that fki
converges in Lp(Ω).

27Careful: for general metric spaces this definition may not be uniform in the literature, some people
might assume that compact operators are continuous – we don’t care about this for linear operators,
Exercise 8.13
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We also have a version of this for continuous maps, based on Arzela-Ascoli (and indeed,
the Rellich-Kondrachov Theorem is a consequence of Arzela-Ascoli as well).

Example 8.14. Let Ω ⊂ Rn be a compact set. Denote by Y := C0(Ω) the set of continuous
functions on Ω equipped with the supremums-norm

∥f∥Y := ∥f∥L∞(Ω).

Denote by X := C0,1(Ω) the set of uniformly Lipschitz continuous functions on Ω equipped
with the norm

∥f∥X := ∥f∥L∞(Ω) + sup
x ̸=y∈Ω

|f(x)− f(y)|
|x− y|

.

Denote by I : X → Y the identity map, If = f . It is obviously linear, and it is bounded,
since

∥If∥Y = ∥f∥L∞(Ω) ≤ ∥f∥L∞(Ω) + sup
x ̸=y∈Ω

|f(x)− f(y)|
|x− y|

= ∥f∥X

Indeed, it I : X → Y is a compact operator: take (fk)k∈N a bounded sequence in X, i.e.

sup
k
∥fk∥X <∞.

From the definition of ∥X∥ we observe that (fk)k∈N is then uniformly bounded and equicon-
tinuous. By Arzela-Ascoli we know that then there exists a uniformly converging subse-
quence, i.e. (fki

)i∈N and f ∈ C0(Ω) such that

∥fki
− f∥L∞

i→∞−−−→ 0.

But this is the same as to say that (Ifki
)i∈N is convergent in X. That is, I : X → Y maps

bounded sets in X to pre-compact sets in Y .

9. Subspaces and Embeddings

Definition 9.1. Let X and Y be two normed spaces.

• A linear vector space X is embedded into a linear vector space Y , if there exists a
map T : X → Y which is bounded linear and injective. We then say that X is
embedded into Y (via T ), in symbols.

X
T
↪−→ Y

• We say that X T
↪−→ Y is an isometric embedding if ∥Tx∥Y = ∥x∥X for all x ∈ X.

• We say the embedding is X T
↪−→ Y compact, or X is compactly embedded in Y if the

embedding operator T is compact.
• If T : X → Y is the identity, and X and Y carry the same norm, then we say X is

a (normed) subspace of Y .
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Example 9.2. C0,1(Ω) is a subspace of C0(Ω), but in view of Example 8.14 it is also
compactly embedded.

What is the issue with these statements? The norms are not specified!

We should have written that (C0,1(Ω), ∥ · ∥L∞(Ω)) is a subspace of
(
C0(Ω), ∥ · ∥L∞(Ω)

)
(no-

body does that, though).

And, if we set

∥f∥C0,1 := ∥f∥L∞(Ω) + sup
x ̸=y∈Ω

|f(x)− f(y)|
|x− y|

,

then (C0,1(Ω), ∥ · ∥C0 ,1 ) is not a subspace of
(
C0(Ω), ∥ · ∥L∞(Ω)

)
, but it is compactly em-

bedded (via the identity map).

Exercise 9.3. For any p ∈ [1,∞), Ω ⊂ Rn open:

• (W 1,p(Ω), ∥ · ∥W 1,p(Ω)) is embedded into (Lp(Ω), ∥ · ∥Lp(Ω)) (under the identity map,
but this is not a isometric embedding).
• (W 1,p(Ω), ∥ · ∥Lp(Ω)) is a subspace of (Lp(Ω), ∥·∥Lp(Ω)) but show that (W 1,p(Ω), ∥ · ∥Lp(Ω))

is not a closed subspace (Hint: Exercise 9.4)

Exercise 9.4. Let Ω be any open set in Rn.

Show that (W 1,p(Ω), ∥ · ∥Lp(Ω)) is a dense subspace of (Lp(Ω), ∥ · ∥Lp(Ω)).

Hint: Use that we have shown that C∞
c (Ω) is dense in Lp(Ω), Theorem 3.32.

As mentioned before, we will later show the Rellich-Kondrachov theorem, Theorem 13.35,
that shows that (W 1,p(Ω), ∥ · ∥W 1,p) is compactly embedded in Lp(Ω) for nicely bounded
sets Ω.

Example 9.5. For Ω ⊂ Rn, we can also embed (W 1,p(Ω), ∥ · ∥W 1,p(Ω)) isometrically into
(Lp(Ω))n+1 = Lp(Ω)× . . . Lp(Ω).

Indeed, let u (for simplicity, easy to change for the original definition (exercise: whats the
difference?)) take the W 1,p-norm to be

∥f∥W 1,p(Ω) := ∥f∥Lp(Ω) +
n∑

α=1
∥∂αf∥Lp(Ω).

Then let
Tf := (f, ∂1f, ∂2f, . . . , ∂nf).

Clearly T : (W 1,p(Ω), ∥ · ∥W 1,p(Ω))→ (Lp(Ω))n+1 is injective. Moreover
∥Tf∥Lp(Ω)×...Lp(Ω) = ∥f∥W 1,p(Ω).

So T is an isometric embedding.
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Exercise 9.6. Let Ω ⊂ Rn be a compact set. Show that C0,α(Ω) is compactly embedded in
C0,β(Ω), whenever 0 ≤ α ≤ β ≤ 1, in the following sense:

Denote by Y := C0,γ(Ω) the set of Hölder continuous functions, i.e. f such that

sup
x ̸=y∈Ω

|f(x)− f(y)|
|x− y|γ

<∞ if γ > 0

and f simply continuous if γ = 0.

Denote by

∥f∥C0,γ(Ω) := ∥f∥L∞(Ω) + sup
x ̸=y∈Ω

|f(x)− f(y)|
|x− y|γ

.

Show that for 0 ≤ α ≤ β ≤ 1 the identity map

I :
(
C0,β(Ω), ∥ · ∥C0,β(Ω)

)
→
(
C0,α(Ω), ∥ · ∥C0,α(Ω)

)
is a compact operator.

Exercise 9.7. Let U ⊂ X be a dense subspace, and T ∈ L(U, Y ) for some Banach space
Y . Then there exists a unique extension S ∈ L(X, Y ) with S

∣∣∣∣
U

= T . Moreover

∥S∥L(X,Y ) = ∥T∥L(U ,Y )

Exercise 9.8. For Ω ⊂ Rn be a bounded set (with smooth boundary, say a ball – not so
important for our point here).

Let U := C1(Ω) be the set of continuously differentiable functions and Y := Lp(Ω) (with
respect to the Lebesgue measure). Fix α ∈ {1, . . . , n}. Define

T : U → Y

be defined as (classical derivative!)
Tf := ∂αf.

(Let us assume) we know that U is dense in Lp(Ω) w.r.t. to the Lp-norm, and U is dense
in W 1,p(Ω) w.r.t W 1,p-norm.

Considering Exercise 9.7,

• what is the extended operator S with respect to X = W 1,p(Ω) (and the W 1,p-norm),
• what is the extended operator S with respect to X = Lp(Ω) (and the Lp-norm)

Exercise 9.9. Let Y be a normed space and X ⊂ Y be a (linear) subspace. If Y is a
Banach space, then X is a Banach space if and only if X is (metrically) closed.
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10. Hahn-Banach Theorem

Example 10.1. Let X be a subspace of Y then Y ∗ is a subspace of X∗ in the following
sense. If y∗ ∈ Y ∗ then clearly y∗

∣∣∣∣
X

is a linear bounded operator on X, and in that sense
y∗ ∈ X∗.

If X is embedded into Y via the map T : X → Y , then Y ∗ is embedded into X∗ under the
operator T ∗ defined as follows:

T ∗ (y∗) (x) := y∗ (T (x)) .

On the other hand, in the situation of Example 10.1, the following Hahn-Banach theorem
tells us, than any x∗ ∈ X∗ can be (non-uniquely!) extended to an element of Y ∗.
Theorem 10.2 (Hahn-Banach theorem). Let X be a vector space over R, U ⊂ X a linear
subspace, and let p : X → R be sublinear, that is

(1) p(λx) = λp(x) for all x ∈ X and λ ≥ 0, λ ∈ R
(2) p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X

Assume T : U → R be linear and T (x) ≤ p(x) for all x ∈ U .

Then there exists a linear extension T e : X → R, i.e. a linear map with

(1) T e(x) = T (x) for all x ∈ U
(2) T e(x) ≤ p(x) for all x ∈ X.

Exercise 10.3. Show that Theorem 10.2 can be applied to bounded operators. Namely,

• Show that p(x) = ∥x∥ is sublinear.
• Assume Λ ∈ R, X is a normed vector space, and T is linear operator T : X → R

with Tx ≤ Λ∥x∥ for all x ∈ X. Show that ∥T∥X∗ ≤ Λ, i.e. T is bounded.

We have already proven the finite-dimensional version in Advanced Calculus (see my Lec-
ture Notes of Adv.Calc, Lemma 28.7.), namely we have
Proposition 10.4. Let X be a vector space over R, U ⊂ X a linear subspace and v ∈ X\U .
Let p : X → R be sublinear, that is

(1) p(λx) = λp(x) for all x ∈ X and λ ≥ 0, λ ∈ R
(2) p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X

Assume T : U → R be linear and T (x) ≤ p(x) for all x ∈ U.

Set
W := span{U, v} = {w ∈ X : w = u+ λv for some λ ∈ R, u ∈ U} .
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Then there exists a linear extension T e : W → R, i.e. a linear map with

(1) T e(x) = T (x) for all x ∈ U
(2) T e(x) ≤ p(x) for all x ∈W .

Proposition 10.4 is enough to prove Theorem 10.2 if X is finite dimensional. But for general
linear spaces (which might not even have a countable basis) we need Transfinite Induction,
i.e. the axiom of choice, here in the form (and equivalent to) the Lemma of Zorn.

Definition 10.5 (Partial Order). Let P be a set.

(1) A map ≤: A ⊂ X × X → {true, false} is called a partial order (and then X is
partially ordered) if the following holds. Here and henceforth we follow the notion:
we will write x ≤ y if (x, y) ∈ A and ≤ (x, y) = true, and x ≥ y if x ≤ y. However,
observe that there might be x, y ∈ X such that neither x ≤ y nor y ≤ x.
• (reflexive): for all x ∈ X we have x ≤ x
• (antisymmetric): If x ≤ y and y ≤ x then y = x.
• (transitive): If x ≤ y and y ≤ z then x ≤ z.

(2) If moreover for every x, y ∈ X we have either x ≤ y or y ≤ x or both, then we say
that X is totally ordered.

(3) If (P,≤) is a partially ordered set and S ⊂ P , then S is a chain if (S,≤) is totally
ordered (where of course ≤ is restricted to S × S)

(4) If (P,≤) is a partially ordered set and S ⊂ P then u ∈ P is an upper bound of S if
s ≤ u for all s ∈ S.

(5) If (P,≤) is a partially ordered set then m ∈ P is maximal if there is no element
larger, i.e. for any s ∈ P with s ≥ m we have s = m. (but there may be elements
which cannot be compared!)

Exercise 10.6. Let Y be any set and
X := 2Y = {A ⊂ Y }

the set of subsets of Y (i.e. the power set of Y ). Show that the set-inclusion ⊂ is a partial
order, but (X,⊂) is not necessarily totally ordered.

Lemma 10.7 (Zorn’s Lemma). Let (P,≤) be a nonempty partially ordered set. Assume
that every chain A in P has an upper bound (in P , not necessarily in A). Then the set P
contains at least one maximal element.

Proof of Theorem 10.2. If X is finite dimensional, Theorem 10.2 follows by induction from
Proposition 10.4.

The general case is more abstract, using Zorn’s lemma. Let A be the set of collections of
extensions of T , i.e.

A :=
{

(T̃,V ) : T̃ : V → R is linear, T̃
∣∣∣∣
U

= T, T̃ (x) ≤ p(x) ∀x ∈ V
}
.



ANALYSIS I & II & III VERSION: December 5, 2022 162

(Here V is always a linear subspace).

We can equip A with the partial order ≤, namely

(T1, V1) ≤ (T2, V2) :⇔ V1 ⊂ V2 : T2

∣∣∣∣
V1

= T1.

Then A is nonempty (since (T, U) ∈ A).

We want to apply Zorn’s lemma, Lemma 10.7, to A. So let B ⊂ A be a chain, i.e. a totally
ordered subset of A – that is for any (T1, V1), (T2, V2) ∈ B we have either (T1, V1) ≤ (T2, V2)
or (T1, V1) ≥ (T2, V2).

We need to find an upper bound for B in A. For this set

V̄ :=
⋃

(T̃,V )∈B

V.

It is easy to check that V̄ is a linear subspace. Also we can define T̄ : V̄ → R. Let x ∈ V̄ ,
then there must be at least one (T̃, V ) ∈ B such that x ∈ V . We then set T̄ (x) = T̃ (x).
If there is any other (T̃2, V2) ∈ B such that x ∈ V2 we have (by the assumption of total
order) that T̃ (x) = T̃2(x) (since one is the extension of the other).

So we have found T̄ : V̄ → R. Now let x, y ∈ V̄ , λ, µ ∈ R. Then there exists (V1, T1) ∈ B
such that x ∈ V1, and (V2, T2) ∈ B such that y ∈ V2. By the assumption of total order of
B, we have either V1 ⊂ V2 or V1 ⊃ V2. Lets assume that V1 ⊂ V2 then λx + µy ∈ V2, and
we have

T̄ (λx+ µy) = T2(λx+ µy) = λT2x+ µT2y = λT̄x+ µT̄y.

Thus T̄ is linear.

If x ∈ V̄ then T̄ x = T̃ x for some (T̃, V ) ∈ B, and thus

T̄ x = T̃ x ≤ p(x).

Thus, (V̄, T̄ ) ∈ A. Next we claim that (V̄, T̄ ) is an upper bound for B. And indeed if
(T̃, V ) ∈ B, then V ⊂ V̄ and T̄ x = T̃ x.

So we have established the conditions for the Lemma of Zorn, Lemma 10.7, and conclude
that there must be some maximal element (T e,W ) ∈ A, i.e. whenever (T e,W ) ≤ (T̃, V )
then V = W and T̃ = T e.

In particular T e : W → R is linear and T e

∣∣∣∣
U

= T and T e(x) ≤ p(x). All that remains to
show is that W = X. By contradiction, assume this is not the case. Then there exists
v ∈ X\W to which we can apply Proposition 10.4. We then find an T̃ e : span(v,W )→ R
which satisfies all the properties of an element in A. But since T e is a maximal element
we have W ⊃ span(v,W ) – a contradiction since v ̸∈ W . We conclude that W = X and
T e is the extension we wanted. □
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Remark 10.8. Observe that the extenstion T e is in no way claimed to be unique. If in
Theorem 10.2 U is dense, we know there is a unique extension to X – but for non-dense
U there is no reason that would be true.

Hahn-Banach has several re-formulations and consequences

Corollary 10.9. Let X be a normed space and Y ⊂ X be a subspace and u∗ ∈ Y ∗. Then
there exists x∗ ∈ X∗ such that

x∗[x] = u∗[x] ∀x ∈ Y

and
∥x∗∥X∗ = ∥u∗∥Y ∗ .

(conpare this with Example 10.1)

Exercise 10.10. Prove Corollary 10.9

Corollary 10.11. Let X be a normed vector space and x0 ∈ X \ {0}. Then there exists
x∗ ∈ X∗ with ∥x∗∥X∗ = 1 and x∗[x0] = ∥x0∥X .

Proof. For λ ∈ R set
Y := span{x0}

and set
y∗[λx0] := λ∥x0∥X .

Then y∗ ∈ Y ∗, and ∥y∗∥Y ∗ = 1.

Now take the Hahn-Banach-extension x∗ : X → R with p(v) = ∥v∥X , Theorem 10.2. Then
we have

|x∗[v]| ≤ p(v) = ∥v∥ ∀v ∈ X.
Thus ∥x∗∥X∗ ≤ 1. Plugging in v := x0 we find that

|x∗[x0]| = ∥x0∥,

so we have ∥x∗∥X∗ ≥ 1. We can conclude. □

Corollary 10.12. Let 1 ≤ p <∞ and let T ∈ (W 1,p(Rn))∗. Then there exists g ∈ Lp′(Rn)
and G ∈ Lp′(Rn,Rn) such that

T [f ] 7→
∫
gf +

∫
G ·Df.

Moroever for some C > 0 depending only on the dimension n

C−1∥T∥(W 1,p(Rn))∗ ≤ ∥g∥Lp′ (Rn) + ∥G∥Lp′ (Rn,Rn) ≤ C∥T∥(W 1,p(Rn))∗ .
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Proof. Let
X := Lp(Rn)× . . .× Lp(Rn)︸ ︷︷ ︸

n+1 times

with the norm

∥(f0, . . . , fn)∥X :=
n+1∑
i=0
∥fi∥Lp(Rn).

Let Y ⊂ X be given by
Y = {(f0, f1 . . . , fn) ∈ X : fi = ∂if0, i=1, . . . , n}

where the derivative is taken in the sense of distribution. Clearly Y is linear subspace of
X28

Let T ∈ (W 1,p(Rn))∗, then we can consider T as a bounded linear functional on Y , i.e.
T ∈ Y ∗. By Hahn-Banach theorem, Corollary 10.9, we can extend T to T e ∈ X∗. In view
of Exercise 8.8, we have that

X∗ = (Lp(Rn))∗ ⊕ (Lp(Rn))∗ ⊕ . . .⊕ (Lp(Rn))∗.

Applying componentwise the Riesz-representation theorem, Theorem 5.39, we find g0, . . . , gn ∈
Lp′(Rn) such that

T e(f0, f1, . . . , fn) =
n∑

i=0

∫
Rn
gifi.

If we set G := (g1, . . . , gn)t then in particular for f ∈ W 1,p(Rn) we have

T (f) = T e(f, ∂1f, . . . , ∂nf) =
∫
Rn
g0f +

∫
Rn
G ·Df.

□

Remark 10.13. Actually, one can sharpen Corollary 10.12, and show that

T [f ] 7→
∫
gf +

∫
Dg2 ·Df.

for some g2 ∈ Ẇ 1,p(Rn). One can prove this by so-called Hodge decomposition (also some-
times referred to as Helmholtz decomposition), which says that we can split G = Dg2 + G̃
where G̃ is divergence free (and thus

∫
G̃ · Df vanishes. The construction of G be done

variationally, by minimizing g2 7→ ∥G − Dg2∥L2(Rn), but the Lp-estimates (if p ̸= 2) need
Calderon-Zygmund theory (i.e. Harmonic Analysis).

28Actually Y is also closed. Observe that

I : f 7→ (f, ∂1f, . . . , ∂nf)

is then an linear map from W 1,p(Rn) to Y . It is clearly injective and onto. Moreover we have

∥If∥X = ∥f∥W 1,p(Rn).

Since W 1,p(Rn) is complete, Y is a closed linear subspace of X.
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Corollary 10.14. Let X be a normed vector space. Then
∥x∥X = max

x∗∈X∗,∥x∗∥X∗ =1
|x∗[x]|

(Observe that the maximum is obtained)

Proof. Fix x ∈ X. Clearly we have
sup

x∗∈X∗,∥x∗∥X∗ =1
|x∗[x]| ≤ ∥x∥X .

Now take x̄∗ from Corollary 10.11. Then
sup

x∗∈X∗,∥x∗∥X∗ =1
|x∗[x]| ≥ |x̄∗[x]| = ∥x∥X .

Thus we have
sup

x∗∈X∗,∥x∗∥X∗ =1
|x∗[x]| = |x̄∗[x]| = ∥x∥X

In particular the supremum is attained. □

Exercise 10.15. Let X be a normed vector space and x ∈ X. Show that: x∗[x] = 0 for all
x∗ ∈ X∗ implies x = 0.

Slighly more generally than Corollary 10.14

Exercise 10.16. Prove the following. Let X be a normed vector space and let U ⊂ X∗ be
a dense set. Then

∥x∥X = sup
u∗∈U,∥u∗∥X∗ ≤1

|u∗[x]|

A specific application of Exercise 10.16 and the Riesz-Representation theorem is the fol-
lowing duality argument.

Proposition 10.17. Let p ∈ [1,∞] then

∥f∥Lp(Rn) = sup
g∈C∞

c (Rn),∥g∥
Lp′ ≤1

∫
fg

Actually neither Hahn-Banach nor Riesz representation theorem is needed for Proposi-
tion 10.17, one can argue as in Equation (5.10).

We can also use now functionals to seperate subspaces, which will be very important for
the reflexivity of W 1,p later, Theorem 11.9 and Corollary 11.10.

Corollary 10.18. Let X be a normed vector space and U ⊂ X a subspace which is addi-
tionally closed. Assume x0 ∈ X \ U . Then there exists x∗ ∈ X∗ such that x∗[x] = 0 for all
x ∈ U , but x∗[x0] = 1.
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Proof. Denote
V := span(U, x0).

Since U is a subspace and x0 ̸∈ U , for any v ∈ V there exists exactly one u ∈ U and one
λ ∈ R such that

v = u+ λx0.

Indeed, assume we have ũ+ λ̃x0 = u+ λx0 then we have

ũ− u =
(
λ− λ̃

)
x0

If λ̃ ̸= λ we obtain that
U ∋ ũ− u

λ− λ̃
= x0 ̸∈ U

So λ̃ = λ and thus ũ = u and we have shown uniqueness.

Now we define the operator on V . For v = u+ λx0 set
Tv := λ.

Clearly T is linear. It remains to show that T ∈ V ∗.
(10.1) |Tv| ≤ |λ|.
So, what we need to show is
(10.2) |λ| ≤ ∥u+ λx0∥.
Observe that since U is a linear space,

∥u+ λx0∥X = |λ|∥−1
λ
u︸ ︷︷ ︸

∈U

−x0∥X ≥ |λ| inf
ũ∈U
∥ũ− x0∥.

So all we need to show is
(10.3) inf

ũ∈U
∥ũ− x0∥ > 0.

This is the place where the closedness of U comes into play. Assume
inf
ũ∈U
∥ũ− x0∥ = 0.

Then there exists ũk ∈ U such that ∥ũk − x0∥
k→∞−−−→ 0. That is x0 ∈ U . Since U is closed

we would have x0 ∈ U , a contradiction.

Thus (10.3) is established, which implies (10.2), which in view of (10.1) implies
|Tv| ≤ C |v|

where C = (inf ũ∈U ∥ũ− x0∥)−1. Thus T ∈ V ∗ and we can use the Hahn-Banach extension
to conclude. □

Recall the definition of separable spaces
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Definition 10.19. A normed space X is separable iff there exists a countable set U =
{x1, x2, . . .} with U = X.

Corollary 10.20. Let X be a normed vector spcae. If X∗ is separable, then X is separable

Proof. Let x∗
1, x

∗
2, . . . ⊂ X∗ be a dense sequence.

For each x∗
i there must be some xi ∈ X, ∥xi∥X = 1 such that

x∗
i [xi] ≥

1
2∥x

∗
i ∥X∗ .

YQ :=
{
x ∈ X : x =

n∑
i=1

λixi, for some n ∈ N and (λi)n
i=1 ∈ Q

}
and

YR :=
{
x ∈ X : x =

n∑
i=1

λixi, for some n ∈ N and (λi)n
i=1 ∈ R

}
Clearly YQ is countable, and it is dense in YR. So all we need to show is that the closure
YR = X. Assume this is not the case then there exists x0 ∈ X \ YR. YR is a closed linear
subspace (here we use YR, otherwise we could have worked with (xi)i). So by Hahn-Banach,
Corollary 10.18, there exists x∗

0 ∈ X∗ such that x∗
0[x] = 0 for all x ∈ Y R but x∗

0[x0] = 1.

We then have for each n ∈ N

∥x∗
0 − x∗

n∥X∗

∥xn∥X=1
≥ |(x∗

0 − x∗
n)(xn)| xn∈YR= |x∗

n(xn)| ≥ 1
2∥x

∗
n∥X∗ ,

by the choice of xn. By reverse triangular inequality this implies

∥x∗
0 − x∗

n∥X∗ ≥ 1
2∥x

∗
n∥X∗ ≥ 1

2∥x
∗
0∥X∗ − 1

2∥x
∗
0 − x∗

n∥X∗ ,

that is
3∥x∗

0 − x∗
n∥X∗ ≥ ∥x∗

0∥X∗ .

This holds for any n ∈ N. Thus
3 inf

n∈N
∥x∗

0 − x∗
n∥X∗ ≥ ∥x∗

0∥X∗ .

By density assumption the left-hand side is zero, so we have x∗
0 = 0, a contradiction to

x∗
0(x0) = 1. □

10.1. Separation theorems. For any convex set C and any point x0 outside the convex
set C there exists a line that separates C and x0. This is true in any dimension (straight
lines are represented by x∗(x) = c, one side of a straight line is ≤ c, the other one ≥ c. In
infinite dimensions this is a consequence of Hahn-Banach.

Recall that C ⊂ X is convex if and only if for any x, y ∈ C we have λx+ (1− λ)y ∈ C for
all λ ∈ [0, 1].
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There are several versions of the separation theorems which are of fundamental importance
in convex optimization.

Theorem 10.21. Let X be a normed space and C ⊂ X nonempty, open, and convex and
let x0 ∈ X \ C. Then there exists x∗ ∈ X∗ such that

x∗[x] < x∗[x0] ∀x ∈ C.

Proof. We may assume that 0 ∈ C. Otherwise let C̃ := C−a for some fixed a ∈ C. Clearly
C̃ is still convex, open, and nonempty. If we find x∗ for C̃ and x0 − a such that

x∗(x) < x∗[x0 − a] ∀x ∈ C̃

then
x∗(x+ a) < x∗[x0] ∀x ∈ C̃ = C − a

or equivalently
x∗(z) < x̃∗[x0] ∀z ∈ C .

So, from now on assume that 0 ∈ C.

We introduce the Minkowski functional, mC : X → R

mC(x) := inf
{
t > 0 : 1

t
x ∈ C

}
.

Since C is open and 0 ∈ C for each x ∈ X there exists t > 0 such that 1
t
x ∈ C. Thus

mC(x) <∞ for all x ∈ X.

Also we observe the following

(10.4) 1
t
x ∈ C ∀t > mC(x).

Indeed let t > mC(x). By the definition of the infimum there exists t0 ∈ [mC(x), t) such
that 1

t0
x ∈ C. Since C is convex and 0 ∈ C we find that then also

1
t
x = t0

t

1
t0
x+

(
1− t0

t

)
0 ∈ C.

This establishes (10.4)

Also, there exist Λ > 0 such that

(10.5) mC(x) ≤ Λ∥x∥X .

Indeed, since 0 ∈ C and C is open, there exists δ > 0 such that B(0, δ) ∈ C and thus for
each x ∈ X we have δx

2∥x∥ ∈ B(0, δ) ∈ C. Thus, mC(x) ≤ 2
δ
∥x∥.
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Now we claim that the Minkowski functional is sublinear. It is easy to see that for λ > 0

mC(λx) = inf
{
t > 0 : 1

t
λx ∈ C

}
=λ inf

{
t

λ
> 0 : λ

t
x ∈ C

}
=λ inf

{
t̃ > 0 : t̃x ∈ C

}
=λmC(x).

Now assume that x, y ∈ C.

Fix any t > mC(x) and s > mC(y). Then we have 1
s
x ∈ C and 1

t
y ∈ C, by (10.4).

We then have by convexity of C,
1

t+ s
(x+ y) = t

t+ s︸ ︷︷ ︸
∈[0,1]

(1
t
x) + s

t+ s︸ ︷︷ ︸
=1− t

t+s

(1
s
y) ∈ C

Thus,
mC(x+ y) ≤ t+ s.

This holds for any t > mC(x) and any s > mC(y). Letting t→ mC(x)+ and s→ mC(y)+

we conclude that mC is indeed sublinear.

Next we observe that mC seperates C and x0, in the sense that
mC(x0) ≥ 1, and mC(x) < 1 ∀x ∈ C.

Indeed, mC(x) < 1 for all x ∈ C follows from the fact that 1
1x ∈ C and C is open, so there

must be some t < 1 such that 1
t
x ∈ C as well – and thus mC(x) ≤ t < 1.

To see mC(x0) ≥ 1 observe that if mC(x0) < 1 then from (10.4) we know x0 = 1x0 ∈ C
which is a contradiction. Thus mC(x0) ≥ 1 (observe it could indeed be = 1 if x0 lies on
the boundary of C!).

Now set Y := span{x0} and define y∗ ∈ Y ∗ as
y∗[λx0] := λmC(x0), λ ∈ R.

Since mC(x) ≥ 0 we find that

y∗[λx0]
= mC(λx0) if λ > 0
≤ 0 ≤ mC(λx0)if λ ≤ 0

Thus y∗[y] ≤ mC(y) for all y ∈ Y . By the Hahn-Banach theorem we find x∗ : X → R with
x∗ : X → R linear, and
x∗[x] ≤ mC(x) ∀x ∈ X.

In particular, in view of (10.5) we have that x∗ ∈ X∗.
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Thus we have
x∗[x] ≤ mC(x) < 1 ∀x ∈ C

and
x∗[x0] = y∗[x0] = mC(x0) ≥ 1.

□

One can also separate two disjoint convex sets

Theorem 10.22. Let X be a normed space, U, V ⊂ X convex and nonempty. Assume
that U is open, then there exists λ ∈ R and a functional x∗ ∈ X∗ such that

x∗[u]<λ≤x∗[v] ∀u ∈ U , v ∈ V.

Proof. We set
C := U − V := {u− v : u ∈ U, v ∈ V }.

Since U is open, so is C. Since U and V are convex, so is C. Since U ∩ V = ∅ we have
0 ̸∈ C. By Theorem 10.21 there exist x∗ ∈ X∗ such that

x∗[x] < 0 ∀x ∈ C.
That is,

x∗[u− v] < 0 ∀u ∈ U, v ∈ V.
That is

x∗[u] < x∗[v] ∀u ∈ U, v ∈ V.
Fixing u ∈ U we see that λ := infv∈V x

∗[v] ∈ R, and we have
x∗[u]≤λ≤x∗[v] ∀u ∈ U, v ∈ V.

We need to make the first ≤ into a <.

Assume to the contrary, that there exists some u ∈ U such that x∗[u] = λ. We know that
x∗ ̸= 0 (because we have the strict inequality above), so there exists some vector p ∈ X
such that x∗[p] > 0. Since U is open there exists some δ > 0 such that u + δp ∈ U , and
thus

x∗[u+ δp︸ ︷︷ ︸
∈U

] > x∗[u] = λ,

which is a contradiction. So indeed we have
x∗[u]<λ ≤ x∗[v] ∀u ∈ U, v ∈ V.

□

Theorem 10.23 (Strict separation theorem). Let X be a normed space, C ⊂ X be a
nonempty, closed, convex set, and let x0 ∈ X \ C.

Then there exists x∗ ∈ X∗ and λ ∈ R such that
x∗[c] ≤ λ < x∗[x0] ∀c ∈ C.
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Proof. C is closed so X \ C is open, and since x0 ∈ X \ C there exists a small ball
B(x0, δ) ⊂ X \ C. Apply Theorem 10.22 to B(x0, δ) and C, we find x∗ ∈ X∗ and λ ∈ R
such that

x∗[x] < λ ≤ x∗[c] ∀c ∈ C, x ∈ B(x0, δ).
Multiplying this with (−1) we find for y∗ := −x∗

y∗[c] ≤ −λ < y∗[x0],
which is what we wanted. □

11. The bidual and reflexivity

We can define the dual X∗, and Hahn-Banach tells us that X∗ tells us a lot about X. So
why not discuss X∗∗, the bidual. We first observe the following

Every element of x ∈ X can be identified as an element in X∗∗ by the following procedure

For x ∈ X we define x∗∗ ∈ X∗∗ via
x∗∗[y∗] := y∗[x] for y∗ ∈ X∗.

Clearly
|x∗∗[y∗]| ≤ ∥x∥X ∥y∗∥X∗ ,

so ∥x∗∗∥X∗∗ ≤ ∥x∥X . On the other hand, from Hahn-Banach, Corollary 10.14,
∥x∥X = sup

y∗∈X∗,∥y∗∥=1
|y∗[x]| = sup

y∗∈X∗,∥y∗∥=1
|x∗∗[y∗]| ≤ ∥x∗∗∥X∗∗ .

That is, we have ∥x∗∗∥X∗∗ = ∥x∥X .

We denote the map x 7→ x∗∗ by JX : X → X∗∗ and call it the canonical embedding
of X∗∗ ↪→ X. Clearly JX : X → X∗∗ is linear and continuous, and it is an isometry
∥JXx∥X∗∗ = ∥x∥X (in particular it is injective).

Theorem 11.1. JX : X → X∗∗ is linear, injective, and an isometry.

Example 11.2. Let p ∈ (1,∞) and take any f ∗∗ ∈ (Lp(Rn))∗∗. This is a functional acting
on g∗ ∈ (Lp(Rn))∗. By the Riesz representation theorem, Theorem 5.39, for any g∗ there
exists g ∈ Lp′(Rn) such that ∥g∥Lp′ = ∥g∗∥(Lp)∗ and

g∗(h) =
∫
Rn
hg ∀h ∈ Lp(Rn).

There is a one-to-one relationship between g∗ and g. So f ∗∗ induces a functional f ∗ on Lp′

in the following way
f ∗[g] := f ∗∗[g∗] g ∈ Lp′(Rn).

But then f ∗ is a linear functional of Lp′ so there exist f ∈ Lp(Rn) such that for all g,∫
fg = f ∗[g] = f ∗∗[g∗].
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Now let us consider the canonical embedding JXf . We have by definition,

JXf [g∗] = g∗[f ] =
∫
Rn
gf = f ∗[g] = f ∗∗[g∗].

That is JXf = f ∗∗. That is JX : Lp(Rn)→ (Lp(Rn))∗∗ is surjective!

This is a very nice property (as we shall see), so we give it a name: reflexivity.

Observe our argument above fails for p = ∞ and p = 1, since we cannot apply Riesz
representation theorem for L∞! The reason is below, Lemma 11.12

Definition 11.3. Let X be a normed vector space. If JX : X → X∗∗ is surjective, then
we say that X is reflexive.

Remark 11.4. • We often say that reflexivity means X∗∗ = X. This is dangerous
(still we’ll do it), because equality is not really defined. So it is important to remind
ourselves now and then that the equality must be under the canonical mapping JX .

Exercise 11.5. Let X be reflexive. Show that X is necessarily complete.

Hint: X∗∗ is always complete (it is a dual space!). What happens to JX(xn) if (xn)n is a
Cauchy sequence?

Exercise 11.6. Let X be reflexive, then X∗ is reflexive.

We will sharpen Exercise 11.6 for Banach spaces, see Theorem 11.11

Exercise 11.7. Let X and Y be isomorphic. I.e. assume that there exists T : X → Y
linear and bounded and bijective, and T−1 : Y → X is linear bounded. Then X is reflexive
if and only if Y is reflexive.

In particular conclude that if X is equipped with two equivalent norms ∥ · ∥1 and ∥ · ∥2, then
(X, ∥ · ∥1) is reflexive if and only if (X, ∥ · ∥2) is reflexive.

Exercise 11.8. Assume that a normed space (X, ∥ · ∥X) can be written as X = X1 ×X2
where (Xi, ∥ · ∥Xi

) are two normed spaces. Assume furthermore that the norm ∥ · ∥X is
equivalent to

X = X1 ×X2 ∋ (x1, x2) 7→ ∥x1∥X1 + ∥x2∥X2 .

Show that if X1 and X2 are reflexive, so is X.

Theorem 11.9. Let X be a reflexive Banach space and let U ⊂ X be a closed subspace.
Then U is reflexive as well.

Proof. Let u∗∗ ∈ U∗∗. We argue similar to Example 10.1: any functional x∗ ∈ X∗ can be
considered as an element of x∗

∣∣∣∣
U
∈ U∗. So set

x∗∗(x∗) := u∗∗[x∗
∣∣∣∣
U

],
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then x∗∗ ∈ X∗∗.

Since X is reflexive, there exists x ∈ X such that x∗∗ = JXx.

First, we show that x ∈ U . Assume this is not the case. Since U is closed by assumption,
we can apply Corollary 10.18 and find x∗ ∈ X∗ such that x∗(u) = 0 for all u ∈ U but
x∗(x) = 1.

But then
x∗[x] = JXx[x∗] = x∗∗[x∗] = u∗∗[x∗

∣∣∣∣
U︸ ︷︷ ︸

≡0

] = 0.

This is a contradiction, so x ∈ U .

It remains to show that JUx = u∗∗. Fix u∗ ∈ U∗, then by Hahn-Banach Corollary 10.9
there exists an extension x∗ ∈ X∗ with x∗

∣∣∣∣
U

= u∗.

Then
JUx[u∗] = u∗[x] x∈U= x∗[x] = JXx[x∗] = x∗∗[x∗] = u∗∗[x∗

∣∣∣∣
U

] = u∗∗[u∗].

We can conclude. □

Corollary 11.10. W 1,p is reflexive.

Proof. It is clear that W 1,p ⊂ Lp w.r.t Lp-norm, but W 1,p is not closed under the Lp-norm!

So we rather use the identifaction used for the dual, see the proof of Corollary 10.12. In
that sense W 1,p(Rn) is a closed subspace of Lp(Rn) × . . . Lp(Rn) which is reflexive (cf.
Exercise 11.8, Footnote 28). □

The following sharpens Exercise 11.6 for Banach spaces

Theorem 11.11. A Banach space X is reflexive if and only if X∗ is reflexive.

Proof. We already have shown that if X is reflexive then so is X∗, Exercise 11.6.

So assume X∗ is reflexive. Then we know that X∗∗ is reflexive. Since X is complete and JX

is an isometry, JX(X) ⊂ X∗∗ is a closed subspace. Thus, by Theorem 11.9, JX(X) is also
reflexive. But JX(X) and X are (by definition) isometric isomorphic, so by Exercise 11.7
we conclude that X must be be reflexive. □

Lemma 11.12. L1(Rn) and L∞(Rn) are not reflexive.

Proof. By Exercise 11.6 and the Riesz Representation theorem (Which identifies (L1)∗

with L∞) it suffices to that the dual L∞ is not L1, namely there exists a functional T ∈
(L∞(Rn))∗ which cannot be represented as a integration agains an L1-function.
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Set
Tf := f(0).

This is a linear functional on C0 ∩ L∞(Rn). It is also bounded. By Hahn-Banach, Corol-
lary 10.9, there exists an extension map T e : L∞(Rn)→ L∞(Rn).

Now assume that T = JXf for some f ∈ L1(Rn). Then for any g ∈ (L1(Rn))∗ = L∞(Rn)
we’d have

JXf [g] =
∫
Rn
fg

In particular for continuous and bounded functions g we’d have∫
Rn
fg = g(0).

But this means that f = δ0 in the sense of distributions, which can’t be because fdLn is
absolutely continuous with respect to the Lebesgue measure whereas δ0 is not.

Thus (L1)∗∗ = (L∞)∗ ⊋ L1, which means that L1 is not reflexive.29. By Theorem 11.11
this implies that L1 can also not be reflexive. □

Exercise 11.13. Let X be a finite dimensional normed vector space, then X is reflexive.

12. Weak Convergence & Reflexivity

The main goal of this section is to reap the fruits of reflexivity: a weak version of Bolzano-
Weierstrass theorem.

Theorem 12.1 (Bounded sets are weakly precompact (in reflexive spaces)). Assume X be a
reflexive space. Then every bounded sequence (xn)n∈N has a weakly convergent subsequence.

Clearly we will need to define what weakly convergent subsequence means. Theorem 12.1
is incredibly important, it is often references as “by reflexivity”. More precisely (albeit
still incorrect) it is the Eberlein–Smulian Theorem or (worse, because thats about weak*-
convergence, which implies this theorem: Banach-Alaoglu Theorem). A slightly better
version of refering to Theorem 12.1 is weak compactness (in reflexive spaces).

We will prove this theorem later, the proof is a bit lengthy, at the end of the section. More
important than the proof are the applications (for once)

Let us define weak and weak*-convergence.

Definition 12.2 (Weak convergence). Let X be a normed vector space and X∗ its dual.

29Observe that we needed Hahn-Banach, i.e. the axiom of choice. This is necessary, there is no explicit
functional on L∞ that is not in L1
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(1) Let {xn}n∈N ⊂ X a sequence. We say that (xn)n∈N weakly converges to x in X,
xn ⇀ x

if
x∗[xn] n→∞−−−→ x∗[x].

(2) Let {x∗
n}n∈N ⊂ X∗ a sequence. We say that (x∗

n)n∈N weakly∗ converges to x∗ in X∗,
if

x∗
n[x] n→∞−−−→ x∗[x] ∀x ∈ X.

In particular, if X is reflexive, weak*-convergence is the same as the weak conver-
gence in X∗.

(3) when we want to emphasize the contrast, we refer to the usual X-convergence as
convergence in norm or strong convergence. I.e. Let {xn}n∈N ⊂ X a sequence. We
say that (xn)n∈N strongly converges to x in X if ∥xn − x∥X

n→∞−−−→ 0.

Remark 12.3. Having defined (sequentially) weak convergence, we naturally obtain a
notion of weakly closed sets A ⊂ X is weakly closed if and only if any weakly converging
sequence an has its weak limit in A if all an ∈ A. Thus we can define open sets by the
complent of closed sets. Thus weak convergence introduces a topology.

However, unless X is finite dimensional, there is no metric inducing this topology.

12.1. Basic Properties of weak convergence. Alright, so now need to cover the basics
for weak convergence in general

Lemma 12.4. Weak limits are unique.

Proof. Assume xk converges weakly to x, and at the same time xk weakly converges to y.
Then for any x∗ ∈ X∗

x∗[x] k→∞←−−− x∗[xk] k→∞−−−→ x∗[y]
That is

x∗[x] = x∗[y],
so

x∗[x− y] = 0.
This holds for any x∗, so by Exercise 10.15, x− y = 0, that is x = y. □

Exercise 12.5. Show that weak*-limits are unique

Exercise 12.6. • Strong convergence implies weak convergence
• If X is reflexive, weak convergence in X∗ and weak∗-convergence in X∗ are the

same.

Lemma 12.7. (1) The norm is lower semicontinuous under weak convergence. That
is, assume xk weakly converge to x. Then

∥x∥X ≤ lim inf
k→∞

∥xk∥X
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(2) the dual norm is lower semicontinuous under weak* convergence. That is, assume
x∗

k weak*-converges to x∗. Then
∥x∗∥X∗ ≤ lim inf

k→∞
∥x∗

k∥X∗

Proof. (1) Assume xk weakly converge to x. By Hahn-Banach, Corollary 10.14, there
exists x∗ ∈ X∗, ∥x∗∥X∗ = 1, such that

∥x∥X = x∗[x] = lim
k→∞

x∗[xk] ≤ ∥x∗∥X∗︸ ︷︷ ︸
≤1

lim inf
k→∞

∥xk∥X .

(2) Assume x∗
k weak*-converges to x∗. Let ε > 0. There exist x ∈ X, ∥x∥X ≤ 1 such

that
∥x∗∥X ≤ x∗[x] + ε = lim

k→∞
x∗

k[x] + ε ≤ lim inf
k→∞

∥x∗
k∥X∗ ∥x∥X︸ ︷︷ ︸

=1

+ε.

Letting ε→ 0 we conclude.

□

The typical example of weak convergence is usually given in ℓ2-spaces, see Example 12.24;
Let for i ∈ N

ei = (0, . . . , 0, 1︸︷︷︸
i-th position

, 0, . . .)

We will argue that ei weakly converges to 0 in ℓ2, showing that the inequality in Lemma 12.7
can indeed be strict. For Lp-spaces see Example 12.12.

12.2. Weak convergence in Lp-spaces. it is important to observe that “weak Lp”-
convergence has nothing to to with “weak Lp”-space from Definition 3.49.

As usual the fundamental examples are Lp and W 1,p.

Example 12.8. • For p ∈ [1,∞) let fk ∈ Lp(Rn). By Riesz representation, any
linear functional g∗ ∈ (Lp(Rn))∗ can be identified with

g∗[fk] =
∫
Rn
fkg,

where g ∈ Lp′(Rn). Thus fk weakly converges to f in Lp(Rn) if and only if∫
Rn

(fk − f)g = 0 ∀g ∈ Lp′(Rn)

Usually we use test-functions (i.e. C∞
c (Rn).

Exercise 12.9. Let p ∈ (1,∞).

(1) Show that fk weakly converges to f in Lp(Rn) if and only if
• supk ∥fk∥Lp(Rn) + ∥f∥Lp(Rn) <∞, and
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• limk→∞
∫
Rn(fk − f)φ = 0 ∀φ ∈ C ∞

c (Rn).
(2) The boundedness assumption above is necessary. Namely, give an example of (fk)k∈N ⊂

Lp(Rn) and f ∈ Lp(Rn) with

lim
k→∞

∫
Rn

(fk − f)φ = 0 ∀φ ∈ C ∞
c (Rn).

but where fk does not weakly converge to f in Lp(Rn).

Remark 12.10. So in some sense, weak convergence is very similar to “pointwise conver-
gence” for distributions. Namely if fk converges (say) Lp-weakly to f , then if we think of
fk as a distribution

fk[φ] k→∞−−−→ f [φ] ∀φ ∈ S (Rn).

Lemma 12.11. Let p ∈ (1,∞). Let fk ∈ Lp(Rn) and assume that supk∈N ∥fk∥Lp(Rn) <∞.
Moreover assume that fk(x)→ 0 for Ln-a.e. x ∈ Rn. Then fk weakly converges to zero in
Lp(Rn).

Proof of Lemma 12.11. Set
Λ := sup

k
∥fk∥Lp <∞.

Let φ ∈ C∞
c (Rn). Since φ has compact support we can apply Egorov in suppφ, Theo-

rem 3.38, and find for any ε a compact set K ⊂ Rn such that ∥fk − 0∥L∞
k→∞−−−→ 0 and

Ln(suppφ \K) < ε. Then by Hölder’s inequality∣∣∣∣∫
Rn
fkφ

∣∣∣∣ ≤ ∥fk∥L∞(K)∥φ∥L1(Rn) + ∥fk∥L1(supp φ\K) ∥φ∥L∞(Rn).

Since p > 1,

∥fk∥L1(supp φ\K) ≤ Ln(suppφ \K)1− 1
p ∥fk∥Lp ≤ Ln(suppφ \K)1− 1

p Λ ≤ εΛ.
So we have shown ∣∣∣∣∫

Rn
fkφ

∣∣∣∣ ≤ ∥fk∥L∞(K)∥φ∥L1(Rn) + Λε k→∞−−−→ Λε.

This holds for any ε > 0, so

(12.1) lim
k→∞

∣∣∣∣∫
Rn
fkφ

∣∣∣∣ = 0 ∀φ ∈ C∞
c (Rn).

□

Example 12.12. Let p > 1. Pick any f ∈ C∞
c (Rn) with ∥f∥Lp(Rn) > 0. Set

fk(x) := k
n
p f(kx).

Then ∥fk∥Lp(Rn) = ∥f∥Lp(Rn), that is supk∈N ∥fk∥Lp(Rn) <∞.

Observe that since f(kx) = 0 whenever x ̸= 0 and k ≫ 1 (depending on x) so we have

fk(x) k→∞−−−→ 0 ∀x ̸= 0.
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That is, fk(x) → 0 a.e. in Rn. Since p > 1 we can use Lemma 12.11 to conclude that fk

weakly converges to zero in Lp(Rn).

Now let q < p, then we have

∥fk∥Lq(Rn) = k
n
p

− n
q ∥f∥Lq(Rn) ≤ k

n
p

− n
q C(supp f)∥f∥Lp(Rn)

k→∞−−−→ 0.
That is, fk strongly converges to zero in Lq(Rn) for any q ∈ [1, p). But fk converges only
weakly to zero in Lp(Rn).

We record a reformulation of Theorem 12.1 for Lp(Ω)-spaces

Theorem 12.13. Let Ω ⊂ Rn open, 1 ≤ p <∞. Assume fk ∈ Lp(Ω) with supk∈N ∥fk∥Lp(Ω) <
∞. Then there exists a subsequence fki

and some f ∈ Lp(Ω) such that fki
weakly converges

to f in Lp(Ω), i.e. ∫
Ω
fki
φ

k→∞−−−→
∫

Ω
fφ ∀φ ∈ Lp′(Ω).

Moreover we have
∥f∥Lp(Ω) ≤ lim inf

k→∞
∥fk∥Lp(Ω).

Proof. Since we can extend f ∈ Lp(Ω) to Rn by setting f̃ := χΩf this follows easily from
the Rn-theorem. The estimate follows from Lemma 12.7. □

Exercise 12.14. Let Ω ⊂ Rn open. Let (fn)n∈N ⊂ L1(Ω) and f ∈ L1(Ω). Show that if fn

weakly converges to f in L1(Ω) then∫
Ω

(fn − f)φ n→∞−−−→ 0

for each φ ∈ C∞
c (Ω).

Exercise 12.15 (Weak-Strong Products). Assume p, q, r ∈ (1,∞) such that 1
r

= 1
p

+ 1
q
.

Let fn, f ∈ Lp(Rn), gn, g ∈ Lq(Rn) and assume that fn converges weakly to f in Lp(Rn)
and gn converges strongly to g in Lq(Rn).

Show that fngn converges weakly to fg in Lr(Rn).

Products of weakly convergent sequences may not converge weakly without additional
assumptions – which lead e.g. to the div-curl-lemma which details such assumptions.

12.3. Weak convergence in Sobolev space.

Proposition 12.16. Let 1 ≤ p <∞. Assume (fk)k∈N ⊂ W 1,p(Rn) and f ∈ Lp(Rn).

Then fk converges weakly to f in W 1,p(Rn) if and only if

(1) fk converges weakly to f in Lp(Rn)
(2) ∂αfk converges weakly in Lp to some Fα ∈ Lp(Rn), α = 1, . . . , n.
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In both cases f ∈ W 1,p(Rn) and Fα = ∂αf .

Proof. By Corollary 10.12 each T ∈ (W 1,p(Rn))∗ can be represented as

T [f ] =
∫
Rn
gf +

∫
Rn
G ·Df,

where g,G ∈ Lp′(Rn).

Thus weak convergence in W 1,p(Rn) is equivalent to

(12.2)
∫
Rn
g(fk − f) +

∫
Rn
G ·D(fk − f) k→∞−−−→ 0 ∀g,G ∈ Lp′

.

⇒ Assume fk converges f weakly in W 1,p. Choose G = 0 in (12.2) to get (1). Choose
g = 0 and G = (0, . . . , 0, g̃, 0, . . . , 0) to get (2).

⇐ So let us assume (1) and (2). We clearly get

T [fk−f ] =
∫
Rn
g(fk−f)+

∫
Rn
G·(Dfk−F ) =

∫
Rn
g(fk−f)+

n∑
α=1

∫
Rn
Gα(∂αfk−Fα) k→∞−−−→ 0.

However, who is to tell us that f ∈ W 1,p(Rn)?

Well let g = 0 and choose G := (0, 0, . . . , φ, 0 . . .) (where φ ∈ C∞
c (Rn) is in the α-position).

We then have ∫
Rn
φFα = lim

k→∞

∫
Rn
φ∂αfk.

On the other hand, by the definition of weak derivative,∫
Rn
φ∂αfk = −

∫
Rn
∂αφfk

So we have ∫
Rn
φ∂αf = − lim

k→∞

∫
Rn
∂αφfk.

But now, by (1) we have

lim
k→∞

∫
Rn
∂αφ︸︷︷︸
∈Lp′

fk =
∫
Rn
∂αφf.

So we have shown that ∫
Rn
φFα = lim

k→∞

∫
Rn
φ∂αfk =

∫
Rn
∂αφf.

That is ∂αf = Fα ∈ Lp(Rn) (in distributional sense), and in view of Theorem 4.46 we
conclude that f ∈ W 1,p(Rn). □
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12.4. More involved basic properties of weak convergence.

Theorem 12.17. Let X be a Banach space. Then weak and weak* convergent sequences
are necessarily bounded.

So Theorem 12.1 is kind of the converse of Theorem 12.17.

For the proof of Theorem 12.17 we need the

Theorem 12.18 (Banach-Steinhaus or Uniform Boundedness Principle). Let X be a Ba-
nach space and Y a normed vector space. Suppose that F is a (possibly uncountable) family
of continuous, linear operators T ∈ L(X, Y ). If F is pointwise bounded, that is if for all
x ∈ X we have

sup
T ∈F
∥Tx∥ <∞

then F is uniformly bounded in norm, i.e.
sup
T ∈F
∥T∥

Usually one uses the Baire category theorem to prove this statement, but one can avoid
this and give an elementary proof. We follow [Sokal, 2011].

Lemma 12.19. Let T be a bounded linear operator from the normed spaces X to Y . Then
for any x ∈ X and any r > 0 we have

sup
y∈B(x,r)

∥Ty∥ ≥ ∥T∥ r.

here B(x, r) = {y ∈ X : ∥y − x∥ < r} is the open r-ball.

Proof. Fix x ∈ X and r > 0. Let z ∈ X then z = 1
2(z + x) + 1

2(z − x) so

∥Tz∥ ≤ 1
2 (∥T (x+ z)∥+ ∥T (x− z)∥) ≤ max{∥T (x+ z)∥, ∥T (x− z)∥}.

Consequently,
∥T∥ = sup

∥z̃∥<1
∥T z̃∥ = 1

r
sup

∥z∥<r
∥Tz∥ ≤ 1

r
sup

y∈B(x,r)
∥T (y)∥.

□

Proof of Theorem 12.18. Suppose to the contrary that
sup
T ∈F
∥T∥ =∞.

Then there must be (Tn)n∈N ⊂ F with ∥Tn∥ ≥ 4n.

Set x0 = 0. Apply Lemma 12.19 to x0 and r = 3−1. Then there must be x1 ∈ X, with
∥x1 − x0∥X < 3−1
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but
∥T1x1∥ ≥

2
33−1 ∥T1∥.

Repeating this inductively we find xn ∈ X such that ∥xn − xn−1∥X ≤ 3−n and

∥Tnxn∥ ≥
2
33−n∥Tn∥.

In particular xn is a Cauchy sequence in X, since

∥xn − xm∥ ≤
max{n,m}∑

k=min{n,m}+1
∥xk − xk−1∥ ≤

max{n,m}−1∑
k=min{n,m}+1

3−k min{n,m}→∞−−−−−−−−→ 0.

Since X is complete there exists x such that limn→∞ xn = x, and we have

∥xn − x∥ ≤
∞∑

k=n+1
3−k = 3

23−n−1 = 1
23−n.

Then we have

∥Tnx∥ ≥ ∥Tnxn∥ − ∥Tn(x− xn)∥ ≥ 2
33−n∥Tn∥ −

1
23−n∥Tn∥ = 1

63−n∥Tn∥ ≥
1
6

(4
3

)n

.

That is,
sup
n∈N
∥Tnx∥X = +∞,

a contradiction to the assumption. □

Proof of Theorem 12.17 – weak convergence. Let (xn)n∈N be a weakly convergent sequence
to x ∈ X.

Let JX : X → X∗∗ be the canonical embedding, then weak convergence implies

(JXxn)[x∗] = x∗[xn] n→∞−−−→ x∗[x] in R

Since convergent sequences in R are bounded, we find that for any x∗ ∈ X∗

sup
n∈N
|(JXxn)[x∗]| <∞.

Since X∗ is a Banach space we can apply Banach-Steinhaus Theorem 12.18 and find that
actually

sup
n∈N
∥JXxn∥X∗∗ <∞,

which by Theorem 11.1 implies that
sup
n∈N
∥xn∥X <∞.

□

Exercise 12.20. Prove Theorem 12.17 for weak*-convergence.
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A corollary of Theorem 12.17 is the following, which also implies that Theorem 12.1 is an
honest extension of Bolzano-Weierstrass theorem for finite dimensional sets (“bounded sets
are pre-compact”) to infinite dimensional sets (“bounded sets are weakly precompact”).

Exercise 12.21. If X is finite dimensional, then weak convergence coincides with strong
convergence.

We also obtain

Lemma 12.22 (Pointwise a.e. and weak Lp-limit coincide). Let p ∈ (1,∞). Assume
fk ∈ Lp(Rn) weakly converges to some f ∈ Lp(Rn). Assume that moreover fk(x) → g(x)
for Ln-a.e. x ∈ Rn. Then f = g ∈ Lp(Rn).

Proof. g as a pointwise limit of measurable functions is measurable and from Fatou’s lemma
Corollary 3.9 applied to |fk|p we have

∥g∥Lp(Rn) ≤ lim inf
k→∞

∥fk∥Lp(Rn).

The right-hand side is finite by Theorem 12.17, so g ∈ Lp(Rn). Now we can argue similar
to the proof of Lemma 12.11 to conclude. □

12.5. Applications of weak compactness theorem - Theorem 12.1. Let us discuss
some applications of Theorem 12.1.

Theorem 12.23. Let X be reflexive, and x∗ ∈ X∗. Then there exists x ∈ X, ∥x∥ = 1
such that

x∗[x] = ∥x∗∥X∗

Proof. If x∗ = 0 then there is nothing to show. So assume ∥x∗∥X∗ > 0. We have
∥x∗∥X∗ = sup

∥x∥≤1
x∗[x].

So let xk ∈ X such that
x∗[xk] k→∞−−−→ ∥x∗∥X∗ .

Since ∥xk∥X ≤ 1, by Theorem 12.1 we can pass to a subsequence (relabel if necessary)
and have that xk weakly converges to x ∈ X. By weak lower semicontinuity of the norm,
Lemma 12.7, we have ∥x∥ ≤ 1. On the other hand we have

x∗[x] = lim
k→∞

x∗[xk] = ∥x∗∥X∗ .

It remains to show that ∥x∥X = 1. Set λ := ∥x∥X . Then
1
λ
∥x∗∥X∗ = 1

λ
x∗[x] = x∗[x/λ] ≤ ∥x∗∥X∗ ∥x/λ∥X︸ ︷︷ ︸

=1

= ∥x∗∥X∗

Dividing both sides by ∥x∗∥X∗ > 0 we find that 1
λ
≤ 1, i.e. λ = 1. □
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Example 12.24. The unit sphere in ℓ2 is a typical example against Bolzano-Weierstrass.
Take

ei = (0, . . . , 0, 1, 0, . . .) ∈ ℓ2,

then ∥ei∥ℓ2 = 1, so (ei)i∈N is uniformly bounded. However ∥ei − ej∥ℓ2 =
√

2 so there is no
subsequence of (ei)i that is strongly convergent.

However a subsequence ei weakly converges by Theorem 12.1. What is the limit? It is
zero. Indeed the dual space for ℓ2(N) is ℓ2(N) in the sense that any element T ∈ (ℓ2(N))∗

corresponds to some (ck)k∈N ∈ ℓ2 such that

T [f ] =
∑

k

ckfk ∀f ∈ ℓ2.

Since ck ∈ ℓ2(N) we have limk→∞ ck = 0, so

T [ei] = ci
i→∞−−−→ 0.

This holds for any T ∈ (ℓ2)∗, so ei weakly converges to zero!

In particular the usual example, Example 12.24, show that the unit sphere {x ∈ ∥x∥ :
∥x∥X = 1} albeit closed and bounded, might not be weakly closed

Definition 12.25. A set A ⊂ X is called weakly closed if any weakly convergent sequence
(an) ⊂ A, an

∗−→ x ∈ X has its limit in A, i.e. x ∈ A.

Since strong convergence implies weak convergence, Exercise 12.6, any weakly closed set is
also closed. The reverse does not hold (see above) but we have

Theorem 12.26. Let X be a normed space and Y ⊂ X be convex. Then Y is weakly
closed if and only if Y is closed.

Proof. Since strong convergence implies weak convergence, Exercise 12.6, any weakly closed
set is closed.

So now assume that Y is closed and convex and consider a weakly convergent sequence
yk ∈ Y , yk ⇀ x ∈ X. Assume x ̸∈ Y . By the strict separation theorem, Theorem 10.23,
there exists x∗ ∈ X∗ and λ ∈ R such that

x∗[xn] ≤ λ < x∗[x] ∀n ∈ N

But then limn→∞ x∗[xn] ̸= x∗[x], contradiction. □

Exercise 12.27. Let X be a reflexive Banach space and (xn)n∈N ⊂ X a weak Cauchy
sequence, i.e. for all x∗ ∈ X∗ we have (x∗[xn])n∈N is a Cauchy sequence in R. Show that
(xn)n∈N converges weakly.
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Exercise 12.28 (Mazur’s theorem). Let X be a normed vector space and (xn)n∈N a se-
quence with xn

∗−→ x. Show that there exists a sequence (yn)n∈N of convex combinations

yn =
Nn∑
k=1

λn,kxk, with
Nn∑
k=1

λn,k = 1, λn,k ∈ [0, 1], Nn ∈ N

such that yn converges (strongly!) to x.

Hint: Consider the convex hull

C :=
{

N∑
k=1

λkxk :
N∑

k=1
λk = 1, λk ∈ [0, 1], N ∈ N

}
.

Exercise 12.29. Let X and Y be Banach spaces, and (xn)n∈N ⊂ X with xn ⇀ x ∈ X.

Let T ∈ L(X, Y ). Show that Txn ⇀ Tx in Y .

12.6. Application: Direct Method of Calculus of Variations & Tonelli’s theorem.
On particularly important example is the following energy method or direct method of the
Calculus of Variations for Partial Differential Equations.

Theorem 12.30. Let f ∈ L2(Rn), λ > 0, then there exists a unique u ∈ W 1,2(Rn) such
that

∆u− λu = f in Rn

holds in distributional sense, where ∆ = ∑n
i=1 ∂xi

∂xi
, i.e.

−
∫
Rn
∇u · ∇φ− λ

∫
uφ =

∫
Rn
fφ

Proof. Define the energy

E(u) := 1
2

∫
Rn
|Du|2 + λ

2

∫
Rn
|u|2 +

∫
Rn
fu.

For any u ∈ W 1,2(Rn) the energy is finite E(u) <∞.

The energy is also coercive in W 1,2(Rn). This means any energy bounded sequence with
(uk)k ∈ W 1,2(Rn), with supk E(uk) <∞ also satisfies supk ∥uk∥W 1,2(Rn) <∞. Indeed, from
Hölder’s inequality and Young’s inequality, for any ε > 0,

λ

2

∫
Rn
|u|2 +

∫
Rn
fu ≥λ2

∫
Rn
|u|2 − ∥f∥L2(Rn) ∥u∥L2(Rn)

=λ2

∫
Rn
|u|2 − 1

ε
∥f∥L2(Rn) ε∥u∥L2(Rn)

≥λ2

∫
Rn
|u|2 − ε2∥u∥2

L2(Rn) −
1
ε2∥f∥

2
L2(Rn)

=(λ2 − ε
2)∥u∥2

L2(Rn) −
1
ε2∥f∥

2
L2(Rn).
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Taking ε2 < λ
4 we find

λ

2

∫
Rn
|u|2 +

∫
Rn
fu ≥ cλ∥u∥2

L2(Rn) − Cλ∥f∥2
L2(Rn).

Thus
E(u) ≥ cλ∥u∥2

W 1,2(Rn) − Cλ∥f∥2
L2(Rn),

i.e.
∥u∥2

W 1,2(Rn) ≤ C̃
(
E(u) + ∥f∥2

L2(Rn)

)
.

In particular whenever supk E(uk) <∞ also supk ∥uk∥W 1,2(Rn) <∞. That is, E is coercive
in W 1,2(Rn).

Now we can apply the the direct method of Calculus of Variation to minimize E in W 1,2(Rn).

Set
I := inf

u∈W 1,2(Rn)
E(u).

We see that I ≤ 0 since I ≤ E(0) = 0. We also have I > −∞, since as before with Young
and Hoelder inequality

λ

2

∫
Rn
|u|2 +

∫
Rn
fu ≥ (λ2 − ε

2)∥u∥2
L2 −

1
ε2∥f∥

2
L2(Rn),

so if ε2 < λ
2 we have

E(u) ≥ λ

2

∫
Rn
|u|2 +

∫
Rn
fu ≥ − 1

ε2∥f∥
2
L2(Rn) > −∞.

That is I is a finite number.

By the definition of the infimum there must be a sequence (uk)k∈N ⊂ W 1,2(Rn) such that
lim

k→∞
E(uk) = I.

In particular we then have supk |E(uk)| < ∞, and thus by coercivity ∥uk∥W 1,2(Rn). By
Corollary 11.10 W 1,2 is reflexive, so by Theorem 12.1 (up to passing to a subsequence) we
can assume that uk converges to some u ∈ W 1,2(Rn) weakly in W 1,2(Rn). By Proposi-
tion 12.16 we have that ∇uk weakly converges to ∇u in L2, and uk converges weakly to u
in L2. By lower semicontinuity of the L2-norm, Lemma 12.7, we have∫

Rn
|∇u|2 ≤ lim inf

k→∞

∫
Rn
|∇uk|2

and ∫
Rn
|u|2 ≤ lim inf

k→∞

∫
Rn
|uk|2.

By weak L2-convergence we also have in view of Example 12.8,∫
Rn
uf = lim

k→∞

∫
Rn
ukf.

So we find
E(u) ≤ lim inf

k→∞
E(uk) = I.
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On the other hand u ∈ W 1,2 so
E(u) ≥ I.

This means E(u) = I, that is u is a minimizer of E in W 1,2(Rn).

The next step is to show that u satisfies an equation, called the Euler-Lagrange equation.
This is Fermat’s theorem: if x ∈ Rn minimizes a smooth F then F ′(x) = 0. Here F ′

becomes the first variation of E – the proof is the same.

More precisely, since u is minimizer we have for any φ ∈ C∞
c (Rn)

E(u) ≤ E(u+ tφ) ∀t ∈ R.
So we have

0 ≤ lim inf
t→0

E(u+ tφ)− E(u)
t

.

Let us look at the right-hand site.∫
Rn
|∇(u+ tφ)|2 −

∫
Rn
|∇u|2 = 2t

∫
Rn
∇u · ∇φ.∫

Rn
|(u+ tφ)|2 −

∫
Rn
|u|2 = 2t

∫
Rn
uφ.

and ∫
Rn

(u+ tφ)f −
∫
Rn
uf = t

∫
Rn
φf

That is, for each t ̸= 0,
E(u+ tφ)− E(u)

t
=
∫
Rn
∇u · ∇φ+

∫
Rn
uφ+

∫
Rn
φf.

So we have found that

0 ≤
∫
Rn
∇u · ∇φ+

∫
Rn
uφ+

∫
Rn
φf ∀φ ∈ C∞

c (Rn).

Switching φ by −φ we obtain

0 =
∫
Rn
∇u · ∇φ+ λ

∫
Rn
uφ+

∫
Rn
φf ∀φ ∈ C∞

c (Rn).

That is u solves the equation that we wanted it to solve.

Lastly we need to show uniqueness. Assume that u, v ∈ W 1,2 both solve

0 =
∫
Rn
∇u · ∇φ+ λ

∫
Rn
uφ+

∫
Rn
φf ∀φ ∈ C∞

c (Rn).

and
0 =

∫
Rn
∇v · ∇φ+ λ

∫
Rn
vφ+

∫
Rn
φf ∀φ ∈ C∞

c (Rn).

This equation is linear in u: we can subtract the second equation from the first and obtain
for w := u− v

0 =
∫
Rn
∇w · ∇φ+ λ

∫
Rn
wφ ∀φ ∈ C∞

c (Rn).
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Now plug in φ = w (this is ok, since we can approximate w by wk ∈ C∞
c (Rn), i.e. by

density).
∥∇w∥2

L2 + λ∥w∥2
L2 = 0.

Since λ > 0 this implies ∥w∥L2 = 0 i.e. w = 0 a.e., i.e. u = v a.e. This proves uniqueness.
□

Observe λ > 0 was important here, the same statement may not be true for λ < 0.

The direct method needs coercivity and lower semicontinuity, so it is not too difficult to
copy the above proof to obtain

Theorem 12.31 (Tonelli). Let X be a reflexive normed vector space and f : X → R is
weakly lower semicontinuous, i.e.

f(x) ≤ lim inf
k→∞

f(xk) whenever xk weakly converges to x.

Assume U ⊂ X is nonempty and one of the following holds

• U is weakly closed and f : U → R is coercive, that is whenever (uk) ⊂ U is a
sequence such that ∥uk∥X →∞ then f(uk)→∞.
• U is bounded, convex and closed

Then there exist ū ∈ U such that
f(ū) = min

u∈U
f(u).

Exercise 12.32. Prove Theorem 12.31.

12.7. Proof of Theorem 12.1. The first step is in the proof of Theorem 12.1 is to work
with the X∗ and weak*-convergence.

Theorem 12.33 (Banach-Alaoglu). Let X be a normed space and separable. Then any
sequence (x∗

k)k ⊂ X∗ with supk ∥x∗
k∥k <∞ has a weak*-convergent subsequence.

Observe that for linear functionals supk ∥x∗
k∥k < ∞ implies equicontinuity. If X was a

compact metric space we could try to argue by Arzela-Ascoli. Indeed, in the proof of
Arzela-Ascoli, compactness is used for some sort of separability – so since X is separable,
we will use the ideas of the proof of Arzela-Ascoli.

Proof of Theorem 12.33. By renormalizing (i.e. othweise considering x∗
k/K forK := sup ∥x∗

k∥)
we can assume that

sup
k
∥x∗

k∥k ≤ 1.

Since X is separable, we can find a countable dense subset of X, let us denote it by
{xn : n ∈ N}.
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Then for each fixed n ∈ N
sup

k
|x∗

k[xn]| ≤ ∥xn∥,

that is (x∗
k[xn])k∈N ⊂ R is bounded, so there exists a converging subsequence x∗

ki;n
[xn])i∈N ⊂

R. Taking a diagonal sequence we find a subsequence (x∗
ki

)i∈N sich that for each n ∈ N the
sequence (x∗

ki
[xn])i∈N ⊂ R converges. We denote its limit

x∗[xn] := lim
i→∞

x∗
ki

[xn].

Let now
Z := span({xn}) ≡ {z =

N∑
j=1

λjxj N ∈ N, λj ∈ R}.

This is a linear space, and by the linearity of x∗
ki

we can extend x∗ to a linear functional
on Z,

x∗[
N∑

j=1
λjxj] :=

N∑
j=1

λj lim
i→∞

x∗
ki

[xj] ≡ lim
i→∞

x∗
ki

[
N∑

j=1
λjxj].

We then have
x∗[

N∑
j=1

λjxj] ≤ lim sup
i→∞

∥x∗
ki
∥X∗︸ ︷︷ ︸

≤1

∥
N∑

j=1
λjxj∥X ,

that is x∗ ∈ Z∗ with ∥x∗∥Z∗ ≤ 1. Since x∗ is uniformly continuous on Z and Z ⊂ X is
dense, we can extend x∗ uniquely to all of X and find a linear functional x∗ ∈ X∗.

Now let x ∈ X and ε > 0. There exists n ∈ N such that ∥x− xn∥X < ε. Then
|x∗

ki
(x)− x∗(x)| ≤ 2ε+ |x∗

ki
(xn)− x∗(xn)|

So,
lim sup

i→∞
|x∗

ki
(x)− x∗(x)| ≤ 2ε.

This holds for any ε > 0, so we have
lim sup

i→∞
|x∗

ki
(x)− x∗(x)| = 0.

That is x∗
ki

(x) i→∞−−−→ x∗(x) for all x ∈ X. That is x∗
ki

weak*-converges to x∗. □

Exercise 12.34. Show that without separability of X the statement of Theorem 12.33 may
fail. Consider for example e∗

n ∈ (ℓ∞(N))∗ given by
e∗

n[x] := xn x ∈ ℓ∞.

Show that there is no weak*-convergent subsequence.

The statement of Theorem 12.1, called the Theorem of Eberlein-Smulian is then a con-
sequence of Theorem 12.33, using that weak* convergence for (X∗)∗ is the same as weak
convergence in X. We can get rid of the separability, because we only need to work in the
closure of the space spanned by the sequence – by definition a separable space.
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Proof of Theorem 12.1. Let (xn)n∈N be such that supn ∥xn∥X <∞.

Set

Y := span{xn} ≡ {z =
N∑

j=1
λjxj N ∈ N, λj ∈ R}.

Observe that Y is a closed subspace of X, and thus by Theorem 11.9, Y is also reflexive.
Moreover Y is separable, thus by reflexivity Y ∗∗ ∼= Y is separable, and thus by Corol-
lary 10.20, Y ∗ is separable.

Let JY : Y → Y ∗∗ be the canonical embedding, then x∗∗
n := JY x ∈ Y ∗∗ is a bounded se-

quence in (Y ∗)∗, so by Theorem 12.33 there exists a weak*-convergent subsequence (x∗∗
ni

)i∈N
to some x∗∗ ∈ Y ∗∗. Since Y is reflexive, there exists exactly one x ∈ X such that JY x = x∗∗.

Let x∗ ∈ X∗ then we have
x∗[xni

] = x∗∗
ni

[x∗] i→∞−−−→ x∗∗[x∗] = x∗[x].
That is xni

weakly converges to x. □

12.8. Weak convergence and compactness for L1 and Radon measures. Theo-
rem 12.1 can not be applied to L1(Rn) because L1(Rn) is not reflexive.

Example 12.35. Let η ∈ C∞
c (Rn),

∫
Rn η = 1, η(0) = 1. Also assume for simplicity that

η(−x) = η(x).

Set
ηk(x) := k−nη(kx).

Then
∥ηk∥L1(Rn) = ∥η∥L1(Rn) <∞,

that is (ηk)k∈N is uniformly bounded in L1(Rn). Let now φ ∈ C∞
c (Rn), then we have (here

we use the symmetry of η)∫
Rn
ηk(y)φ(y)dy = ηk ∗ φ(0) k→∞−−−→ φ(0).

That is ηk “weakly converges” to the measure δ0, in the sense that∫
Rn
φ(y) ηk(y)dy k→∞−−−→

∫
Rn
φ(y)dδ0(y) ∀φ ∈ C∞

c (Rn).

So we do have a weak convergence, just the space L1(Rn) is not “really weakly closed”.

Any f ∈ L1(Rn) can be considered as a Radon measure f⌞Ln. If supk ∥fk∥L1(Rn) < ∞ we
have

sup
k
fn⌞Ln(K) <∞ ∀compact K.

It turns out that this is the right notion in which Theorem 12.1 indeed works.
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Definition 12.36. Let µ, (µk)∞
k=1 be Radon measures on Rn. We say that µ converges

weakly to the measure µ (in the sense of Radon measures), µk ⇀ µ if one of the following
statements is satisfied

(1) For all f ∈ C0
c (Rn) we have∫

Rn
fdµk

k→∞−−−→
∫
Rn
fdµ

(2) lim supk→∞ µk(K) ≤ µ(K) for all compact setsK ⊂ Rn and µ(U) ≤ lim infk→∞ µk(U)
for each open set U ⊂ Rn

(3) limk→∞ µk(B) = µ(B) for each bounded Borel set B ⊂ Rn with µ(∂B) = 0.

Lemma 12.37. The three conditions in Definition 12.36 are equivalent.

Proof. (1) ⇒ (2) Assume (1) holds. Fix K ⊂ Rn be compact and U ⊃ K open. Then
we can find f ∈ C0(Rn), f ≡ 0 in Rn\U and f ≡ 1 in K. Indeed, we have ε :=
dist (K,Rn\U) > 0 (exercise), so if we set

f(x) := max{1− 1
ε

dist (x,K), 0}

we see that f is as required. Then we have by (1)

µ(K) ≤
∫
Rn
fdµ = lim

k→∞

∫
Rn
fdµk ≤ lim inf

k→∞
µk(U).

and
lim sup

k→∞
µk(K) ≤ lim sup

k→∞

∫
Rn
fdµk =

∫
Rn
fdµ ≤ µ(U).

The claim now follows from Theorem 1.68, because
µ(U) = sup

K⊂U, K compact
µ(K) ≤ lim inf

k→∞
µk(U),

and
µ(K) = inf

K⊂U, U open
µ(U) ≥ lim sup

k→∞
µk(K).

(2) ⇒ (3) Assume (2) holds. Let B ⊂ Rn be a bounded Borel set with µ(∂B) = 0. Then

µ(B) =µ(B \ ∂B︸ ︷︷ ︸
open

)
(2)
≤ lim inf

k→∞
µk(B \ ∂B)

≤ lim sup
k→∞

µk( B︸︷︷︸
compact

)
(2)
≤ µ(B) = µ(B \ ∂B) ≤ µ(B).

Thus,
µ(B) = lim inf

k→∞
µk(B \ ∂B) ≤ lim inf

k→∞
µk(B)

and
µ(B) = lim sup

k→∞
µk(B) ≥ lim sup

k→∞
µk(B)
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which readily gives
µ(B) = lim

k→∞
µk(B)

(3) ⇒ (1) Assume (3) holds and let f ∈ C0
c (Rn). W.l.o.g. we can assume that f ≥ 0

everywhere (split f = f+− f− otherwise). We can also assume that ∥f∥L∞ ≤ 1 (otherwise
divide by ∥f∥L∞).

Take a large open ball B such that supp f ⊂ B and moreover µ(∂B) = 0. Observe that
while not every ball B must satisfy µ(∂B) = 0, by Proposition 1.72 we can find such a
ball.

Fix ε > 0, and pick N ≈ 1
ε

many ti,

0 = t0 < t1 < . . . < tN ≤ 2

such that |ti − ti−1| < ε and tN ≥ ∥f∥L∞ – and we may also assume µ(f−1(ti)) = 0,
whenever i ≥ 1. This is possible by Exercise 1.74. Since ∥f∥L∞ ≤ 1 we then have

N∑
i=1

ti−1µ(f−1[ti−1, ti] ∩B) ≤
∫
Rn
fdµ ≤

N∑
i=1

tiµ(f−1[ti−1, ti] ∩B)

and
N∑

i=1
ti−1µk(f−1[ti−1, ti] ∩B) ≤

∫
Rn
fdµk ≤

N∑
i=1

tiµk(f−1[ti−1, ti] ∩B)

Since f is continuous, f−1[ti−1, ti] is closed and thus Bi := f−1[ti−1, ti]∩B is compact and
in particular a bounded Borel set. Also

µ(∂Bi) ≤ µ(∂B) + µ({ti−1}) + µ({ti}).

Subtracting both inequalities we find∫
Rn
fdµ−

∫
Rn
fdµk ≤

N∑
i=1

tiµ(f−1[ti−1, ti] ∩B)−
N∑

i=1
ti−1µk(f−1[ti−1, ti] ∩B)

and ∫
Rn
fdµk −

∫
Rn
fdµ ≤

N∑
i=1

tiµk(f−1[ti−1, ti] ∩B)−
N∑

i=1
ti−1µ(f−1[ti−1, ti] ∩B)

Taking the limit, using condition (2), we find that

lim sup
k→∞

∣∣∣∣∫
Rn
fdµ−

∫
Rn
fdµk

∣∣∣∣ ≤ N∑
i=1

(ti − ti−1)µ(f−1[ti−1, ti] ∩B)

≤ε
N∑

i=1
µ(f−1[ti−1, ti] ∩B)

≤2εµ(B)
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This holds for all ε > 0 so we have shown that

lim sup
k→∞

∣∣∣∣∫
Rn
fdµ−

∫
Rn
fdµk

∣∣∣∣ = 0.

That is, (1), is established. □

Exercise 12.38. Show that we can equivalently change (1) in Definition 12.36 into

For all f ∈ C∞
c (Rn) we have ∫

Rn
fdµk

k→∞−−−→
∫
Rn
fdµ

Theorem 12.39 (Weak compactness for measures). Let (µk)∞
k=1 be a sequence of Radon

measures on Rn satisfying for any compact K ⊂ Rn,
sup

k
µk(K) <∞

Then there exists a subsequence (µki
)i∈N and a Radon measure µ such that

µki
⇀ µ

in the sense of Radon measures, Definition 12.36.

We will skip the proof, but record a consequence.
Exercise 12.40. If fk ∈ L1(Rn) with

sup
k
∥fk∥L1(Rn) <∞

then there exists a subsequence (fki
)i∈N and two Radon measures µ+ and µ− such that∫

Rn
fki
φ

i→∞−−−→
∫
Rn
φdµ+ −

∫
Rn
φdµ−.

12.9. Yet another definition of Lp and W 1,p. In Proposition 4.40 and Definition 4.42
we reinterpreted (and defined) the Lp-space and W 1,p-space as metric completion, i.e. we
said for 1≤p <∞

f ∈ Lp(Rn) iff there exists fk ∈ C∞(Rn) : ∥fk∥Lp(Rn) <∞ and ∥fk − f∥Lp(Rn)
k→∞−−−→ 0.

and
f ∈ W 1,p(Rn) iff there exists fk ∈ C∞(Rn)(Rn) : ∥fk∥W 1,p(Rn) <∞ and ∥fk−f∥W 1,p(Rn)

k→∞−−−→ 0.
(Ok, we actually did not have C∞ there, but C∞

c – but these two notions are equivalent
by looking at fkηB(0,k) instead of fk).

Now for 1<p < ∞ we can obtain the following characterizations (observe this way one
really eliminates the need for Lebesgue integrals, in comparison to Riemann integrals)
Proposition 12.41. Let 1<p < ∞ and f : Rn → R. Then f ∈ Lp(Rn) if and only if
there exists fk ∈ C∞(Rn) with supk ∥fk∥Lp(Rn) <∞ and fk(x) k→∞−−−→ f(x) for almost every
x ∈ Rn.
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Proof. If f ∈ Lp(Rn) there exist fk ∈ C∞
c (Rn) converging strongly to f , in particular

supk ∥fk∥Lp <∞ – and up to a subsequence fk converges a.e. to f .

For the other direction observe that if fk ∈ C∞(Rn) with supk ∥fk∥Lp(Rn) <∞ by reflexivity
Theorem 12.1 there exists g ∈ Lp(Rn) and a subsequence fki

⇀ g in Lp(Rn), that is∫
Rn
fki
φ

i→∞−−−→
∫
Rn
gφ ∀φ ∈ C∞

c (Rn).

In view of Lemma 12.22 g = f since fk converges a.e. to f and p > 1. □

Similarly one can define

Exercise 12.42. Let 1<p <∞ and f : Rn → R. Then f ∈ W 1,p(Rn) if and only if there
exists fk ∈ C∞(Rn) with supk ∥fk∥W 1,p(Rn) < ∞ and fk(x) k→∞−−−→ f(x) for almost every
x ∈ Rn.

The above does not work for p = 1, the space that comes out is not W 1,1, but BV , cf.
Section 15

12.10. Compact operators. Recall the definition of compact operator and compact em-
bedding from Definition 8.11.

Later we will see, that if Ω is a smoothly bounded set (e.g. a ball) then W 1,p(Ω) embeds
compactly in Lp(Ω), p ∈ [1,∞] – this is called the Rellich-Kondrachov Theorem Theo-
rem 13.35. This can be used for example when we use the direct method to solve PDEs as
in Theorem 12.30 – but with lower order nonlinerarity, e.g. ∆u− λu+ |u|2u = f .

Compact operators T take weakly convergent sequences (xk)k into strongly convergent
sequences (Txk)k∈N.

Exercise 12.43. Let (X, ∥ · ∥) and (Y, ∥ · ∥) and T ∈ L(X, Y ) a linear bounded operator
which moreover is compact.

Assume that (xk)k∈N are weakly convergent in X. Show that (Txk)k∈N is strongly conver-
gent.

Hint: Show that (Txk)k∈N is weakly convergent by establishing that y∗[T ·] ∈ X∗ for y∗ ∈ Y ∗.
Then use that weak and strong limit coincide.

13. Sobolev spaces

A remark on literature: A standard reference for Sobolev spaces is [Adams and Fournier, 2003].
Very readable is also [Evans and Gariepy, 2015]. The introduction here takes a lot from
the introduction to Sobolev spaces in [Evans, 2010]. A classical reference Sobolev spaces
in PDEs is [Gilbarg and Trudinger, 2001]. Also [Ziemer, 1989]. For very delicate problems
one might also consult [Maz’ya, 2011].



ANALYSIS I & II & III VERSION: December 5, 2022 194

We now define the notion of Sobolev space on Ω ⊂ Rn (where we always will think of Ω
as an open set). For Ω = Rn and p ∈ [1,∞) we know this is the same as our old definition
by approximation, cf. Theorem 4.46. Observe in the next definition p =∞ is included.

Definition 13.1. (1) Let 1 ≤ p ≤ ∞, k ∈ N and Ω ⊂ Rn open, nonempty. The
Sobolev space W k,p(Ω) is the set of functions

u ∈ Lp(Ω)
such that for any multiinidex γ, |γ| ≤ k we find a function (the distributional
γ-derivative or weak γ-derivative) “∂γu”∈ Lp(Ω) such that∫

Ω
u ∂γφ = (−1)|γ|

∫
Ω

“∂γu”φ ∀φ ∈ C∞
c (Ω).

Such u are also sometimes called Sobolev-functions.
(2) For simplicity we write W 0,p = Lp.
(3) The norm of the Sobolev space W k,p(Ω) is given as

∥u∥W k,p(Ω) =
∑

|γ|≤k

∥∂γu∥Lp(Rn)

or equivalently (exercise!)

∥u∥W k,p(Ω) =
∑

|γ|≤k

∥∂γu∥p
Lp(Rn)

 1
p

.

(4) We define another Sobolev space Hk,p(Ω) as follows

Hk,p(Ω) = C∞(Ω)
∥·∥

W k,p(Ω) .

that is the (metric) closure or completion of the space (C∞(Ω), ∥ · ∥W k,p(Ω)). In yet
other words, Hk,p(Ω) consists of such functions u ∈ Lp(Ω) such that there exist
approximations uk ∈ C∞(Ω) with

∥uk − u∥W k,p(Ω)
k→∞−−−→ 0.

We will later see that Hk,p is the same as W k,p locally, or for nice enough domains;
and use the notation H or W interchangeably. For k = 0 this fact follows from
Lemma 4.38 for any open set Ω.

(5) Now we introduce the Sobolev space Hk,p
0 (Ω)

Hk,p
0 (Ω) = C∞

c (Ω)
∥·∥

W k,p(Ω) .

We will later see that this space consists of all maps u ∈ Hk,p(Ω) that satisfy
u,∇u, . . .∇k−1u ≡ 0 on ∂Ω in a suitable sense (the trace sense, for a precise
formulation see Theorem 13.31). – Again, later we see that H = W and thus,
W k,p

0 (Ω) = Hk,p
0 (Ω) for nice sets Ω.

Observe that in view of Lemma 4.38, Lp(Ω) = W 0,p(Ω) = W 0,p
0 (Ω).
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(6) The local space W k,p
loc (Ω) is similarly defined as Lp

loc(Ω). A map belongs to u ∈
W k,p

loc (Ω) if for any Ω′ ⊂⊂ Ω we have u ∈ W k,p(Ω′).
Remark 13.2. Some people write Hk,p(Ω) instead of W k,p(Ω). Other people use Hk(Ω)
for Hk,2 – notation is inconsistent...

Some people claim that W stand for Weyl, and H for Hardy or Hilbert.
Exercise 13.3. For s > 0 let

f(x) := |x|−s.

Observe that f is only defined for x ̸= 0, but since measurable functions need only be defined
outside of a null-set this is still a reasonable function.

We have already seen, Exercise 3.50,that f ∈ Lp
loc(Rn) for any 1 ≤ p < n

s
.

(1) Compute for x ̸= 0 that
(13.1) ∂if(x) = −s |x|−s−2xi

and show ∂if ∈ Lq
loc(Rn \ {0}) for any 1 ≤ q < n

s+1 .
(2) Show that (13.1) holds in the distributional sense, i.e. that if n ≥ 2 and 0 < s <

n− 1 then for any φ ∈ C∞
c (Rn),∫

Rn
f(x) ∂iφ(x) dx =

∫
Rn
s |x|−s−2xiφ(x) dx.

(3) conclude that f ∈ W 1,q
loc (Rn) for any 1 ≤ q < n

s+1 .

Exercise 13.4. Let
f(x) := log |x|.

Show that f ∈ Lp
loc(Rn) for any 1 ≤ p <∞, and f ∈ W 1,p

loc (Rn) for all p ∈ [1, n), if n ≥ 2.

Exercise 13.5. Let
f(x) := log log 2

|x|
in B(0, 1)

Show that for n ≥ 2, f ∈ W 1,n(B(0, 1)).

Moreover, for n = 2, in distributional sense
∆f = |Df |2

Observe that this serves as an example for solutions to nice differential equations that are
not continuous!

Exercise 13.6. Show that f(x) := x
|x| belongs to W 1,p(Bn,Rn) whenever p < n.

Proposition 13.7 (Basic properties of weak derivatives). Let u, v ∈ W k,p(Ω) and |γ| ≤ k.
Then

(1) ∂γu ∈ W k−|γ|,p(Ω).
(2) Moreover ∂α∂βu = ∂β∂αu = ∂α+βu if |α|+ |β| ≤ k.

https://en.wikipedia.org/wiki/Hermann_Weyl
https://en.wikipedia.org/wiki/G._H._Hardy
https://en.wikipedia.org/wiki/David_Hilbert
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(3) For each λ, µ ∈ R we have λu+ µv ∈ W k,p(Ω) and
∂α(λu+ µv) = λ∂αu+ µ∂αv

(4) If Ω′ ⊂ Ω is open then u ∈ W k,p(Ω′)
(5) For any η ∈ C∞

c (Ω), ηu ∈ W k,p and (if k ≥ 1), and we have the Leibniz formula
(aka product rule)

∂i(ηu) = ∂iη u+ η∂iu.

Proof. (1) We show that ∂iu ∈ W k−1,p(Ω), only. The general statement then follows
accordingly. By definition of the distributional derivative we have that ∂iu ∈ Lp(Ω).
For any |β| ≤ k − 1 and φ ∈ C∞

c (Ω) we have∫
Ω
∂iu ∂

βφ = −
∫

Ω
u ∂i∂

βφ = −(−1)|β|+1
∫

Ω
∂i∂

βuφ = (−1)|β|
∫

Ω
∂i∂

βuφ.

The first inequality comes from the fact that ∂βφ ∈ C∞
c (Ω) and from the definition

of the weak derivative ∂i. The second equation comes from the definition of the
weak derivative of ∂i∂

β for W k,p-functions.
(2) We show ∂i∂ju = ∂j∂iu, again the general case follows. And as above this is proven

by deducing respective properties from the properties in the space of test-funtions:
For φ ∈ C∞

c (Ω) we have ∂i∂jφ = ∂j∂iφ, and thus∫
Ω
∂i∂juφ =

∫
Ω
u ∂i∂jφ =

∫
Ω
u ∂j∂iφ =

∫
Ω
∂j∂iuφ.

(3) Follows from the linearity of the definition of weak derivative and the equivalent
statements for smooth functions φ ∈ C∞

c (Ω)
(4) If Ω′ ⊂ Ω then any φ ∈ C∞

c (Ω′) belongs also to C∞
c (Ω). That is any property true

for test functions φ ∈ C∞
c (Ω) holds also for testfunctions in φ ∈ C∞

c (Ω′).
(5) For φ ∈ C∞

c (Ω) we have by the usual Leibniz rule∫
Ω
ηu∂iφ =

∫
Ω
u ∂i(ηφ)−

∫
Ω
u ∂iη φ

=−
∫

Ω
∂iu ηφ−

∫
Ω
u ∂iη φ

=−
∫

Ω
(∂iu η + u ∂iη) φ

The second equation is the definition of weak derivative ∂iu (since ηφ ∈ C∞
c (Ω) is

a permissible testfunction).
That is we have shown for all φ ∈ C∞

c (Ω),∫
Ω
ηu∂iφ =

∫
Ω
u ∂i(ηφ)−

∫
Ω
u ∂iη φ.

This means that in distributional sense ∂i(ηu) = ∂iη u + η∂iu. Now observe that
ηu ∈ Lp(Ω) and ∂iη u+ η∂iu ∈ Lp(Ω), so ηu ∈ W 1,p(Ω).

□
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Proposition 13.8. (W k,p(Ω), ∥ · ∥W k,p(Ω)), (Hk,p(Ω), ∥ · ∥W k,p(Ω)), (Hk,p
0 (Ω), ∥ · ∥W k,p(Ω)) are

all Banach spaces.

For p = 2 they are Hilbert spaces, with inner product

⟨u, v⟩ =
∑

|γ|≤k

∫
∂γu ∂γv.

Proof. ∥ · ∥W k,p(Ω) is a norm. By definition (Hk,p(Ω), ∥ · ∥W k,p(Ω)), (Hk,p
0 (Ω), ∥ · ∥W k,p(Ω)) are

complete and thus Banach spaces.

As for the completeness of W k,p(Ω), it essentially follows from the completeness of Lp(Ω).

Let (ui)i∈N ⊂ W k,p(Ω) be a Cauchy sequence of W k,p-functions, i.e.

∀ε > 0∃N = N(ε) ∈ N s.t. ∀i, j ≥ N : ∥ui − uj∥W k,p(Ω) < ε.

We have to show that ui converges to some u ∈ W k,p(Ω) in the W k,p(Ω)-norm.

Observe that by the definition of the W k,p-norm, if ui is a Cauchy sequence for W k,p, then
for any |γ| ≤ k, (∂γui)i∈N are Cauchy sequences of Lp(Ω).

Since Lp(Ω) is a Banach space, i.e. complete, each ∂γui converges in Lp(Ω) to some object
which we call ∂γu,

∥∂γui − ∂γu∥Lp(Ω)
i→∞−−−→ 0 ∀|γ| ≤ k.

Observe that as of now we do not know that ∂γu is actually the weak derivative of u! But
we can check this is the case.

Since ∂γui is the weak derivative of ui, we have∫
Ω
∂γui φ = (−1)|γ|

∫
Ω
ui ∂

γφ ∀φ ∈ C∞
c (Ω).

But on both sides we have strong convergence in Lp(Ω). For any (fixed) φ ∈ C∞
c (Ω),∫

Ω
∂γuφ

i→∞←−−−
∫

Ω
∂γui φ = (−1)|γ|

∫
Ω
ui ∂

γφ
i→∞−−−→ (−1)|γ|

∫
Ω
u ∂γφ

and thus for any φ ∈ C∞
c (Ω), ∫

Ω
∂γuφ = (−1)|γ|

∫
Ω
u ∂γφ.

That is, ∂γu is indeed the weak derivative of u, thus u ∈ W k,p(Ω) and by the definition of
the W k,p-norm

∥ui − u∥W k,p(Ω)
i→∞−−−→ 0.

□
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13.1. Approximation by smooth functions. We mentioned above the H = W prob-
lem, i.e. we would like to approximate Sobolev functions by smooth functions. Why?
Because then we don’t have to deal that many times with the weak definition of deriva-
tives, but show desired results for smooth functions, then pass to the limit and hopefully
obtain the result for Sobolev maps. Observe that since W k,p(Ω) is a Banach space, and
C∞(Ω) ⊂ W k,p(Ω) (exercise!) we clearly have Hk,p(Ω) ⊂ W k,p(Ω). for the other direction
we now obtain the first result:

Proposition 13.9 (Local approximation by smooth functions). Let u ∈ W k,p(Ω), 1 ≤ p <
∞. Set

uε(x) := ηε ∗ u(x) =
∫
Rn
ηε(y − x)u(y) dy.

Here ηε(z) = ε−nη(z/ε) for the usual bump function η ∈ C∞
c (B(0, 1), [0, 1]),

∫
B(0,1) η = 1.

Then

(1) uε ∈ C∞(Ω−ε), where as before
Ω−ε := {x ∈ Ω : dist (x, ∂Ω) > ε}

for each ε > 0 such that Ω−ε ̸= ∅.
(2) Moreoever for any Ω′ ⊂⊂ Ω,

∥uε − u∥W k,p(Ω′)
ε→0−−→ 0.

Proof. (1) As in Theorem 4.25 we have uε ∈ C∞(Ω−ε) – we do not need that u is a
Sobolev function, but merely that u ∈ Lp(Ω).

(2) Next we claim that ∂γuε(x) = (∂γu)ε(x) for x ∈ Ω−. Indeed, for x ∈ Ω−ε,

∂γuε(x) =
∫

Ω
∂γ

x (ηε(x− z))u(z) dz = (−1)|γ|
∫

Ω
∂γ

z (ηε(x− z))u(z) dz.

Now we observe that ηε(x − ·) ∈ C∞
c (Ω) if x ∈ Ω−ε: observing size of the support

of ηε, supp ηε ⊂ B(0, ε).
Thus by the definition of weak derivative,

(−1)|γ|
∫

Ω
∂γ

z (ηε(x− z))u(z) dz =
∫

Ω
ηε(x− z)∂γu(z) dz = (∂γu)ε(x).

Now, for any Ω′ ⊂⊂ Ω and ε < dist (Ω′, ∂Ω), for any 1 ≤ p <∞30

∥(∂γu)ε − ∂γu∥Lp(Ω′)
ε→0−−→ 0.

This holds for any γ such that ∂γu ∈ Lp, i.e. for all |γ| ≤ k. We conclude that

∥uε − u∥W k,p(Ω′)
ε→0−−→ 0.

□

30but not for p =∞!
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Even though Proposition 13.9 is only about local approximation, it is very useful to prove
properties of Sobolev function.

Lemma 13.10. For 1 ≤ p < ∞31, if v ∈ W 1,p(Ω) and f ∈ C1(R,R) with [f ]Lip (R) ≡
∥f ′∥L∞(Rn) <∞ then f(v) ∈ W 1,p(Ω), and we have in distributional sense

(13.2) ∂α(f(v)) = f ′(v) ∂αv.

Proof. Let vε be the (local) approximation of v in W 1,p
loc (Ω) from Proposition 13.9.

First we observe that (13.2) is true if v was a differentiable function, in particular,

∂α(f(vε)) = f ′(vε) ∂αvε in Ω−ε.

Now let φ ∈ C∞
c (Ω), and take ε0 so small such that Ω′ := suppφ ⊂ Ω−ε for all ε ∈ (0, ε0).

Then we have for all ε < ε0,

(13.3)
∫

Ω
f(vε) ∂αφ = −

∫
Ω
f ′(vε) ∂αvε φ

Now we observe that f(vε) ε→0−−→ f(v) with respect to the Lp(Ω′)-norm. Indeed, observe
that Ω′ ⊂⊂ Ω, so by Proposition 13.9,

∥f(vε)− f(v)∥Lp(Ω′) ≤ ∥f ′∥L∞(Ω′) ∥vε − v∥Lp(Ω′)
ε→0−−→ 0.

That is, the left-hand side of (13.3) converges (recall supp ∂αφ ⊂ suppφ = Ω′)∫
Ω
f(v) ∂αφ ≡

∫
Ω′
f(v) ∂αφ = lim

ε→0

∫
Ω′
f(vε) ∂αφ ≡ lim

ε→0

∫
Ω
f(vε) ∂αφ.

As for the right-hand side of (13.3) we have that ∂αvε
ε→0−−→ v in Lp(Ω′), and f ′(vε) ε→0−−→ f ′(v)

almost everywhere in Ω (up to taking a subsequence ε→ 0)32. By dominated convergence,
Theorem 3.26, this implies ∫

Ω
f ′(vε) ∂αvε φ

ε→0−−→
∫

Ω
f ′(v) ∂αv φ

Then from (13.3) we get the claim, observing that f ′(v)∂αv ∈ Lp(Ω), since f ′ ∈ L∞. □

Remark 13.11. Actually, a stronger statement is true: if u ∈ W 1,p(Ω) and f : R → R
is Lipschitz continuous, f ∈ C0,1 then f ◦ u ∈ W 1,p(Ω). Again, formally this is looks easy
since ∇(f ◦ u) = Df(u)∇u– since f is almost everywhere differentiable.

We first just sketch the proof of a special case:

31we can later conclude, using Theorem 13.24, that this also holds for p =∞, since then Sobolev maps
are simply Lipschitz maps

32these are results from measure theory: since f ′ is continuous, and since L1-convergence implies almost
everywhere convergence up to subsequence, Theorem 3.51
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Lemma 13.12. Let u ∈ W 1,1(Ω), then |u| ∈ W 1,1(Ω).

Moreover we have Du = 0 almost everywhere in {u(x) = 0}33.

Also we have
D|u| = u

|u|
Du.

Proof. We only sketch the proof.

The difficulty lies in the fact that | · | is merely Lipschitz continuous, so we mollify it:

fε,θ(t) :=
√

(t+ θε)2 + ε2 −
√

(θε)2 + ε2.

fε,θ is a smooth function.

One approximates |u| by uε := fε,θ(u) for some θ ∈ R

Since fε,θ is smooth we have in distributional sense, by Lemma 13.10,

Duε = u+ εθ√
(u+ εθ)2 + ε2

Du
ε→0−−→ Du ·


1 in {u > 0}

θ√
θ2+1 in {u = 0}
−1 in {u < 0}

Now uε → |u| in L1(Ω), and Duε converges also in L1(Ω). Using test functions and the
convergence as ε→ 0 we get that

L1(Ω) ∋ D|u| = Du ·


1 in {u > 1}

θ√
θ2+1 in {u = 0}
−1 in {u < 1}

But weak derivatives are unique as L1-functions. The nonunique looks independent in θ.
This means either Du = 0 almost everywhere in {u = 0} or {u = 0} is a zeroset (which
still means that Du = 0 almost everywhere in {u = 0}). □

Exercise 13.13. Show that Lemma 13.12 does not hold in the other direction, i.e. there
exist functions u ∈ L1(R) such that |u| ∈ W 1,1(R) but u ̸∈ W 1,1(R).

Hint: Example 4.47, see also Exercise 13.19

In general, crazy sets, it might be difficult to extend Proposition 13.9 to the boundary
(think of an open set whose boundary is the Koch-curve, or an open set whose boundary
has positive Ln-measure!). To rule this out we make the following definition of Ck-boundary
data

33Check this for smooth functions: Either {u(x) = 0} is a zeroset. On the other hand, on the “substan-
tial” parts of {u(x) = 0} we should think of u as constant

https://en.wikipedia.org/wiki/Koch_snowflake


ANALYSIS I & II & III VERSION: December 5, 2022 201

Definition 13.14 (Regularity of boundary of sets). Let Ω ⊂ Rn be an open set. We say
that ∂Ω ∈ Ck (more generally in Ck,α) if ∂Ω ⊂ Rn is a Ck (or Ck,α, respectively) manifold,
that is if

for any x ∈ ∂Ω there exists a radius r > 0 and a Ck-diffeomorphism Φ : B(x, r)→ B(0, r)
(i.e. the map Φ is a bijection between B(x, r) and B(0, r) and Φ and Φ−1 are both of class
Ck) such that

• Φ(x) = 0
• Φ(Ω ∩B(x, r)) = B(0, r) ∩ Rn

+
• Φ(B(x, r)\Ω) = B(0, r) ∩ Rn

−.

Theorem 13.15 (Smooth approximation for Sobolev functions). Let Ω ⊂ Rn be open and
bounded, and ∂Ω ∈ C1. For any u ∈ W k,p(Ω) there exist a smooth approximating sequence
ui ∈ C∞(Ω) such that

∥ui − u∥W k,p(Ω)
i→∞−−−→ 0.

Proof. First we consider the situation close to the boundary.

Let x0 ∈ ∂Ω.

Observe first the following: If x ∈ B(0, r)+ and |z − x| < ε (for ε ≪ r) then x + εen ⊂
B(x, 2r)+. Since ∂Ω belongs to C1 one can show that the same holds (on sufficiently small
balls B(x0, r)) as well: For some λ = λ(x0), a unit vector ν = ν(x0), if z ∈ B(x, ε) and
x ∈ Ω ∩B(x0, r) then

z + λεν ∈ Ω.
One should think of ν the inwards facing unit normal at x0 (which can be computed from
the derivatives of Φ and is continuous around x0).

That is for x ∈ Ω′ := B(x0, r/2) ∩ Ω we may set

uε(x) :=
∫
Rn
ηε(z − x)u(z + λνε)dz =

∫
Rn
ηε(z − λνε− x)u(z)dz.

Clearly, uε is still smooth, but now in all of of Ω′. Moreover observe that if we set
vε(x) := u(z + λνε).

we have
∥vε − u∥W k,p(Ω′)

ε→0−−→ 0
since vε is merely a translation. Moreover, uε = ηε ∗ vε, and thus as before

∥uε − vε∥W k,p(Ω′) = ε→0−−→ 0.
We conclude that uε → u in W k,p(Ω′).

Now we cover all of ∂Ω by (finitely many, by compactness) balls B(xi, ri) and choose the
approximation uε,i on Ωi := B(xi, ri) ∩ Ω as above. In Ω0 := Ω\⋃B(xi, ri) ⊂⊂ Ω we can
find another approximation uε,0.
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Now we pick a smooth decomposition of unity ηi with support in Ωi ∩ ∂Ω such that∑
i∈N

ηi ≡ 1 in Ω.

Setting
uε :=

∑
i

ηiuε,i ∈ C∞(Ω).

We then use the Leibniz rule to conclude that

∥uε − u∥W k,p(Ω)
ε→0−−→ 0.

□

Theorem 13.15 can be improved to Lipschitz domains, cf. Exercise 13.29, but not necessar-
ily to more irregular sets, Exercise 13.29. Observe that still C∞(Ω) (not C∞(Ω)) is always
dense in W k,p(Ω):

Theorem 13.16. Let Ω be open. Then C∞(Ω) (not necessarily C∞(Ω)) is dense in
W k,p(Ω). By this we mean that, for any f ∈ W k,p(Ω) and any ε > 0 there exists
fε ∈ C∞(Ω) ∩W k,p(Ω) such that

∥fε − f∥W k,p(Ω) < ε.

Proof. We are not given the full proof here (for this see, e.g., [Adams and Fournier, 2003,
Theorem 3.17]) but only the idea:

We know that any open set can be written as countable union of closed dyadic cubes,

Ω =
∞⋃

i=1
Qi.

where the cubes’ interior is pairwise disjoint. We can refine these cubes into what is called
Whitney cubes or Whitney decomposition of Ω, [Grafakos, 2014, Appendix J.1]: far away
from the boundary we take large cube, towards the boundary we take smaller cubes. This
way we can ensure the folllowing property:

• for any cube we have
√
nsidelength(Qj) ≤ dist (Qj,Rn \ Ω).

• whenever two cubes Qj and Qk touch (i.e. their boundary) then

1
4 ≤

sidelength(Qj)
sidelength(Qk) ≤ 4.

• Each Qj touches at most 12n − 4n other cubes Qk



ANALYSIS I & II & III VERSION: December 5, 2022 203

In particular, if we denote by Q∗
j ⊂ Q∗∗

j are cubes with the same center as Qj but slightly in-
creased sidelength (e.g. sidelength(Q∗

j) = 17
16sidelength(Qj) and sidelength(Q∗∗

j ) = 18
16sidelength(Qj))

then each Q∗
j , Q

∗∗
j is still contained in Ω. Moreover any Q∗

j it intersects with at most 12n−4n

other cubes Q∗
k, and likewise any Q∗∗

j it intersects with at most 12n − 4n other cubes Q∗∗
k

Now we can find a decomposition of unity ηj ∈ C∞
c (Q∗

j) such that ηj ≡ 1 in Qj, and for
any x ∈ Ω,

1 =
∑

j

ηj(x) and the sum is finite.

Let now f ∈ W k,p(Ω) and fix ε > 0.

Then ηjf ∈ W k,p(Ω), with supp ηjf ⊂ Q∗
j ⊂⊂ Ω. As in Proposition 13.9 we can then find

gj ∈ C∞
c (Q∗∗

j ) such that
∥gj − f∥W k,p(Ω) = ∥gj − f∥W k,p(Q∗

j ) < 2−jε.

Now let
fε(x) :=

∑
j

gj(x)

Observe that since each gj is supported in Q∗∗
j (which only intersects with at most 12n−4n

many other Q∗∗
k ) this sum is locally finite – and thus fε ∈ C∞(Ω) (but not necessarily

fε ∈ C∞(Ω)!). Then
∥fε − f∥Lp(Ω) ≤

∑
j

∥gj − f∥Lp(Q∗
j ) ≤

∑
j

2−jε = ε.

and similar for all derivatives. □

Observe that Theorem 13.16 can be used to show completeness of W k,p(Ω) for any open
set Ω, since we can write W k,p(Ω) as the closure of smooth maps.
Exercise 13.17. Let Ω,Ω′ ⊂ Rn be open sets, and let ϕ : Ω′ → Ω be a C∞-diffeomorphism.
Let f : Ω→ R be measurable. Show that for all k = {0, 1, . . . , } and all p ∈ [1,∞]

f ∈ W k,p(Ω) ⇔ f ◦ Φ ∈ W k,p(Ω′).

On Rn approximation is much easier, indeed we can approximate with respect to the W k,p-
norm any u ∈ W k,p(Rn) by functions uk ∈ C∞

c (Rn). That is, W k,p(Rn) = W k,p
0 (Rn). We

could describe this as “u ∈ W k,p(Rn) implies that u and k − 1-derivatives of u all vanish
at infinity”.
Proposition 13.18. (1) Let u ∈ W k,p(Ω), p ∈ [1,∞). If suppu ⊂⊂ Ω then there

exists uk ∈ C∞
c (Ω) such that

∥u− uk∥W k,p(Ω)
k→∞−−−→ 0.

(2) Let u ∈ W k,p(Rn), p ∈ [1,∞). Then there exists uk ∈ C∞
c (Rn) such that

∥u− uk∥W k,p(Rn)
k→∞−−−→ 0.
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(3) Let u ∈ W k,p(Rn
+) = Rn−1× (0,∞)). Then there exists u ∈ C∞

c (Rn−1× [0,∞) (i.e.,
u may not be zero on (x′, 0) for small x′) such that

∥u− uk∥W k,p(Rn
+)

k→∞−−−→ 0.

Proof. (1) follows from the proof of Proposition 13.9: Observe that suppu ⊂⊂ Ω implies
that ηε ∗ u ∈ C∞

c (Ω) if ε is only small enough.

(3) is an exercise, a combination of the proof of (2) and Theorem 13.15.

So let us discuss (2). Let η ∈ C∞
c (B(0, 1)) again be the typical mollifier bump function,

ηε(x) = ε−nη(x/ε). We have already seen that

ηε ∗ u ∈ C∞(Rn).

But there is no reason that ηε ∗ u ∈ C∞
c (Rn). Set (without rescaling by Rn!)

φR(x) := η(x/R) ∈ C∞
c (B(0, R)).

Then we set
uε,R := ηε ∗ (φR u)

Now before uε,R ∈ C∞
c (B(0, R + ε)) ⊂ C∞

c (Rn).

Moreover we have for any ℓ = 0, . . . , k

∥∇ℓ(u− uφR)∥Lp(Rn) =∥∇ℓ(1− φR)u∥Lp(Rn)

≤C(ℓ)
ℓ∑

i=0
∥∇i(1− φR)∇ℓ−iu∥Lp(Rn)

≤C(ℓ) ∥(1− φR)∇ℓu∥Lp(Rn) + C(ℓ)
ℓ∑

i=0
∥∇i(1− φR)∥∞∥∇ℓ−iu∥Lp(Rn)

≤C(ℓ, η) ∥(1− φR)∇ℓu∥Lp(Rn\B(0,R)) + C(ℓ, η)
ℓ∑

i=0
R−i∥u∥W k,p(Rn)

R→∞−−−→0

by Lebesgue dominated convergence theorem.

On the other hand, as already seen, for R > 0 fixed,

∥ηε ∗ (φR u)− φRu∥W k,p(Rn)
ε→0−−→ 0.

Now we show that for any ℓ > 0 there exists εℓ, Rℓ such that for uℓ := uεℓ,Rℓ
we have

(13.4) ∥uℓ − u∥W k,p(Rn) <
1
ℓ

ℓ→∞−−−→ 0,

that is C∞
c (Rn) ∋ uℓ → u in W k,p(Rn).
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First, by the arguments above we can choose Rℓ large enough such that

∥u− uφRℓ
∥W k,p(Rn) ≤

1
2ℓ.

Next, we can choose εℓ small enough such that

∥ηεℓ
∗ (uφRℓ

)− uφRℓ
∥W k,p(Rn) ≤

1
2ℓ.

Thus, by triangular inequality,

∥uℓ − u∥W k,p(Rn) ≤ ∥uℓ − uφRℓ
∥W k,p(Rn)︸ ︷︷ ︸

=∥ηεℓ
∗(uφRℓ

)−uφRℓ∥W k,p(Rn)

+ ∥uφRℓ
− u∥W k,p(Rn) ≤ 2 1

2ℓ = 1
ℓ
.

This proves (13.4), and thus (2) is established. □

Exercise 13.19. Let

f(x) :=
1 x1 ≥ 0

0 x1 < 0

Use a mollification argument to show that f does not belong to W 1,p
loc (Rn).

See also Example 4.47 for another argument.

Exercise 13.20 (Censored Mollification). Take three radii 0 < r < ρ < R and assume
u ∈ W ℓ,p(B(0, R)), p ∈ [1,∞), ℓ ∈ N ∪ {0}. Show that there is an approximation uk ∈
W ℓ,p(B(0, R)) with

∥uk − u∥W ℓ,p(B(0,R)
k→∞−−−→ 0

that satisfies the following conditions for all k ∈ N

• uk ≡ u in B(0, R) \B(0, ρ)
• uk ∈ C∞(B(0, r))

Hint: Use the same approximation as in Exercise 4.39

Let Ω,Ω1,Ω2 be three open, connected, and bounded sets in Rn such that Ω = Ω1 ∪ Ω2

and Ω1 ∩ Ω2 = ∅. Let u ∈ Lp(Ω) such that u
∣∣∣∣
Ω1

∈ W 1,p(Ω1) and u

∣∣∣∣
Ω2

∈ W 1,p(Ω2). Then

there is – in general – no reason that u ∈ W 1,p(Ω). Indeed, take u ≡ 1 in Ω1 and u ≡ 0
in Ω2, which in general will not belong to W 1,p(Ω) because of the jump. It is a nice fact
(used in numerics) that the jump is indeed all that can go wrong, in the following sense.

Lemma 13.21. Let Ω,Ω1,Ω2 be open, connected, and bounded sets as above, all with
Lipschitz boundary. Assume u ∈ Lp(Ω) such that u

∣∣∣∣
Ω1

∈ W 1,p(Ω1) and u
∣∣∣∣
Ω1

∈ W 1,p(Ω2).

If u is moreover continuous in Ω, then u ∈ W 1,p(Ω).
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Proof. We only prove this in the situation where Ω = Rn, Ω1 = Rn−1 × (0,∞), Ω2 =
Rn−1 × (−∞, 0). Observe that we can set

Du(x) :=
Du(x) x ∈ Ω1

Du(x) x ∈ Ω2

Since ∂Ω1, ∂Ω2 are zerosets, this means that Du ∈ Lp(Ω). However this does not mean
that Du(x) is actually the (distributional!) derivative of u. This we still have to show (and
this is where continuity of u plays a role).

Formally the argument goes as follows: Let ν = (0, 0, . . . , 0, 1). Integration by parts,∫
Rn
u∂αφ−

∫
Rn
∂αuφ =

∫
Rn−1×{0}

u(−να)φ+
∫
Rn−1×{0}

u(να)φ

=
∫
Rn−1×{0}

(u− u)(να)φ = 0.

What have we used? We have used that∫
Rn

±

u∂αφ−
∫
Rn

±

∂αuφ =
∫
Rn

+

u(∓να)φ.

This can be proven (by approximation) since u is indeed continuous at the boundary Rn−1×
{0} = ∂Rn

+ = ∂Rn
− (more precisely we need that u is really defined at the boundary. □

13.2. Difference Quotients. In PDE one likes to use the method of differentiating the
equation (e.g. that if ∆u = 0 then also for v := ∂iu we have ∆v = 0 – so we can easier
estimates for ∂iu). In the Sobolev space category this is also a useful technique. Some-
times, the “first assume that everything is smooth, then use mollification”-type argument
is difficult to put into practice. In this case, a technique developed by Nirenberg, is dis-
cretely differentiating the equation (which does not require the function to be a priori
differentiable):

∆u = 0⇒ v(x) := (∆ei
h u)(x) := u(x+ hei)− u(x)

h
: ∆v = 0

For this to work, we need some good estimates. Recall that (by the fundamental theorem
of calculus), for C1-functions u,

∥∆eℓ
h u∥L∞ ≤ ∥∂ℓu∥L∞ .

This also holds in Lp for W 1,p-functions u, which is a result attributed to Nirenberg, see
Proposition 13.23.

One important ingredient is that the fundamental theorem of calculus holds for Sobolev
functions:

https://en.wikipedia.org/wiki/Louis_Nirenberg


ANALYSIS I & II & III VERSION: December 5, 2022 207

Lemma 13.22. Let u ∈ W 1,1
loc (Ω). Fix v ∈ Rn. Then for almost every x ∈ Ω such that the

path [x, x+ v] ⊂ Ω we have

u(x+ v)− u(x) =
∫ 1

0
∂αu(x+ tv)vα dt.

Proof. Let Ω′ ⊂ Ω. In view of Proposition 13.9 we can approximate u by uk ∈ C∞(Ω′)
such that

∥uk − u∥W 1,1(Ω′)
k→∞−−−→ 0.

The claim holds for the smooth functions uk, namely we have that whenever [x, x+v] ⊂ Ω′,

(13.5) uk(x+ v)− uk(x) =
∫ 1

0
∂αuk(x+ tv)vα dt.

Now we have
∥uk(·+ v)− uk(·)− (u(·+ v)− u(·)) ∥Lp(Ω′)

k→∞−−−→ 0,
in particular (up to taking a subsequence),

uk(x+v)−uk(x) k→∞−−−→ u(x+v)−u(x) for almost every x ∈ Ω′ such that [x, x+ v] ⊂ Ω′.

Also the right-hand side converges. Observing that34(∫
Ω

(∫ 1

0
|f(x, t)| dt

)p
) 1

p

≤
(∫ 1

0

∫
Ω
|f(x, t)|p dt

) 1
p

we have

∥
∫ 1

0
∂αuk(·+ tv)vα dt−

∫ 1

0
∂αu(·+ tv)vα dt∥Lp(Ω′)

≤
(∫ 1

0
|v|∥(Duk −Du∥p

Lp(Ω′) dt
) 1

p

= ∥Duk −Du∥Lp(Ω′)
k→∞−−−→ 0.

So again, up to possibly a subsubsquence,∫ 1

0
∂αuk(x+ tv)vα dt

k→∞−−−→
∫ 1

0
∂αu(x+ tv)vα dt

for all x such that [x, x+ v] ⊂ Ω.

Taking the limit in (13.5) we conclude. □

Proposition 13.23. (1) Let k ∈ N, (i.e. k ̸= 0), and 1<p < ∞. Assume that Ω′ ⊂⊂
Ω are two open (nonempty) sets, and let 0 < |h| < dist (Ω′, ∂Ω). For u ∈ W k,p(Ω)
we have

∥∆eℓ
h u∥W k−1,p(Ω′) ≤ ∥∂ℓu∥W k−1,p(Ω).

34This can be seen by Jensens inequalty: For any p ∈ [1,∞),

(
∫

A

|f |)p ≤
∫

A

|f |p,

this can also be shown by Hölder’s inequality. Then Fubini gets to the claim.
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Moreover we have
∥∆eℓ

h u− ∂ℓu∥W k−1,p(Ω′)
h→0−−→ 0.

(2) Let u ∈ W k−1,p(Ω), 1 < p ≤ ∞. Assume that for any Ω′ ⊂⊂ Ω and any ℓ = 1, . . . , n
there exists a constant C(Ω′) such that

sup
|h|<dist (Ω′,∂Ω)

∥∆eℓ
h u∥W k−1,p(Ω′) ≤ C(Ω′, ℓ)

Then we u ∈ W k,p
loc (Ω), and for any Ω′ ⊂ Ω we have

(13.6) ∥∂ℓu∥W k−1,p(Ω′) ≤ sup
|h|<dist (Ω′,∂Ω)

∥∆eℓ
h u∥W k−1,p(Ω′).

If p =∞ we even have u ∈ W k,∞(Ω) with the estimate
(13.7) ∥∂ℓu∥W k−1,∞(Ω) ≤ sup

Ω′⊂⊂Ω
sup

|h|<dist (Ω′,∂Ω)
∥∆eℓ

h u∥W k−1,∞(Ω′).

Proof of Proposition 13.23(1). The proof of (1) is essentially the same as for differentiable
function, we use the fundamental theorem of calculus.

By the fundamental theorem of calculus, Lemma 13.22,

∆eℓ
h u(x) = 1

h

∫ 1

0

d

dt
(u(x+ theℓ)) dt = 1

h
h
∫ 1

0
∂ℓu(x+ theℓ) dt =

∫ 1

0
∂ℓu(x+ theℓ) dt,

Similarly, for any |γ| ≤ k − 1, ℓ = 1, . . . , n

|∆eℓ
h ∂

γu(x)| ≤
∫ 1

0
|∂ℓ∂

γu(x+ theℓ)|.

Taking the Lp-norm, observing that35(∫
Ω

(∫ 1

0
|f(x, t)| dt

)p
) 1

p

≤
(∫ 1

0

∫
Ω
|f(x, t)|p dt

) 1
p

we have

∥∆eℓ
h ∂

γu∥Lp(Ω′) ≤
(∫ 1

0
∥∂ℓ∂

γu(·+ theℓ)∥p
Lp(Ω′) dt

) 1
p

.

Now observe that by substitution and |h| < dist (Ω′, ∂Ω),
∥∂ℓ∂

γu(·+ theℓ)∥Lp(Ω′) = ∥∂ℓ∂
γu(·)∥Lp(Ω′+heℓ) ≤ ∥∂ℓ∂

γu(·)∥Lp(Ω)

Consequently, for any |h| < dist (Ω′, ∂Ω).

∥∆eℓ
h ∂

γu∥Lp(Ω′) ≤
(∫ 1

0
∥u∥p

W k,p(Ω) dt
) 1

p

= ∥u∥W k,p(Ω).

35This can be seen by Jensens inequalty: For any p ∈ [1,∞),

(
∫

A

|f |)p ≤
∫

A

|f |p,

this can also be shown by Hölder’s inequality. Then Fubini gets to the claim.
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This shows the first part of (1). For the second part we observe that by the same funda-
mental theorem argument as above,

|∆eℓ
h ∂

γu(x)− ∂ℓ∂
γu(x)| =

∫ 1

0
|∂ℓ∂

γu(x+ theℓ)− ∂ℓ∂
γu(x)|dt.

As above we obtain

∥|∆eℓ
h ∂

γu− ∂ℓ∂
γu|∥Lp(Ω′) ≤

(∫ 1

0
∥∂ℓ∂

γu(·+ theℓ)− ∂ℓ∂
γu∥p

Lp(Ω′)dt
) 1

p

We can conclude by Lebesgue dominated convergence theorem once we show that for all
t ∈ (0, 1),

∥∂ℓ∂
γu(·+ theℓ)− ∂ℓ∂

γu∥Lp(Ω′)
h→0−−→ 0.

To obtain this last fact, fix ε > 0, let Γε be a smooth approximation of ∂ℓ∂
γu with

∥∂ℓ∂
γu− Γε∥Lp(Ω′′) < ε,

where Ω′′ ⊂⊂ Ω is a slighly larger set than Ω′ (and we can assume that h is small so that
Ω′ + theℓ ⊂ Ω. Then

∥∂ℓ∂
γu(·+ theℓ)− ∂ℓ∂

γu∥Lp(Ω′) ≤ 2ε+ ∥Γε(·+ theℓ)− Γε∥Lp(Ω′)
h→0−−→ 2ε.

Letting ε→ 0 we conclude. □

Proof of Proposition 13.23(2). First let us assume that p <∞.

Assume that for all ℓ ∈ {1, . . . , n} we have
sup

|h|<dist (Ω′,∂Ω)
∥∆eℓ

h u∥W k−1,p(Ω′) <∞.

∆eℓ
hi
∂γu

i→∞−−−→ fℓ,γ weakly in Lp(Ω′).
Since we are optimists, we call ∂ℓ∂

γu := fℓ,γ ∈ Lp(Ω′). We still need to show that ∂ℓ∂
γu

is actually the distributional derivative of u! Also, for simplicity of notation we drop the
i in hi and write h → 0 (meaning always this subsequence). Weak convergence means in
particular, that for any φ ∈ C∞

c (Ω′) ⊂ Lp(Ω′),

(13.8)
∫

Ω′
∆eℓ

h ∂
γu φ

h→0−−→
∫

Ω′
∂ℓ∂

γu φ

Since suppφ ⊂⊂ Ω′ for |h| small enough we have that ∆eℓ
−hφ ∈ C∞

c (Ω′). Now we perform
a discrete integration by parts, namely by substitution,∫

Ω′
∆eℓ

h ∂
γu φ = −

∫
Ω′
∂γu ∆eℓ

−hφ

Now since ∆eℓ
−hφ ∈ C∞

c (Ω′) is a testfunction and u ∈ W k−1,p,∫
Ω′

∆eℓ
h ∂

γu φ = −
∫

Ω′
∂γu ∆eℓ

−hφ = (−1)|γ|+1 −
∫

Ω′
u ∆eℓ

−h∂
γφ

h→0−−→ (−1)|γ|+1
∫

Ω′
u ∂ℓ∂

γφ,

in the last step we used dominated convergence and the smoothness of φ.
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But then in (13.8) we obtain

(−1)|γ|+1
∫

Ω′
u ∂ℓ∂

γφ =
∫

Ω′
∂ℓ∂

γu φ

This holds for any ℓ ∈ {1, . . . , n} and so we have shown that ∂ℓ∂
γu is indeed the weak

derivative of u which belongs to Lp, and thus u ∈ W k,p(Ω′). Since this holds for any
Ω′ ⊂ Ω we conclude that u ∈ W k,p

loc (Ω). The estimate (13.6) follows from the estimate of
Theorem 12.13.

As for the case p =∞, we observe first that for Ω′ ⊂⊂ Ω the estimate
(13.9) sup

|h|<dist (Ω′,∂Ω)
∥∆eℓ

h u∥W k−1,∞(Ω′) ≤ C(Ω′, ℓ)

implies (by Hölders inequality) also
sup

|h|<dist (Ω′,∂Ω)
∥∆eℓ

h u∥W k−1,2(Ω′) ≤ C(Ω′, ℓ)

Thus (13.9) implies u ∈ W k,2
loc (Ω) and in view of Proposition 13.23(1) we have that ∆eℓ

h u→
∂ℓu in W k−1,2

loc (Ω).

In particular, we already have the existence of the distributional derivative ∂ℓu ∈ W k−1,2
loc (Ω).

Set
Λ := sup

Ω′⊂⊂Ω
sup

|h|<dist (Ω′,∂Ω)
∥∆eℓ

h u∥W k−1,∞(Ω′).

For simplicity of notation in the following we shall assume k = 1.

We now claim that the above observations, together with (13.7), for any φ ∈ C∞
c (Ω),

(13.10)
∫

Ω
∂ℓuφ ≤ Λ ∥φ∥L1(Ω).

Indeed, since for φ ∈ C∞
c (Ω) let suppφ ⊂ Ω′ ⊂⊂ Ω, then we have∫

Ω
∂ℓu φ = lim

|h|→0

∫
Ω

∆eℓ
h u︸ ︷︷ ︸

≤Λ

φ ≤ Λ∥φ∥L1(Ω).

which is exactly (13.10).

Let x ∈ Ω be a Lebesgue point of ∂ℓu in Ω, i.e.

∂ℓu(x) = lim
r→0

∫
B(x,r)

∂ℓu.

Observe that almost all points in Ω are Lebesgue points (since ∂ℓu ∈ L2
loc(Ω)).

Set
Ω′ = {z ∈ Ω : dist (x, ∂Ω) < 1

2dist (x, ∂Ω)} ⊂⊂ Ω.
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Then for all r < 1
4dist (x, ∂Ω) we can set φ := |B(x, r)|−1χB(x,r) ∈ L2(Ω) which can be

approximated by smooth C∞
c (Ω′) functions φi → φ in L2(Ω). Since Ω′ ⊂⊂ Ω we also have

φi → φ in L1(Ω) (observe ∥φ∥L1(Ω) = 1 by construction of φ). Then∫
B(x,r)

∂ℓu = lim
i→∞

∫
B(x,r)

∂ℓuφi,

which leads to
|
∫

B(x,r)
∂ℓu| ≤ Λ lim

i→∞
∥φi∥L1(Ω′) ≤ Λ∥φ∥L1(Ω′) = Λ.

Since x was chosen to be a Lebesgue point of ∂ℓu, and since the last estimate holds for any
r > 0, we find

|∂ℓu(x)| = lim
r→0
|
∫

B(x,r)
∂ℓu| ≤ Λ.

This again holds for any Lebesgue point x ∈ Ω, and since almost all points in Ω are
Lebesgue points,

|∂ℓu(x)| ≤ Λ a.e. x ∈ Ω,
which implies

∥∂ℓu∥L∞(Ω) = ess sup
Ω
|∂ℓu| ≤ Λ,

which was the claim. □

Theorem 13.24 (Ck−1,1 ≈ W k,∞). (1) Let Ω ⊂ Rn be open and nonempty, k ∈ N then
Ck−1,1(Ω) ⊂ W k,∞(Ω),

and the distributional derivative Dku belongs to L∞ and we have
∥Dku∥L∞(Ω) ≤ C [Dk−1u]Lip (Ω)

(2) Let Ω ⊂⊂ Rn connected, ∂Ω ∈ C0,1. Then for k ∈ N

W k,∞(Ω) ⊂ Ck−1,1(Ω),
and

[Dk−1u]Lip (Ω) ≤ C(k,Ω) ∥Dku∥L∞(Ω).

The above holds in the following sense: recall that functions in Lp (and thus in
particular in W k,∞ are classes (namely: two functions f, g ∈ Lp(Ω) are the same
if they coincide almost everywhere). So what we mean above is: For every f ∈
W k,∞(Ω) there exists a representative g ∈ Ck−1,1(Ω) that coinides with f a.e.

Proof of Theorem 13.24. We restrict our attention to k = 1 and leave the other cases as
exercise.

For (1): Let u ∈ C0,1(Ω). Since u is Lipschitz,
sup

Ω′⊂⊂Ω
sup

|h|<dist (Ω′,∂Ω)
∥∆eℓ

h u∥L∞(Ω′) ≤ [u]Lip (Ω).

From Proposition 13.23(2) we then obtain u ∈ W 1,∞(Ω) with the claimed estimate.
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For (2):

First we assume that Ω = B(0, 1) is a ball, u ∈ W 1,∞(B(0, 1)). We argue by mollification
(what else can we do): Let uε be the usual mollification uε = ηε ∗ u which, as we already
know, converges in W 1,2

loc (B(0, 1)) to u. Moreover (also as seen before), for any δ ∈ (0, 1),
x ∈ B(0, δ), if ε < δ then

∂ℓuε(x) =
∫
∂ℓu(y) ηε(y − x) dy,

and thus whenever x ∈ B(0, δ), if ε < δ

|∂ℓuε(x)| ≤ ∥∂ℓu(y)∥L∞(B(0,1))∥ηε∥L1(B(0,1)) = ∥∂ℓu(y)∥L∞(B(0,1)).

In particular, by the fundamental theorem of calculus (recall: uε is differentiable), whenever
ε < δ

[uε]Lip ,B(0,1−δ) ≤ ∥Du∥L∞(B(0,1)).

Observe there is no constant on the right-hand side. Since moreover ∥uε∥L∞(B(0,δ0) ≤
∥u∥L∞(B(0,1)) we have that uε is equicontinuous and bounded, and thus by Arzela-Ascoli
(up to a subsequence ε → 0) we have uε → u in C0(B(0, δ)) (Here is where we find the
“continuous representative of u”, the limit of uε coinicides a.e. with u). In particular, u is
continuous in B(0, 1− δ). Also observe that for any x ̸= y ∈ B(0, 1− δ), for any ε < δ,

|u(x)−u(y)| ≤ 2∥u−uε∥L∞(B(0,1−δ))+|uε(x)−uε(y)| ≤ 2∥u−uε∥L∞(B(0,1−δ))+|x−y|∥Du∥L∞(B(0,1)).

This holds for any ε < δ, so letting ε → 0 we obtain by the uniform convergence uε → u
in B(0, 1− δ).

|u(x)− u(y)| ≤ |x− y|∥Du∥L∞(B(0,1)) for all x, y ∈ B(0, 1− δ)

This again holds for any δ > 0 so that

|u(x)− u(y)| ≤ |x− y|∥Du∥L∞(B(0,1)) for all x, y ∈ B(0, 1).

That is, u is Lipschitz continuous and we have

[u]Lip (B(0,1)) ≤ ∥Du∥L∞(B(0,1)).

So Theorem 13.24(2) is established for Ω = B(0, 1).

Next assume that Ω ⊂⊂ Rn and ∂Ω ∈ C0,1. Moreover we assume Ω is path-connected.

The regularity of the boundary is used in the following way: For any two points x, y ∈ Ω
there exists a continuous path γ connecting x and y inside Ω such that the length of γ,
L(γ) ≤ C(Ω)|x− y| (essentially take the straight line connecting x and y, when it hits ∂Ω
follow ∂Ω, then regularize and shift it away from ∂Ω).

Since Ω is open, and by the argument above in every open ball we can replace u by its
continuous representative we may assume that u w.l.o.g. is continous, and we just want to
show that u is Lipschitz continuous.
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Let x, y ∈ Ω and let γ be such a path connecting x and y. Set δ := 1
2dist (γ, ∂Ω) > 0.

Setting L := ⌈L(γ)
δ
⌉+ 2 points (xi)L

i=1 in γ, such that
L⋃

i=1
B(xi, δ) ⊃ γ.

and such that B(xi, δ) ∩ B(xi+1, δ) ̸= ∅, x ∈ B(x1, δ) and y ∈ B(xL, δ). In every B(xi, δ)
we use the argument from above, and have

[u]Lip (B(xi,δ)) ≤ ∥Du∥L∞(B(xi,δ)) ≤ ∥Du∥L∞(Ω).

Now, by triangular inequality

|u(x)− u(y)| ≤|u(x)− u(x0)|+ |u(y)− u(xL)|+
L−1∑
i=1
|u(xi)− u(xi+1)|

≤∥Du∥L∞(Ω) (L+ 1)2δ ≤ CL(γ) ≤ C(Ω)∥Du∥L∞(Ω) |x− y|.

This implies that u is Lipschitz continuous with

[u]Lip ≤ C(Ω)∥Du∥L∞(Ω).

which establishes the theorem. □

13.3. Remark: Weak compactness in W k,p. In the proof of of Proposition 13.23(2) we
derived and used the following consequence of Theorem 12.13, see also Proposition 12.16,
which we want to record (so we don’t have to argue always with Theorem 12.13.

Theorem 13.25 (Weak compactness). Let 1 < p < ∞, k ∈ N, Ω ⊂ Rn open. Assume
that (fi)i∈N is a bounded sequence in W k,p(Ω), that is

sup
i∈N
∥fi∥W k,p(Ω) <∞.

Then there exists a function f ∈ W k,p(Ω) and a subsequence fij
such that fij

weakly W k,p-
converges to f , that is for any |γ| ≤ k and any g ∈ Lp′(Ω), where p′ = p

p−1 is the Hölder
dual of p, we have ∫

Ω
∂γfij

g
i→∞−−−→

∫
Ω
∂γf g.

In particular we have
∥f∥W k,p(Ω) ≤ lim sup

i
∥fi∥W k,p(Ω).

To obtain this statement one either proves it by hand from the Lp-version. Or, one considers
W 1,p as a closed subspace of Lp × . . . Lp, as in the proof of Corollary 10.12 and used that
convex closed subsets are weakly closed, Theorem 12.26.
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13.4. Extension Theorems. If f is a Lipschitz function on a set Ω ⊂ Rn, then f can be
thought of as a restriction of a map f̃ : Rn → R, f = f̃

∣∣∣
Ω

. This is (a special case of) the
so-called Kirszbraun theorem. This is in general not true for Sobolev functions, even if Ω
is open.
Definition 13.26. Let Ω ⊂ Rn be open. Ω is called a W k,p-extension domain, if there
exists a linear operator E : W 1,p(Ω)→ W 1,p(Rn) such that

Eu(x) = u(x) for all x ∈ Rn, u ∈ W k,p(Ω)
and E is bounded, i.e.

sup
∥u∥

W k,p(Ω)≤1
∥Eu∥W k,p(Rn) <∞.

Theorem 13.27. Any open set Ω ⊂⊂ Rn with boundary ∂Ω ∈ Ck is a W k,p(Ω) extension
domain for k ∈ N, 1 ≤ p <∞.

More precisely, for any Ω̃ ⊃⊃ Ω there exists an operator E : W k,p(Ω) → W k,p
0 (Ω̃) with

Eu = u in Ω and
∥Eu∥W k,p(Ω̃) ≤ C(Ω, Ω̃, n, k) ∥u∥W k,p(Ω).

Remark 13.28. Theorem 13.27 is not optimal w.r.t to the regularity of ∂Ω. Indeed one
can show that any Lipschitz domain, i.e. any Ω ⊂ Rn open with ∂Ω locally a Lipschitz-
graph, is a W k,p-extension domain. For non-Lipschitz-domains this may not be true, take
e.g. the example in Exercise 13.30.

Proof. We will first show how to extend W k,p-functions from Rn
+ to all of Rn. Then by

“flattening the boundary” (for this we need the regularity ∂Ω) we extend this argument to
general Ω as claimed.

From Rn
+ to Rn:

Denote the variables in Rn by (x′, xn) where x′ ∈ Rn−1 and xn ∈ R.

We can explicitely define E0 : W k,p(Rn
+)→ W k,p(Rn) by a type of reflection.

The main point is that we know (from the heaviside function example) that W 1,k-functions
cannot have a jump, so at least for smooth functions u, if we hope for E0u ∈ W 1,p we need
that

lim
yn→0−

E0u(y′, yn) != lim
yn→0+

E0u(y′, yn) = lim
yn→0+

u(y′, yn)

So, for k = 1 we could simply use the even reflection,

E0u(y′, yn) := u(y′, |yn|) =
u(y′, yn) if yn > 0
u(y,−yn) if yn < 0.

which indeed takes C∞(Rn
+)-functions into Lipschitz-functions (i.e. W 1,∞

loc (Rn)-functions,
hence W 1,p

loc (Rn)).

https://en.wikipedia.org/wiki/Kirszbraun_theorem
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More generally, for W k,p-functions, k ≥ 1 we then need that for any ℓ = 1, . . . , k the
(ℓ− 1)-th derivatives in yn-direction coincide:

(13.11) lim
yn→0−

(∂n)ℓ−1E0u(y′, yn) != lim
yn→0+

(∂n)ℓ−1E0u(y′, yn) = lim
yn→0+

(∂n)ℓ−1u(y′, yn).

So again, we use a reflection, but a more complicated one,

E0u(y′, yn) :=
u(y′, yn) if yn > 0∑k

i=1 σi u(y,−iyn) if yn < 0.

Here, (σi)k
i=1 are constants to be chosen, such that (13.11) is true for smooth functions:

For all ℓ = 1, . . . , k
k∑

i=1
σi(−i)ℓ−1(∂n)ℓu(x′, 0) = (∂n)ℓu(x′, 0) ⇐

k∑
i=1

σi(−i)ℓ−1 = 1.

Such a σ exists by linear algebra: Defining a matrix A by Aiℓ := (−i)ℓ−1, and interpreting
σ as a vector in Rk we want to solve

Aσ =


1
...
1

 ,
which is possible if A is invertible (to check this is the case is left as an exercise).

Now we argue as follows: Let u ∈ W k,p(Rn
+). By Proposition 13.18 there exists uj ∈

C∞
c (Rn−1 × [0,∞)) that approximate u in W k,p(Rn

+).

One now checks that E0uj ∈ Ck−1,1(Rn), moreover we have for almost any x ∈ Rn (namely
whenever x = (x′, xn), with xn ̸= 0), for any |γ| ≤ k,

|∂γ(E0uj)(x′, xn)| ≤ C(σ, k)
|∂γuj(x′, xn)| xn > 0∑k

i=1 |∂γu(y,−iyn)| xn < 0.

Let us illustrate this fact for k = 1, for k > 1 it is an exercise.

∂xα(E0uj)(x′, xn) = ∂xαuj(x′, |xn|) = (∂xαuj)(x′, |xn|) α = 1, . . . , n− 1.

∂xn(E0uj)(x′, xn) = ∂xαuj(x′, |xn|) = (∂xnuj)(x′, |xn|)
xn

|xn|
.

In particular we get that u ∈ W k,p(Rn) and

∥E0uj∥W k,p(Rn) ≤ C(k) ∥uj∥W k,p(Rn
+)

In particular we get

lim sup
j→∞

∥E0uj∥W k,p(Rn) ≤ C(k) lim sup
j→∞

∥uj∥W k,p(Rn
+) = C(k) ∥u∥W k,p(Rn

+).
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Thus, in view of Theorem 13.25 we find g ∈ W k,p which is the weak W k,p-limit of E0uj.
By strong Lp-convergence of uj to u we see that indeed E0g = u, and thus we get

∥E0u∥W k,p(Rn) ≤ C(k) ∥u∥W k,p(Rn
+).

as claimed.

From Ω to Rn We only sketch the remaining arguments. If ∂Ω ∈ Ck then from small balls
B centered at boundary points there exists Ck-charts ϕ : B → Rn such that ϕ(B∩Ω) ⊂ Rn

+
ϕ(B ∩ Ωc) ⊂ Rn

−. By a decomposition of unity, we set u = ∑
i ηiu such that ηi are

supported only in one of these balls Bi ∩ Ω. Then (ηiu) ◦ ϕi ∈ W k,p(Rn
+) (since it is

locally in W k,p and then it is constantly zero). Here we use that (we haven’t shown it) the
Transformation rule still holds for Sobolev functions. Then we extend (ηi ◦ u) ◦ ϕi to all of
Rn, i.e. considerE0((ηiu) ◦ ϕi). Finally we set

E1u :=
∑

i

(E0((ηiu) ◦ ϕi)) ◦ ϕ−1
i .

The transformation rule shows that Eu ∈ W k,p(Rn).

From Ω to Ω′ To get E2u ∈ W k,p
0 (Ω′) we simply take a cuttoff function η ∈ C∞

c (Ω′), η ≡ 1
in Ω, and set

E2u := ηE1u.

□

Whenever Ω is a W k,p-extension domain, smooth C∞(Ω)-functions are dense in W k,p(Ω).
In particular in view of Remark 13.28 the approximation holds for Lipschitz domains.

Exercise 13.29. Assume Ω is a W k,p-extension domain, 1 ≤ p < ∞. Show that any
u ∈ W k,p(Ω) can be approximated by smooth functions in C∞(Ω) (essentially: prove The-
orem 13.15 for such Ω).

Observe that for general sets, C∞(Ω) (not C∞(Ω)) is dense in W k,p(Ω), Theorem 13.16.

Exercise 13.30. Let Ω be a two-dimensional disc with one radius removed (see picture
below), e.g. Ω = B(0, 1)\[0, 1]×{0}. Prove that C∞(Ω) functions are not dense in W 1,p(Ω).

Why does this not contradict Theorem 13.15 or Theorem 13.27?
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13.5. Traces. Let Ω ⊂ Rn be open and (for simplicity) ∂Ω ∈ C∞.

If u ∈ Cα(Ω), α ∈ (0, 1] with

∥u∥Cα(Ω) := sup
x∈Ω
|u(x)|+ sup

x ̸=y∈Ω

|u(x)− u(y)|
|x− y|α

<∞

then we find a unique map u

∣∣∣∣
∂Ω
∈ Cα(∂Ω). Indeed, for any x ∈ ∂Ω there exists exactly

one value u(x) such that u(x) = limΩ∋x→x u(x), because ∥u∥L∞ < ∞ and since we have
uniform continuity

|u(x)− u(y)| ≤ ∥u∥Cα(Ω)|x− y|α
|x−y|→0−−−−−→ 0.

Moreover, for any x, y ∈ ∂Ω and x, y ∈ Ω we have
|u(x)− u(y)| ≤|u(x)− u(x)|+ |u(x)− u(y)|+ |u(x)− u(y)|

≤|u(x)− u(x)|+ ∥u∥Cα |x− y|α + |u(x)− u(y)|
Taking x→ x and y → y we thus find

|u(x)− u(y)| ≤ ∥u∥Cα|x− y|α

that is
∥u∥Cα(∂Ω) ≤ ∥u∥Cα(Ω).

The map that computes from u the trace map u we may call T , u = Tu. Then we have a
linear operator

T : Ck,α(Ω)→ Ck,α(∂Ω),
By the computations above, T is linear and bounded

∥Tu∥Ck,α(∂Ω) ≤ ∥u∥Ck,α(Ω).

On the other hand, when u ∈ Lp(Ω) there is absolutely no reasonable (unique) sense of a
trace u

∣∣∣∣
∂Ω

.

One interesting and important fact of Sobolev spaces is that there is such a trace operator
T if k− 1

p
> 0, that associates to a Sobolev function u ∈ W k,p(Ω) a map Tu ∈ W k− 1

p
,p(∂Ω).

Observe that formally, if p = ∞ (i.e. in the Lipschitz case, the trace map is of the same
class as the interior map, but for p < ∞ the trace map has less differentiability than the
interior map. We do not want to deal with fractional Sobolev spaces here, so instead of
proving the sharp trace estimate

T : W 1,p(Ω)→ W 1− 1
p

,p(∂Ω)
we will only show the following:

Theorem 13.31. Let Ω ⊂⊂ Rn, ∂Ω ∈ C1, 1 ≤ p < ∞. There exists a (unique) bounded
and linear Trace operator T

T : W 1,p(Ω)→ Lp(∂Ω)
such that
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(1) Tu = u

∣∣∣∣
∂Ω

whenever u ∈ C0(Ω) ∩W 1,p(Ω).
(2) for each u ∈ W 1,p(Ω) we have

∥Tu∥Lp(∂Ω,dHn−1 ) ≤ C(Ω, p) ∥u∥W 1,p(Ω).

Proof. For u ∈ C1(Ω) ∩W 1,p(Ω) we define

Tu := u

∣∣∣∣
∂Ω
.

It now suffices to show that for all u ∈ C1(Ω) ∩W 1,p(Ω) we have

(13.12) ∥Tu∥Lp(∂Ω) ≤ C(Ω, p) ∥u∥W 1,p(Ω).

Then, by density of smooth functions C∞(Ω) in W 1,p(Ω), Theorem 13.15, linearity and
boundedness of the trace operator, there exists a (unique) extension of T to all of W 1,p(Ω).

To see (13.12) we argue again first on a flat boundary Ω = Rn
+. A flattening the boundary

argument as above, then leads to the claim.

Observe the following, which holds by the integration-by-parts formula:

∥u∥p
Lp(Rn−1) =

∫
Rn−1×{0}

|u(x′)|pdHn−1(x) =
∫
Rn

+

∂n (|u(x)|p) dx =
∫
Rn

+

p|u(x)|p−2u(x) ∂nu(x) dx

Then by Young’s inequality, ab ≤ C(ap + bp′) (where p′ = p
p−1 is the Hölder dual of p),∫

Rn
+

p|u(x)|p−2u(x) ∂nu(x) dx ≤ C
∫
Rn

+

(|u|p + |∂nu|p) ≤ C∥u∥p
W 1,p(Rn

+).

(this still works if p = 1 and p′ =∞!). This establishes (13.12) for Ω = Rn
+. For general Ω

we use a decomposition of unity and flattening the boundary argument as in the theorems
above. □

Theorem 13.32 (Zero-boundary data and traces). Let Ω ⊂⊂ Rn and ∂Ω ∈ C1. Let
u ∈ W 1,p(Ω).

Then u ∈ H1,p
0 (Ω) is equivalent to u ∈ W 1,p

0 (Ω), where

W 1,p
0 (Ω) = {u ∈ W 1,p(Ω) : Tu = 0}

for the trace operator T from Theorem 13.31.

Remark 13.33. By induction one obtains that if ∂Ω ∈ C∞ then Hk,p
0 (Ω) are exactly those

functions where T (∂γu) = 0 for any |γ| ≤ k − 1.

For time reasons we will not give the proof here. For a proof see [Evans, 2010, §5.5,
Theorem 2].
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Remark 13.34. The trace theory can be extended to Lipschitz maps and improved on
the boundary.

More precisely, let Ω ⊂ Rn be an open set (for simplicity: bounded) such that ∂Ω is locally
a Lipschitz Graph (for simplicity: compact).

Denote for s ∈ (0, 1) the fractional Sobolev space (also called Gagliardo/Slobodeckij space,
there are many other fractional Sobolev space)

W s,p(∂Ω) :=
{
f ∈ Lp(∂Ω) : [f ]W s,p(∂Ω) <∞

}
,

where (the integral on the boundary is the Hn−1-integral)

[f ]W s,p(∂Ω) :=
(∫

∂Ω

∫
∂Ω

|f(x)− f(y)|p
|x− y|n−1+sp

dx dy

) 1
p

One can show that W s,p(∂Ω) is a Banach space when equipped with the norm
∥f∥W s,p(∂Ω) := ∥f∥Lp(∂Ω) + [f ]W s,p(∂Ω).

Then there exists a trace map T : W 1,p(Ω)→ W 1− 1
p

,p(∂Ω) (if p =∞: W 1,∞ to Lip ) with
the following properties

• T is linear and continuous, i.e.
∥Tf∥

W
1− 1

p ,p(∂Ω)
≤ C(Ω) ∥f∥W 1,p(Ω)

• If f ∈ W 1,p(Ω) ∩ C0(Ω) then Tf = f
∣∣∣∣
∂Ω

• There exists a linear bounded operator S : W 1− 1
p

,p(∂Ω)→ W 1,p(Ω),

∥Sf∥W 1,p(Ω) ≤ C̃(Ω) ∥f∥
W

1− 1
p ,p(∂Ω)

such that T ◦ S = id .

This theorem is due to Gagliardo, [Gagliardo, 1957], see also [Mironescu, 2005].

13.6. Embedding theorems. Let X, Y be two Banach spaces. T : X → Y is a (we
assume always: linear) embedding if T is injective. We say that the embedding X ⊂ Y is
continuous under the operator T , if T is a linear embedding and T is continuous (i.e. a
bounded operator). If (as it often happens) T is (in a reasonable sense) the identity map,
then we say that X embedds into Y continuously, and write X ↪→ Y . E.g., clearly (by
definition)

W 1,p(Ω) ↪→ Lp(Ω)
since, by definition of the norm

∥u∥Lp(Ω) ≤ ∥u∥W 1,p(Ω).
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Recall that we say than an embedding X ↪→ Y is compact if the operator T : X → Y is
compact, i.e. if for any bounded sequence (xn)n∈N ⊂ X, supn ∥xn∥X < ∞, we have that
(T (xn))n∈N ⊂ Y has a convergent subsequence in Y .

From functional analysis we also have: If T : X → Y is compact, then if (xn)n∈N is weakly
convergent in X then Txn is strongly convergent in Y .

By Arzela-Ascoli, it is easy to check that Ck,α(Ω) embedds compactly into Cℓ,β(Ω) if k ≥ ℓ
and k + α > ℓ+ β.

The first important theorem is that for bounded sets Ω with smooth boundary we have
W 1,p(Ω) embedds compactly into Lp(Ω). (By induction: W k,p(Ω) embedds compactly into
W ℓ,p(Ω) whenever k ≥ p).

Observe that by Theorem 13.25 we have weak compactness in W 1,p(Ω) for bounded set,
but strong convergence in Lp(Ω).

Theorem 13.35 (Rellich-Kondrachov). Let Ω ⊂⊂ Rn, ∂Ω ⊂ C0,1, 1 ≤ p ≤ ∞. Assume
that (uk)k∈N ∈ W 1,p(Ω) is bounded, i.e.

sup
k∈N
∥uk∥W 1,p(Ω) <∞.

Then there exists a subsequence ki →∞ and u ∈ Lp(Ω) such that uki
is (strongly) conver-

gent in Lp(Ω), moreover the convergence is pointwise a.e..

Proof. If p = ∞, from Theorem 13.24 we have W 1,∞(Ω) = C0,1(Ω). By Arzela-Ascoli it
is clear that C0,1 is compactly embedded in C0(Ω), so in particular in L∞ (which has the
same norm as C0(Ω).

Now let p ∈ [1,∞). By the extension theorem, Theorem 13.27 we may assume that
uk ∈ W 1,p(Rn) with suppuk ⊂ B(0, R) for some (fixed) large R > 0.

The main idea is to use Arzela-Ascoli for mollified versions of uk. Denote by η ∈ C∞
c (B(0, 1))

the usual bump function,
∫
η = 1, and ηε = ε−nη(·/ε). Set

uk,ε := ηε ∗ uk ∈ C∞
c (B(0, 2R)).

Observe that
|uk,ε(x)| ≤ C(R)ε−n∥uk∥Lp(B(0,R))

|Duk,ε(x)| ≤ C(R)ε−n−1∥uk∥Lp(B(0,R)),

so since uk is bounded (even Lp-boundedness is enough for now) we have

sup
k∈N
∥uk,ε∥Lip (Rn) ≤ C(ε).

That is, for any εj := 1
j

there exists a subsequence uki(εj ),εj
that is convergent in L∞(Rn).
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By a diagonalizing this subsequences we obtain only one subsequence uki,εj
so that for any

fixed εj we have convergence in L∞(Rn), i.e. for any j ∈ N and any δ > 0 there exists
Nj,δ ∈ N such that

∥uki1 ,εj
− uki2 ,εj

∥L∞(Rn) ≤ δ ∀i1, i2 > Nj,δ.

Next we observe, by the fundamental theorem of Calculus,∣∣∣uki1
(x)− uki1 ,εj

(x)
∣∣∣ =

∫
Rn
|ηε(z)|

∣∣∣uki1
(x− z)− uki1

(x)
∣∣∣ ≤ ∫ 1

0

∫
B(0,ε)

|ηε(z)||Duki1
(x− tz))| |z|dz dt

≤ε1−n
∫ 1

0

(∫
B(0,ε)

|Duki1
(x− tz))|p

) 1
p

εn− n
p dz dt

Thus, by Fubini

∥uki1
− uki1 ,εj

∥Lp(Rn) =∥uki1
− uki1 ,εj

∥Lp(B(0,2R)) ≤ ε1− n
p

(∫ 1

0

∫
B(0,R)

∫
B(0,ε)

|Duki1
(x− tz)dxdzdt

) 1
p

≤ε∥Duki1
∥Lp(B(0,2R)).

(13.13)

Now we claim that this leads to a Cauchy-sequence for the (non-mollified) uki
: Let δ > 0.

∥uki1
− uki2

∥Lp(Rn) ≤∥uki1
− uki1 ,εj

∥Lp(Rn) + ∥uki1,εj
− uki2,εj

∥Lp(Rn) + ∥uki2 ,εj
− uki2

∥Lp(Rn)

(13.13)
≤ 2C εj sup

k
∥uk∥W 1,p(Rn) + C(R)∥uki1,εj

− uki2,εj
∥L∞(B(2R))

Choosing now first εj small enough so that

2C εj sup
k
∥uk∥W 1,p(Rn) <

δ

2
and then choosing for this εj the N(εj, δ) large enough so that for any i1, i2 > N(εj, δ)

C(R)∥uki1,εj
− uki2,εj

∥L∞(B(2R)) <
δ

2
we see that

∥uki1
− uki2

∥Lp(Rn) ≤ δ for any i1, i2 > N(εj, δ).

That is, uki
is a Cauchy sequence in Lp(Rn) and thus converges. □

One important consequence of Rellich’s theorem, Theorem 13.35 is Poincarè’s inequality.
In 1D it is called sometimes Wirtinger’s inequality – and it is quite easy to prove. Let
I = (a, b) ⊂ R, then for any u ∈ W 1,p(I),
(13.14) ∥u− (u)I∥Lp(I) ≤ C(I, p)∥u′∥Lp(I).

Here
(u)I :=

∫
I
u

denotes the mean value of u on I.



ANALYSIS I & II & III VERSION: December 5, 2022 222

The proof of (13.14) is done by the fundamental theorem of calculus, Lemma 13.22. We
have (using Hölder’s inequality and Fubini many times)

∥u− (u)I∥p
Lp(I) ≤ |I|

−1
∫

I

∫
I
|u(x)−u(y)|p ≤ |I|−1

∫ 1

0

∫
I

∫
I
|u′(tx+(1− t)y)|p |x−y|p dx dydt

Now observe that by substituting ỹ := tx+ (1− t)y, we have

|I|−1
∫ 1

2

0

∫
I

∫
I
|u′(tx+ (1− t)y)|p |x− y|p dx dydt

≤C(I, p)
∫ 1

2

0

∫
I

∫
I

1
1− t |u

′(ỹ)|p dỹ dxdt

=C(I, p)
∫ 1

2

0

1
1− t dt |I| ∥u

′∥p
Lp(I)

=C̃(I, p)∥u′∥p
Lp(I).

In the same way, substituting x̃ := tx+ (1− t)y

|I|−1
∫ 1

1
2

∫
I

∫
I
|u′(tx+ (1− t)y)|p |x− y|p dx dydt

≤C̃(I, p)∥u′∥p
Lp(I).

So (13.14) is established.

The Poincarè inequality says that (13.14) holds also in higher dimensions,
(13.15) ∥u− (u)Ω∥Lp(Ω) ≤ C(Ω, p)∥∇u∥Lp(Ω).

If Ω is convex, the above proof works almost verbatim, in general open sets Ω this is more
tricky.

Clearly, (13.15) does not hold if we remove (u)Ω from the left-hand side. Indeed, just take
u ≡ const to find a counterexample. And indeed, a W 1,p-Poincaré-type inequality holds
whenever constants are excluded in a reasonable sense.

Theorem 13.36 (Poincaré). Let Ω ⊂⊂ Rn be open and connected, ∂Ω ∈ C0,1, 1 ≤ p ≤ ∞.

Let K ⊂ W 1,p(Ω) be a closed (with respect to the W 1,p-norm) cone with only one constant
function u ≡ 0. That is, let K ⊂ W 1,p(Ω) be a closed set such that

(1) u ∈ K implies λu ∈ K for any λ ≥ 0.
(2) if u ∈ K and u ≡ const then u ≡ 0.

Then there exists a constant C = C(K,Ω) such that
(13.16) ∥u∥Lp(Ω) ≤ C∥∇u∥Lp(Ω) ∀u ∈ K.

The proof is a standard method from analysis, called a blow-up proof. One assumes that
the claim is false, and then tries to compute/construct the “most extreme” counterexample
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– which one then hopes to see cannot exist. Before we begin, we need the following small
Lemma.

Lemma 13.37. For Ω ⊂ Rn open assume that u ∈ W 1,1
loc (Ω). If ∇u ≡ 0 then u is constant

in every connected component of Ω.

Proof. This follows from (local) approximation by smooth functions. If ∇u ≡ 0 then
∇uε ≡ 0 in Ω−ε, where uε = ηε ∗ u. This implies that uε ≡ const in every connected
component of Ω−ε. Pointwise a.e. convergence of uε to u gives the claim. □

Proof of Theorem 13.36. Assume the claim is false for a given K as above. That means
however we choose the constant C there will be some countexample u that dails the claimed
inequality (13.16).

That is, for any m ∈ N there exists um ∈ K such that (13.16) is false for C = m, i.e.

(13.17) ∥um∥Lp(Ω) > m ∥∇um∥Lp(Ω).

Now we construct the “extreme/blown up” counterexample (that, as we shall see, does not
exist – leading to a contradicition).

Firstly, we can assume w.l.o.g.

(13.18) ∥um∥Lp(Ω) = 1, ∥∇um∥Lp(Ω) ≤
1
m
.

Indeed otherwise we can just take ũm := um

∥um∥Lp(Ω)
which satisfies (13.18).

(13.18) implies in particular,
sup

m
∥um∥W 1,p(Ω) <∞.

In view of Rellich’s theorem, Theorem 13.35, we can thus assume w.l.o.g. (otherwise
taking a subsequence) that um is convergent in Lp(Ω). In particular um is a Cauchy
sequence in Lp(Ω). Observe that also ∇um is a cauchy sequence in Lp(Ω), indeed by
(13.18) ∇um

m→∞−−−→ 0 in Lp(Ω). In particular, u is a Cauchy sequence in W 1,p(Ω). Since
W 1,p(Ω) is a Banach space we find a limit map u ∈ W 1,p(Ω) such that

(13.19) ∥um − u∥W 1,p(Ω)
m→∞−−−→ 0.

In view of (13.18) this implies that ∇u ≡ 0. From Lemma 13.37 and since Ω is connected,
u is a constant map. But since K is closed we have that u ∈ K, and since the only constant
map in K is the constant zero map, we find u ≡ 0 in Ω. But then by (13.19)

∥um∥W 1,p(Ω)
m→∞−−−→ 0.

which contradicts the conditions in (13.18), namely

∥um∥W 1,p(Ω) ≥ ∥um∥Lp(Ω)
(13.18)= 1.
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We have found a contradiction, and thus the assumption above (that for any m there exists
um that contradicts the claimed equation) is false. So there must be some number m such
that for C := m the equation (13.16) holds. □

Observe we have no idea what kind of C = C(K) we get in Theorem 13.36 – which is
somewhat the unsatisfying part of this type of blowup proof.

Corollary 13.38 (Poincaré type lemma). Let Ω ⊂⊂ Rn be open, connected, and ∂Ω ∈ C0,1.

(1) There exists C = C(Ω) such that for all u ∈ W 1,p(Ω) we have
∥u− (u)Ω∥Lp(Ω) ≤ C(Ω)∥∇u∥Lp(Ω)

(2) For any Ω′ ⊂⊂ Ω open and nonempty there exists C = C(Ω,Ω′) such that for all
u ∈ W 1,p(Ω) we have

∥u− (u)Ω′∥Lp(Ω) ≤ C(Ω,Ω′)∥∇u∥Lp(Ω)

(3) There exists C = C(Ω) such that for all u ∈ W 1,p
0 (Ω)

∥u∥Lp(Ω) ≤ C(Ω)∥∇u∥Lp(Ω)

If Ω = B(x, r) (and in the second claim Ω′ = B(x, λr)) then C(Ω) = C(B(0, 1)) r (and for
the second claim: C(Ω,Ω′) = C(B(0, 1), B(0, λ)) r).

Proof. The last claim can be proven by a scaling argument, and it is given as an exercise,
Exercise 13.40.

Regarding the first claim, we simply let
K := {u ∈ W 1,p(Ω), (u)Ω = 0}.

By Rellich’s theorem, Theorem 13.35 this is a closed cone in W 1,p. Observe that if u ∈ K
is constant, u ≡ C then (u)Ω = C = 0 by assumption, so C = 0. That is, the only constant
function in K is the zero-function. Clearly u− (u)Ω belongs to K, so we get the claim.

Regarding the second claim, we argue similarly setting
K := {u ∈ W 1,p(Ω), (u)Ω′ = 0}.

Regarding the third claim, observe that W 1,p
0 (Ω) is (by definition) a closed set, and since

it is a linear space it is in particular a cone. Now if u ∈ W 1,p
0 (Ω) is constant, u ≡ c then

u is in particular continuous, but then by the zero trace theorem, Theorem 13.32 c ≡ 0.
Again, the only constant function in K is the zero-function. □

Exercise 13.39 (Bramble-Hilbert – higher order Poincaré). Prove that for any k ∈ N and
any smoothly bounded domain Ω we have the following:

For each u ∈ W k,p(Ω) there exists polynomial p of degree at most k − 1 such that
∥u− p∥Lp(Ω) ≤ C ∥∇ku∥Lp(Ω)
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• Show this is a version Poincaré’s inequality, Corollary 13.38, if k = 1.
• Prove the statement for k = 2 by choosing explicitely the polynomial
• Prove the statement by blow-up.

Let us also illustrate how one can obtain a more precise dependency on the constants using
a scaling argument

Exercise 13.40. Denote by B(x0, r) ⊂ R the ball centered at x and with radius r. Show
that there exists a uniform constant C = C(n, p) such that for any B(x0, r) and any
u ∈ W 1,p(B(x0, r)) we have

∥u− (u)B(x0,r)∥Lp(B(x0,r) ≤ C(n, p) r ∥∇u∥Lp(B(x0,r)).

Hint: Prove the inequality for B(0, 1). To get it for general u ∈ W 1,p(B(x, r)) apply the
B(0, 1) inequality to v(x) := u((x− x0)/r) (see also Lemma 13.43).

We have seen in Theorem 13.35 and used in the Poincaré inequality that W 1,p
loc (Ω) embedds

compactly into Lp
loc(Ω). There is a meta-theorem/feeling that “above” any compact em-

bedding there is a merely continuous embedding, for more precise versions of this effect
see [Haj lasz and Liu, 2010].

In our case it is that W 1,p embedds into Lp∗ where p∗ follows the following rule

(13.20) 1− n

p
= 0− n

p∗

(we will see this numerology appear later again for Morrey and Sobolev-Poincaré embed-
ding, Corollary 13.45 and Theorem 13.49). Observe that p∗ = np

n−p
∈ (1,∞) for p < n. We

set p∗ := ∞ for p ≥ n. p∗ is called the Sobolev exponent. What happens if p∗ > n (which
should be interpreted from this numerological point of view as p∗ > ∞? Theorem 13.49
will tell us: u is Hölder continuous.

Theorem 13.41 (Sobolev inequality). Let p ∈ [1,∞) such that p∗ := np
n−p
∈ (1,∞)

(equivalently: p ∈ [1, n)). Then W 1,p(Rn) embedds into Lp∗(Rn). That is, if u ∈ W 1,p(Rn)
then u ∈ Lp∗(Rn) and we have36

∥u∥Lp∗ (Rn) ≤ C(p, n) ∥Du∥Lp(Rn).

Exercise 13.42. Take u ≡ 1 in Rn. Show that

(1) u ̸∈ Lq(Rn) for any q ∈ [1,∞).
(2) Du = 0 (in distributional sense)
(3) Conclude that for p ∈ [1, n) we don’t have

∥u∥Lp∗ (Rn) ≤ C ∥Du∥Lp(Rn).

(4) Why does the latter fact not contradict Theorem 13.41?
36The optimal constant C(p, n) has actually a geometric meaning, and is related to the isoperimetric

inequality, cf. [Talenti, 1976]
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Proof of Theorem 13.41. There are more than one way to prove Sobolev’s inequality. One
(the “Harmonic Analysis” one) is by convolution, using the Riesz potential representation
and boundedness of Riesz transform on Lp-spaces. It is very strong and general but beyond
the scope of these lectures.

The one we present here is an elegant trick due to Nirenberg (here we are again!). It is
much less stable, relies heavily on the structure of Rn, etc., but it obtains the case p = 1
(that in general is much more difficult to obtain), see e.g. [Schikorra et al., 2017].

By approximation it suffices to assume that u ∈ C∞
c (Rn).

Let x = (x1, x2, . . . , xn) ∈ Rn. Then we have by the fundamental theorem of calculus

u(x1, x2, . . . , xn) = u(y1, x2, . . . , xn) +
∫ y1

x1
∂1u(z1, x2, . . . , xn) dz1.

Taking y1 large enough we have u(y1, x2, . . . , xn) = 0, since suppu ⊂⊂ Rn. Thus we obtain
the estimate

|u(x1, x2, . . . , xn)| ≤
∫
R
|Du(z1, x2, . . . , xn)| dz1.

The same way we obtain, for any ℓ = 1, . . . , n,

|u(x1, x2, . . . , xn)| ≤
∫
R
|Du(x1, x2, . . . , zℓ, . . . xn)| dzℓ.

Multiplying these estimates for ℓ = 1, . . . , n we obtain

|u(x1, x2, . . . , xn)|n ≤ Πn
ℓ=1

∫
R
|Du(x1, x2, . . . , zℓ, . . . xn)| dzℓ.

Now we prove the case p = 1, when p∗ = n
n−1 . We have∫

R
|u(x1, x2, . . . , xn)|

n
n−1dx1 ≤

∫
R

Πn
ℓ=1

(∫
R
|Du(x1, x2, . . . , zℓ, . . . xn)| dzℓ

) 1
n−1

dx1

≤
(∫

z1∈R
|Du(z1, x2, . . . , xn)| dz1

) 1
n−1

∫
R

Πn
ℓ=2

(∫
R
|Du(x1, x2, . . . , zℓ, . . . xn)| dzℓ

) 1
n−1

dx1

Now by Hölder’s inequality37

∫
R

Πn
ℓ=2

(∫
R
|Du(x1, x2, . . . , zℓ, . . . xn)| dzℓ

) 1
n−1

dx1 ≤
(

Πn
ℓ=2

∫
R

∫
R
|Du(x1, x2, . . . , zℓ, . . . xn)| dzℓ dx1

) 1
n−1

and thus∫
R
|u(x)|

n
n−1dx1 ≤

(∫
z1∈R
|Du(z1, x2, . . . , xn)| dz1

) 1
n−1

(
Πn

ℓ=2

∫
R

∫
R
|Du(x1, x2, . . . , zℓ, . . . xn)| dzℓ dx1

) 1
n−1

37the generalized version for k := n− 1 and all pi := n− 1: whenever p1, . . . , pk ∈ [1,∞] and
∑

i
1
pi

= 1,∫
Rd

Πk
i=1|fi| ≤ Πk

i=1

(∫
Rd

|fi|pi

) 1
pi
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Now we integrate this with respect to x2, and again by Hölder’s inequality,∫
R

∫
R
|u(x)|

n
n−1dx1dx2

≤
∫

x2∈R

(∫
z1∈R
|Du(z1, x2, . . . , xn)| dz1

) 1
n−1

(
Πn

ℓ=2

∫
R

∫
R
|Du(x1, x2, . . . , zℓ, . . . xn)| dzℓ dx1

) 1
n−1

dx2

≤
(∫

R

∫
R
|Du(x1, z2, x3, . . . xn)| dz2 dx1

) 1
n−1

·
∫

x2∈R

(∫
z1∈R
|Du(z1, x2, . . . , xn)| dz1

) 1
n−1

(
Πn

ℓ=3

∫
R

∫
R
|Du(x1, x2, . . . , zℓ, . . . xn)| dzℓ dx1

) 1
n−1

dx2

≤
(∫

R

∫
R
|Du(x1, z2, x3, . . . xn)| dz2 dx1

) 1
n−1

·
(∫

x2∈R

∫
z1∈R
|Du(z1, x2, . . . , xn)| dz1 dx2

) 1
n−1

(
Πn

ℓ=3

∫
x2∈R

∫
R

∫
R
|Du(x1, x2, . . . , zℓ, . . . xn)| dzℓ dx1, dx2

) 1
n−1

If n = 2 we are done (the Πn
ℓ=3-term is one). If n ≥ 3 we see a pattern, continuing to

integrate in x3, . . . , xn we obtain∫
R

∫
R
|u(x)|

n
n−1dx1dx2 ≤Πn

ℓ=1

(∫
Rn
|Du(x1, . . . , xℓ−1, zℓ, xℓ+1 . . . xn)|dx1, . . . , xℓ−1, zℓ, xℓ+1 . . . xn)

) 1
n−1

=
(∫

Rn
|Du|

) n
n−1

.

Taking the exponent n−1
n

on both sides we obtain
(13.21) ∥u∥

L
n

n−1 (Rn) ≤ ∥Du∥L1(Rn)

This is the claim for p = 1 (i.e. p∗ = n
n−1).

The general claim follows when we apply the p = 1 Sobolev inequality to v := |u|γ for
some γ > 1 that we choose later. We have

|Dv| = |D|u|γ| ≤ γ|u|γ−1|Du|,
thus (13.21) applied to v
(13.22) ∥|u|γ∥

L
n

n−1 (Rn) ≤ C(γ)∥|u|γ−1 |Du|∥L1(Rn)

Now observe that
∥|u|γ∥

L
n

n−1 (Rn) = ∥u∥γ

L
γ n

n−1 (Rn)

Moreover, by Hölder’s inequality, p′ = p
p−1 ,

∥|u|γ−1 |Du|∥L1(Rn) ≤ ∥|u|γ−1∥Lp′ (Rn)∥Du∥Lp(Rn) = ∥u∥γ−1
Lp′(γ−1)(Rn)∥Du∥Lp(Rn)

So (13.22) becomes
∥u∥γ

L
γ n

n−1 (Rn)
∥u∥1−γ

Lp′(γ−1)(Rn) ≤ C(γ)∥Du∥Lp(Rn)
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Choosing γ := p(n−1)
n−p

> 1 we have γ n
n−1 = p′(γ − 1) = p∗, and then

∥u∥Lp∗ (Rn) ≤ C(γ)∥Du∥Lp(Rn).

□

The relation between p and p∗ in Theorem 13.41 is sharp in the following sense

Lemma 13.43. Assume that p, q ∈ (1,∞) are such that for all u ∈ C∞
c (Rn)

(13.23) ∥u∥Lq(Rn) ≤ C(p, n) ∥Du∥Lp(Rn).

Then p = q∗.

Proof. This is proven by a scaling argument. Assume (13.23) holds. Take an arbitrary
u ∈ C∞

c (Rn) such that ∥Du∥Lp(Rn) ≥ 1, ∥u∥Lp(Rn) ≥ 1.

We rescale u and set for λ > 0,
uλ(x) := u(λx).

We apply (13.23) to uλ. Observe that by substitution

∥uλ∥Lq(Rn) = λ− n
q ∥u∥Lq(Rn),

and since ∇uλ = λ(∇u)λ we have

∥∇uλ∥Lp(Rn) = λ1− n
p ∥∇u∥Lp(Rn).

From (13.23) applied to uλ we then obtain for any λ > 0,

λ− n
q ∥u∥Lq(Rn) ≤ λ1− n

p ∥∇u∥Lp(Rn).

Equivalently, setting Λ := ∥∇u∥Lq(Rn)/∥u∥Lq(Rn) > 0 we obtain

λ0− n
q

−(1− n
p

) ≤ Λ ∀λ > 0

The exponent above the λ is exactly the numerology of (13.20)! In particular, if q ̸= p∗

then σ := 0− n
q
− (1− n

p
) ̸= 0, and we have

λσ ≤ Λ ∀λ > 0

If σ > 0 we let λ → ∞, if σ < 0 we let λ → 0+ to get a contradiction. Thus, necessarily
σ = 0, that is q = p∗. □

Corollary 13.44 (Sobolev-Poincaré embedding). Let f ∈ W 1,p(Rn), 1 ≤ p < n. For any
q ∈ [p, p∗] we have f ∈ Lq(Rn) with the estimate

∥f∥Lq(Rn) ≤ C(q, n)
(
∥f∥Lp(Rn) + ∥Df∥Lp(Rn)

)
.
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Proof. We first claim that

(13.24) ∥f∥q
Lq(Rn) ≤ C(q, n, p)

(
∥f∥p

Lp(RN ) + ∥Df∥p∗

Lp(Rn)

)
.

Clearly, the claim holds for q = p and, by Theorem 13.41, for q = p∗.

Now observe that for q ∈ [p, p∗] we can estimate the Lq-norm by the Lp-norm and the
Lp∗-norm (this technique is called interpolation).∫

Rn
|f |q =

∫
Rn
|f |qχ|f |>1 +

∫
Rn
|f |qχ|f |≤1 ≤

∫
Rn
|f |p∗ +

∫
Rn
|f |p.

That is,
∥f∥q

Lq(Rn) ≤ ∥f∥
p
Lp(Rn) + ∥f∥p∗

Lp∗ (Rn) ≲ ∥f∥
p
Lp(Rn) + ∥Df∥p∗

Lp(Rn).

This proves (13.24).

How do we get the main claim? Well from (13.24) we find
sup

f∈W 1,p(Rn): ∥f∥W 1,p(Rn)≤1
∥f∥Lq(Rn) ≤ C̃(p, n, q).

So in particular we have for any f ∈ W 1,p(Rn).
∥f/∥f∥W 1,p(Rn)∥Lq(Rn) ≤ C̃(p, n, q)

Thus,
∥f∥Lq(Rn) ≤ C̃(p, n, q) ∥f∥W 1,p(Rn).

□

Corollary 13.45 (Sobolev-Poincaré embedding on domains). Let Ω ⊂ Rn and ∂Ω be C1

(if n = 1 assume that Ω is an interval). For 1 ≤ p < n we have for any u ∈ W 1,p(Ω),

∥u∥Lp∗ (Ω) ≤ C(Ω)
(
∥u∥Lp(Ω) + ∥Du∥Lp(Ω)

)
Also, for any q ∈ [p, p∗]

∥u∥Lq(Ω) ≤ C(Ω, q) ∥u∥W 1,p(Ω).

If moreover Ω ⊂⊂ Rn and u ∈ W 1,p
0 (Ω) then

∥u∥Lp∗ (Ω) ≤ C(Ω) ∥Du∥Lp(Ω).

Lastly, if 1 ≤ p <∞ and Ω ⊂⊂ Rn, u ∈ W 1,p(Ω) then for any q ∈ [1, p∗] (if p < n) or for
any q ∈ [1,∞) (if p ≥ n)

∥u∥Lq(Ω) ≤ C(Ω, q, p, n) ∥u∥W 1,p(Ω).

Proof. By the extension theorem, Theorem 13.27, we can extend u to Eu ∈ W 1,p(Rn).
Then from Sobolev inequality, Theorem 13.41, we get

∥u∥Lp∗ (Ω) ≤ ∥Eu∥Lp∗ (Rn) ≲ ∥DEu∥Lp(Rn) ≲ C(Ω)∥u∥W 1,p(Ω) ≤ C(Ω)
(
∥u∥Lp(Ω) + ∥Du∥Lp(Ω)

)
.
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The second claim follows from the same argument using Corollary 13.44. Indeed from that
we obtain For any Λ > 0 there exists a constant C(Ω, q,Λ) such that

∥u∥Lq(Ω) ≤ C(Ω, q,Λ) ∀u : ∥u∥W 1,p(Ω) ≤ Λ.
Setting Λ = 1 and applying this inequality to u/∥u∥W 1,p(Ω) we conclude.

The third claim follows from Poincaré inequality, Corollary 13.38, since for u ∈ W 1,p
0 (Ω),

Ω ⊂⊂ Rn we have
∥u∥Lp(Ω) ≤ C(Ω)∥Du∥Lp(Ω).

The last claim follows by additionall using Hölder’s inequality: if p < n, q ∈ [1, p∗],
∥u∥Lq(Ω) ≤ C(|Ω|, q, p)∥u∥Lp∗ (Ω) ≤ C(|Ω|, q, p)∥u∥W 1,p(Ω).

If p ≥ n and n ≥ 2, and q ∈ [p,∞) we can find 1 ≤ r ≤ p such that ∞ > r∗ = nr
n−r

> q.
Thus, from first Hölder’s inequality, then Sobolev inequality, and then again Hölder’s
inequality,

∥u∥Lq(Ω) ≤ C(|Ω|, q, p)∥u∥Lr∗ (Ω) ≤ C(|Ω|, q, p)∥u∥W 1,r(Ω) ≤ C(|Ω|, q, p)∥u∥W 1,p(Ω).

So the only remaining case is n = 1. Then by assumption Ω = (a, b). From the fundamental
theorem of calulus

|f(x)− f(y)| ≤
∫

(a,b)
|f ′(z)|dz ∀x, y ∈ (a, b).

Thus
|f(x)− |b− a|−1

∫
(a,b)

f(y)| ≤
∫

(a,b)
|f ′(z)|dz ∀x ∈ (a, b).

Thus,
|f(x)| ≤ |b− a|−1∥f∥L1(a,b) + ∥f ′∥L1(a,b) ∀x ∈ (a, b)

That is
∥f∥L∞((a,b)) ≤ C(a, b)∥f∥W 1,1((a,b)).

In particular, by Hölder’s inequality, for any q, p ∈ [1,∞].
∥f∥Lq((a,b)) ≤ C(a, b, p, q)∥f∥W 1,p((a,b)).

□

Theorem 13.46 (Sobolev Embedding). Let Ω ⊂⊂ Rn be open, ∂Ω ∈ C0,1, k ≥ ℓ for
k, ℓ ∈ N ∪ {0}, and 1 ≤ p, q <∞, such that (compare with (13.20))

(13.25) k − n

p
≥ ℓ− n

q
.

Then the identity is a continuous embedding W k,p(Ω) ↪→ W ℓ,q(Ω). That is,
(13.26) ∥u∥W ℓ,q(Ω) ≲ C(k, ℓ, p, q) ∥u∥W k,p(Ω)

If k > ℓ and we have the strict inequality

(13.27) k − n

p
> ℓ− n

q
,
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then the embedding above is compact. That is, whenever (ui)i∈N ⊂ W k,p(Ω) such that
sup

i
∥ui∥W k,p(Ω) <∞

then there exists a subsequence (uij
)j∈N such that (uij

)j∈N is convergent in W ℓ,q(Ω).

Proof. If k = ℓ, then (13.25) implies p ≥ q. Thus, in that case (13.26) follows from the
Hölder’s inequality:

∥u∥W ℓ,q(Ω) ≤ C(|Ω|, n) ∥u∥W ℓ,p(Ω) = C(|Ω|, n) ∥u∥W k,p(Ω)

Next we us assume k = ℓ + 1. Then (13.25) implies that q ≤ p∗ (if p < n) or q < ∞
(for p > n), wher we recall the Sobolev exponent p∗ := np

n−p
. Then by Sobolev inequality,

Corollary 13.45,
∥f∥Lq(Ω) ≤ C(q,Ω)∥f∥W 1,p(Ω).

Applying this inequality to f := ∂γu for |γ| ≤ ℓ we obtain (13.26) for k = ℓ + 1, namely
for q ≤ p∗,

∥u∥W ℓ,q(Ω) ≤ C(p, q,Ω)∥u∥W ℓ+1,p(Ω)

More generally If k = ℓ+N for some N ∈ N, set ri := (ri−1)∗ for i = 1, . . . , N with r0 := p.
This works well if all of the r∗

i ̸=∞ (otherwise we choose ri ≤ (ri1)∗ and r0 < p, but large
enough such that rN > q). Then (13.25) implies that q ≤ rN , and we get first by Hölder’s
inequality then by the argument above iterated

∥u∥W ℓ,q(Ω) ≲ ∥u∥W ℓ,rN (Ω) ≲ ∥u∥W ℓ+1,rN−1 (Ω) ≲ . . . ≲ ∥u∥W k,r0 (Ω) ≲ ∥u∥W k,p(Ω).

This proves the continuous embedding, (13.27) in full generality.

As for the compact embedding, it suffices to assume k = ℓ+1. This is because combinations
of continuous and compact embeddings are compact, so if we show the compactness of the
embedding satisfying (13.27) for k = ℓ + 1 then we can build a chain of embeddings as
above to get a compact embedding for all k > ℓ.

Moreover, we can assume w.l.o.g. k = 1, ℓ = 0. The general case then follows by considering
∂γu for |γ| ≤ ℓ.

So let 1 ≤ q < p∗ (i.e. (13.27) and assume that we have a sequence (ui) such that
sup

i
∥ui∥W 1,p(Ω) <∞.

Fix r ∈ (q, p∗) (if p ≥ n then r > q. By Sobolev’s inequality, Corollary 13.45,
(13.28) Λ := sup

i
∥ui∥Lr(Ω) <∞.

By Rellichs theorem, Theorem 13.35, we can find a subsequence uij
that is strongly con-

vergent in Lp(Ω) and in particular we can choose the subsequence such that uij
converges

pointwise a.e. to some u ∈ Lq(Ω) (that u belongs to Lr, and thus to Lq follows from the
weak compactness, Theorem 12.13, or Fatou’s lemma).
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Now we use Vitali’s convergence theorem, Theorem 3.59. To show the uniform absolute
continuity of the integral let ε > 0 and for some δ to be chosen (independent of j) let
E ⊂ Ω be measurable with |E| < δ. Then we have by Hölder’s inequality (recall Λ from
(13.28))

sup
j
∥uij
∥Lq(E) ≤ |E|

1
q

− 1
r sup

j
∥uij
∥Lr(E) ≤ δ

1
q

− 1
r Λ.

So if we choose δ = δ(ε,Λ) > 0 small, so that

δ
1
q

− 1
p Λ < ε,

then
sup

j
∥uij
∥Lq(E) < ε whenever E ⊂ Ω measurable and |E| < δ.

This is uniform absolute continuity, and by Vitali’s theorem uij
is convergent in Lq(Ω).

This shows compactness, and Sobolev’s embedding theorem is proven. □

Our next goal is Morrey’s embedding theorem, Theorem 13.49. For this we use a charac-
terization of Hölder functions by so-called Campanato spaces.

Theorem 13.47 (Campanato’s theorem). Let u ∈ L1(Rn) and assume that for some λ > 0

(13.29) Λ := sup
B(x,r)⊂Rn

r−λ
∫

B(x,r)
|u− (u)B(x,r)| <∞,

where
(u)B(x,r) =

∫
B(x,r)

u.

Then u ∈ Cλ
loc(Rn) and we have for some uniform constant C = C(n, λ) > 0

sup
x ̸=y

|u(x)− u(y)|
|x− y|λ

≤ C Λ.

Remark 13.48. The converse also holds, if u ∈ Cα than Λ < [u]Cα , which is an easy
exercise to check.

Proof of Theorem 13.47. First we claim that for any R > 0 and almost any x ∈ Rn we
have for some uniform constant C > 0

(13.30) |u(x)− (u)B(x,R)| ≤ C RλΛ.

To see this, observe that for almost every x ∈ Rn, by Lebesgue’s theorem, Theorem 5.18,
limk→∞(u)B(x,2−kR) = u(x). Thus, by a telescoping sum

(13.31) |u(x)− (u)B(x,R)| ≤
∞∑

k=0

∣∣∣(u)B(x,2−kR) − (u)B(x,2−(k+1)R)

∣∣∣
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Now, ∣∣∣(u)B(x,2−kR) − (u)B(x,2−(k+1)R)

∣∣∣
≤
∫

B(x,2−(k+1)R)

∣∣∣u(z)− (u)B(x,2−kR)

∣∣∣
≤ |B(x, 2−kR)|
|B(x, 2−k+1R)|︸ ︷︷ ︸

=C(n)

∫
B(x,2−kR)

∣∣∣u(z)− (u)B(x,2−kR)

∣∣∣
(13.29)
≤ C(n) Λ (2−kR)λ.

Plugging this into (13.31) we get

|u(x)− (u)B(x,R)| ≤ C(n)ΛRλ
∞∑

k=0
2−kλ λ>0= C(λ, n)ΛRλ,

i.e. (13.30) is established.

Now let x, y ∈ Rn. Set R := |x− y|. Then
|u(x)− u(y)| ≤|u(x)− (u)B(x,R)|+ |u(x)− (u)B(y,R)|+ |(u)B(y,R) − (u)B(x,R)|

(13.30)
≤ C(n, λ)|x− y|λ + |(u)B(y,R) − (u)B(x,R)|.

(13.32)

We have to estimate the last term, which we do as above: Observe that B(x, 2R) ⊃
B(y,R) ∪B(x,R),

|(u)B(y,R) − (u)B(x,R)|

≤
∫

B(x,R)

∫
B(y,R)

|u(z1)− u(z2)|dz1dz2

≤ |B(x, 2R)|
|B(y,R)|

|B(x, 2R)|
|B(x,R)|︸ ︷︷ ︸

=C(n)

∫
B(x,2R)

∫
B(x,2R)

|u(z1)− u(z2)|dz1dz2

=C(n)
∫

B(x,2R)

∫
B(x,2R)

|u(z1)− (u)B(x,2R)|dz1dz2 + C(n)
∫

B(x,2R)

∫
B(x,2R)

|(u)B(x,2R) − u(z2)|dz1dz2

=C(n)
∫

B(x,2R)

∫
B(x,2R)

|u(z1)− (u)B(x,2R)|dz1dz2 + C(n)
∫

B(x,2R)

∫
B(x,2R)

|(u)B(x,2R) − u(z2)|dz1dz2

=2C(n)
∫

B(x,2R)
|u(z̃)− (u)B(x,2R)|dz̃

(13.29)
≤ 2C(n, λ)Rλ.

Since R = |x− y|, together with (13.32) we have shown
|u(x)− u(y)| ≤ C(n, λ)|x− y|λ,

and can conclude. □
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Theorem 13.49 (Morrey Embedding). Let Ω ⊂⊂ Rn with ∂Ω ∈ Ck, k ∈ N. Assume that
for p ∈ (1,∞), α ∈ (0, 1) and ℓ < k we have

k − n

p
≥ ℓ+ α.

Then the embedding W k,p(Ω) ↪→ Cℓ,α(Ω) is continuous.

If k − n
p
> ℓ+ α then the embedding is compact.

Proof. Let u ∈ W k,p(Ω). By Extension Theorem, Theorem 13.27, we can assume u ∈
W k,p(Rn) and suppu ⊂⊂ B(0, R) for some large R > 0.

As in the Sobolev theorem it suffices to assume ℓ = k− 1, and indeed we can reduce to the
case k = 1 and ℓ = 0.

We use Campanato’s Theorem, Theorem 13.47. For B(x, r) ⊂ Rn, we have by Poincaré’s
inequality, Corollary 13.38, and then Hölder’s inequality,∫

B(x,r)
|u− (u)B(x,r)| ≤ r1−λ

∫
B(x,r)

|Du| = Cr1−n
∫

B(x,r)
|Du| ≤ Cr1−nrn− n

p

(∫
B(x,r)

|Du|p
) 1

p

That is,
sup

B(x,r)⊂Rn

r−(1− n
p )
∫

B(x,r)
|u− (u)B(x,r)| ≤ C∥Du∥Lp(Rn)

Thus, by Campanato’s theorem, if 1 − n
p

= 0 + α ∈ (0, 1), then (using also the extension
theorem estimate),

[u]Cα(Ω) ≤ [u]Cα(Rn) ≤ C∥u∥W 1,p(Ω),

which is the continuity of the embedding of W 1,p(Ω) in C0,α if 1− n
p

= 0 + α.

If on the other hand 1− n
p
> 0 +α, then we use Arzela-Ascoli to show that the embedding

L∞ ∩ Cβ(Rn) ↪→ L∞ ∩ Cα(Rn) is compact if β > α, and from this we conclude the
compactness of the embedding W 1,p(Ω) ↪→ Cα(Ω) if 1− n

p
> α. □

In general W 1,n-functions in Rn may not be continuous, if n ≥ 2, log log |x| is the example
to have in mind. However recall that for n = 1 we have
Proposition 13.50. Let f ∈ W 1,1((a, b)) then f ∈ C0(a, b) (in the sense of representative).

Proof. Approximate f by fk ∈ C∞([a1, b1]) where a < a1 < b1 < b is taken arbitary.

We have by the fundamental theorem of Calculus for all x, y ∈ [a1, b1],

fk(x)− fk(y) =
∫ y

x
f ′

k(z)dz.

That is
|fk(x)− fk(y)| ≤

∫
(a1,b1)

|f ′
k(z)− f ′(z)|dz +

∫ y

x
|f ′(z)|dz.
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Now let ε > 0. By absolute continuity of the integral and since f ′ ∈ L1, there exists a
δ1 > 0 such that ∫ y

x
|f ′(z)|dz < ε

4 ∀x, y ∈ [a1, b1], |x− y| < δ1.

By L1-convergence f ′
k → f ′ there exists some K ∈ N such that

sup
k≥K

∫
(a1,b1)

|f ′
k(z)− f ′(z)|dz < ε

4 .

Lastly let δ2 < δ1 such that for all (finitely many!) k ∈ {1, . . . , K} we have

|fk(x)− fk(y)| < ε

4 ∀|x− y| < δ2 k ∈ {1, . . . , K}.

Then we have
|fk(x)− fk(y)| < ε ∀k ∈ N, |x− y| < δ2.

That is, (fk)k∈N is equicontinuous on [a1, b1].

Since fk(x) converges (up to going to a subsequence which we will not relabel) a.e. to f(x),
we can pick some x ∈ [a1, b1] for which f(x) <∞ and then conclude that by equicontinuity
(up to taking again a subsequence not relabeled)

sup
k
|fk(y)− f(x)| ≤ sup

k
(|fk(x)− fk(y)|+ |f(x)|) ≤ C <∞.

That is (fk) satisfies the conditions for Arzela-Ascoli, thus it converges uniformly to a
continuous function g.

Since fk also converges a.e. to f we conclude that g = f a.e. – i.e. f as a continuous
representative. □

One can also show that W n,1-maps are continuous in Rn.

13.7. Fun inequalities: Ehrling’s lemma, Gagliardo-Nirenberg inequality, Hardy’s
inequality. We know Sobolev and Poincaré inequality in various versions. There are many
more cool inequalities.

13.7.1. Ehrling’s Lemma.

Theorem 13.51 (Functional Analytic Ehrling’s lemma). Let (X, ∥ · ∥X), (Y, ∥ · ∥Y ), (Z, ∥ ·
∥Z) be three Banach spaces which are subspaces of each other X ⊂ Y ⊂ Z with the following
properties.

• X is compactly embedded in Y , that is X ⊂ Y and every ∥ · ∥X-bounded sequence
(xk)k ⊂ X, supk ∥xk∥X <∞, has a strongly ∥ · ∥Y -convergent subsequence (xki

)i∈N,
i.e. for some y ∈ Y and ∥xki

− y∥Y
i→∞−−−→ 0.

• Y is continuously embedded in Z, that is Y ⊂ Z and there exists Λ > 0 such that
∥y∥Z ≤ Λ∥y∥Y for all y ∈ Y .
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Then for every ε > 0 there exists a constant C(ε) > 0 such that the following holds
∥x∥Y ≤ ε∥x∥X + C(ε)∥x∥Z ∀x ∈ X.

Exercise 13.52. Let (X, ∥ · ∥X), (Y, ∥ · ∥Y ) be Banach spaces. Show that if X ⊂ Y is
compactly embedded, then X ⊂ Y is continuously embedded.

Proof of Theorem 13.51. This is once again a typical blow-up proof.

Fix ε > 0. Assume the claim is false, then for any k ∈ N there exists a “counterexample”
xk ∈ X such that

∥xk∥Y>ε∥xk∥X + k∥xk∥Z ∀k
Dividing this inequality by ∥xk∥Y (cannot be zero because of the strict inequality) and
otherwise switching over to x̃k := xk

∥xk∥Y
we may assume w.l.o.g. ∥xk∥Y = 1 for all k and

thus
1 > ε∥xk∥X + k∥xk∥Z ∀k.

In particular,
sup

k
∥xk∥X ≤

1
ε

and
lim

k→∞
∥xk∥Z ≤ lim

k→∞

1
k

= 0.

By compactness X ⊂ Y and since (xk)k is ∥ · ∥X-bounded, up to passing to a subsequence
(xki

)i, we can assume w.l.o.g. that there exists y ∈ Y such that ∥xk − y∥Y
k→∞−−−→ 0. In

particular since ∥xk∥Y = 1 we find that ∥y∥Y = 1. By the continuous embedding Y ⊂ Z

we also have ∥xk− y∥Z
k→∞−−−→ 0 , but since ∥xk∥Z

k→∞−−−→ 0 we have y = 0, which contradicts
∥y∥Y = 1.

So there must have been some k ∈ N for which there was no counterexample xk – and thus
the claim is proven. □

Corollary 13.53 (Sobolev spaces version). Let Ω ⊂ Rn be a bounded open set with smooth
boundary, and 0 ≤ ℓ < k, p ∈ [1,∞). Then for any ε > 0 there exists C(Ω, ε, p) > 0 such
that

∥Dℓu∥Lp(Ω) ≤ ε∥Dku∥Lp(Ω) + C(Ω, ε, p)∥u∥Lp(Ω)

Proof. It suffices to prove this claim for k = ℓ + 1. Indeed, then (we can always assume
that ε is small!)

∥Dℓu∥Lp(Ω) ≤ε∥Dℓ+1u∥Lp(Ω) + C(Ω, ε, p, ℓ)∥u∥Lp(Ω)

≤ε2∥Dℓ+2u∥Lp(Ω) + (C(Ω, ε, p, ℓ) + εC(Ω, ε, p, ℓ+ 1))∥u∥Lp(Ω)

≤ . . .
≤εk−ℓ∥Dℓ+2u∥Lp(Ω) + C(Ω, ε, p, ℓ, k)∥u∥Lp(Ω).
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So assume k = ℓ+ 1. Set
X := W ℓ+1,p(Ω), Y := W ℓ,p(Ω), Z = Lp(Ω).

In view of Sobolev and Morrey’s embedding, Theorem 13.46 and Theorem 13.49, all the
conditions of Theorem 13.51 are met, so we have for any ε > 0 some C(ε) > 0 such that∑

|α|≤ℓ

∥Dαu∥Lp ≤ ε
∑

|α|≤ℓ+1
∥Dαu∥Lp + C(ε)∥u∥Lp ∀u ∈ W ℓ+1,p(Ω).

Now if ε < 1
2 (which we can always assume), we can absorb the terms up to order ℓ on the

right-hand side, namely
(1− ε)

∑
|α|≤ℓ

∥Dαu∥Lp ≤ ε
∑

|α|=ℓ+1
∥Dαu∥Lp + C(ε)∥u∥Lp ∀u ∈ W ℓ+1,p(Ω).

thus ∑
|α|≤ℓ

∥Dαu∥Lp ≤ ε

1− ε
∑

|α|=ℓ+1
∥Dαu∥Lp + 1

1− εC(ε)∥u∥Lp ∀u ∈ W ℓ+1,p(Ω).

In particular, with only dimensional constant Λ = Λ(n), for all ε < 1
2 ,

∥Dℓu∥Lp ≤ Λε∥Dℓ+1u∥Lp + C̃(ε)∥u∥Lp ∀u ∈ W ℓ+1,p(Ω).
This proves the claim. □

Exercise 13.54 (Equivalent norm for Sobolev spaces). Let Ω ⊂ Rn be a bounded open set
with smooth boundary, and 0 ≤ ℓ < k, p ∈ [1,∞).

Show that the two norms on W k,p(Ω),
∥u∥1 :=

∑
|α|≤k

∥Dαu∥Lp

and
∥u∥2 := ∥u∥Lp + ∥Dαu∥Lp ,

are equivalent.

13.7.2. Gagliardo-Nirenberg inequality. Very similar to Ehrling’s lemma, Section 13.7.1,
but with different p’s (making compactness argument not work, because it is more of a
Sobolev-type inequality) and its on Rn (though there exists also a domain version)

Theorem 13.55. Let 1 < p, q, r <∞ and α ∈ (0, 1) such that
1
p

= j

n
+
(1
r
− m

n

)
α + 1− α

q
.

and j
m
≤ α ≤ 1.

Assume u ∈ Lq(Rn) and its distributional m-th derivative Dmu ∈ Lr(Rn). Then Dju ∈
Lp(Rn) and for a constant C = C(m,n, j, q, r, α) we have

∥Dju∥Lp(Rn) ≤ C ∥Dmu∥α
Lr(Rn) ∥u∥1−α

Lq(Rn).
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Figure 13.1. Olga Ladyzhenskaya: 1922-2004 – Russian mathematician
who obtained numerous breakthroughs in Partial Differential Equations,
Fluid dynamics, Navier-Stokes equation. Without any doubt one of the
most impressive mathematicians in Analysis in the 20th century!

There also exists versions in the limit cases =∞, = 1, etc.

Proof. See e.g. [Leoni, 2017, Theorem 12.83.]. Here we just discuss that it is enough to
show

∥Dju∥Lp(Rn) ≤ C
(
∥Dmu∥Lr(Rn)+∥u∥Lq(Rn)

)
Indeed, then we can obtain the claim by scaling: Apply the inequality to u(λ·), then we
get

λ− n
p λj∥Dju∥Lp(Rn) ≤ C

(
λ− n

r λm∥Dmu∥Lr(Rn) + λ− n
q ∥u∥Lq(Rn)

)
That is

∥Dju∥Lp(Rn) ≤ C
(
λ− n

r
+ n

p
+m−j∥Dmu∥Lr(Rn) + λ

n
p

−j− n
q ∥u∥Lq(Rn)

)
So compute

min
λ≥0

(
λ− n

r
+ n

p
+m−j∥Dmu∥Lr(Rn) + λ

n
p

−j− n
q ∥u∥Lq(Rn)

)
.

(compute means: check λ = 0 and λ =∞ tend to +∞, then take the derivative in λ and
check the critical case). □

13.7.3. Ladyshenskaya inequality. Ladyshenskaya’s inequality is a special case of the Gagliardo-
Nirenberg inequality Theorem 13.55, used often for the Navier-Stokes equations for the
term u · ∇u:

∥u∥L4(R2) ≲ ∥u∥
1
2
L2(R2) ∥∇u∥

1
2
L2(R2).

and
∥u∥L4(R3 ) ≲ ∥u∥

1
4
L2(R3) ∥∇u∥

3
4
L2(R3 ).
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the difference in powers is (to some extend) what makes Navier-Stokes equations in 3D
more challenging than in 2D. There are appropriate versions on domains Ω, if the functions
are zero on ∂Ω.

13.7.4. Hardy’s inequality. Hardy’s inequality is somewhat a weighted Sobolev inequality.

Theorem 13.56. Let s ∈ (0, 1), p, q ∈ (1,∞) such that

1− s
n
− n

p
= n

q
.

Then

∥|x|−sf(x)∥Lp(Rn) ≤ Cs,p∥∇f∥Lq(Rn).

Observe that for s = 0 we obtain the usual Sobolev inequality, Theorem 13.41.

See, e.g, [Evans, 2010, p.296, Theorem 7] or [Mironescu, 2018].

13.8. Rademacher’s theorem. The following is Rademacher’s theorem (usually stated
for Lipschitz functions, cf. Theorem 13.24)

Theorem 13.57. Let p > n. Let u ∈ W 1,p(Ω) for some open set Ω ⊂ Rn and 1 ≤ p ≤
∞. We identify u with its continuous representative. Then for almost every x ∈ Ω u is
differentiable, that is there exists A = A(x) ∈ Rn such that

lim
y→x

|u(y)− u(x)− A(y − x)|
|y − x|

= 0

Moroever A(x) = Du(x) (where Du(x) denotes the distributional gradient which belongs
to Lp) for almost every x ∈ Ω.

We need the following estimate (which we could have used for Sobolev-Morrey embedding,
Theorem 13.49).

Lemma 13.58 (Morrey’s estimate). Let p > n. Then there exists a constant C = C(n, p)
such that the following holds: for any v ∈ C1(B(0, 2r)) we have for all x, y ∈ B(x0, r)

|v(y)− v(x)| ≤ C r1− n
p

(∫
B(x0,2r)

|Dv(z)|p dz
) 1

p
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Proof. We assume r = 1, the general case is part of Exercise 13.59. Arguing as in the proof
of Theorem 13.47 we have (for every point, since v is continuous by Theorem 13.47)

|v(y)− v(x)| ≤ C(n)
( ∞∑

k=0

∫
B(x,2−k)

|u(z)− (u)B(x,2−k)|

+
∞∑

k=0

∫
B(y,2−k)

|u(z)− (u)B(y,2−k)|

+ |(v)B(x,1) − (v)B(y,1)|
)
.

Observe that
|(v)B(x,1) − (v)B(y,1)| ≤

∫
B(0,2)

∫
B(0,2)

|v(z1)− v(z2)| ≤ 2
∫

B(0,2)

∫
B(0,2)

|v(z1)− (v)B(0,2)|.

Now we use Poincaré inequality, Exercise 13.40 and have (constants change from equation
to equation!)∫

B(z,ρ)
|f − (f)B(z,ρ)| ≤ C ρ

n
p′ −n∥f − (f)B(z,ρ))∥Lp(B(z,ρ) ≤ C ρ

1+ n
p′ −n∥∇f∥Lp(B(z,ρ))

That is, we have ∫
B(y,2−k)

|u(z)− (u)B(y,2−k)| ≤ C2−k p−n
p ∥∇u∥Lp(B(0,2)).

Since p > n we have that ∑∞
k=1 2−k p−n

p <∞ and can conclude. □

Exercise 13.59. Use a scaling argument to finish the proof of Lemma 13.58 for general r.

Proof of Theorem 13.57. Denote by Du(x) the Lebesgue representative of Du ∈ Lp(Ω) we
have from Lebesgue’s differentiation theorem, Theorem 5.18 for almost every x ∈ Ω

lim
r→0

∫
B(x,r)

|Du(x)−Du(z)|pdz = 0.

Take x a point where this is true. Set (observe u is continuous by embedding theorem,
since p > n)

v(y) := u(y)− u(x)−Du(x)(y − x).
Then v ∈ W 1,p

loc (Ω) ∩ C0(Ω).

From Lemma 13.58, which by approximation holds for every y and r such that y ∈
B(x, 4r) ⊂ Ω (recall that x is fixed)

|v(y)− v(x)︸ ︷︷ ︸
=0

| ≤ C r1− n
p

(∫
B(x,2r)

|Dv(z)|pdz
) 1

p

≤ C r1
(∫

B(x,2r)
|Dv(z)|pdz

) 1
p

So let r = |x− y| then we have

|u(y)− u(x)−Du(x)(y − x)|
|x− y|

≤ C

(∫
B(x,2 |x−y|)

|Dv(z)|pdz
) 1

p

.



ANALYSIS I & II & III VERSION: December 5, 2022 241

By assumption we have that(∫
B(x,2 |x−y|)

|Dv(z)|pdz
) 1

p |x−y|→0−−−−−→ 0,

so we have shown that u is differentiable in x.

□

From Theorem 13.57 follows the usual Rademacher theorem.

Corollary 13.60 (Rademacher Theorem). If f : Ω → R is a Lipschitz map where Ω is
open, then f is almost everywhere differentiable. Moreover pointwise and distributional
derivative coincide a.e.

Proof. From Theorem 13.24 we have that f ∈ W 1,∞
loc (Ω) thus by Hölder’s inequality f ∈

W 1,p
loc (Ω). Now this is a consequence of Theorem 13.57. □

Remark 13.61. The set where Sobolev functions are differentiable can be made more
precise than simply being “a.e”. There is a notion of Sobolev-capacity of sets, and one can
show that they are differentiable outside of a set of certain capacity zero.

14. Sobolev spaces between manifolds

14.1. Short excursion on degree and Brouwer Fixed Point theorem. We denote
by Sn−1 = {x ∈ Rn : |x| = 1} the unit sphere in Rn. By a slight abuse of notation we
will call Bn = {x ∈ Rn : |x|≤1} the closed unit ball in Rn. Observe that Sn−1 = ∂Bn.

Proposition 14.1. There is no smooth map Φ : Bn → Sn−1 such that
Φ(x) = x ∀x ∈ Sn−1.

Proof. The reason this is true is degree theory. The map x : Sn−1 → Sn−1 “winds around”
the target exactly once. Now if we consider Φr

∣∣∣∣
∂B(0,r)

then r 7→ Φr transforms continuously
the curve Φ1 into the constant map Φ0. However degree is a homotopy invariant, i.e. the
“winding around” does not change under continuous changes – so we have a contradiction.

More precisely let φ : Sn−1 → Sn−1. We define the degree (if n = 2 one can see this is the
winding number)

deg(φ) :=
∫

Bn
det(DΦ),

where Φ : Bn → Rn is any smooth extension of φ. We have to show that this is well-defined,
i.e. for two different choices of Φ1,Φ2 both extensions of φ we have to show∫

Bn
det(DΦ1) =

∫
Bn

det(DΦ2).
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Observe that the determinant is multilinear, so by subtracting the left from the right it
actually suffices to show that∫

Bn
det(Dψ1|Dψ2| . . . |Dψn) = 0

whenever one of the ψi satisfies ψi = 0 on ∂Bn. By rearranging we can assume that ψ1 = 0
on ∂Bn. We will show this claim in two dimensions. In higher dimensions it gets more
messy, but the principle stays the same: the co-factor of a gradient matrix is divergence
free.

We have
det

(
Dψ1|Dψ2

)
= ⟨Dψ1, D⊥ψ2⟩,

where D⊥ψ2 = (−∂yψ
1, ∂xψ

1). Observe that div (D⊥ψ2) = 0 (direct computation). By an
integration by parts we then have∫

B2
det

(
Dψ1|Dψ2

)
=
∫

B2
⟨Dψ1, D⊥ψ2⟩ =

∫
∂B2

ψ1︸︷︷︸
=0

ν ·D⊥ψ2 −
∫

B2
ψ1 div (D⊥ψ2)︸ ︷︷ ︸

=0

= 0.

(One can also use Stokes’ theorem to show this using differential forms).

That is,
deg(φ) :=

∫
Bn

det(DΦ),

is well defined, meaning it does not matter what the precise choice of Φ : Bn → Rn is as
long as Φ

∣∣∣∣
∂Bn

= φ.

Now let φ(x) = x. Then, assuming the claim of the proposition is wrong, we find some
Φ : Bn → Sn−1 that extends φ. But observe that this implies rankDΦ ≤ n− 1 (otherwise
by inverse function theorem Φ(Bn) is n-dimensional locally!). Thus det(DΦ) = 0. Thus

deg(φ) =
∫

Bn
det(DΦ) = 0.

On the other hand we can choose Φ2(x) := x and then we have

deg(φ) =
∫

Bn
det(Dx) =

∫
Bn

det(I) = |Bn| ≠ 0,

a contradiction, since the degree cannot be 0 and nonzero at the same time. □

Let us remark that degree theory from the proof above implies the famous

Theorem 14.2 (Brouwer Fixed Point). Every continuous map between the closed unit
balls Bn has a fixed point. I.e. for any f ∈ C0(Bn,Bn) there exists x0 ∈ Bn such that
f(x0) = x0.

Let us remark that Theorem 14.2 can be extended relatively easily to convex compact sets.



ANALYSIS I & II & III VERSION: December 5, 2022 243

Proof of Theorem 14.2. Assume this is not the case. Setting

f̃(x) :=
f(x/|x|) |x| ≥ 1
f(x) |x| ≤ 1

we obtain a continuous map f̃ : Rn → Bn without a fixed point.

By compactness of Bn we have
λ := inf

x∈Bn
|f(x)− x| > 0.

If we now consider the usual mollification f̃δ then we note that by convexity of Bn we have
f̃δ ∈ C∞(Rn,Bn), and by uniform convergence f̃δ → f we have for all small δ ≪ 1 and all
x ∈ Bn

|fδ(x)− x| ≥ |f(x)− x| − ∥fδ − f∥L∞(Bn) ≥ λ− ∥fδ − f∥L∞(Bn)︸ ︷︷ ︸
≪1

> 0.

That is, without loss of generality we can assume that f ∈ C∞(Bn,Bn) and f has no fixed
point.

For t ∈ [0, 1], x ∈ Bn we set

gt(x) := x− tf(x)
|x− tf(x)| ,

For each t ∈ [0, 1] the map gt

∣∣∣∣
Sn−1

∈ C∞(Sn−1 ,Sn−1). Indeed, we have more, even the
dependency on t is C∞-smooth:
(14.1) (t, x) ∋ [0, 1]× Sn−1 7→ gt(x) is smooth.
Indeed, the only obstacle to smoothness is the case when |x− tf(x)| = 0, but we have
(14.2) inf

t∈[0,1]
inf

x∈Sn−1
|x− tf(x)| > 0.

To see (14.2), observe that λ := infBn |f(x)− x| > 0. So we have for any t ∈ (1− λ
2 , 1]

inf
x∈Bn
|tf(x)− x| ≥ inf

x∈Bn
|f(x)− x| − |t− 1| sup

x∈Bn
|f(x)| ≥ λ− |t− 1| > λ

2 > 0.

On the other hand for (t, x) ∈ [0, 1− λ
4 ]× Sn−1 that |x− tf(x)| ≥ 1− t ≥ λ

4 . This implies
(14.2), (14.1).

Observe moreover, that the above argument shows for t = 1 that the map g1 ∈ C∞(Bn, Sn)
– since there is no fixed point.

If we now use the definition of degree from the proof of Proposition 14.1, we see that
(observe det(Dg1) = 0 since g1 maps into Sn−1 by Inverse Function theorem)

(14.3) deg(g1) = 0, and deg(g0) = deg( x
|x|

) =
∫
Bn

det(Dx) = 1.

So all we need to show is that deg(g1) = deg(g0) to get a contradiction.
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For this denote let G0 ∈ C∞(Bn,Rn) be any smooth extension of g0. Set now

H(x) :=
g2|x|−1(x/|x|) |x| ∈ [1

2 , 1]
G0(2x) |x| ≤ 1

2 .

Observe that H ∈ C0(Bn,Rn) – and by after a freezing argument and mollification we may
assume that H ∈ C∞(Bn,Rn) with the following properties

H(x) =


g1(x/|x|) |x| = 1
g0(x/|x|) |x| = 1

2
∈ Sn−1 |x| ∈ [1

2 , 1].
By the definition of degree we have

deg(g1) =
∫
Bn

det(DH)

and (a substituion argument is used here)

deg(g0) =
∫
Bn

det(D(H(1
2 ·))) =

∫
1
2B

n
det(DH).

However, since rankDH(z) ≤ n− 1 for 1
2 ≤ |z| ≤ 1 we have

0 = deg(g1) =
∫
Bn

det(DH) =
∫

1
2 Bn

det(DH) = deg(g0)= 1

This is a contradiction, so we can conclude. □

By approximation one can improve also Proposition 14.1 to continuous maps.

Proposition 14.3. There is no continuous map Φ : Bn → Sn−1 such that
Φ(x) = x ∀x ∈ Sn−1.

Proof. Assume there is. Then we can extend it to a continuous map Φ̃ : Rn → Sn−1

Φ̃(x) :=


x
|x| |x| ≥ 1
Φ(x) |x| < 1,

In view of Exercise 4.39 we can approximate Φ̃ by a smooth function Φ̃k ∈ C∞(Rn,Rn)
with Φ̃k ≡ x

|x| for all |x| ≥ 2 (since Φ̃ is smooth in |x| > 3
2 it is easy to check that the

approximation in Exercise 4.39 is smooth.

This approximation is w.r.t. L∞, so we have uniform convergence, so if we fix a large
enough k ≫ 1 we have ∥Φ̃k − Φ∥L∞ < 1

2 . Since |Φ(x)| ≡ 1 we conclude |Φ̃k| > 1
2 and thus

ψ̃ := Φ̃k

|Φk|
is a well-defined map in C∞(Rn,Sn−1) that satisfies ψ̃(x) = x

|x| for all |x| ≥ 2.



ANALYSIS I & II & III VERSION: December 5, 2022 245

Considering ψ(x) := ψ(2x) have found a counterexample to Proposition 14.1. □

A pure reformulation of Proposition 14.3 is

Corollary 14.4. Any map f : Bn(0, 1) → Sn−1 which is the identity on Sn−1 = ∂Bn(0, 1)
is discontinuous.

When working with Sobolev spaces, Proposition 14.3 readily implies

Corollary 14.5. (1) Whenever p > n there is no map Φ ∈ W 1,p(Bn,Sn−1) such that –
in the trace sense.

Φ(x) = x ∀x ∈ Sn−1,

(2) Whenever p < n there is a map Φ ∈ W 1,p(Bn,Sn−1) such that – in the trace sense.
Φ(x) = x ∀x ∈ Sn−1.

Proof. (1) Obvious from Proposition 14.3, since W 1,p-maps are continuous if p > n.
(2) Exercise 13.6.

□

We can also treat the limit case. Keep in mind W 1,n-maps do not need to be continuous.
log log |x| is the typical example, Exercise 13.5.

Theorem 14.6. There is no map Φ ∈ W 1,n(Bn,Sn−1) such that .
Φ(x) = x ∀x ∈ Sn−1,

(in the trace sense).

Proof. W.l.o.g. Φ is defined in Rn as follows

Φ(x) :=


x
|x| |x| ≥ 1
Φ(x) |x| < 1,

since x
|x| is smooth outside of zero and the traces coincide. We mollify Φ as in Exercise 13.20

Φδ(x) :=
∫
Rn
η(z)Φ(x+ δθ(x)z)dz,

for some choice of θ ∈ C∞
c (B(0, 2), [0, 1]) and θ ≡ 1 in B(0, 3/2), and a typical bump

function η ∈ C∞
c (B(0, 2)), η ≡ 1 in B(0, 1) and

∫
η = 1.

Then for δ ≪ 1, Φδ is smooth, and x/|x| outside of B(0, 2), so the only thing we need to
ensure is that Φ maps close enough to the sphere.

Fix x ∈ Rn. Observe that
(14.4) dist (Φδ(x), Sn−1) ≤ |Φδ(x)− Φ(y)| ∀y ∈ Rn.
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If θ(x) = 0 we can choose y = x since then Φδ(x) = Φ(x), so in that case dist (Φδ(x),Sn−1) =
0.

If θ(x) > 0 set δ̃ := θ(x)δ. Integrating (14.4) with respect to y in B(x, 2δ̃) we find

dist (Φδ(x),Sn−1) ≤
∫

B(x,2δ̃)
|Φδ(x)− Φ(y)|dy.

Now,
Φδ(x) =

∫
B(x,2δ̃)

δ−nη(z/δ)Φ(z)dz.

Thus (recall
∫
η = 1)

|Φδ(x)− Φ(y)| ≤ C
∫

B(x,2δ̃)
|Φ(z)− Φ(y)|dz,

that is
dist (Φδ(x),Sn−1) ≤ C

∫
B(x,2δ̃)

∫
B(x,2δ̃)

|Φ(z)− Φ(y)|dz dy.

Triangular inequality then shows

dist (Φδ(x),Sn−1) ≤ C
∫

B(x,2δ̃)
|Φ(z)− (Φ)B(x,2δ̃)|dz.

Poincaré inequality and Hölder’s inequality (observe the power of δ!)

dist (Φδ(x),Sn−1) ≤ C∥∇Φ∥Ln(B(x,2δ̃)).

By absolute continuity of the integral (since θ ∈ [0, 1] it does not play a role here) there
exists a δ ≪ 1 such that

C∥∇Φ∥Ln(B(x,2δ̃)) <
1
2 .

That is for all δ ≪ 1,

dist (Φδ(x),Sn−1) < 1
2 ,

thus (up to scaling)
Φδ

|Φδ|
: Rn → Sn−1

is a smooth counterexample to Proposition 14.1. □

We can also make Proposition 14.3 more stable, relaxing the condition Φ(x) = x to Φ(x) ≈
x on ∂Bn.

Proposition 14.7. There exists ε > 0 such that the following holds.

There is no continuous map Φ : Bn → Sn−1 such that

(14.5) sup
x∈Sn−1

|Φ(x)− x| < ε.
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Proof. As we shall see the constant ε is not very small, one should observe it simply depends
on the “tubular neighborhood” of Sn−1 where the projection exists.

As before, by contradiction and using mollification, we may assume that we have a coun-
terexample Φ ∈ C∞(Bn,Sn−1).

We define a homotopy
H(t, x) : [0, 1]× Sn−1 → Sn−1

by

H(t, x) := tΦ(x) + (1− t)x
|tΦ(x) + (1− t)x|

This makes sense since by Equation (14.5), |tΦ(x)+(1−t)x| ≥ |x|−t|Φ(x)−x| ≥ 1−tε > 0
if ε is small enough. Clearly H(t, x) is smooth in t and x. As in the proof of Theorem 14.2
we can now obtain that

deg(H(1, ·)) = deg((Φ(·)) =
∫
Bn

det(DΦ) = 0

since rankDΦ ≤ n− 1. Moreover

deg(H(0, ·)) = deg(x) =
∫
Bn

1 = |Bn| > 0.

And also as in the proof of Theorem 14.2 we see that
t 7→ deg(H(t, ·))

must be constant. So we found the desired contradiction, and can conclude. □

14.2. Sobolev spaces for maps between manifolds and the H=W problem. We
know that on reasonable (i.e. smoothly bounded) sets we can approximate any Sobolev
functions by smooth functions, Theorem 13.15.

Let 1 ≤ p < ∞ and Ω ⊂ Rn be a smoothly bounded set (or Rn). It is very easy to define
the Sobolev space W k,p(Ω,Rm).

W k,p(Ω,Rm) := {f = (f1, . . . , fm) : f ∈ W k,p(Ω)}.
If we define

Hk,p(Ω,Rm} := C∞(Ω,Rm)
∥·∥

W k,p(Rn)

we get exactly the same space, namely

Exercise 14.8. Let 1 ≤ p <∞. Show that

(1) for any f ∈ W k,p(Rn,Rm) there exists fj ∈ C∞(Ω,Rm) such that ∥fj−f∥W k,p(Rn)
j→∞−−−→

0.
(2) Whenever f ∈ C∞(Ω,Rm) is a Cauchy sequence w.r.t. W k,p-norm, then f ∈

W k,p(Ω,Rm).
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Now let N be a compact smooth d-manifold without boundary in Rn (observe this is
equivalent to the above notion if instead N is an open set with smooth boundary!).

Let φi : Ωi ⊂ Rd → N ⊂ Rn be any choice of parametrization (i.e. Ωi are open and φi

diffeomorphisms and ⋃N
i=1 φi(Ωi) = N . Then

W k,p(N ,Rm) :=
{
f : N → Rm : f ◦ φi ∈ W k,p(Ωi), ∀i = 1, . . . , N

}
We equip W k,p(N ,Rm) (which is still a linear space) with the norm

∥f∥W k,p(N ,Rm) := max
i=1,...,N

∥f ◦ φi∥W k,p(Ωi,Rm)

Exercise 14.9. Show that in the above definition, the specific choice of φi does not matter.
That is if (ψj)M

j=1 is another choice of parametrization, then{
f : N → Rm : f ◦ φi ∈ W k,p(Ωi), ∀i = 1, . . . , N

}
=
{
f : N → Rm : f ◦ ψj ∈ W k,p(Ωi), ∀j = 1, . . . ,M

}
.

and the two norms are comparable.
max

i=1,...,N
∥f ◦ φi∥W k,p(Ωi,Rm) ≈ max

j=1,...,M
∥f ◦ ψj∥W k,p(Ωj ,Rm)

Hint: Exercise 13.17.

On the other hand, from Advanced Calculus we know what f ∈ C∞(N ,Rm) means: f◦φi ∈
C∞(Ωi,Rm) for all i. So we can define again

Hk,p(N ,Rm} := C∞(N ,Rm)∥·∥
W k,p(Rn)

Again, the distinction between H and W is unneccesary, namely we have

Exercise 14.10. Show that Hk,p(N ,Rm} = W k,p(N ,Rm).

Now let us restrict the target. If M ⊂ Rm is a manifold, we define W k,p(N ,M) by
restriction,

W k,p(N ,M) := {f ∈ W k,p(N ,Rm) : f(x) in M a.e. in N}.
On the other hand we define again Hk,p by approximation

Hk,p(N ,M) := C∞(N ,M)∥·∥
W k,p(N ,Rm)

Exercise 14.11. Let N ⊂ RN be a smooth, compact n-dimensional manifold without
boundary. Show the respective versions of Theorem 13.46 and Theorem 13.49.

Exercise 14.12. Show for any k = 0, 1, . . .
Hk,p(N ,M) ⊂ W k,p(N ,M).
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The other inclusion is way more difficult – and we shall show: not always true! But let us
first consider cases where it is true.

For this we need the following result from differential geometry:

Lemma 14.13. Let M be a smooth, compact manifold without boundary in Rm. Then
there exists ε > 0 and setting the tubular neighborhood

Bε(M) := {x ∈ Rm : dist (x,M) < ε}.
and a smooth map π : Bε(M)→M such that π(p) = p for all p ∈M.

Proof. The proof is not terribly difficult [Simon, 1996, Section 2.12.3]. The idea is that one
can show that there exists a tubular neighborhood such that the nearest point projection
π : Bε(M)→M exists, i.e.

π(p) := q, where q ∈M is such that |q − p| = inf
q̃∈M
|q̃ − p|.

Since M is compact, such a q exists for any p ∈ Rn, but if ε is chosen small enough and
p ∈ Bε(M) then q is unique, and then one can show that the dependency of q on p is
smooth.

Let us remark that the choice of some ε > 0 is generally necessary, there is no continuous
map f : Rn → Sn−1 with f(x) = x for all x ∈ Sn−1, Corollary 14.4. □

We will restrict to the case where the domain is a manifold, since it is simpler.

Proposition 14.14. Let Ω ⊂ Rn be an smoothly bounded open set and M ⊂ Rm be a
compact manifold without boundary. Then

H1,p(Ω,M) = W 1,p(Ω,M).
whenever p ≥ n.

Proof. For p > n we could use the continuity of W 1,p-maps, but for p = n this is not true
anymore. Cf. Exercise 13.5.

Let f ∈ W 1,p(Ω,M). By an extension argument we can assume that W 1,p(Ω′) where
Ω ⊂ Ω′ where Ω′ is an open set. We simply “freeze” f close to the boundary ∂Ω (which is
compact, so we have the projection π∂Ω

f(x) :=
f(x) x ∈ Ω
f(π∂Ω(x)) x ∈ Rn \ Ω but close to Ω.

Since

s(x) :=
x x ∈ Ω
π∂Ω(x) x ∈ Rn \ Ω but close to Ω.

is Lipschitz we see that f ◦ s belongs to W 1,p, Remark 13.11.
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Now we can mollify f ◦ s, namely for δ ≪ 1 we set
gδ := (f ◦ s) ∗ ηδ,

for the typical bump function η ∈ C∞
c (B(0, 2)), η ≡ 1 in B(0, 1),

∫
η = 1.

Fix x ∈ Ω. Then
(14.6) dist (gδ(x),M) ≤ |gδ(x)− g(y)| ∀y close enough to Ω.

Integrating (14.4) with respect to y in B(x, 2δ) we find

dist (gδ(x),M) ≤
∫

B(x,2δ
|gδ(x)− g(y)|dy.

Now,
gδ(x) =

∫
B(x,2δ)

δ−nη(z/δ)g(z)dz.

Thus (recall
∫
η = 1)

|gδ(x)− g(y)| ≤ C
∫

B(x,2δ)
|g(z)− g(y)|dz,

that is
dist (gδ(x),M) ≤ C

∫
B(x,2δ)

∫
B(x,2δ)

|g(z)− g(y)|dz dy.

Triangular inequality then shows

dist (gδ(x),M) ≤ C
∫

B(x,2δ)
|g(z)− (g)B(x,2δ)|dz.

Poincaré inequality and Hölder’s inequality (observe the power of δ!)

dist (gδ(x),M) ≤ Cδ1−n+n p
p−1 n∥∇g∥Lp(B(x,2δ)).

Since p ≥ n we have 1− n+ n p
p−1n ≥ 0 and thus

dist (gδ(x),M) ≤ C∥∇g∥Lp(B(x,2δ)).

By absolute continuity38for any ε > 0 there exists a δ ≪ 1 such that
C∥∇g∥Ln(B(x,2δ)) < ε.

That is for all δ ≪ 1,
dist (gδ(x),M) < ε,

thus
πMgδ ∈ C∞(Ω)

is a well-defined smooth map. Since gδ converges in W 1,p to g, it is easy to show (πM is a
Lipschitz map!) that πMgδ converges in W 1,n to πMg ≡ g.

38And here the proof stops working if p < n, because if 1−n + n p−1
p < 0 for p < n, absolute continuity

cannot compensate for this negative power of δ!
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That is, any W 1,p-map, p ≥ n, is smoothly approximable, which is what we needed to
show. □

Exercise 14.15. Show Proposition 14.14 for W 1,p(N ,M) where N ⊂ Rn is a manifold of
dimension d and p ≥ d.

However, It turns out that in general H1,p(N ,M) ̸= W 1,p(N ,M) if p is less than the
dimension of N , see Section 14.4.

First we need Fubini’s theorem for Sobolev spaces.

14.3. Fubini theorem for Sobolev spaces. The following is the Sobolev version of the
slicing for Lp-functions in Proposition 4.6.

Theorem 14.16. Let u, ui ∈ W 1,p(Rn) and let 1 ≤ p <∞ such that

∥u− ui∥W 1,p
i→∞−−−→ 0.

Denote points in the cube by (t, x′) ∈ Rn, t ∈ R, x ∈ Rn−1. Then39 for L1-almost every
t ∈ R

u(t, ·) ∈ W 1,p
(
Rn−1

)
.

Moreover there is a subsequence uij
such that40

uij
(t, ·)− u(t, ·) j→∞−−−→ 0 in W 1,p

(
Rn−1

)
for almost every t ∈ R

Proof. There exists uk ∈ C∞
c (Rn) such that

∥uk − u∥W 1,p(Rn)
k→∞−−−→

By the usual Fubini’s theorem we have

0 k→∞←−−−
∫
Rn
|∇uk −∇u|p =

∫
R

(∫
Rn−1
|∇uk(t, x)−∇u(t, x)|pdx

)
dt

So if we set
Fk(t) :=

(∫
Rn−1
|∇uk(t, x′)−∇u(t, x′)|pdx′

)
we have in view of Theorem 3.51 that for some subsequence Fkj

Fkj
(t) j→∞−−−→ 0 L1-a.e. t.

39Here a bit care is needed: u as a measurable map is only defined almost everywhere. What we say
here is that each representative u can be restricted two a set Σ ⊂ R on which this representative is a
representative of a Sobolev map. Two different representatives will lead to two different sets Σ ⊂ R.

40Spoiler: this is the main point. Observe that Sobolev embedding depends on the dimension and
1− n

p < 1− n−1
p . I.e. if 1− n−1

p > 0 then we have control of the continuity on Rn−1, whereas we might
not have any continuity in Rn!
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If we denote
∇′f(t, x′) := (∂2f, . . . , ∂nf)t(t, x′)

we find, observing that |∇′f | ≤ |∇f |, that for L1-a.e. t ∈ R∫
Rn−1
|∇′uk(t, x′)−∇′u(t, x′)|pdx′ k→∞−−−→ 0.

Similarly we can argue for the Lp-norm, so (after passing to a more refined subsequence
labeled the same way) we have

∥ukj
(t, ·)− u(t, ·)∥W 1,p(Rn−1)

j→∞−−−→ 0.

But since ukj
(t, ·) ∈ C∞

c (Rn−1) for all t ∈ R we conclude that this means its limit u(t, ·) ∈
W 1,p(Rn−1).

We can argue the same way for (ui)i∈N. Each ui can be approximated by some smooth
(ui;k)k and by triangular inequality the convergence holds. □

Exercise 14.17. Show the following: Let u, ui ∈ W 1,p(B(0, 1)) and let 1 ≤ p < ∞ such
that

∥u− ui∥W 1,p
i→∞−−−→ 0.

Every point in x ∈ B(0, 1) besides 0 can be uniquely written as x = rθ where r ∈ (0, 1) and
θ ∈ Sn−1.

For L1-a.e. r ∈ (0, 1) we have

u(r·) ∈ W 1,p
(
Sn−1

)
.

Moreover there is a subsequence uij
such that

uij
(r·)− u(r·) j→∞−−−→ in W 1,p

(
Sn−1

)
for L1-almost every r ∈ (0, 1)

Exercise 14.18. Show Theorem 14.16 for Wm,p.

14.4. Nondensity of smooth maps in Sobolev spaces between manifolds. As an
application of Fubini’s theorem for Sobolev spaces, Section 14.3, we answer (negatively)
the H = W question for Sobolev maps between manifold from Section 14.2

Theorem 14.19. Let n − 1 < p < n. There exists a map u ∈ W 1,p(Bn(0, 1),Sn−1) that
cannot be smoothly approximated by maps uk ∈ C∞(Bn(0, 1),Sn−1 )

Before we come to the proof of Theorem 14.19, observe this is a special feature of Sobolev
classes, which we have not seen e.g. for continuous classes. Namely we have
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Exercise 14.20. Let 1 < p <∞ and M any smooth compact manifold without boundary.
Then any u ∈ C 0 ∩W 1,p(Bn(0, 1),M) can be smoothly approximated by maps into the by
maps uk ∈ C∞(Bn(0, 1),M)

Hint: mollify to obtain uδ ∈ C∞(Bn(0, 1),Rn) and then control dist (uδ,M) by uniform
convergence.

Proof of Theorem 14.19. Take u(x) := x
|x| . By Exercise 13.6 u ∈ W 1,p(B(0, 1),Sn−1).

We claim that u cannot be smoothly approximated.

Assume by contradiction, there exists a sequence uk ∈ C∞(B(0, 1),Sn−1) such that ∥uk −
u∥W 1,p(B(0,1))

k→∞−−−→ 0.

By Fubini’s theorem, Exercise 14.17, up to passing to a subsequence, we can find some
r ∈ (0, 1) such that fk(x) := uk(rx) converges to f(x) := u(rx) = x

|x| in W 1,p(∂Sn−1).

By Sobolev-Morrey embedding, Exercise 14.11, since p > n− 1 (which is the dimension of
Sn−1), we have that fk converges uniformly to x on Sn−1,

∥fk − x∥L∞(Sn−1)
k→∞−−−→ 0.

By Proposition 14.7 this cannot be true, contradiction. □

The general theory of these topological obstructions is due to Bethuel [Bethuel, 1991] with
corrections by Hang and Lin [Hang and Lin, 2001], and is related with many open questions
[Bethuel, 2020].

15. BV

When defining W 1,p we observed that for 1 < p <∞ weak closure (i.e. closure under weak
topology) and strong closure (closure under strong topology) of C∞ under the W 1,p-norm
give the same space.

A particular effect of this is:

Exercise 15.1. Let Ω ⊂ Rn be smooth and bounded. Let p ∈ (1,∞] and assume that
fn

n→∞−−−→ f almost everywhere in Ω

Show that
∥f∥W 1,p(Ω) ≤ lim inf

n→∞
∥fn∥W 1,p(Ω).

whenever the right-hand side is finite.

Hint: For p ∈ (1,∞) use reflexivity and lower semicontinuity of the norm, as well as Rel-
lich’s theorem. If p = ∞ use Arzela-Ascoli and the identification of Sobolev and Lipschitz
spaces.



ANALYSIS I & II & III VERSION: December 5, 2022 254

This is not the case for p = 1.

Example 15.2. Let Ω = (−1, 1) and set

un(x) =


0 −1 < x < 0
nx 0 < x < 1

n

1 x > 1
n
.

Each un is Lipschitz continuous so in particular un ∈ W 1,1((−1, 1)), and

∥un∥L1(−1,1) ≤ 2,

and

∥u′
n∥L1(−1,1) =

∫ 1
n

0
ndx = 1.

Set

u(x) =
0 −1 < x < 0

1 x > 0.

Then u is discontinuous and thus (we are in one dimension!) u ̸∈ W 1,1. However we see

∥un − u∥L1((−1,1))
n→∞−−−→ 0,

e.g. by the dominated convergence theorem.

So
∥u∥W 1,1 ̸≤ lim inf

n→∞
∥un∥W 1,1(Rn).

The strong closure of C∞ under the W 1,1-norm gives W 1,1 (functions in L1 whose distri-
butional derivative belongs to L1).

But the weak closure leads to the space of bounded variations, f ∈ L1 such that Df is a
measure, cf. Exercise 12.40. Since we want to avoid the use of signed measures, we will
first define BV by duality.

First let us consider the W 1,p-version. Recall that for ϕ ∈ C1
c (Ω,Rn) the divergence div ϕ ∈

C0
c (Ω) is given by

div ϕ =
n∑

i=1
∂iϕ

i.

Theorem 15.3. Let Ω ⊂ Rn be open and smoothly bounded (for simplicity), p ∈ (1,∞),
and f ∈ Lp(Ω). Then f ∈ W 1,p(Ω) if and only if

Λ := sup
{∫

Ω
fdiv ϕdLn : ϕ ∈ C1

c (Ω,Rn), ∥ϕ∥Lp′ (Ω) ≤ 1
}
<∞.

In that case there exists a constant such that C−1∥Df∥Lp ≤ Λ ≤ C∥Df∥Lp.
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Proof. ⇒ Assume f ∈ W 1,p(Ω) then∫
fdiv ϕ =

∫
Df · ϕ ≤ ∥Df∥Lp ∥ϕ∥Lp′

⇐ Let ϕ = (0, . . . , 0, φ, 0, . . . , 0) (where φ is at the j-th position then we get that

φ 7→
∫

Ω
f∂jφ ≤ Λ∥φ∥Lp′ (Rn).

By the Riesz representation theorem (here we need that p′ < ∞, so p > 1) we find
g ∈ Lp(Rn), ∥g∥Lp ≤ Λ such that ∫

Ω
f∂jφ =

∫
Ω
gφ,

that is f ∈ W 1,p. □

Motivated by this we define BV as the p = 1 case of the above theorem.

Definition 15.4. Let Ω ⊂ Rn be open.

(1) A function f ∈ L1(Ω) is said to have bounded variation in Ω if

sup
{∫

Ω
fdiv ϕdLn : ϕ ∈ C1

c (Ω,Rn), |ϕ(x)| ≤ 1 in Ω
}
<∞.

(2) the collection of functions with bounded variations is denoted by BV (Ω). Here we
do not identify two functions which agree Ln-a.e..

(3) An Ln-measurable subset E ⊂ Rn has finite perimeter in Ω if χE ∈ BV (Ω).
(4) A function f ∈ L1

loc(Ω) is said to have locally bounded variation in Ω if for each
Ω′ ⊂⊂ Ω,

sup
{∫

Ω′
fdiv ϕdLn : ϕ ∈ C1

c (Ω′,Rn), |ϕ(x)| ≤ 1 in Ω′
}
<∞.

(5) the collection of functions with locally bounded variations is denoted by BVloc(Ω).
Here we do not identify two functions which agree Ln-a.e..

(6) An Ln-measurable subset E ⊂ Rn has locally finite perimeter in Ω if χE ∈ BVloc(Ω)
(such a set is sometimes called a Caccioppoli set)

As mentioned, BV means that Df is a Radon measure. The precise meaning of that is
the following

Theorem 15.5. Assume that f ∈ BVloc(Ω).

Then there exists a (nonnegative) Radon measure µ on Ω and a µ-measurable function
σ : Ω→ Rn such that

(1) |σ(x)| = 1 for µ-a.e. x, and
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(2) for all ϕ ∈ C1
c (Ω;Rn) we have∫

Ω
fdiv ϕ = −

∫
Ω
ϕ · σ dµ.

Proof. We skip the proof, it is relatively straight-forward consequence of the Riesz Repre-
sentation theorem Theorem 5.44, similar to W 1,p-case above. □

So σ⌞µ takes the role of Df . We will write
∥Df∥ for the measure µ, the variation measure

and
[Df ] := ∥Df∥⌞σ

so that we have in the above theorem∫
Ω
fdiv ϕ = −

∫
Ω
ϕ · σd∥Df∥ ≡ −

∫
Ω
ϕ · d[Df ] ∀ϕ ∈ C1

c (Ω;Rn).

In a similar spirit, if f = χE and E is a set of locally finite perimeter in U we write
νE := −σ

and
∥∂E∥ := µ the perimeter measure

so that ∫
E

div ϕdx =
∫

U
ϕ · νE d∥∂E∥ ∀ϕ ∈ C1

c (Ω;Rn).

We furthermore can apply Lebesgue decomposition theorem, Theorem 5.14, and split
∥Df∥ = ∥Df∥ac + ∥Df∥s,

where ∥Df∥ac ≪ Ln and ∥Df∥s ⊥ Ln. We then have for some G ∈ L1
loc(U,Rn)

σ∥Df∥ac(Ω) =
∫

Ω
G(x) dLn(x).

We denote Df(x) := G(x) the density of the absolute continuous part of [Df ]. Then we
have

[Df ] = Ln⌞Df + [Df ]s.

If f ∈ BVloc(U) ∩ L1(U) then f ∈ BVloc(U) if and only if ∥Df∥(U) <∞, and in this case
we define

∥f∥BV (U) := ∥f∥L1(U) + ∥Df∥(U).
Observe that from the Riesz representation theorem we have

∥Df∥(Ω) := sup
{∫

Ω
fdiv ϕdLn : ϕ ∈ C1

c (Ω,Rn), |ϕ(x)| ≤ 1 in Ω
}
,

and
∥∂E∥(Ω) := sup

{∫
Ω
χEdiv ϕdLn : ϕ ∈ C1

c (Ω,Rn), |ϕ(x)| ≤ 1 in Ω
}
.
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Lemma 15.6. • f ∈ W 1,1
loc (U) then f ∈ BVloc(U)

• f ∈ W 1,1(U) then f ∈ BV (U)

Proof. This follows from the integration by parts formula for ϕ ∈ C1
c (Ω,Rn)∫

Ω
fdiv ϕ =

∫
Ω
∇f · ϕ ≤ ∥ϕ∥L∞∥∇f∥L1 .

□

Definition 15.7. For a set E ⊂ Rn of finite perimeter we set

Per(E) := ∥∂E∥(Rn)

the perimeter of E.

Example 15.8. Assume E is a smooth open subset of Rn and Hn−1(∂E) < ∞ then we
have from the integration by parts formula∫

E
div (ϕ) =

∫
∂E
ν · ϕ ≤ Hn−1(∂E) ∥ϕ∥L∞(∂E) ≤ Hn−1(∂E)∥ϕ∥L∞(Rn) ∀ϕ ∈ C1

c (Rn).

That is χE ∈ BVloc(Rn). But observe that χE ̸∈ W 1,1
loc (Rn). Indeed if χE ∈ W 1,1

loc (Rn), then
using Fubini’s theorem Section 14.3 iteratively on smaller and smaller dimensions, there
would be some straight line L intersecting E such that χE ∈ W 1,1(L) – but then χE would
have a continuous representative on that straigt line Proposition 13.50, which is impossible
since it jumps from 1 to 0.

Example 15.8 shows also that for all sufficiently smooth sets E, we have

Per(E) = Hn−1(∂E).

For general sets of finite perimeter this will not be true (otherwise the notion of Perimeter
would be quite useless, wouldn’t it?) but it is true for the so-caelled reduced boundary ∂∗E,
see Theorem 15.19.

15.1. Some properties: Lower semicontinuity, Approximation, Compactness,
traces.

Theorem 15.9 (Lower semicontinuity). Let Ω ⊂ Rn be an open set. Suppose (fk)k∈N ⊂
BV (Ω) and fk → f ∈ L1

loc(Ω).

∥Df∥(Ω) ≤ lim inf
k→∞

∥Dfk∥(Ω),

In the sense that if lim infk→∞ ∥Dfk∥(Ω) < ∞ then f ∈ BVloc(Ω) and we have the above
inequality.
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Proof. Fix ϕ ∈ C1
c (Ω,Rn). Then, by L1-convergence∫

Ω
fdiv ϕ = lim

k→∞

∫
Ω
fkdiv ϕ

= lim
k→∞

∫
Ω
ϕ · σkd∥Dfk∥

≤∥ϕ∥L∞ lim inf
k→∞

∥Dfk∥(Ω)

□

Theorem 15.10. Let Ω ⊂ Rn be an open set. Assume f ∈ BV (Ω). Then there exist
functions (fk)k∈N ⊂ BV (Ω) ∩ C∞(Ω) (observe the openness of Ω we do not get continuity
up to ∂Ω) such that

(1) fk
k→∞−−−→ f in L1(Ω)

(2) ∥Dfk∥(Ω) k→∞−−−→ ∥Df∥(Ω).
(3) If we denote µk(B) :=

∫
B∩Ω Dfkdx for each Borel set B ⊂ Rn, and set µ(B) :=∫

B∩U d[Df ] then µk weakly converges to µ in the sense of (vector-valued) Radon
measures in Rn.

Proof. For the full proof we refer to [Evans and Gariepy, 2015, Theorem 5.3 and Theorem
5.4], however let us sketch the main idea here.

Let η ∈ C∞
c (B(0, 1)), η(x) = η(−x),

∫
η = 1 be the typical mollification bump function.

It is very reasonable to hope that fε := f ∗ ε−nη(·/ε) is the right approximation for f –
but there is the smearing out of the convolution. Nevertheless, from lower semicontinuity,
Theorem 15.9, we have (where we consider f extended by zero outside of Ω)

∥Df∥(Ω) ≤ lim inf
ε→0

∥Dfε∥(Ω)

So all we have to show is the opposite direction – which is messy, and here we are only
going to show

lim sup
ε→0

∥Dfε∥(Ω ′) ≤ ∥Df∥(Ω),

for any open Ω′ ⊂⊂ Ω (i.e. Ω′ ⊂ Ω′ ⊂ Ω and Ω′ is compact).

To see this take ε small enough so that Bε(Ω′) ⊂ Ω. Then for any Φ ∈ C∞
c (Ω ′,Rn), by

Fubini’s theorem and integration by parts (and since η(x) = η(−x)),∫
Ω′
fε div Φ =

∫
Ω
f div (Φ ∗ η) ≤ ∥Φ ∗ η∥L∞∥Df∥(Ω) ≤ ∥Φ∥L∞∥Df∥(Ω)

Taking the supremum over such Φ with ∥Φ∥L∞ ≤ 1, we readily find
∥Dfε∥(Ω ′) ≤ ∥Df∥(Ω) for all small ε > 0,

that is,
lim sup

ε→0
∥Dfε∥(Ω ′) ≤ ∥Df∥(Ω).
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The full proof is then a careful covering argument, but follows the spirit from the argument
above. □

Exercise 15.11. Show that if Ω = Rn and f ∈ BV (Ω) we can choose the approximation
fk in Theorem 15.10 (1) and (2) to belong to fk ∈ C∞

c (Rn)

Remark 15.12. Observe

• there is no assumption on regularity on ∂Ω.
• We do not claim that ∥Dfk − Df∥(U) k→∞−−−→ 0 (because this would indicate that
Df ∈ L1

loc, and take f = χE as counterexample where E is a nice set)

We get a version of Rellich’s theorem, Theorem 13.35.

Theorem 15.13 (Compactness / Rellich’s theorem). Let U ⊂ Rn be open and bounded
with Lipschitz boundary ∂U . Assume (fk)k∈N is a squeunce in BV (U) satisfying

sup
k
∥fk∥BV (U) <∞.

Then there exists a subsequence (fkj
)j∈N and a function f ∈ BV (U) such that

fkj

j→∞−−−→ f in L1(U).

Proof. Follows from Rellich’s theorem, just approximate fk by gk ∈ C∞ (and thus gk ∈
W 1,1

loc ), such that
∥fk − gk∥L1 <

1
k

and
∥Dgk∥L1 = ∥Dgk∥(U) ≤ ∥Dfk∥(U) + 1

k
.

We conclude that (gk) is bounded in W 1,1, by Rellich’s theorem, Theorem 13.35, (there is
a subsequence) gkj

which converges strongly in L1(U), and so fk converges in L1(U). □

If f ∈ W 1,p(Ω) and Ω is bounded with smooth boundary, then f
∣∣∣∣
∂Ω
∈ W 1− 1

p
,p (this works

if p ≥ 1, with W 0,1 = L1). Essentially this still works for BV -functions, in the following
sense

Theorem 15.14 (Trace). Let U be open and bounded with ∂U Lipschitz continuous. There
exists a bounded linear mapping

T : BV (U)→ L1(∂U ;Hn−1),
such that ∫

U
f div ϕdx = −

∫
U
ϕ · d[Df ] +

∫
∂U
ϕ · ν Tf dHn−1

for all f ∈ BV (U) and ϕ ∈ C1(U,Rn).
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Tf is called the trace of f on ∂U – and if f ∈ W 1,1(U) ⊂ BV (U) then it coincides with
the trace of Theorem 13.31.

For a proof see [Evans and Gariepy, 2015, Theorem 5.6]

Theorem 15.15 (Sobolev embedding). Let u ∈ BV (Rn). Then

∥u∥
L

n
n−1 (Rn) ≤ C ∥Du∥(Rn)

where C is a constant only depending on the dimension n.

Proof. By Exercise 15.11 we can approximate u by uk ∈ C∞
c (Rn) such that ∥uk−u∥L1(Rn)

k→∞−−−→
0, fk

k→∞−−−→ f Ln-a.e., and ∥Dfk∥(Rn) k→∞−−−→ ∥Df∥(Rn).

By Theorem 13.41, for each k ∈ N

∥uk∥L
n

n−1 (Rn) ≤ C ∥Duk∥L1(Rn) = C ∥Duk∥(Rn).

By Fatou’s Lemma, Corollary 3.9,

∥u∥
L

n
n−1 (Rn) ≤ lim inf

k→∞
∥uk∥L

n
n−1 (Rn) ≤ C lim inf

k→∞
∥Duk∥(Rn) = C ∥Du∥(Rn).

□

15.2. Isoperimetric inequality. The isoperimetric inequality relates the area of a set E
with the length of its boundary ∂E. In its simplest form (an easy consequence of Sobolev-
inequality for BV , Theorem 15.15) it looks as follows

Theorem 15.16 (Isoperimetric inequality). Let E ⊂ Rn be a set of finite perimeter. Then

Ln(E)n−1
n ≤ CPer(E)

Proof. In this form this is the Sobolev theorem Theorem 15.15, for χE, then we have

∥χE∥L
n

n−1 (Rn) ≤ C∥DχE∥(Rn) ≡ Per(E).

Now we observe that
∥χE∥L

n
n−1 (Rn) = Ln(E)n−1

n

□

It is very interesting to find out what the optimal constant C is, and what shape E needs
to have for this optimal constant to be attained (ball!). This is caleld Dido’s problem cf.
[Bandle, 2017].
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15.3. Reduced boundaries. Without going into too much detail let us discuss some cool
features about sets with finite perimeter. For details and proofs see [Evans and Gariepy, 2015,
Chapter 5].

For sets E of finite perimeter we have that ∂E can be quite a wild set. The measure ∥∂E∥
leads to another notion of boundary: the points where ∥∂E∥ has suitable density.
Definition 15.17. Let E ⊂ Rn be a set of locally finite perimeter. The reduced boundary
∂∗E of E is defined as the collection of all x ∈ Rn such that

(1) ∥∂E∥(B(x, r)) > 0 for all r > 0, and
(2) limr→0

∫
B(x,r) νEd∥∂E∥ = νE(x), and

(3) |νE(x)| = 1.
Lemma 15.18. ∂∗E ⊂ ∂E.

Proof. Indeed, this follows from the first condition. If x ̸∈ ∂E then there exists a radius
r > 0 such that the ball B(x, r) ⊂ E or B(x, r) ⊂ Rn \ E. Take any ϕ ∈ C∞

c (B(x, r),Rn)
then we have ∫

E
div ϕ =

∫
E∩B(x,r)

div ϕ.

Either, if B(x, r) ⊂ E ∫
E

div ϕ =
∫

B(x,r)
div ϕ = 0,

or if B(x, r) ∈ Rn \ E we have∫
E∩B(x,r)

div ϕ =
∫

∅
div ϕ = 0.

So in either case
∫

E div ϕ = 0, so ∥∂E∥(B(x, r)) = 0. □

Theorem 15.19 (Structure theorem for sets of finite perimeter). Let E ⊂ Rn be a set of
locally finite perimeter.

• Hn−1(B) ≤ C∥∂E∥(B) for all B ⊂ ∂∗E (where C is a constant depending only on
n)
• The reduced boundary ∂∗E can be written as

∂∗E =
∞⋃

k=1
Kk ∪N,

where
∥∂E∥(N) = 0

and each Kk is a compact subset of a C1-hypersurface Sk.
• νE

∣∣∣∣
Sk

is normal to Sk for each k

• ∥∂E∥ = Hn−1⌞∂∗E. In particular
Per(E) = Hn−1(∂∗E).
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Definition 15.20 (measure-theoretic boundary). Let E ⊂ Rn. The measure-theoretic
boundary ∂∗E of E is given by all x ∈ Rn which satisfy

lim sup
r→0

Ln(B(x, r) ∩ E)
rn

> 0

and
lim sup

r→0

Ln(B(x, r) \ E)
rn

> 0

We have ∂∗E ⊂ ∂∗E and Hn−1(∂∗E \ ∂∗E) = 0.

Theorem 15.21 (Gauss-green). Let E ⊂ Rn have locally finite perimeter.

(1) Then Hn−1(∂∗E ∩K) <∞ for each compact set K ⊂ Rn.
(2) For Hn−1-a.e. x ∈ ∂∗E, there is a unique measure theoretic unit outer normal

νE(x) (this of course needs to be defined) such that∫
E

div ϕ =
∫

∂∗E
ϕ · νEdHn−1 ∀ϕ ∈ C1

c (Rn,Rn).

One can show that if E ⊂ Rn is Ln-measurable and Hn−1(∂∗E ∩K) <∞ for all compact
sets K ⊂ Rn, then E has locally finite paramter (in particular Theorem 15.21 holds for
open sets with Lipschitz boundary)

Part 3. Analysis III: Cool Tools from Functional Analysis

16. Short crash course on main examples: Lp and W 1,p

We are going to use those a lot, so let us repeat their basic definitions.

Let Ω ⊂ Rn be an open set (this will be a standing assumption).

For p ∈ [1,∞) we say f ∈ Lp(Ω) if

∥f∥Lp(Ω) :=
(∫

Ω
|f |p

) 1
p

<∞.

This looks very simple, but there are a few things to observe here:

• This is the Lebesgue integral, which essentially means it is defined for a larger
class of functions than if it was the Riemann integral (there are no other practical
differences). Namely f : Ω→ R needs to be measurable then (

∫
Ω |f |p)

1
p is a defined

quantity (which could be infinite). Again, this has no real practical consequences,
thinking of the Riemann integral is not too far of, namely:
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• For every f ∈ Lp(Ω) there exists a sequence fk ∈ C0(Ω) ∩ Lp(Ω) that converges to
f , i.e.

∥fk − f∥Lp(Ω)
k→∞−−−→ 0,

and thus in particular

∥f∥Lp(Ω) = lim
k→∞

(∫
Ω
|fk|p

) 1
p

.

For continuous fk Riemann and Lebesgue integral are the same – so thinking of
∫

Ω
as the usual Riemann integral is just fine (essentially).
• We call ∥ · ∥Lp(Ω) a norm, technically it is not because ∥f∥Lp(Ω) = 0 does not imply
f(x) = 0 for all x ∈ Ω (take e.g. f = 0 in Ω \ {x0} and f(x0) = 1).

The solution to this issue is that we consider two functions f and g to be the
same (in the sense of integration theory) if

f(x) = g(x) for almost every x ∈ Ω,
where “almost all” (short: “a.e.”) is a precise notion: it means that the set N
of all x where f(x) ̸= g(x) is a set of Lebesgue measure zero, which means that
for any ε > 0 there exists a countable ball cover of N ⊂ ⋃∞

i=1 B(xi, ri) such that∑∞
i=1(ri)n < ε.
This almost everywhere notation leads to another (easily solvable issue): We

sometimes want to say f = g where f is a Lebesgue-integrable function and g is
continuous. Clearly a function f which a.e. is equal to a continuous function may
not be continuous (same example as above) – so there could be different continuous
functions representing an integrable function? No! If f = g a.e. and both f and g
are continuous, then f = g everywhere. Issue solved.

So ∥ · ∥Lp(Ω) is a norm on the collections of functions (where two functions are
the same if they are the same a.e.)

Also: we usually don’t care about definining functions everywhere, almost every-
where is enough. Like x

|x| is a function (even though we have no idea what it would
be in x = 0).
• There is also L∞(Ω), it consists of all (measurable) functions f : Ω→ R such that

∥f∥L∞(Ω) = sup
x∈Ω
|f(x)| <∞.

Now here is another issue: this supremum cannot be the usual supremum, if not
f = 0 in Ω\{x0} and f(x0) = 1 has nonzero-norm (and this is inconsitent with the
almost everywhere considerations above). So this is (always, unless otherwise said
or forgotten to say) the essential supremum:

sup
x∈Ω
|f(x)| = inf {Λ > 0 : f(x) ≤ Λ for almost every x ∈ Ω}

Observe it is not true that continuous functions are dense in L∞(Ω). Take f(x) = 0
for |x| < 1 and f(x) = 1 for |x| > 1. This is clearly discontinuous, but we
see that ∥f∥L∞(Rn) = 1. If there was a sequence of continuous functions fk ∈
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C0, ∥fk − f∥L∞(Rn)
k→∞−−−→ 0 then fk would converging uniformly and the limit of

uniformly converging continuous functions must be continuous!
• L2(Ω) is a special case since it is a Hilbert space, meaning there is a scalar product

⟨f, g⟩L2 :=
∫

Ω
fg

Now let us define the Sobolev space W k,p(Ω). It means functions with k derivatives in Lp

(and it is debated what the W stands for) – often it is handwavingly said f ∈ W 1,p(Ω) if
f ∈ Lp(Ω) and any partial derivative ∂if ∈ Lp(Ω). But how do we take a partial derivative
of a (possibly even discontinuous) function f? This leads to the idea of distributional
derivative. Instead of looking at (e.g. integrable) functions f evaluated at a point x (which
by the above discussion we know only works a.e. etc.), we could look at how a function f
acts on test-functions φ ∈ C∞

c (Ω): that is instead of considering
f(x) ∀x ∈ Ω,

why not consider
f [φ] =

∫
Ω
f φ ∀φ ∈ C∞

c (Ω).

This interpreation of a function is called a distribution (we will talk about this more when
talking about the Fourier transform). The upshot is that this way we can measure every
propery of f , just like f(x). The basic lemma for this is the fundamental theorem of
Calculus of Variations (for a proof see Lemma 4.45)

Lemma 16.1 (Fundamental lemma of the Calculus of Variations). Let f, g ∈ L1
loc(Ω) (i.e.

f, g ∈ L1(Ω̃) whenever Ω̃ is bounded and Ω̃ ⊂ Ω) and assume that

f [φ] = g[φ] ∀φ ∈ C∞
c (Ω)

then f = g almost everywhere.

In particular we say that in distributional sense f = g if
f [φ] = g[φ] ∀φ ∈ C∞

c (Ω)
And we know that f = g in the integrable sense is the same as f = g in the distributional
sense.

Also, if we have a distributional interpretation of a function, then we can take its derivative
by a formal integration by parts

∂if [φ] =
∫

Ω
∂ifφ = −

∫
Ω
f∂iφ = −f [∂iφ].

The middle integral of course makes no sense in general (we would need that f is differen-
tiable), so we just use the definition

∂if [φ] := −f [∂iφ].
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This is called the distributional derivative ∂i of f . And we say that ∂if = g if the two
distributions are the same. That is we say ∂if ∈ Lp(Ω) if there exists g ∈ Lp(Ω) (the
distributional derivative) if

∂if [φ] = g[φ] ∀φ ∈ C∞
c (Ω),

i.e. if
−
∫
f∂iφ =

∫
g φ ∀φ ∈ C∞

c (Ω).

If f ∈ Lp(Ω) and ∂if ∈ Lp(Ω) for all i = 1, . . . , n then we say f ∈ W 1,p(Ω) (and similarly
if f ∈ W k,p(Ω).

We can equip W 1,p with a norm

∥f∥W 1,p(Ω) :=
(
∥f∥p

Lp(Ω) +
n∑

i=1
∥∂if∥p

Lp(Ω)

) 1
p

.

For p = 2, W 1,2(Ω) is still a Hilbert space, with the scalar product

⟨f, g⟩W 1,2 = ⟨f, g⟩L2 +
n∑

i=1
⟨∂if, ∂ig⟩L2

One word of warning for distributional derivatives: they are not the same as a.e. pointwise
derivatives (which is a concept one should not use): the typical example is the Heaviside
function

H(x) :=
0 x < 0

1 x ≥ 0
Formally we might think that its derivative is 0 a.e. – but indeed its distributional derivative
is not zero (it is the Dirac measure)

H ′[φ] = φ(0) ∀φ ∈ C∞
c (Ω).

So we should be very careful to compute a derivative almost everywhere and hope thats
the distributional derivative (but sometimes this works).

If Ω is a nice set (e.g. a ball, or more generally a set with a non-crazy boundary) then
there is another way of thinking of Sobolev functions.

If p ∈ [1,∞) we have f ∈ W 1,p(Ω) if and only if there exists fk ∈ C∞(Ω) ∩W 1,p(Ω) such
that

∥fk − f∥W 1,p(Ω)
k→∞−−−→ 0.

So again, when talking about Sobolev functions we may assume they are pretty much
smooth functions.

What happens when we consider the approximating functions fk ∈ C∞
c (Ω)? Then we

obtain W 1,p
0 (Ω), which consists of all maps f ∈ W 1,p(Ω) such that f = 0 on ∂Ω (in a

suitable “trace sense”). This is a good space as well, and it has the nice property that the
only constant function in W 1,p

0 (Ω) is the constant 0.
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Important inequalities are Poincaré inequality, Theorem 13.36, Rellich’s theorem, Theo-
rem 13.35, Sobolev inequality, Theorem 13.41, Sobolev embedding, Corollary 13.45, and
Morrey embedding Theorem 13.49.

17. Fourier Transform

We follow presentations in [Grafakos, 2014] and [Lieb and Loss, 2001]

17.1. Quick review of complex numbers. It is way nicer and convenient to consider
the complex Fourier transform (even for real functions).

The complex plane C ∼= R2 consists of points z = a + ib where a, b ∈ R and i is the
imaginary unit that is defined to satisfy i2 = 1.

For z = a+ ib we call a the real part of z and b the imaginary part of z,
ℜ (a+ ib) := a ℑ (a+ ib) := b

The complex conjugation is the map z 7→ z is a map C→ C defined as
a+ ib := a−ib.

We have the norm |z| (which coincides with the R2-norm)
|a+ ib|2 = a2 + b2 = (a+ ib) (a+ ib)

The integral over complex numbers is defined by linearity. I.e. let f : Rn → C then∫
Rn
f(x)dx :=

∫
Rn
ℜ(f(x))dx+ i

∫
Rn
ℑ(f(x))dx

(this is very similar to the integrals of f : Rn → RN , which we also define componentwise).

Observe that for us the domain of functions will always be real, but the image space might
be C – i.e. f : Rn → C is the generic function.

17.2. Some motivation. According to Harmonic Analysts the Fourier transform is the
“single most important tool in Harmonic Analysis”, [Grafakos, 2014].

Let us illustrate why it is also important for differential equations by doing some well-
meant, formal calculations.

First we define for ξ ∈ Rn the Fourier transform of u at ξ

F(f)(ξ) ≡ f̂(ξ) :=
∫
Rn
e−2πi⟨ξ,x⟩f(x) dx.

Let us ignore for now

• Fu(ξ) is complex (just use e−2πi⟨ξ,x⟩ = cos(−2π⟨ξ, x⟩) + i sin(−2π⟨ξ, x⟩) and inte-
grate imaginary and real part seperately.
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• The convergence of the integral might be an issue. It is absolutely convergent if
f ∈ L1(Rn), but its unclear what it means e.g. if f ∈ L2(Rn)

The inverse Fourier transform

F−1(f)(x) ≡ f∨(x) :=
∫
Rn
e+2πi⟨ξ,x⟩f(ξ) dξ.

Assume we want to find a solution to the equation

(17.1) ∆u(x) =
n∑

i=1
∂xi∂xiu(x) = f(x) in Rn

One of the important properties is that derivatives become polynomial factors after Fourier
transform:

(∂xi
g)∧ (ξ) = −i2πiξiĝ(ξ).

For the Laplace operator ∆ this implies
(∆u)∧(ξ) = −4π2|ξ|2û(ξ).

This means that if we look at the equation (17.1) and apply Fourier transform on both
sides we have

−|ξ|2û(ξ) = f̂(ξ),
that is

û(ξ) = −|ξ|−2f̂(ξ),
Inverting the Fourier transform we get an explicit formula for u in terms of the data f .

u(x) = −
(
|ξ|−2f̂(ξ)

)∨
(x).

This is not a very nice formula, so let us simplify it. Another nice property of Fourier
transform (and its inverse) is that products become convolutions. Namely

(g(ξ)f(ξ))∨ (x) =
∫
Rn
g∨(x− z)f∨(z) dz.

In our case, for g(ξ) = −|ξ|−2 we get that

u(x) =
∫
Rn
g∨(x− z) f(z) dz.

Now we need to compute g∨(x− z), and for this we restrict our attention to the situation
where the dimension is n ≥ 3. In that case, just by the definition of the (inverse) Fourier
transform we can compute that since g has homogeneity of order 2 (i.e. g(tξ) = t−2g(ξ),
then g∨ is homogeneous of order 2− n. In particular

g∨(x) = |x|2−ng∨(x/|x|).
Now an argument that radial functions stay radial under Fourier transforms (Lemma 17.8
below) leads us to conclude that

g∨(x) = c1|x|2−n.
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That is, we have arrived that (by formal computations) a solution of (17.1) should satisfy

(17.2) u(x) = c1

∫
Rn
|x− z|2−n f(z) dz.

The constant c1 can be computed explicitely, and one can check that this potential repre-
sentation of a solution u to (17.1) really is true.

17.3. Precise Definition. The Fourier transform is a fantastic operator on L2(Rn) (and
a bit strange operator on L1(Rn)) however on L2(Rn) the integral definition of Ff may not
converge absolutely. So we would like to work with nicer dense functions. C∞

c (Rn) comes
to mind, but F(C∞

c (Rn)) is not in C∞
c (Rn), this is a version of the Heisenberg uncertainty

principle.

This is why we will work with Schwarz classes
Definition 17.1. A function f ∈ C∞(Rn) (possibly complex valued) is a Schwarz func-
tion, in symbols f ∈ S (Rn), if it decays quickly at infinity, more precisely, the Schwarz
seminorms

pα,β(f) := sup
x∈Rn
|x|α|Dβf(x)| <∞ ∀α ≥ 0, β ∈ N ∪ {0}.

Exercise 17.2. Show

(1) C∞
c (Rn) ⊂ S (Rn)

(2) e−|x|2 is in S (Rn)
(3) e−|x| is not in S (Rn)
(4) 1

1+|x|2 is not in S (Rn)
(5) the only polynomial in S (Rn) is the constant zero
(6) if f ∈ S (Rn) the so is ∂αf for any multiindex α.
(7) if f ∈ S (Rn) then so is xβf(x) for any multiindex α.
(8) if f, g ∈ S (Rn) then the convolution f ∗ g ∈ S (Rn)

Exercise 17.3. Let f ∈ C∞(Rn). Show that f ∈ S (Rn) if and only if for all positive
integers N and all multi-indices α there exists a positive constant Cα,N such that

|(∂αf)(x)| ≤ Cα,N(1 + |x|)−N .

Definition 17.4. Let f ∈ S (Rn), then we define the Fourier transform of f as

F(f)(ξ) ≡ f̂(ξ) :=
∫
Rn
e−2πi⟨ξ,x⟩f(x) dx.

The inverse Fourier transform of f is given as

F−1(f)(x) ≡ f∨(x) :=
∫
Rn
e+2πi⟨ξ,x⟩f(ξ) dξ.

Equivalently, F−1(f)(x) = Ff .

Observe while we prefer to work with real function f ∈ S (Rn) the Fourier transform is
the complex function f̂ : Rn → C.
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Example 17.5. Let f(x) = e−π|x|2 then

f̂(ξ) = f(ξ).

Proof. From Advanced Calculus (this was this Fubini trick!) we have∫ ∞

−∞
e−t2

dt =
√
π.

In particular ∫ ∞

−∞
e−πt2

dt = 1.

Now consider the map

g(s) :=
∫ ∞

−∞
e−π(t+is)2

dt ∈ C ∼= R2.

Observe that this integral converges for each s because

e−π(t+is) = e−π(t2−s2) e−2πist︸ ︷︷ ︸
|·|≤1

,

so
|e−π(t+is)| ≤ e−π(t2−s2)

and t 7→ e−π(t2−s2) is clearly integrable for any s.

Moroever we have
d

ds
e−π(t+is)2 = −2πi(t+ is)e−π(t+is)2 = i

d

dt
e−π(t+is)2

Integrating both sides (we can interchange the integration on the left-hand side since we
have good convergence of the integral)

d

ds
g(s) = i

∫ ∞

−∞

d

dt
e−π(t+is)2

dt = 0.

Thus g′(s) = 0 for all s, that is g(s) = g(0) for all s. Consequently,∫
R
e−πr2

e−2πitrdr =
∫
R
e−πr2−2πitrdr = e−2πt2

∫
R
e−π(r2−2itr−2t2 )dr

=e−2πt2
∫
R
e−π(r+it)2

dr︸ ︷︷ ︸
=g(t)=g(0)=1

=e−2πt2

This proves the claim for n = 1.
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For n ≥ 2 we use Fubini’s theorem∫
Rn
e−π|x|2e−2πi⟨ξ,x⟩dx

=
∫
R
. . .
(∫

R
e−π|x2|2e−2πiξ2x2

(∫
R
e−π|x1|2e−2πiξ1x1dx1

)
dx2

)
. . . dxn

=e−π|ξ1|2
∫
R
. . .
(∫

R
e−π|x2|2e−2πiξ2x2dx2

)
. . . dxn

= . . .

=e−π|ξ1|2 e−π|ξ2|2 . . . e−π|ξn|2

=e−π|ξ|2 .

□

Exercise 17.6. Assume that f ∈ S (Rn) and Ff(ξ) = f(ξ) for all ξ ∈ Rn.

Show that f(0) =
∫
Rn f(x)dx

Above we used an important property of the Fourier transform: we can take it component-
wise. Let us collect this, and related properties.

Remark 17.7. • Whenever f ∈ S (Rℓ), g ∈ S (Rn−ℓ) (exercise: show that fg ∈
S (Rn)) we have

FRn (f(x1, . . . , xℓ)g(xℓ+1, . . . , xn)) (ξ) = FRℓ (f(x1, . . . , xℓ)) (ξ1, . . . , ξℓ)FRn−ℓ (g(xℓ+1, . . . , xn)) (ξℓ+1, . . . , ξn).
This follows, as above, from Fubini’s theorem.

The Fourier transform has many nice properties (most importantly how it behaves with
respect to differentiation!)

Lemma 17.8. Let f, g ∈ S (Rn). Then

(1) ∥f̂∥L∞(Rn) ≤ ∥f∥L1(Rn).
(2) f̂ + g = f̂ + ĝ

(3) λ̂f = λf̂ for any complex λ ∈ C
(4) Let

f̃(x) := f(−x).
Then

ˆ̃f = ˜̂
f

(5) Fix y ∈ Rn. Denote by τy : S (Rn)→ S (Rn) the translation by y, i.e.
τyf(x) = f(x+ y).

Then
F(τyf)(ξ) = e2πi⟨ξ,y⟩Ff(ξ)
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(6) Denote the scaling δtf(x) := f(tx) for some fixed t > 0. Then

F(δtf)(ξ) = t−nδt(F(ξ)).

(7) F(∂xkf)(ξ) = 2πiξkF(ξ)
(8) ∂ξkF(ξ) = F

(
−2πixkf(x)

)
(ξ)

(9) If P ∈ O(n), i.e. P tP = I then F(f(P ·))(ξ) = Ff(Pξ).
(10) Let f ∈ S (Rn,C) then Ff(ξ) = Ff(−ξ)
(11) If f is real and even, f(x) = f(−x) then Ff is real number
(12) If f is real and odd, f(x) = −f(−x) then Ff is imaginary
(13) If f is radial, i.e. if f can be written as f(x) = g(|x|), then Ff is radial.
(14) If f is positively σ-homogeneous for some σ ∈ R, i.e. f(λx) = λσ, then Ff is

−n− σ-homogeneous, i.e. Ff(λξ) = λ−n−σFf(ξ)
(15) If f, g ∈ S (Rn) then F(f ∗ g)(ξ) = f̂(ξ)ĝ(ξ)

Proof. (1) We have

|Ff(ξ)| =
∣∣∣∣∫

Rn
e−2πi⟨ξ,x⟩f(x)dx

∣∣∣∣ ≤ ∫
Rn

∣∣∣e−2πi⟨ξ,x⟩
∣∣∣︸ ︷︷ ︸

=1

|f(x)| dx

(2) exercise
(3) exercise
(4) exercise
(5) We have

F(τyf)(ξ) =
∫
Rn
f(x+ y)e−2πi⟨ξ,x⟩dx

=e−2πi⟨ξ,−y⟩
∫
Rn
f(x+ y)e−2πi⟨ξ,x+y⟩dx

=e−2πi⟨ξ,−y⟩
∫
Rn
f(z)e−2πi⟨ξ,z⟩dz

=e−2πi⟨ξ,−y⟩Ff(ξ).

(6) exercise
(7) We have using integration by parts (recall that lim|x|→∞ f(x) = 0)

F(∂xkf)(ξ) =
∫
Rn
∂xkf(x)e−2πi⟨ξ,x⟩dx

=−
∫
Rn
f(x)∂xk

(
e−2πi⟨ξ,x⟩

)
dx

=− (−2πiξk)
∫
Rn
f(x)e−2πi⟨ξ,x⟩dx

=2πiξkFf(ξ).

(8) exercise
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(9) We will use the transformation rule for Φ(x) := Px, which satisfied det(DΦ) =
det(P ) = 1. Also observe that ⟨ξ, x⟩ = ⟨Pξ, Px⟩ if P is orthogonal.

F(f(P ·))(ξ) =
∫
Rn
f(Px)e−2πi⟨ξ,x⟩dx

=
∫
Rn
f(Px)e−2πi⟨Pξ,Px⟩dx

=
∫
Rn
f(z)e−2πi⟨P ξ,z⟩dx

=F(f)(Pξ).

(10) We have

F(f(·))(ξ) =
∫
Rn
f(x)e−2πi⟨ξ,x⟩dx

=
∫
Rn
f(x)e−2πi⟨ξ,x⟩dx

=
∫
Rn
f(x)e+2πi⟨ξ,x⟩dx

=
∫
Rn
f(x)e−2πi⟨−ξ,x⟩dx

=
∫
Rn
f(x)e−2πi⟨−ξ,x⟩dx

(11) exercise
(12) exercise
(13) f is radial if and only if there exist g such that f(x) = g(|x|) for all x ∈ Rn. This

is equivalent to saying f(Px) = f(x) for all x ∈ Rn and P ∈ O(n). Indeed set
g(r) := f(re) for r ∈ R and e ∈ Rn any unit vector (i.e. |e| = 1). For x ̸= 0 denote
by P ∈ O(n) the rotation such that Px = |x|e. Then f(x) = f(P |x|e) = f(|x|e) =
g(|x|).

Now if f is radial we have for any fixed P ∈ O(n) from the observations above

F(f)(ξ) = F(f(P ·))(ξ) = Ff(Pξ).

So F(f) is radial.
(14) exercise
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(15) We have (using Fubini’s theorem since everything converges)

F(f ∗ g)(ξ) =
∫
Rn

(f ∗ g)(x)e−2πi⟨x,ξ⟩dx

=
∫
Rn

∫
Rn
f(x− y)g(y)dye−2πi⟨x,ξ⟩dx

=
∫
Rn

∫
Rn
f(x− y)g(y)e−2πi⟨x−y,ξ⟩e−2πi⟨y,ξ⟩dxdy

=
∫
Rn

(∫
Rn
f(x − y)e−2πi⟨x−y,ξ⟩dx

)
g(y)e−2πi⟨y,ξ⟩dy

=
∫
Rn

(∫
Rn
f(z)e−2πi⟨z,ξ⟩dz

)
g(y)e−2πi⟨y,ξ⟩dy

=
∫
Rn

(Ff(ξ)) g(y)e−2πi⟨y,ξ⟩dy

= (Ff(ξ))
∫
Rn

g(y)e−2πi⟨y,ξ⟩dy

= (Ff(ξ)) (Fg(ξ)) .

□

Exercise 17.9. Proof the remaining statements of Lemma 17.8.

Here is the main reason we prefer to work with S (Rn) when dealing with the Fourier
transform: It maps S (Rn) to S (Rn) (but as we shall see below it does not map C∞

c (Rn)
to C∞

c (Rn), Theorem 17.14).

Theorem 17.10. Let f ∈ S (Rn) then f̂ ∈ S (Rn)

Proof. We have
Dβ f̂(x) ≤ cx̂βf(x)(ξ).

Since f ∈ S (Rn) we have g(x) = xβf(x) ∈ S (Rn) (see Exercise 17.2).

In particular we have by Lemma 17.8
∥Dβ f̂(x)∥L∞ ≤ ∥| · ||β|f(·)|∥L1 <∞,

that is f̂ is C∞(Rn) since f , Df , etc. are all Lipschitz.

So we need to show that for g ∈ S (Rn) we have for any K = 0, 1, 2, . . . ,.
sup
ξ∈Rn
|ξ|2K |ĝ(ξ)| <∞

For K = 0 we have by Lemma 17.8
∥ĝ∥L∞(Rn) ≤ ∥g∥L1(Rn)

For K = 1 observe that
|ξ|2ĥ(ξ) = (−∆h)∧(ξ),
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where ∆ = ∑
α ∂α∂α. Since g ∈ S (Rn) so is ∆g.

So if we set gK := ∆gK−1 (with g0 = g) we have that gK ∈ S (Rn) and

sup
ξ
|ξ|2K |ĝ(ξ)| = c sup

ξ
|ĝK(ξ)| <∞.

□

We will show below in Theorem 17.14 that the same is not true for C∞
c (Rn), i.e. FC∞

c (Rn) ̸⊂
C∞

c (Rn).

But for this we need the following fundamental theorem on the Fourier inverse. Recall
that the (complex) L2-scalar product is

⟨f, g⟩ =
∫
Rn
fgdLn.

Observe that in this sense
Ff(ξ) = ⟨f, e2πi⟨ξ,·⟩⟩.

Now in some sense (none of the integrals makes really sense)

⟨e2πi⟨ξ,·⟩, e2πi⟨η,·⟩⟩ = δξ,η =
∞ ξ = η

0 ξ ̸= η.

I.e. ξ 7→ e−2πi⟨ξ,·⟩ is an orthonormal system in L2(Rn). So in some sense we have by formal
Fubini’s theorem

F−1 (Ff) (x) =
∫
Rn
e2πi⟨x,ξ⟩⟨f, e2πi⟨ξ,·⟩⟩dξ =

∫
Rn
f(y) ⟨e2πi⟨x,·⟩, e2πi⟨·,y⟩⟩dy

=
∫
Rn
f(y) δy,xdy

=f(x).
The fun part about this computation is that it actually works. Which leads to the most
important fundamental theorem of Fourier Analysis.

Theorem 17.11 (Fourier inverse). Let f, g ∈ S (Rn) then the following is true.

(1) ∫
Rn
f(x) ĝ(x)dx =

∫
Rn
f̂(x) g(x)dx

(2) Fourier transform inversion

F−1 (Ff) (x) = F
(
F−1f

)
(x) = f(x) ∀x ∈ Rn

(3) Parseval’s relation ∫
Rn
f(x)g(x) =

∫
Rn
f̂(ξ)ĝ(ξ) dξ
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or equivalently,
⟨f, g⟩ = ⟨f̂, ĝ⟩.

(4) ∫
Rn
f(x)g(x)dx =

∫
Rn
f̂(ξ) g∨(ξ)dξ.

(5) Plancherell identity

∥f∥L2(Rn) = ∥f̂∥L2(Rn) = ∥f∨∥L2(Rn)

Proof. (1) We have (observe all integrals converge, so we can use Fubini’s theorem∫
Rn
f(x) ĝ(x)dx =

∫
Rn
f(x)

∫
Rn
e

−2πi⟨x,y⟩
g(y)dy dx

=
∫
Rn
g(y)

∫
Rn
f(x)e−2πi⟨x,y⟩

dx dy

=
∫
Rn
g(y) f̂(y) dy.

(2) Fix t ∈ Rn and ε > 0 and set

g(ξ) := e2πi⟨ξ,t⟩e−π|εξ|2

Observe this is the same we did in the formal computation before the theorem,
essentially g(ξ) = e2πi⟨ξ,t⟩ times the dampening e−π|εξ|2 which ensures that h ∈
S (Rn) for any ε > 0.

By Lemma 17.8 we can compute the Fourier transform: the factor e2πi⟨ξ,t⟩ be-
comes a translation; the Fourier transform of e−π|εξ|2 is up to a scaling computed
in Example 17.5. So we find

ĝ(x) = 1
εn
e−π|x−t

ε |
2

Observe that ĝ is an approximation of the identity (i.e. as ε→ 0 it goes to zero for
every x ̸= t, and to ∞ at x = t).

From (1) we have∫
Rn
f(x) 1

εn
e−π|x−t

ε |
2

dx =
∫
Rn
f(x)ĝ(x)dx =

∫
Rn
f̂(x)g(x)dx

=
∫
Rn
f̂(x)e2πi⟨x,t⟩e−π|εx|2dx

(17.3)

Now since f, f̂ ∈ S (Rn) both integrals make sense. Moreover, by Lebesgue domi-
nated convergence theorem

(17.4) lim
ε→0

∫
Rn
f̂(x)e2πi⟨x,t⟩e−π|εx|2dx =

∫
Rn
f̂(x)e2πi⟨x,t⟩dx = F−1(f̂)(t)

We also have in view of Exercise 17.6 (and substituting z = x−t
ε

)∫
Rn

1
εn
e−π| x−t

ε |
2

dx =
∫
Rn
e−π|z|2dz = e−π|0|2 = 1.
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So ∫
Rn
f(x) 1

εn
e−π|x−t

ε |
2

dx = f (t) +
∫
Rn

(f(x)− f (t)) 1
εn
e−π|x−t

ε |
2

dx

and thus∣∣∣∣∫
Rn
f(x) 1

εn
e−π|x−t

ε |
2

dx− f (t)
∣∣∣∣ ≤ ∫

Rn
|f(x)− f(t)| 1

εn
e−π|x−t

ε |
2

dx

Since f ∈ S (Rn) in particular f is globally Lipschitz, i.e. for some L ∈ R we have
|f(x)−f(t)| ≤ L|x−t| for any x, t ∈ Rn (we can take L := ∥∇f∥L∞). Consequently,∣∣∣∣∫

Rn
f(x) 1

εn
e−π|x−t

ε |
2

dx− f (t)
∣∣∣∣ ≤ L

∫
Rn
|x− t| 1

εn
e−π|x−t

ε |
2

dx

=Lε
∫
Rn

∣∣∣∣x − t
ε

∣∣∣∣ 1
εn
e−π| x−t

ε |
2

dx

=Lε
∫
Rn
|z | e−π|z|2dz︸ ︷︷ ︸

<∞
ε→0−−→0.

(17.5)

Thus, letting ε→ 0 in (17.3), using (17.4) and (17.5) we conclude

f(t) ε→0←−−
∫
Rn
f(x) 1

εn
e−π|x−t

ε |
2

dx =
∫
Rn
f̂(x)e2πi⟨x,t⟩e−π|εx|2dx

ε→0−−→ F−1(f̂)(t).

The other equation in (2) follows similarly.
(3) With the help of (2) and (1) we have∫

Rn
f(x)g(x)dx =

∫
Rn
F−1(Ff)(x)g(x)dx

=
∫
Rn

(Ff)(x)F−1g(x)dx

=
∫
Rn

(Ff)(x)Fg(x)dx

(4) exercise (cf. (3))
(5) We have with (3)

∥f∥2
L2(Rn) = ⟨f, f⟩ = ⟨f̂, f̂⟩ = ∥f̂∥2

L2(Rn).

□

The following looks ridiculously complicated, but is very useful for pseudo-differential op-
erators (which are defined by Fourier transform)

Example 17.12 (A ridiculous way to integrate by parts). Let f, g ∈ S (Rn). Then for
i = 1, . . . , n ∫

f∂ig = −
∫
∂if g
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Indeed, we have from Parseval, Theorem 17.11,∫
f∂ig =

∫
f̂(ξ) (∂ig)∨ (ξ)

=
∫
f̂(ξ)(+2πiξi)g∨(ξ)(ξ)

=
∫

(+2πiξi)f̂(ξ)g∨(ξ)(ξ)

=−
∫

(−2πiξi)f̂(ξ)g∨(ξ)(ξ)

=−
∫
∂̂if(ξ)g∨(ξ)(ξ)

=−
∫
∂ifg.

Exercise 17.13. Show: if f, g ∈ S (Rn) then F(fg)(ξ) = f̂ ∗ ĝ(ξ).

Hint: Use Theorem 17.11 and Lemma 17.8.

So why do we work with S (Rn) and not C∞
c (Rn)? Because the Fourier transform does not

take C∞
c (Rn) to C∞

c (Rn) indeed (this is a version of the Heisenberg uncertainty principle:
you cannot localize in physical space and phase space at the same time)

Theorem 17.14. Let f ∈ C∞
c (Rn) and assume that f̂ ∈ C∞

c (Rn). Then f ≡ 0.

Proof. The proof uses a bit of complex analysis. First if f, f̂ ∈ C∞
c (Rn) then so is the

restriction to R × {c2, . . . , cn} for any vector c = (c2, . . . , cn) ∈ Rn−1. If we show that
f(·, c2, . . . , cn) is zero for every such vector c then f is zero everywhere. So w.l.o.g. n = 1.

Define F as
F (ξ + iη) :=

∫
R
e2πi ξxe−2πηxf(x)dx

F is called Fourier–Laplace transform of f , it is an extension of Ff : R→ C to F : C→ C.

F has good decay properties (made precise by the so-called Paley-Wiener theorem or in
this case Schwarz’s theorem), for us it is sufficient to observe that F ∈ C1(R2).

Indeed, since f ∈ C∞
c (Rn) there exists some R > 0 such that

x 7→ e2πi ξxe−2πηxf(x) ∈ C∞
c (−R,R),

and
∂ξe

2πi ξxe−2πηxf(x) = 2πix e2πi ξxe−2πηxf(x),

∂ηe
2πi ξxe−2πηxf(x) = −2π x e2πi ξxe−2πηxf(x).

Then either using the differentiation rules for the Riemann integral (since everything is
continuous and compactly supported, Lebesgue and Riemann integral coincide) or writing
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down the difference quotient and using the dominated convergence theorem, we conclude
F ∈ C1(R2) and

|F (ξ + iη)| ≤ ∥f∥L1(Rn)e
θN |η|

|∂ξF (ξ + iη)| ≤ 2π∥|x|f∥L1(Rn)e
θN |η|

|∂ηF (ξ + iη)| ≤ 2π∥|x|f∥L1(Rn)e
θN |η|.

where we choose θN so large that f(x) ≡ 0 whenever |x| ≥ θN

2π
.

Moreover F is holomorphic as a function from C→ C. Namely one can check the Cauchy-
Riemann equations holds:

∂ξℜ(F ) = ∂ηℑ(F )
and

∂ηℜ(F ) = −∂ξℑ(F ).
Alternatively one writes

e2πi ξxe−2πηxf(x) = e2πi (ξ+iη)xf(x)
and uses that z 7→ e2πiz is holomorphic. Holomorphic functions are analytic (i.e. they are
locally power functions).

But now since F is analytic, f̂(ξ) = F (ξ + i0) can written as a power function around any
ξ0 ∈ R, and for some positive radius of convergence r > 0 and (ak) ∈ C

f̂(ξ) =
∞∑

k=0
ak(ξ − ξ0)k ∀|ξ − ξ0| < r.

But now one can show (exercise!) that this implies that if f̂(ξ0) = 0 then either f̂(ξ) ̸= 0
for all ξ ≈ ξ0 or otherwise f̂ ≡ 0.

Since f ∈ C∞
c (Rn) ⊂ S (Rn) we have with Theorem 17.11 f(x) = F−1f̂(x) = F−10 = 0

for all x ∈ R. □

17.4. Tempered Distributions and their Fourier transform. We want to use Fourier
transforms for way more general functions. Plancherell Theorem 17.11 gives us an easy
way to compute the Fourier transform for L2, but what about functions like f(x) = |x|−α

(see Theorem 17.33)?.

We do a trick similar to the weak (distributional derivatives) and argue via test-functions.
But we need to know what convergence is in the space of test functions, so let us be precise:

Definition 17.15 (test functions). We consider two types of testfunctions, C∞
c (Rn) and

S (Rn).

(1) We set D(Rn) := C∞
c (Rn) and say that a sequence fk ∈ D(Rn) converges in D(Rn)

to some f : Rn → R
• there exists a compact set K such that supp fk ⊂ K for all k ∈ N and
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• for any multiindex α we have ∥∂α(fk − f)∥L∞(Rn)
k→∞−−−→ 0

It is easy to see that then f ∈ D(Rn) (exercise!)
(2) We say that a sequence fk ∈ S (Rn) converges in S (Rn) to some f : Rn → R if

for any multiindex α, β we have

∥xβ∂α(fk − f)∥L∞(Rn)
k→∞−−−→ 0.

It is easy to see that then f ∈ S (Rn) (exercise!).

Exercise 17.16. Show the following: let f ∈ S (Rn) then there exist fk ∈ C∞
c (Rn) ⊂

S (Rn) with fk converges to f in the sense of S (Rn).

Exercise 17.17. Show that the Fourier transform F : S (Rn) → S (Rn) is continuous.
I.e. assume that fk ∈ S (Rn) converges to f ∈ S (Rn) in the sense of S (Rn). Show that
Ffk also converges to Ff in the sense of S (Rn).

Distributions are dual spaces of D or S .

Definition 17.18 (Distributions and tempered distributions). • D′(Rn) is the space
of continuous linear functionals on D(Rn) = C∞

c (Rn). More precisely, a linear
operator

L : C∞
c (Rn)→ R

belongs to D′(Rn) if and only if for any fk ∈ C∞
c (Rn) converging to f in D then

Lfk
k→∞−−−→ Lf in R.

D′ is a linear space, called the space of distributions on Rn.
• S ′(Rn) (space of tempered distributions is a subspace of D′(Rn) (space of distribu-

tions). A linear functional L on S (Rn) (and thus on D(Rn)) belongs to S ′(Rn) if
and only if for any fk ∈ S (Rn) converging to f in S (Rn) then

Lfk
k→∞−−−→ Lf in R.

• f ∈ D′ belongs to Lp if there exists g ∈ Lp(Rn) such that

f [φ] =
∫
gφ ∀φ ∈ C∞

c (Rn)

• We identify functions f : Rn → R with

f [φ] :=
∫
Rn
fφdx

and for measures µ
µ[φ] :=

∫
Rn
fdµ

Observe these objects may or may not define distributions or tempered distribu-
tions.
• A distribution f is equal to g if f [φ] = g[φ] for all φ ∈ C∞

c (Rn). (for tempered
distributions cf. Exercise 17.19)
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• Derivative of a distribution is always defined: We simply set
∂αf [φ] := −f [∂αφ]

Exercise 17.19. Let f, g ∈ S ′(Rn). Show that the following are equivalent.

• f [φ] = g[φ] for all φ ∈ C∞
c (Rn)

• f [φ] = g[φ] for all φ ∈ S (Rn)

Hint: Exercise 17.16.

Example 17.20. We said when talking about Sobolev spaces,
∂αf = g

if ∫
f∂αφ = −

∫
gφ ∀φ ∈ C∞

c (Rn)

So this is equivalent to saying that ∂αf (as a (tempered) distribution) is equal to g

Proposition 17.21. f ∈ D′ belongs to Lp(Rn), 1 < p <∞ if and only if
|f [φ]| ≤ Λ∥φ∥Lp′ ∀φ ∈ C∞

c (Rn)
where p′ = p

p−1 .

That is we have
f [φ] =

∫
Rn
fg

where g ∈ Lp(Rn) and moreover ∥g∥Lp(Rn) ≤ Λ.

Proof. This is a consequence of Riesz representation theorem, Exercise 5.42. □

However, many distributions are not functions.

Exercise 17.22. • Let f be defined as follows (for some fixed ℓ ∈ {1, . . . , n})

f [φ] :=
∫
Rn
∂αφdx

Show that f is a tempered distribution, i.e. f ∈ S ′.
• Let µ be a Radon measure, and µ(Rn) <∞ and set

f [φ] :=
∫
Rn
fdµ

Show that f is a tempered distribution.
• Let

f [φ] := φ(0)
Show that f is a tempered distribution.

What is ∂xαf?
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• Let
f [φ] :=

∫
Rn
e|x|2φ(x)dx

Show that f is a distribution, but not a tempered distribution.
• Give an example of a Radon measure µ on Rn so that µ is no tempered distribution.

Hint: What L1
loc-function is not a tempered distribution

• Let f ∈ L1
loc(Rn). Show that f is a distribution , but may not be a tempered

distribution.
• Let f ∈ Lp(Rn), p ∈ [1,∞], show that

f [φ] =
∫
Rn
f(x)φ(x)

is a tempered distribution.

So in general we can identify functions (and measures) with their distributions (if they
are). If we define the Fourier transform on distributions, we have a huge class of functions
whose Fourier transform is defined. To do so, we use Theorem 17.11(1) (which is similar
to the integration by parts we use for weak derivatives)

Definition 17.23 (Fourier transform on tempered distributions). Let f ∈ S ′(Rn). Then
f̂ = Ff ∈ S (Rn) is defined as

f̂ [φ] := f [φ̂]
Observe that Ff is a tempered distribution by Exercise 17.17. Thus F : S ′(Rn)→ S ′(Rn)
is linear.

Example 17.24. • Fix x0 and let δx0 [φ] := φ(x0) which is clearly a tempered distri-
bution. Then

δ̂x0 [φ] = φ̂(x0) =
∫
Rn
φ(x)e−2πi⟨x,x0⟩ dx

So, δ̂x0 = e−2πi⟨x,x0⟩.
In particular δ̂0 = 1

• Conversely the Fourier transform of the constant 1 is the dirac delta at zero, F [1] =
δ0. Indeed, f(x) ≡ 1 is a tempered distribution and

F1[φ] = 1[Fφ] =
∫
Rn
Fφ(x)dx = F−1 (Fφ) (0) = φ(0) =

∫
Rn
φdδ0.

• Let p(x) = xk. Then in view of Lemma 17.8,

p̂[φ] =
∫
Rn
xkFφ(x)dx = 1

2πi

∫
Rn

2πixkFφ(x)dx = 1
2πi

∫
Rn
F (∂xk

φ) (x)dx

= 1
2πi

∫
Rn
F (∂xk

φ) (x)dx

= 1
2πi
F−1 (F (∂xk

φ) (x)) (0)

= 1
2πi

∂xk
φ(0).
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That is, in the sense of distributions,

F
(
xk
)

= 1
2πi

∂xk
δ0.

We conclude: Fourier transform send polynomials to derivatives of dirac delta’s and vice
versa.

Theorem 17.25 (Fourier transform on L2(Rn)). Let f ∈ L2(Rn).

(1) Ff ∈ L2(Rn). That is, the tempered distribution F(f) belongs to L2(Rn), in the
sense of Definition 17.18.

(2) F : L2(Rn) → L2(Rn) is a bounded linear operator. In particular, whenever fk ∈
C∞

c (Rn) converges to f ∈ L2(Rn) then there exists a subsequence ki →∞
Ff(x) = lim

i→∞
Ffki

(x) a.e. x ∈ Rn.

(3) We have all the properties of Theorem 17.11 for f, g ∈ L2(Rn). The Fourier inverse
becomes

F−1 (Ff)) (x) = F
(
F−1f

)
)(x) = f(x) almost every x ∈ Rn

(4) F : L2(Rn)→ L2(Rn) is an isomorphic isometry, that is it satisfies
∥Ff∥L2(Rn) = ∥Fg∥L2(Rn).

Proof. (1) Observe that if f ∈ L2(Rn) the tempered distribution satisfies by Hölder’s
inequality and Theorem 17.11.

|Ff [φ]| = |f [Fφ]| =
∣∣∣∣∫

Rn
f Fφ

∣∣∣∣
≤∥f∥L2(Rn) ∥Fφ∥L2

=∥f∥L2(Rn) ∥φ∥L2

By Proposition 17.21 we find that Ff belongs to L2(Rn) (observe that 2′ = 2). So
we have

Ff [φ] =
∫
Rn
Ff φ ∀φ ∈ C∞

c (Rn).

Moreover,
(17.6) ∥Ff∥L2(Rn) ≤ ∥f∥L2(Rn).

Clearly F is linear, so (17.6) shows that F : L2(Rn)→ L2(Rn) is a bounded linear
operator with norm ≤ 1.

(2) Since F : L2 → L2 is a bounded linear operator, we have from Equation (17.6)
∥Ff −F f̃∥L2(Rn) ≤ ∥f − g∥L2(Rn).

In particualr if fk ∈ C∞
c (Rn) converges w.r.t L2 to f

∥Ff −Ffk∥L2(Rn) ≤ ∥f − fk∥L2(Rn)
k→∞−−−→ 0.
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L2-convergence implies a.e. convergence up to subseqeuence.
(3) Let f, g ∈ L2(Rn) then there exist fk, gk ∈ C∞

c (Rn) such that

∥f − fk∥L2(Rn), ∥g − gk∥L2(Rn)
k→∞−−−→ 0.

By the boundedness of F we then have that

∥f̂ − f̂k∥L2(Rn), ∥ĝ − ĝk∥L2(Rn)
k→∞−−−→ 0.

We now apply Theorem 17.11 to fk and gk (observe that f̂k, ĝk ∈ S (Rn)). Taking
the limit it is then easy (by bilinearity) to see that Theorem 17.11 (1), (3), (4)
hold for f and g. Again we conclude Theorem 17.11(5) from Theorem 17.11(3) by
plugging in f = g.

For the Fourier inverse formula, up to taking a several subsequences we also have
from (2) above and Theorem 17.11(2)
F(F−1f)(x) = lim

i→∞
F(F−1fki

)(x) = lim
i→∞

fki
(x) = f(x) a.e. x ∈ Rn.

(4) is a direct consequence of Theorem 17.11 taking f = g.

□

Exercise 17.26. Let g ∈ C∞
c (R), and denote

G(t) :=
∫ t

−∞
g(s)ds.

Show that G may not belong to S (R), but G ∈ S ′(R). Show that

FG(τ) = g(τ)
2πiτ

+ πg(0)δτ=0(τ)

Hint: write G(t) as a convolution of g and χ[0,∞).

Theorem 17.27. Let m ∈ L∞(Rn) and define the following multiplier operator for f ∈
L2(Rn).

Tf(x) := F−1 (m(ξ)Ff(ξ)) .
Then f is a well defined linear operator and

∥Tf∥L2(Rn) ≤ ∥m∥L∞∥f∥L2(Rn).

Remark 17.28. • Actually one can show that a multiplier operator is bounded in
L2(Rn) if and only if m ∈ L∞(Rn).
• This gets way more complicated for Lp(Rn) (it is an ineed open question what are

necessary and sufficient conditions): m ∈ L∞ is necessary so that T is bounded from
Lp to Lp, but it does not suffice to ensure Lp-boundedness (essentially good decay
at infinity and differentiability of m are sufficient). This is related to Calderon-
Zygmund theory in Harmonic Analysis.
• Statements such as Theorem 17.27 are called multiplier theorems in Harmonic Anal-

ysis, famous ones are due to Marcinkiewicz, Mikhlin, Hörmander.
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Proof. By Plancherel’s theorem
∥Tf∥L2(Rn) = ∥T̂ f∥L2(Rn) = ∥m(ξ)f̂∥L2(Rn) ≤ ∥m∥L∞∥f̂∥L2(Rn) = ∥m∥L∞∥f∥L2(Rn).

□

Example 17.29. Consider u ∈ Lp(Rn) solves in distributional sense
∆u = f in Rn.

From our computations at the beginning of the
u = F−1

(
|ξ|−2Ff

)
So we have for any α, β ∈ {1, . . . , n},

∂αβu = cF−1
(
ξαξβ

|ξ|2
Ff

)
Clearly we have ∣∣∣∣∣ξαξβ

|ξ|2

∣∣∣∣∣ ≲ 1.

So from Theorem 17.27 we conclude that actually
∥∂αβu∥L2(Rn) ≲ ∥f∥L2(Rn).

That is if ∆u = f we controll all the second derivatices of f (in L2). In other words we
have the (amazing) result

∥D2u∥L2(Rn) ≲ ∥tr(D2u)∥L2(Rn) −−
and this even though tr(D2u) only takes into account the diagonal of D2u!!! □

If F : L2(Rn) → L2(Rn) is bounded then surely F : Lp(Rn) → Lp(Rn) is bounded?
WRONG!

Theorem 17.30 (Fourier transform on Lp). Let p ∈ [1, 2] and p′ = p
p−1 ∈ [2,∞]. If

f ∈ Lp(Rn) then f̂ ∈ Lp′(Rn) and
∥f̂∥Lp′ (Rn) ≤ ∥f∥Lp(Rn).

Proof. We will prove
∥f̂∥Lp′ (Rn) ≤ C∥f∥Lp(Rn)

for a constant C = C(p) > 0. With complex interpolation one can show that C = 1.

For p = 2, p′ = 2 this is a consequence of Theorem 17.25.

For p = 1, p′ =∞ it is a consequence of Fubini’s theorem that distributional and pointwise
Fourier transform coincide almost everywhere. Namely if f ∈ L1(Rn) then∫

Rn
f̂ φ =

∫
Rn
f φ̂ ∀φ ∈ C∞

c (Rn).
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So the claim follows from Lemma 17.8(1).

For some p ∈ (1, 2) the claim then follows from interpolation, Theorem 4.15. □

Remark 17.31. For p > 2 the result of Theorem 17.30 is false. Indeed, for any p ∈ (2,∞)
there are functions f ∈ Lp(Rn) for which f̂ (which is a tempered distribution) is not an
even locally integrable function. See [Grafakos, 2014, Exercise 2.3.13]

We have observed above that FL1 ⊂ L∞. Actually we even have

Exercise 17.32. Let f ∈ L1(Rn) then f̂ is continuous (in the sense that there is a repre-
sentative of f̂ ∈ L∞(Rn) which is continuous).

Hint: Write the integral of f̂(ξ)− f̂(η) and use dominated convergence theorem.

Let us pretend we want to solve for a given f ∈ Lp(Rn) the Laplace equation
∆u(x) = f(x) x ∈ Rn,

where ∆ = ∑n
i=1 ∂i∂i. Taking the Fourier transform we find that û should satisfy

c|ξ|2û(ξ) = f̂(ξ),
that is u should be such that

û := 1
c
|ξ|−2f̂(ξ)

That is we have the almos explicit representation

u = F−1
(1
c
|ξ|−2f̂(ξ)

)
.

We can simplify this representation and obtain the Newton potential or Riesz potential

Theorem 17.33 (Fourier transform of |x|α−n). Let f ∈ C∞
c (Rn) and α ∈ (0, n). Then

cαF−1
(
|ξ|−αf̂(ξ)

)
= cn−α

∫
Rn
|x− y|α−nf(y)dy.

Here cα := π−α/2Γ(α/2), where Γ denotes the Γ-function,

Γ(α) =
∫ ∞

0
µα−1e−µdx.

Proof. Since f ∈ C∞
c (Rn), f̂(ξ) ∈ S (Rn). The map ξ 7→ |ξ|−α ∈ L1

loc(Rn) if α < n

(exercise! Polar coordinates), and moreover since α > 0 the map |ξ|−αf̂(ξ) is a tem-
pered distribution which is also integrable in Rn. Thus F(|ξ|−αf̂(ξ)) is well-defined (as a
distribution and a function).

We first claim that for any ξ ̸= 0

cα|ξ|−α =
∫ ∞

0
e−π|ξ|2λλ

α
2 −1dλ.
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Indeed we have setting µ := π|ξ|2λ∫ ∞

0
e−π|ξ|2λλ

α
2 −1dλ

=
(
π|ξ|2

)1− α
2
∫ ∞

0
e−π|ξ|2λ

(
π|ξ|2λ

)α
2 −1

dλ

=
(
π|ξ|2

)1− α
2
∫ ∞

0
e−µµ

α
2 −1 dµ

π|ξ|2

=
(
π|ξ|2

)− α
2
∫ ∞

0
e−µµ

α
2 −1dµ

=
(
π|ξ|2

)− α
2 Γ(α/2)

=cα|ξ|−α.

Then we have by Fubini’s theorem (applicable since we are integrable)

cαF−1
(
|ξ|−αf̂(ξ)

)
(x) =

∫
Rn

∫ ∞

0
e−π|ξ|2λλ

α
2 −1dλ e2πi⟨ξ,x⟩ f̂(ξ) dξ

=
∫ ∞

0
λ

α
2 −1

(∫
Rn
e2πi⟨ξ,x⟩

(
e−π|ξ|2λf̂(ξ)

))
dξdλ

Observe that the interior integral is the inverse Fourier transform of e−π|·|2λf(·), and the
Fourier transform makes products into convolutions. That is(∫

Rn
e2πi⟨ξ,x⟩

(
e−π|ξ|2λf̂(ξ)

))
dξ

=F−1
(
e−π|·|2λf̂(·)

)
(x)

=F−1
(
e−π|·|2λ

)
∗ F−1f̂︸ ︷︷ ︸

=f

(x)

=F−1
(
e−π|·|2λ

)
∗ f(x)

Now with Example 17.5 and scaling properties of the Fourier transform

F−1
(
e−π|·|2λ

)
(z) = F−1

(
e−π|

√
λ·|2
)

(z) = λ− n
2 e−π| zλ |

2

,

so we arrive at

cαF−1
(
|ξ|−αf̂(ξ)

)
(x) =

∫ ∞

0
λ

α
2 −1

∫
Rn
λ− n

2 e−π|x−y
λ |

2

f(y)dy dλ

=
∫
Rn

(∫ ∞

0
λ

α
2 −1λ− n

2 e−π|x−y
λ |

2

dλ
)
f(y)dy

As above we have (∫ ∞

0
λ

α
2 −1λ− n

2 e−π|x−y
λ |

2

dλ
)

= cn−α|x− y|α−n,

and we can conclude. □
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Remark 17.34. • The formula of Theorem 17.33 holds also for f ∈ Lp(Rn), cf.
[Lieb and Loss, 2001, Corollary 5.10]
• One can indeed compute that if n ≥ 3 and f ∈ Lp(Rn), p ∈ (1,∞),

u(x) :=
∫
Rn
|x− y|2−nf(y)dy.

then u is a distribution and there exists a constant C (explicitely computable) such
that

∆u = Cf in D′(Rn).

17.5. Real Fourier transform. The cis-formula says

e2πi⟨ξ,x⟩ = cos(2π⟨ξ, x⟩) + i sin(2π⟨ξ, x⟩)

So we could have written (but won’t)

ℜFf(ξ) =
∫
Rn

cos(2π⟨ξ, x⟩)f(x) dx

and
imFf(ξ) =

∫
Rn

sin(2π⟨ξ, x⟩)f(x) dx

17.6. Fourier transform for periodic functions. The Fourier transform maps L2(Rn)
into L2(Rn), and this makes us feel that F maps L2(Rn) into itself. But this is not really
the case, as the Heisenberg uncertainty principle illustrates: the domain L2(Rn) (Rn is the
geometric space) is different from the target L2(Rn) (the phase space).

This becomes more visible if one considers Fourier transforms on periodic functions.

Definition 17.35 (periodic functions). A function f ∈ C∞
per([0, 1]n) is a function f ∈

C∞(Rn) with f(x+ k) = f(x) for any k = (k1, . . . , kn) ∈ Zn.

The torus Tn := Rn/ ∼ where x ∼ y iff x = y + k for some k ∈ Zn. In other words,
Tn = [0, 1)n.

Any function f ∈ Lp(Tn) can be extended to a periodic function on Rn (remember we only
need to define it a.e.)

f̃(x) := f(x− k) where k ∈ Zn such that x− k ∈ Tn

Observe that f̃ probably is not in Lp(Rn) since it does not decay at infinity.

Exercise 17.36. Let p ∈ [1,∞) and f ∈ Lp([0, 1]). Show that for any ε > 0 there exists
fε ∈ C0

per([0, 1]) such that ∥f − fε∥Lp(Rn) < ε.

Hint: The periodicity is the main issue, show that we can actually choose fε ∈ C∞
c ((0, 1)).
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Definition 17.37. The Fourier transform for periodic function f ∈ C∞
per([0, 1]n) is given

by
Ff(k) := (Ln([0, 1]n))−1

∫
[0,1]n

f(x)e−2πi⟨x,k⟩dx k ∈ Zn.

That is, F maps f ∈ C∞
per([0, 1]n) into a sequence (Ff(k))k∈Zn .

We will see: instead of mapping from L2(Rn) to L2(Rn), for periodic functions F maps
from L2(Rn)per to ℓ2(Zn).

Exercise 17.38. • ∥Ff∥ℓ∞(Zn) ≤ (Ln([0, 1]n))−1 ∥f∥L1(Tn).
• F (∂xαf) = 2πikαf̂(k)
• Show that for ℓ, k ∈ Zn we have

(Ln([0, 1]n))−1
∫

[0,1]n
e−2πi⟨x,k⟩e2πi⟨x,ℓ⟩dx =

1 ℓ = k

0 ℓ ̸= k.

Definition 17.39. • A trigonometric polynomial P of degree≤ N on Tn is a function
of the form

P (x) :=
∑

k∈{−N,...,0,...,N}n

cke
2πi⟨k,x⟩

where ck ∈ C are coefficients.
• The N-th Fourier polynomial of a map f ∈ L1(Tn) is given by

SNf(x) :=
∑

k∈{−N,...,0,...,N}n

Ff(k)e2πi⟨k,x⟩.

Clearly SNf is a trigonometric polynomial.
• The (formal) Fourier series of a map f ∈ L1(Tn) is given by

Sf(x) := lim
N→∞

SNf(x),

whenever that limit exists.
• More generally, the inverse Fourier transform for a sequence (ck)k∈Zn is given by

F−1((ck)k∈Z)(x) :=
∑

k∈Zn

cke
2πi⟨x,k⟩ := lim

N→∞

∑
k∈{−N,...,0,...,N}n

Fcke
2πi⟨k,x⟩,

again whenever this series converges.

Exercise 17.40. Use the complex Stone-Weierstrass theorem (see Advanced Calculus), to
show that for any f ∈ C0

per([0, 1]) and any ε > 0 there exists a trigonometric polynomial
Pε (of some finite order) such that

∥f − P∥L∞([0,1]) < ε.

Definition 17.41 (The nuisance factor). Define
ω := Ln(Tn)−1.
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We want to show that F−1Ff = f . For this we first observe that SN [f ] is the projection
of f onto the space of trigonometric polynomials of degree ≤ N .

Theorem 17.42. Let f ∈ L2(Tn) and N ∈ N. Then we have for any trigonometric
polynomial P of degree ≤ N

(1) ω∥f − SN [f ]∥2
L2(Tn) ≤ ω∥f − P∥2

L2(Tn), and equality holds if and only if P = SNf .
(2) ω∥f − SN [f ]∥2

L2(Tn) = ω∥f∥2
L2(Tn) −

∑
k∈{−N,...,0,...,N}n |f̂(k)|2.

(3) In particular we have ∥SN [f ]∥L2(Tn) ≤ C∥f∥L2(Tn) for some uniform constant C
(depending on n, but not on N or f).

Proof. For simplicity let us denote
ek := e2πi⟨k,x⟩

Denote by
⟨f, g⟩ := ω

∫
Tn
f(x)g(x)dx

the scalar product. Then we have, Exercise 17.38,
⟨ek, eℓ⟩ = δkℓ.

Let P be a generic trigonometric polynomial of degree at most N , i.e.
P (x) =

∑
k∈{−N,...,0,...,N}n

ckek.

Then we have
⟨f − P, f − P ⟩ =⟨f, f⟩+ ⟨P, P ⟩ − ⟨f, P ⟩ − ⟨f, P ⟩

=ω∥f∥2
L2 +

∑
k∈{−N,...,0,...,N}n

|ck|2 −
∑

k∈{−N,...,0,...,N}n

(
f̂(k)ck − f̂(k)ck

)

=ω∥f∥2
L2 +

∑
k∈{−N,...,0,...,N}n

|f̂(k)− ck|2

︸ ︷︷ ︸
≥0

−
∣∣∣f̂(k)

∣∣∣2

In particular we have (applying the above for P = SN [f ]),

ω∥f − SNf∥2
L2 = ω∥f∥2

L2 −
∑

k∈{−N,...,0,...,N}n

∣∣∣f̂(k)
∣∣∣2 .

Thus for any P ,
ω∥f − P∥2

L2 = ω∥f − SNf∥2
L2 +

∑
k∈{−N,...,0,...,N}n

|f̂(k)− ck|2

︸ ︷︷ ︸
≥0

≥ ∥f − SNf∥2
L2

and equality holds if and only if P = SNf .

(3) follows from (1) via triangular inequality taking P ≡ 0. □
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Exercise 17.43 (Bessel). Prove this corollary to Theorem 17.42. Let f ∈ L2(Tn) then∑
k∈Zn

|f̂(k)|2 ≤ ω∥f∥2
L2(Tn).

In particular the left-hand side series is absolutely convergent, i.e. F maps L2(Tn) into
ℓ2(Zn).

One can then prove the following version of Parseval/Plancherell

Theorem 17.44 (Parseval). If f ∈ L2(Tn) then

(1) limN→∞ ∥f − SN [f ]∥L2 = 0
(2) ω∥f∥2

L2(Tn) = ∥Ff∥2
ℓ2(Zn)

(3) More generally
⟨f, g⟩L2(Tn) = ⟨Ff,Fg⟩ℓ2(Zn),

that is
ω
∫
Tn
fg =

∑
k∈Zn

f̂(k) ĝ(k).

Proof. (1) First assume that f ∈ C0
per([0, 1]) and let ε > 0. By Exercise 17.40 there

exists a trigonometric polynomial P of some degree N such that
∥f − P∥L2(Tn) ≤ Ln(Tn) 1

2∥f − P∥L∞(Tn) ≤ Ln(Tn) 1
2 ε.

By Theorem 17.42 we then have
∥f − SN [f ]∥L2(Tn) ≤ ∥f − P∥L2(Tn) ≤ Ln(Tn) 1

2 ε.

Moreover, for any k ≥ N we can apply again Theorem 17.42 to obtain
∥f − Sk[f ]∥L2(Tn) ≤ ∥f − SN [f ]∥L2(Tn) ≤ Ln(Tn) 1

2 ε.

This implies the claim under the assumption that f ∈ C0
per([0, 1]).

If f ∈ L2([0, 1]) take fε from Exercise 17.36 such that
∥f − fε∥L2([0,1]) < ε.

By Theorem 17.42(3) and linearity of SN , we have for any k ∈ N
∥f − fε∥L2([0,1]) + ∥Skf − Skfε∥L2([0,1]) ≤ Cε.

So pick N for fε as above, then for any k ≥ N we have
∥f − Sk[f ]∥L2(Tn) ≤ ∥fε − Sk[fε]∥L2(Tn) + Cε ≤ C̃ε.

This proves (1).
(2) follows from (3)
(3) Exercise 17.45

□

Exercise 17.45. Prove Theorem 17.44(3)
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17.7. Application: Basel Problem.

Exercise 17.46 (Solution of the Basel problem). ∑∞
k=1

1
k2 = π2

6

hint: Set

f(x) :=
x x ∈ [0, 1

2 ]
x− 1 x ∈ (1

2 , 1]
and use Parseval’s theorem.

17.8. Application: Isoperimetric Problem - Hurwitz proof in 2D. The isoperi-
metric problem also called Dido’s problem41 is the following question: given a fixed length,
what is the shape of a set of maximal area whose boundary has said length. It’s solution
is the isoperimetric inequality: for any open set Ω with smooth boundary ∂Ω,

nLn(Ω)
n

n−1Ln(B(0, 1)) 1
n ≤ Hn−1(∂Ω),

with equality if and only if Ω is a ball.

In two dimensions there is a beautiful proof due to Hurwitz (which sadly does not work in
higher dimensions). See also Section 15.2

Two-dimensional proof. So let us consider a set Ω ⊂ R2 = C. Denote by γ : [0, 1] → R2,
γ(0) = γ(1), the boundary curve parametrizing ∂Ω.

H1(∂Ω) = Length(γ) =
∫ 1

0
|γ′(t)|dt.

By rescaling we can assume w.l.o.g. that Length(γ) = 1. By a reparametrization we may
also assume that |γ′(x)| = 1 for all x (this is called arclength parametrization).

Then we need to show
L2(Ω) ≤ 1

4π .

We have by Plancherel’s theorem, Theorem 17.44, and then Exercise 17.38,

ω =ω
∫ 1

0
|γ′(t)|2︸ ︷︷ ︸

=1

dt = ω
∫ 1

0
|γ′

1(t)|2 + |γ′
2(t)|2dt

=
∑
k∈Z
|γ̂′

1(k)|2 + |γ̂′
2(k)|2

=4π2 ∑
k∈Z
|k|2

(
|γ̂1(k)|2 + |γ̂2(k)|2

)
We record this for later
(17.7)

∑
k∈Z
|k|2

(
|γ̂1(k)|2 + |γ̂2(k)|2

)
= ω

4π2

41named after Queen Dido, founder of Carthage, who had to optimize the area of her city that she could
surround with a Bull’s Hide (which she had cut into strips)
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On the other hand we have by the integration by parts formula

L2(Ω) =
∫

Ω
1dx =

∫
Ω
∂1x

1dx =
∫

∂Ω
ν1(t)x1(t)dH1(t)

By the area formula (γ : (0, 1)→ ∂Ω is a diffeomorphism) we have∫
∂Ω
ν1(t)x1(t)dH1(t)

=
∫ 1

0
ν1(γ(t))γ1(t)dt

Now observe that ν is the unit normal, so it is orthogonal to γ′(t) (which has norm one)
so ν(γ(t)) = (γ′

2(t),−γ′
1(t)) (assuming that γ is correctly parametrized, otherwise we use

γ(−t) to ensure the unit normal is outwards facing).

Thus,
ωL2(Ω) = ω

∫ 1

0
ν1(t)ν ′

2(t) dt = ⟨ν1, ν
′
2⟩L2(T).

Using again Plancherell we have

ωL2(Ω) =
∑
k∈Z

ν̂1(k)ν̂ ′
2(k).

Since A is a real number, we can take the real part and have again with Exercise 17.38

ωL2(Ω) = π
∑
k∈Z

k2ℜ
(
ν̂1(k)ν̂2(k)

)
Using this and (17.7) we have

ω

(
1

4π2 −
L2(Ω)
π

)
=
∑
k∈Z
|k|2

(
|γ̂1(k)|2 + |γ̂2(k)|2

)
− k2ℜ

(
ν̂1(k)ν̂2(k)

)
=
∑
k∈Z

(
|k|2 − |k|

) (
|γ̂1(k)|2 + |γ̂2(k)|2

)
+
∑
k∈Z
|k|
(
|γ̂1(k)|2 + |γ̂2(k)|2 − sgn(k)2ℜ

(
ν̂1(k)ν̂2(k)

) )
.

Using that |a± b|2 = |a|2 + |b|2 ± 2ℜ(ab) we conclude that

ω

(
1

4π2 −
L2(Ω)
π

)
=
∑
k∈Z

(
|k|2 − |k|

) (
|γ̂1(k)|2 + |γ̂2(k)|2

)
+
∑
k∈Z
|k| |γ̂1(k)− sgn(k)iγ̂2(k)|2

≥0,
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since |k|2 ≥ |k| for all k ∈ Z.

We readily conclude that (
1

4π2 −
L2(Ω)
π

)
≥ 0,

i.e.
1

4π ≥ L
2(Ω).

Equality holds if and only if both

(17.8) 0 =
∑
k∈Z

(
|k|2 − |k|

) (
|γ̂1(k)|2 + |γ̂2(k)|2

)
and
(17.9) 0 =

∑
k∈Z
|k| |γ̂1(k)− sgn(k)iγ̂2(k)|2

(17.8) implies (since |k|2 > |k| for |k| > 1), that
γ̂1(k) = γ̂2(k) = 0 ∀k ∈ Z\{0,−1, 1}.

Also, from (17.9) we conclude in particular
γ̂1(1) = iγ̂2(1)

γ̂1(−1) = −iγ̂2(−1)
which leads to
(17.10) γ̂1(±1)2 + γ̂2(±1)2 = 0.

But since F−1Fγ = γ we have
γi(t) = γ̂i(−1)e−2πit + γ̂i(0) + γ̂i(1)e2πit, i = −1, 0, 1.

Thus, for p := (γ̂1(0), γ̂2(0)) (observe the Fourier transform at 0 is a real number!) we have
|γ(t)− p|2

= (γ1(t)− γ̂1(0))2 + (γ2(t)− γ̂2(0))2

=
2∑

i=1

(
γ̂i(−1)e−2πit + γ̂i(1)e2πit

)2

=
(
(γ̂1(−1))2 + (γ̂2(−1))2

)
e−4πit +

(
(γ̂1(1))2 + (γ̂2(1))2

)
e−4πit

+ 2γ̂1(−1)γ̂1(1) + 2γ̂2(−1)γ̂2(−1).

By (17.10) we conclude that
|γ(t)− p|2 = +2γ̂1(−1)γ̂1(1) + 2γ̂2(−1)γ̂2(−1) ≡ const

That is γ parametrizes a circle. □
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17.9. Discrete Fourier Transform and periodicity. More generally one can define
Fourier tranform on locally compact Abelian groups G, and F maps G into its Pontryagin
dual group Ĝ.

If G = Rn then Ĝ = Rn; if G = Tn then Ĝ = Zn.

For example we can define the Fourier transform on X = {0, . . . , K − 1} where K ∈ N.

Let f : X → C then for k ∈ X define (careful: the sign convention is not the same
everywhere!)

f̂(k) := 1√
K

K−1∑
ℓ=0

f(ℓ)e−2πi ℓ k
K

The discrete Fourier transform (there is an analogue version for the periodic Fourier trans-
form on L2(T)) is good in detecting periodicity. Namely assume that f is p-periodic, i.e.
f(x) = f(y) if x ≡ y mod p. Here we assume that µ := K

p
∈ N.

Theorem 17.47. Assume that f is p-periodic as above then f̂(k) ̸= 0 implies that k is an
integer multiple of K

p
.

For the proof of Theorem 17.47 we need
Exercise 17.48. Show the following

(1) Let x ∈ R\Z, N ∈ N. Then
N−1∑
ℓ=0

e2πiℓx = (i sin(π(N − 1)x) + cos(π(N − 1)x)) sin(Nπx)
sin(πx)

Hint: Write the sum as a geometric sum, ∑N−1
ℓ=0

(
e2πix

)k
.

(2) In particular
N−1∑
ℓ=0

e2πiℓx = 0

whenever x ∈ R\Z but Nx ∈ Z.

Proof of Theorem 17.47. Using periodicity we have

f̂(k) = 1√
K

K−1∑
ℓ=0

f(ℓ)e−2πi ℓ k
K

= 1√
K

p−1∑
ℓ=0

f(ℓ)
K
p∑

j=0
e−2πi (ℓ+jp) k

K

= 1√
K

p−1∑
ℓ=0

f(ℓ)e−2πi ℓ k
K

K
p∑

j=0
e−2πi (jp) k

K
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Set L := K
p

and let k = ΛL+ µ for Λ ∈ Z and 0 ≤ µ < L. Since e−2πiΛj = 1 we have
K
p∑

j=0
e−2πi (jp) k

K =
L∑

j=0
e−2πi j k

L

=
L∑

j=0
e−2πi j µ

L

We see from Exercise 17.48 that whenever µ > 0 the above sum is zero. That is, whenever
k is not an integer multiple of L = K

p
then f̂(k) = 0. □

Even with noise the Fourier transform is still good in guessing periodicity. This is used in
cryptography, because the periodicity can be used to compute (or rather: guess) the prime
factorization of an integer. Shor’s algorithm, [Shor, 1997], is a version of this proposed for
quantum computers, which supposedly can compute the (Quantum-)-Fourier transform
extremely efficient, and thus break most of prime-number based cryptography systems.

17.10. Further reading on applications. [Stein and Shakarchi, 2003, Chapter 4]

17.11. Sobolev spaces via Fourier transform. Without going into details, the Fourier
transform is also very useful to obtain a definition of Sobolev spaces on Rn (or a periodic
Torus):

Recall that
F(∂αf)(ξ) = ciξαF(f)(ξ).

Thus,
n∑

α=1
F(∂αf)(ξ)F(∂αf)(ξ) = ci|ξ|2|F(f)(ξ)|2.

So, by Plancherel/Parseval Theorem 17.11 we have
∥f∥L2(Rn) + ∥Df∥L2(Rn) = ∥Ff∥L2(Rn) + C∥|ξ|Ff(ξ)∥L2(Rn).

This holds at least if f ∈ S (Rn). Indeed, using approximation by C∞
c -functions we have

the following (cf [Evans, 2010, p.297])

Theorem 17.49. Let f ∈ L2(Rn) then the following are equivalent for any k ∈ N.

(1) f ∈ W k,2(Rn)
(2) (1 + |ξ|k)Ff(ξ) ∈ L2(Rd).
(3) (1 + |ξ|2) k

2Ff(ξ) ∈ L2(Rd).

In that case we have
∥f∥W k,2(Rn) ≈ ∥(1 + |ξ|2) k

2Ff∥L2(Rn) ≈ ∥(1 + |ξ|k)Ff∥L2(Rn)
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We could be curious wether this holds for Lp(Rn), p ∈ (1,∞). But observe that f ∈ Lp(Rn)
is not the same as Ff ∈ Lp′(Rn), we only have an embedding.

Instead let us have a look at the following reformulation of the above theorem.

Theorem 17.50. Let f ∈ L2(Rn) then the following are equivalent for any k ∈ N.

(1) f ∈ W k,2(Rn)
(2) F−1

(
(1 + |ξ|k)Ff

)
∈ L2(Rd).

(3) F−1
(
(1 + |ξ|2) k

2Ff
)
∈ L2(Rd).

In that case we have
∥f∥W k,2(Rn) ≈ ∥F−1

(
(1 + |ξ|2) k

2Ff
)
∥L2(Rn) ≈ ∥F−1

(
(1 + |ξ|k)Ff

)
∥L2(Rn)

This version of the definition is indeed extendable to p ∈ (1,∞). Namely we have

Theorem 17.51. Let p ∈ (1,∞). Let f ∈ Lp(Rn) then the following are equivalent for
any k ∈ N.

(1) f ∈ W k,p(Rn)
(2) F−1

(
(1 + |ξ|k)Ff

)
∈ Lp(Rd).

(3) F−1
(
(1 + |ξ|2) k

2Ff
)
∈ Lp(Rd).

In that case we have
∥f∥W k,p(Rn) ≈ ∥F−1

(
(1 + |ξ|2) k

2Ff
)
∥Lp(Rn) ≈ ∥F−1

(
(1 + |ξ|k)Ff

)
∥Lp(Rn)

If we can do that, then why not do this for k ∈ [0,∞) (instead of only k ∈ N?)

Definition 17.52 (Bessel potential spaces). Let p ∈ (1,∞), s ∈ [0,∞). We say f ∈
Lp(Rn) belongs to the Bessel potential space or (one of the many) fractional Sobolev spaces
Hs,p(Rn), iff

F−1
(
(1 + |ξ|2) s

2Ff
)
∈ Lp(Rd)

and we set
∥f∥Hs,p(Rn) := ∥F−1

(
(1 + |ξ|2) s

2Ff
)
∥Lp(Rn).

Equivalently we have

Theorem 17.53. f ∈ Hs,p(Rn) if and only if f ∈ Lp(Rn) and the fractional Laplacian

(−∆) s
2f := F−1 (|ξ|sFf) ∈ Lp(Rn).

We then have
∥f∥Hs,p(Rn) ≈ ∥f∥Lp(Rn) + ∥(−∆)

f
2 ∥Lp(Rn).



ANALYSIS I & II & III VERSION: December 5, 2022 297

In general the above theorem is not obvious at all, since we cannot take absolute values
inside the Fourier transform. However for p = 2 we have Plancherel’s theorem!
Exercise 17.54. Show Theorem 17.53 for p = 2.

The notion fractional Laplacian is justified by the following
Exercise 17.55. Show that for f ∈ S (Rn) and s = 2 we have

(−∆) s
2f = c(−∆)f,

where c is some constant and
−∆ = ∂11 + ∂22 + . . .+ ∂nn

is the Laplacian.

Observe that it is quite unclear how to define Hs,p(Ω) – and indeed there are different
options, all with advantages or disadvantages. The most common one (if ∂Ω is smooth at
least) is by extension.

Definition 17.56. We say that f ∈ Hs,p(Ω) iff there exist F ∈ Hs,p(Rn) such that F
∣∣∣∣
Ω

= f .
We sat

∥f∥Hs,p(Ω) := inf
F
∥F∥Hs,p(Rn)

where the infimum is taken over all F such that F
∣∣∣∣
Ω

= f .

One might think another option would be to write ∥f∥Lp(Ω) + ∥(−∆) s
2f∥Lp(Ω) – but what

is (−∆) s
2f if f is defined only in Ω?

For completeness let us mention another fractional Sobolev spcae, the Gagliardo-Slobodeckij
(or sometimes: Besov)-space.
Definition 17.57. Let s ∈ (0, 1) and p ∈ (1,∞), Ω ⊂ Rn. Then f ∈ W s,p(Ω) iff f ∈ Lp(Ω)
and

[f ]W s,p(Ω) :=
(∫

Ω

∫
Ω

|f(x)− f(y)|p
|x− y|n+sp

dx dy

) 1
p

<∞.

We then set
∥f∥W s,p(Ω) := ∥f∥Lp(Ω) + [f ]W s,p(Ω).

One can show that W s,2 (Rn) = Hs,2(Rn), but in general W s,p ̸= Hs,p.

Can we define f ∈ W s,p(Rn) also via the Fouuier transform? Yes we can but it gets crazy
– it leads to the notion of Besov-spaces and Triebel-Lizorkin spaces.

Let f ∈ S (Rn), and take any η ∈ C∞
c (B(0, 4)), η ≡ 1 in B(0, 1) and set

p(x) := η(2x)− η(x),
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and
pj(x) := p(2jx).

We then set the Littlewood-Paley projection
∆jf := F−1(pj(ξ)Ff).

Essentially ∆j cuts off f at the frequency |ξ| ≈ 2j.

Then we define

[f ]Ḟ s,p
q

:= ∥
∑

j∈Z
2jsq|∆jf |q

 1
q

∥Lp(Rn)

then f belongs to the Triebel space F s,p
q if f ∈ Lp(Rn) and [f ]Ḟ s,p

q
< ∞. And we can also

set

[f ]Ḃs,p
q

:=
∑

j∈Z
2jsq∥∆jf∥q

Lp(Rn)

 1
q

.

Then f belongs to the Besov space Bs,p
q if f ∈ Lp(Rn) and [f ]Bs,p

q
<∞.

We then have
[f ]F s,p

p
= [f ]Bs,p

p
≈ [f ]W s,p(Rn) f ∈ S (Rn)

and (this is called Littlewood-Paley theorem):
[f ]F s,p

2
= ∥(−∆) s

2f∥Lp(Rn) f ∈ S (Rn).

18. Topological Fixed Point Theorems

We first recall the Banach Fixed Point theorem
Theorem 18.1. Let X be a complete metric space and suppose T : X → X is a contrac-
tion, i.e. there exists λ ∈ [0, 1) such that

d(T (x), T (y)) ≤ λd(x, y) ∀x, y ∈ X.
Then T has a unique fixed point, i.e. there exists exactly one x̄ ∈ X such that T x̄ = x̄.

Moreover, for any x ∈ X,
x̄ = lim

n→∞
T n(x),

where T n = T ◦ T ◦ . . . ◦ T︸ ︷︷ ︸
n times

: X → X.

Banach Fixed Point theorem is very nice and useful, but the notion of contraction is a
strong assumptions. In some situations where Banach Fixed Point theorems do not work
(as we shall see below) topological fixed point theorems may become applicable.

Recall first the (finite-dimensional!) Brouwer Fixed point theorem, Theorem 14.2. We
stated it on unit ball, but it can be extended to any compact convex set (which is
nonempty).
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Theorem 18.2 (Brouwer Fixed Point). Let K ⊂ Rn be a nonempty compact convex set.
Then any f ∈ C0(K,K) has a fixed point, i.e. there exists x ∈ K such that f(x) = x.

Lemma 18.3. Every compact convex set K ⊂ Rn that consists of at least two points is
homeomorphic to a unit ball in Rℓ for some ℓ ∈ {0, . . . , n}. That is there exists a bijective
τ : K → B1(0) ⊂ Rℓ such that τ and τ−1 are both continuous.

Proof. Assume first that K has nonempty interior, i.e. there exists some x0 ∈ K and r > 0
such that B(x0, r) > 0 then we can w.l.o.g. assume x0 = 0 and set ρ to be the Minkowski
functional, see Proof of Theorem 10.21, i.e.

ρ(x) := inf
{
t > 0 : 1

t
x ∈ K

}
.

Then ρ(x) < ∞ since for each x ∈ Rn we have 1
2r

x
|x| ∈ B(0, r) ⊂ K. Since K is bounded,

we have ρ(x) > 0 for all x ∈ Rn \ {0} and ρ(0) = 0.

On the other hand (cf. again proof of Theorem 10.21) we have
K = {x ∈ Rn : ρ(x) ≤ 1},

where we use convexity and compactness of K. We also have (yet again see Theorem 10.21)
ρ(λx) = λρ(x) and ρ(x+ y) ≤ ρ(x) + ρ(y).

We then set

τ(x) :=
x

ρ(x)
|x| x ̸= 0

0 x = 0
We then have

K = {x : ρ(x) ≤ 1} = {x : | x
|x|
ρ(x)| ≤ 1} = {x : |τ(x)| ≤ 1}

That is ρ : K → B(0, 1) is surjective. Also, τ : K → B(0, 1). ρ is injective: indeed assume
τ(x) = τ(y)

Clearly τ(x) = τ(y) = 0 if and only if x = y = 0 so we may assume x, y ̸= 0. Then
|τ(x)| = |τ(y)| so ρ(x) = ρ(y). Thus τ(x) = τ(y) implies x

|x| = y
|y| that is x = λy where

λ > 0. But then ρ(x) = λρ(y) which implies λ = 1 and thus x = y.

So τ : K → B(0, 1) is bijective.

As for continuity let x ∈ K. First assume x = 0 then τ(x) = 0. Recall that we know that
B(0, r) ⊂ K so if 0 < |y| < r

2 we have |τ(y)| = 2r|y|ρ(y/(2r|y|)) ≤ 2r|y|. In particular
|τ(y)| ≪ 1 if |y| ≪ 1, so τ is continuous at 0.

Next fix x ̸= 0. Then y 7→ y
|y| is a Lipschitz function for all y ≈ x (since y ̸= 0) and ρ(x)

is Lipschitz by reverse triangular inequality. So y 7→ τ(y) is Lipschitz as a product of two
Lipschitz functions for y ≈ x.
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We have by now shown that τ : K → B(0, 1) is a continuous bijection, it remains to show
that τ−1 : B(0, 1)→ K is continuous. However observe that

τ−1(x) :=
x

|x|
ρ(x) x ̸= 0

0 x = 0
For the same reason as before, τ−1 is continuous: around any x ̸= 0 it is a Lipschitz
function since ρ(x) ̸= 0. And for x = 0 we see that for τ−1(y) = yρ( y

|y|) which since as a
continuous function ρ is bounded on the compact set ∂B(0, 1) we have

|τ−1(y)| ≤ |y| sup
|z|=1

ρ(z)≪ 1 if |y| ≪ 1.

This settles the claim if we assume K has nonempty interior.

However in general K may have no nonempty interior. But then it must be lower dimen-
sional. Without loss of generality we again may assume that 0 ∈ K.

Let

X := span{K} =
{
x ∈ Rn : x =

n∑
i=1

λixi for some (xi)n
i=1 ∈ K and (λi)n

i=1 ⊂ R
}
.

Clearly X is a linear subspace of Rn and K ⊂ X. If dimX = n then there must be n
linear independent xi ∈ K \ {0}, i = 1, . . . , n. But then their convex hull

{x1, . . . , xn}conv := {
n∑

i=1
λixi for any λi ∈ [0, 1] with

n∑
i=1

λi = 1} ⊂ K

contains an open neighborhood of the origin, i.e. K has nonempty interior in Rn.

Thus, if the dimension of X must be strictly less than n (or K has nonempty interior).
Let dimX = ℓ, and consider h : Rn → Rℓ the projection that maps X into Rℓ – this is a
smooth diffeomorphism as a map h : X → Rℓ. In particular h : K → h(K) is smooth, and
h(K) is still convex. If ℓ ≥ 1 then we are sure that h(K) has nonempty interior in Rℓ and
we can conclude.

The only case left is if ℓ = 0, then K consists of only one point which is excluded by
assumption.

□

Exercise 18.4. Prove Theorem 18.2 by combining Lemma 18.3 and the Brouwer Fixed
Point theorem on a ball, Theorem 14.2.

The Brouwer Fixed Point Theorem Theorem 18.2 can be extended to infinite dimensional
spaces. One of these extension is the Schauder Fixed Point Theorem.
Theorem 18.5. Let X be a Banach space and K ⊂ X be compact, convex and nonempty.
Let F : K → K be any continuous mapping (F does not need to be linear!). Then F has
a fixed point, i.e. there exists x ∈ K with F (x) = x.
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Proof. Fix n ∈ N and cover K by finitely many balls B(xk,
1
n
), k = 1, . . . , K(n), and

xk ∈ K. Consider the convex hull of the centers of these balls

Kn := {x1, . . . , xK(n)}conv := {
K(n)∑
i=1

λixi for any λi ∈ [0, 1] with
n∑

i=1
λi = 1} ⊂ K.

Kn is a convex, finite dimensional set – and compact (since it is bounded and closed) –
so we could apply Brouwer Fixed Point Theorem, Theorem 18.2. For this, we need to
somehow restrict F to Kn but make sure that this restriction maps Kn into Kn.

For x ∈ K set

Gn(x) := 1∑K(n)
i=1 dist

(
x , K \B(xi,

1
n
)
) K(n)∑

i=1
dist

(
x , K \B(xi,

1
n

)
)
xi.

Observe that for any x ∈ K at least one of the summands must be nonzero, and the
distance function is Lipschitz continuous – so Gn(x) is a continuous function on K.

Also, if we set for some x ∈ K

λi := 1∑K(n)
j=1 dist

(
x , K \B(xj,

1
n
)
)dist

(
x , K \B(xi ,

1
n

)
)

then ∑i λi = 1, λi ∈ (0, 1), and thus

Gn(x) ∈ Kn ∀x ∈ K.

Moreover we have Gn is not too far away from the identity, indeed for any x ∈ K,

∥Gn(x)− x∥ ≤ 1∑K(n)
i=1 dist

(
x , K \B(xi,

1
n
)
) K(n)∑

i=1
dist

(
x , K \B(xi,

1
n

)
)

︸ ︷︷ ︸
=0 unless ∥xi − x∥ ≤ 1

n

∥xi − x∥

≤
∑K(n)

i=1 dist
(
x , K \B(xi,

1
n
)
)

∑K(n)
i=1 dist

(
x , K \B(xi,

1
n
)
) 1
n

= 1
n
.

(18.1)

So if we set
Fn(x) := Gn(F (x))

Then Fn : K → K is continuous, and since Gn maps K into Kn we have

Fk(x) : Kn → Kn

is continuous. By Brouwer’s Fixed point theorem (since Kn is finite dimensional), Theo-
rem 18.2, we conclude that Fn has at least one fixed point xn ∈ Kn, i.e. Fn(xn) = xn.
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In particular (xn)n∈N ∈ K and up to passing to a subsequence we may assume that xn

converges to some x ∈ K. We then have by continuity of F ,
∥x− F (x)∥ = lim

n→∞
∥xn − F (xn)∥ = lim

n→∞
∥Fn(xn)− F (xn)∥

= lim
n→∞

∥Gn(F (xn))− F (xn)∥
(18.1)
≤ lim

n→∞

1
n

= 0.

Thus F (x) = x and we can conclude. □

We want to slightly weaken the conditions of Theorem 18.5, namely we are going to show

Corollary 18.6. Let X be a Banach space and K ⊂ X be closed, convex and nonempty
set. Let F : K → K be any continuous mapping and assume that F (K) is precompact, i.e.
F (K) is compact. Then F has a fixed point, i.e. there exists x ∈ K with F (x) = x.

We need the following result about convex sets.

Lemma 18.7. Let X be a Banach space and A ⊂ X be precompact, i.e. assume A is
compact. Then the closure of the convex hull of A, Aconv, is compact and convex.

Proof. It is easy to show that Aconv is convex, we focus on compactness.

Fix any ε > 0, then we can cover A by finitely many balls B(xi, ε), i = 1, . . . , N(ε). Then
Aconv ⊂ {x1, . . . , xN(ε)}conv +B(0, ε).

On the other hand, {x1, . . . , xN(ε)}conv is compact (as a finite dimensional closed and
bounded set). So we can cover it by finitely many ballsB(xi, ε), i = N(ε)+1, . . . ,M(ε, x1, . . . , xN(ε)).
That is, for any ε > 0 there exists M = M(ε) such that

Aconv ⊂
M⋃

i=1
B(xi, ε).

In particular, for any ε > 0 there exists M = M(ε) such that

Aconv ⊂
M⋃

i=1
B(xi, 2ε).

This property is called totally bounded and together with the closedness of B := Aconv and
completeness of the space it implies compactness: take any sequence (zi)i∈N ⊂ B = Aconv.
Take ε := 1

2 from the finite covering above there must be some x̄ such that infinitely many
sequence elements lie in B(x̄, 1). We keep the first sequence element of (zi)i and then
disgard all the sequence elements not in B(x̄1, 1). Taking ε = 1

4 we repeat the argument:
infinitely many subsequence elements must belong to some B(x̄2,

1
2)∩K, we keep the first

and second subsequence element, and disgard then all elements not in B(x̄2,
1
2). By this

we obtain a subsqeuence of which for each k ∈ N all but finitely many sequence elements
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lie in some B(x̄k,
1
k
)∩B – implying that the sequence is Cauchy, hence by completeness of

X convergent, hence by closedness of B has a limit z ∈ B. Thus B is compact. □

Proof of Corollary 18.6. Consider
K̃ := F (K)conv

Since K is convex, F (K)conv ⊂ K. Since K is closed we have that K̃ ⊂ K. By Lemma 18.7,
K̃ is compact. Moreover we can restrict F to K̃ and obtain a continuous mapping F

∣∣∣∣
K̃

:
K̃ → K̃ – By Theorem 18.5 F has a fixed point in K̃ ⊂ K. □

A corollary of Corollary 18.6 is the following

Corollary 18.8. Let X be a Banach space and assume let B = B(0, 1) be the open unit
ball of X. Let G : B → X with

• G(∂B) ⊂ B, and
• G(B) is compact.

Then G has a fixed point in B(0, 1), i.e. there exists x with ∥x∥<1 such that G(x) = x.

Proof. We want to apply Corollary 18.6, however G maps into X not B. This can be
mitigated by a projection into B:

Set

F (x) :=
G(x) if ∥G(x)∥ ≤ 1

G(x)
∥G(x)∥ if ∥G(x)∥ > 1.

Then F : B → B is a continuous map. Since G(B) is compact, so is F (B) (continuous
map maps compact sets into compact sets, and the projection into B is continuous!).

So F has a fixed point, i.e. there exists x ∈ B with F (x) = x.

Assume that ∥x∥ = 1. Since by assumption G(∂B) ⊂ B we have ∥G(x)∥ < 1 thus
x = F (x) = G(x) which implies ∥x∥ < 1 – contradiction. So we know that ∥x∥ < 1.

But then ∥F (x)∥ = ∥x∥ < 1 and thus G(x) = F (x) = x. □

From the above we can deduce the the Schaefer’s fixed point theorem also known as the
Leray-Schauder theorem. Its main advantage is that we do not have to identify a convex
domain for F .

Theorem 18.9 (Leray-Schauder). Let X be a Banach space and assume that F : X ×
[0, 1] → X be a continuous and compact mapping, in the sense that for any bounded set
A ⊂ [0, 1]×X we have F (A) ⊂ X is compact (i.e. F (A) is precompact).
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• F (x, 0) ≡ 0 for all x ∈ X, and
• there is a constant M > 0 such that for all

x ∈ Xsuch that there exists µ ∈ [0, 1] with x = F (x, µ)
we have ∥x∥ ≤M .

Then F (·, 1) has a fixed point, i.e. there exists x ∈ X such that F (x, 1) = x.

Leray-Schauder is a homotopy argument from the constant map (every point is a fixed
point).

Proof. Without loss of generality, M = 1
2 , otherwise we apply the argument below to

F̃ (x, µ) := 1
2MF (2Mx, µ).

Indeed, if x ∈ X is a fixed point of F̃ for some µ ∈ [0, 1], i.e. if F̃ (x, µ) = x, then
2Mx = F (2Mx, µ)

and thus by assumption
2M∥x∥ ≤M, ⇔ ∥x∥ < 1

2 .

And F̃ still satisfies all the previous assumptions.

That is, from now we may assume that

(18.2) if µ ∈ [0, 1] and x = F (x, µ) then∥x∥ < 1
2 .

For ε ∈ (0, 1] we define the map Gε : B(0, 1)→ X by

Gε(x) :=
F ( x

(1−ε) , 1) if ∥x∥ < 1− ε
F
(

x
∥x∥ ,

1−∥x∥
ε

)
if 1− ε ≤ ∥x∥ ≤ 1

Then Gε : B(0, 1)→ X is continuous. Since B(0, 1) is bounded and F is a compact map,
we also have that F (B(0, 1)) is compact. Lastly, if ∥x∥ = 1 then Gε(x) = F (x, 0) = 0.
That is Gε(∂B(0, 1)) = {0} ⊂ B(0, 1)42.

We can apply Corollary 18.8 and find that for each ε ∈ (0, 1] there must be some xε with
∥xε∥ < 1 with

Gε(xε) = xε.

Apply this result to ε = 1
k
, then we find xk, ∥xk∥ < 1, with

G 1
k
(xk) = xk k ∈ N

42Here we could have relaxed the assumption F (x, 0) ≡ 0 a bit in the statement of the theorem
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We set

µk :=
1 if ∥xk∥ < 1− 1

k

k(1− ∥xk∥) if 1− 1
k
≤ ∥xk∥ ≤ 1

We then have

(18.3) xk =
F ( xk

(1− 1
k

) , µk) if ∥xk∥ < 1− 1
k

F
(

xk

∥xk∥ , µk

)
if 1− 1

k
≤ ∥xk∥ ≤ 1

In particular xk ⊂ F (B(0, 1), [0, 1]), so since F is a compact operator, we may choose a
subsequence k →∞ (not relabeled) such that xk

k→∞−−−→ x̄ in B(0, 1) ⊂ X. We may choose
a further subsequence (again not relabeled) so that µk

k→∞−−−→ µ ∈ [0, 1].

We claim that µ = 1. Indeed, if this is not the case and µ < 1 this must mean that for all
but finitely many k we have µk < 1 and thus ∥xk∥ > 1 − 1

k
, so when passing to the limit

we have ∥x̄∥ = 1 and

x̄ = lim
k→∞

xk = lim
k→∞

F

(
xk

∥xk∥
, µk

)
= F (x̄, µ)

But this is a contradiction to (18.2). So indeed µ = 1.

Next we pass to the limit in the (18.3) and we have

x̄ = F (x̄, 1) or x̄ = F ( x̄

∥x∥
, 1)

If ∥x̄∥ = 1 the two options coincide, however this cannot happen do to (18.2).

So we have ∥x̄∥ < 1. Then we have again for all but finitely many k that ∥xk∥ < 1− 1
k
, so

xk = F ( xk

(1− 1
k
) , µk)

and passing to the limit we have
x̄ = F (x̄, 1)

That is x̄ is the fixed point we were looking for.

We can conclude. □

Leray-Schauder is also often written in the following way:
Corollary 18.10 (Leray-Schauder). Let F : X → X be a continuous and compact mapping
of a Banach space X into itself, such that the set

{x ∈ X : x = µFx for some 0 < µ ≤ 1}
is bounded, i.e. there exists M > 0 such that whenever for some µ ∈ [0, 1] and some x ∈ X
we have x = µFx then

∥x∥X ≤M.

Then F has a fixed point.
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Exercise 18.11. Show that Corollary 18.10 is indeed a consequence of Theorem 18.9.

The main point of Corollary 18.10 is that we can assume we have fixed points for µF ,
show their boundedness (a priori estimates), if we can prove appropriate estimates for
solutions of a non- linear PDE, under the assumption that such solutions exist, then in
fact these solutions do exist”. This is the method of a priori* estimates. [] The advantage
of Schaefer’s theorem over Schauder’s for applications is that we do not have to identify
an explicit convex, compact set.

Observe that we get no uniqueness from Leray-Schauder.

18.1. Fixed point theorems applied in PDE. In PDE, fixed point theorems are often
used to show existence of solutions which are distortions of “easy” PDE. Banach Fixed
Point can deal with small perturbations, Leray Schauder is good for compact distortions.

Example 18.12 (Application of the Banach Fixed Point). Let B be the unit ball in Rn.
Let F : Rn → R be a uniformly Lipschitz map, i.e. assume there exists some Λ > 0 such
that

|F (A)− F (B)| ≤ Λ|A−B| ∀A,B ∈ Rn.

Then there exists an ε0 > 0 (depending on n and Λ) such that for each ε ∈ (−ε0, ε0) there
exists a unique solution u ∈ H1

0 (B) to∆u = g − εF (Du) in B.

u = 0 on ∂B

So the point is that ∆u = g we can easily solve, and ∆u+εF (Du) is “not too far”. Observe
that since F could be nonlinear, it is difficult to obtain a solution variationally or by linear
approximations (F need only be Lipschitz!). Here Banach Fixed Point, Theorem 18.1,
comes into play. The point why our argument works is because F (Du) is lower order (∆
has differential order two, Du is order one).

We need to construct T which is so that if it has a fixed point u than u is the solution we
want.

We define T : H1
0 (Ω)→ H1

0 (Ω) via
∆Tu = g − εF (Du).

I.e. given u ∈ H1
0 (B) solve the equation ∆w = g− εF (Du) (observe the right-hand side is

in L2 so we can easily find a unique solution w ∈ H1
0 (Ω)) and call Tu := w. If it happens

that we find a fixed point u, i.e. Tu = u, then u is indeed the solution we wanted.

Observe that T : H1
0 (Ω)→ H1

0 (Ω) is nonlinear if F is nonlinear.

We need to show that Tu is a contraction: For this we consider the equation for Tu− Tv.
∆(Tu− Tv) = ε (F (Dv)− F (Du))
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We need some estimates, the trick is often to multiply this equation with Tu − Tv and
integrate by parts, i.e. (here we use that Tu− Tv = 0 on ∂Ω)∫

B
∆(Tu− Tv)(Tu− Tv) = −

∫
D(Tu− Tv) ·D(Tu− Tv) = −∥D(Tu− Tv)∥2

L2(B).

On the other hand we have the PDE, so we get

−∥D(Tu− Tv)∥2
L2(B) = ε

∫
B

(F (Dv)− F (Du)) (Tu− Tv).

Thus, by Hölder’s inequality,
∥D(Tu− Tv)∥2

L2(B) ≤ |ε|∥F (Du)− F (Dv)∥L2(B) ∥Tu− Tv∥L2(B).

By Poincaré inequality, Corollary 13.38, (again using the boundary being zero) we then
have

∥Tu− Tv∥2
H1 (B) ≤ C|ε|∥F (Du)− F (Dv)∥L2(B)∥Tu− Tv∥H1 (B).

Dividing both sided by ∥Tu − Tv∥H1(B) (if it is zero there is nothing to show) we obtain
that (here we use the Lipschitz assumption on F )
∥Tu−Tv∥H1(B) ≤ C|ε|∥F (Du)−F (Dv)∥L2(B) ≤ C|ε|Λ∥Du−Dv∥L2(B) ≤ C|ε|Λ∥u−v∥H1(B).

Clearly if |ε| < ε0 and ε0 is so small such that CΛ|ε| < 1
2 we get

∥Tu− Tv∥H1(B) ≤
1
2∥u− v∥H1(B) ∀u, v ∈ H1

0 (B),

thus T is the required contraction and thus it has a unique fixed point.

Applying Banach Fixed Point theorem, Theorem 18.1, is usually preferable to Leray-
Schauder, since it provides automatically uniqueness, and a method of construction (the
fixed point is given by u = limn→∞ T nu). Leray-Schauder doesn’t provide any hint where
the fixed point is, but it works e.g. for non-Lipschitz maps.

Example 18.13 (Leray-Schauder). Leray-Schauder, Corollary 18.10, is very helpful to
solve compact distortions of nice PDE, for which we nevertheless cannot use Banach Fixed
Point theory Theorem 18.1 (which gives uniqueness!).

As an example let us try to find a solution u ∈ H1
0 (B) (B is the unit ball in Rd) to

∆u = g + |Du|θ in B,

where g ∈ L2(B) is a given fixed function and θ ∈ (0, 1).

Again we define the operator Tu via
∆(Tu) = g + |Du|θ.

If u ∈ H1(B) then |Du| ∈ L2(B) so |Du|θ ∈ L 2
θ (B) so the solution u surely belongs to H1.

That is T : H1
0 (B)→ H1

0 (B) is an operator.
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If we try to use Banach Fixed Point theorem, Theorem 18.1, we would need to show
contraction, and consider

∆(Tu− Tv) = |Du|θ − |Dv|θ.
Multiplying with Tu− Tv, we get

∥D(Tu− Tv)∥2
L2(B) =∥

(
|Du|θ − |Dv|θ

)
(Tu− Tv)∥L1(B)

≤∥|Du|θ − |Dv|θ∥
L

2n
n+2
∥Tu− Tv∥

L
2n

n−2

≲∥|Du|θ − |Dv|θ∥
L

2n
n+2
∥D(Tu− Tv)∥L2(B).

So we have shown
∥D(Tu− Tv)∥L2(B) ≲ ∥|Du|θ − |Dv|θ∥

L
2n

n+2
.

We have, Exercise 18.14, ∣∣∣|Du|θ − |Dv|θ∣∣∣ ≲ |Du−Dv|θ,
and thus arrive at (last step is Hölder, since θ 2n

n+2 ≤ 2)

∥D(Tu− Tv)∥L2(B) ≲ ∥Du−Dv∥θ

L
θ 2n

n+2
≲ ∥Du−Dv∥θ

L2(B),

By Poincaré we then have
∥Tu− Tv∥H1(B) ≤ ∥u− v∥θ

H1(B).

So if θ ∈ (0, 1), T : H1
0 (B)→ H1

0 (B) is continuous (but not Lipschitz!), if θ = 1 then T is
indeed Lipschitz, but T is still not a contraction! So it is not clear how we would use the
Banach Fixed Point argument from before.

But now we could check for the assumptions of Leray-Schauder, Corollary 18.10! First we
need that T : H1

0 (B)→ H1
0 (B) is compact.

Let (uk)k∈N ⊂ H1
0 (Ω) be bounded, i.e.

sup
k∈N
∥uk∥H1

0 (Ω) <∞.

We then have
∆Tuk = g + |Duk|θ

Testing this equation with T (uk) we have

∥T (uk)∥2
H1 ≤ ∥DT (uk)∥2

L2(B) ≤ ∥g∥L2(B)∥T (uk)∥L2 + ∥|Duk|θ∥L2(B)∥T (uk)∥L2(B).

By Young’s inequality ab ≤ εa2 + 1
ε
b2 we find for any ε > 0

∥T (uk)∥2
H1 ≤ ∥DT (uk)∥2

L2(B) ≤
C

ε

(
∥g∥2

L2(B) + ∥|Duk|θ∥2
L2(B)

)
+ εC∥T (uk)∥2

H1(B).

Taking ε so that εC < 1
2 We can absorb to the left-hand side

∥T (uk)∥2
H1 ≲ ∥g∥2

L2(B) + ∥|Duk|θ∥2
L2(B)
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Since θ ∈ (0, 1] we conclude that
sup

k
∥T (uk)∥H1 <∞.

Then there exists a weakly convergent subsequence (not relabeled) T (uk) k→∞−−−→ w weakly
in H1

0 (B). We need strong convergence (of a subsequence) in H1
0 (B)! Taking a further

subsequence (again not relabeled) we obtain from Rellich’s theorem, Theorem 13.35, that
T (uk) k→∞−−−→ w strongly in L2(B). As we have seen above, the right-hand side only depends
on the L2-norm of Tuk, so we are going to use that to conclude convergence. We have

∆(Tuk − Tuℓ) = |Duk|θ − |Duℓ|θ

Testing yet again with Tuk − Tuℓ we find
∥D(Tuk − Tuℓ)∥2

L2(B) ≤ ∥|Duk|θ − |Duℓ|θ∥L2(B)︸ ︷︷ ︸
uniformly bounded in k, ℓ

∥Tuk − Tuℓ∥L2(B)︸ ︷︷ ︸
ℓ,k→∞−−−−→0

.

Thus (DTuk)k∈N is a Cauchy sequence and thus convergent, the limit is unique so Tuk

converges strongly to w in H1
0 (B).

That is T is compact.

In order to apply Leray-Schauder, Corollary 18.10, we need to give a priori estimates of
solutions to µTu = u, where µ ∈ [0, 1] and u ∈ H1

0 (B). If µ = 0 there is nothing to show
since then u = 0, so let µ > 0. Then we have

∆Tu = g + |Du|θ

and thus
1
µ

∆u = g + |Du|θ

i.e.
∆u = µg + µ|Du|θ

What are we going to do? We are going to test with u.
∥u∥H1

0 (B) ≲ ∥Du∥2
L2(B) ≤µ∥g∥L2∥u∥L2(B) + µ∥|Du|θ∥L2(B) ∥u∥L2(B)

µ≤1
≲ C(ε)∥g∥2

L2 + ε∥u∥2
L2(B) + ∥Du∥θ

L2θ(B) ∥u∥L2(B)

So we have for small enough ε using that θ ≤ 1,
∥u∥H1

0 (B) ≲C(ε)∥g∥2
L2 + ∥u∥1+θ

H1
0 (B)

And here we need to use that θ < 1, because then we have by Young’s inequality for any
δ > 0

∥u∥1+θ
H1

0 (B) ≤ δ∥u∥2
H1(B) + C(δ).

Thus we have shown
∥u∥H1

0 (B) ≲ C(ε)∥g∥2
L2 + C(δ),
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The right-hand side is clearly independent from µ and gives a uniform bound of solutions
to µTu = u.

We finally can use Leray-Schauder, Corollary 18.10, to conclude there exists some u ∈
H1

0 (B) such that Tu = u, and thus a solution to
∆u = g + |Du|θ

Exercise 18.14. (1) Show that for each θ ∈ (0, 1] there exists a constant C = C(θ) > 0
such that

|aθ − bθ| ≤ C(θ)|a− b|θ ∀a, b ≥ 0.
(2) Find a similar estimate if θ ≥ 1

19. Hilbert spaces

Hilbert spaces are very special spaces, so they deserve some extra attention.

Hilbert spaces are Banach spaces with a scalar product – if the space is not complete but
has a scalar product . More precisely.

Definition 19.1. Let (X, ∗,+) be a linear space, or vector space, (X, ∗,+). A scalar
product or inner product is a map ⟨·, ·⟩ : X → R with the following properties

(1) ⟨x, y⟩ = ⟨y, x⟩ ∀x, y ∈ X
(2) ⟨x, x⟩ ≥ 0 and ⟨x, x⟩ = 0 if and only if x = 0
(3) ⟨λx+ µy, z⟩ = λ⟨x, z⟩+ µ⟨y, z⟩ for all λ, µ ∈ R, x, y, z ∈ X.

A vector space equipped with a scalar product is called a inner product space or pre-Hilbert
space, with the induced norm ∥x∥ :=

√
⟨x, x⟩. If it is complete it is called a Hilbert space.

Recall, Exercise 7.9, a norm ∥ · ∥X can be derived from a scalar product if and only if it
satisfies the parallelogram identity

2∥x∥2 + 2∥y∥2 = ∥x+ y∥2 + ∥x− y∥2 for all x, y ∈ X.
We also recall Cauchy Schwarz inequality which holds whenever we have a scalar product
(and the norm is the induced norm).

⟨x, y⟩ ≤ ∥x∥∥y∥.

Examples for Hilbert spaces are ℓ2, L2, or W k,2.

From Calculus we recall the formula (e.g. in R3)
⟨v, w⟩ = |v||w| cos(θ),

where θ is the angle between v and w. And this is really a feature of the Hilbert spaces,
we can talk (reasonably) about angles – in particular we have orthogonality.
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Definition 19.2. In a (Pre-)Hilbert space H we say
v ⊥ w if ⟨v, w⟩ = 0.

Example 19.3. Two functions f, g ∈ L2(Rn) with supp f ∩ supp g = ∅ are orthogonal in
L2. Indeed,

⟨f, g⟩L2 =
∫
fg = 0.

Exercise 19.4. (1) Consider f ∈ L2(Rn,Rn)
(2) Let u, v ∈ W 1,2(Rn) and set

f := ∇u =
(
∂xu
∂yu

)

g := ∇⊥v ≡
(
−∂yu
∂xu

)
Show that f ⊥ g in L2(R2,R2)

Exercise 19.5. Let H be a Pre-Hilbertspace. Show that if x ⊥ y then
∥x+ y∥2

H = ∥x∥2 + ∥y∥2.

Orthogonality depends on the specific choice of scalar product. Even if two Hilbert-space
norms are equivalent, two vectors being orthogonal with respect to one norm/scalar product
may not be orthogonal with respect to the other.

Exercise 19.6. (Cf. [StackExchange, b])

(1) Let ⟨·, ·⟩ be the usual scalar product for R2-vectors. Define a different scalar product
[·, ·] with two vectors v, w ∈ R2 such that v ⊥ w with respect to ⟨, ⟩, but v ̸⊥ w with
respect to [, ]. Show that the induced norms are equivalent (this is easy!),

(2) Show that if V is equipped with two scalar produts ⟨, ⟩ and [, ]. Assume that we have
⟨v, w⟩ = 0 ⇔ [v, w] = 0 ∀v, w ∈ V.

Show that then there exists λ > 0 such that
⟨v, w⟩ = λ[v, w] ∀v, w ∈ V.

From Calculus we know that we can describe a plane P through the origin in R3 via its
normal vector n, P = n⊥. This construction works also in arbitrary spaces:

Definition 19.7. Let v ∈ H. Set
v⊥ := {w ∈ H : w ⊥ v}.

More generally let Y ⊂ H then its orthogonal complement
Y ⊥ = {v ∈ H : v ⊥ y ∀y ∈ Y }.

(in particular ∅⊥ = H)
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Exercise 19.8. Let U ⊂ V ⊂ H. Show that V ⊥ ⊂ U⊥.
Lemma 19.9. Y ⊥ is closed43 linear subspace of H.

Proof. Let v, w ∈ Y ⊥ and take λ, µ ∈ R. For any y ∈ Y we have v ⊥ y, i.e. ⟨v, y⟩ = 0 and
w ⊥ y, i.e. ⟨w, y⟩ = 0. Thus

⟨λv + µw, y⟩ = λ⟨v, y⟩+ µ⟨w, y⟩ = 0,
and thus λv + µw ⊥ y. This holds for any y ∈ Y , so we have λv + µw ∈ Y ⊥ – i.e. Y ⊥ is a
linear subbspace of H.

The interesting part is that Y ⊥ is closed. This follows from the continuity of the scalar
product. Let vk ∈ Y ⊥ with v = limk→∞ vk. Take any y ∈ Y , then

|⟨v, y⟩| = |⟨v − vk, y⟩+ 0| ≤ ∥v − vk∥∥y∥
k→∞−−−→ 0.

Thus ⟨v, y⟩ = 0, which holds for any y ∈ Y , and thus v ∈ Y ⊥ making Y ⊥ closed. □

Lemma 19.10. If Y = H then Y ⊥ = {0}.

Proof. Assume y ∈ Y ⊥. Since Y is dense in H there must be some sequence Y ∋ yk
k→∞−−−→ y,

and thus
0 y∈Y ⊥

= ⟨yk, y⟩
k→∞−−−→ ⟨y, y⟩ = ∥y∥2.

That is y = 0, and thus Y ⊥ = {0}. We can conclude. □

The opposite of Lemma 19.10 is clearly false. Take Y = {1} ⊂ R then Y ⊥ = 0. However,
if H is Hilbert and Y is a linear space then the converse is true, Proposition 19.12.
Lemma 19.11. Let H be a Hilbert space and let C ⊂ H be a closed convex nonempty set.
Then for each x ∈ H there exists exactly one c̄ ∈ C with

∥x− c̄∥ = dist (x,C) = inf
c̃∈C
∥x− c̃∥.

If C is a linear space then c̄ satisfies
x− c̄ ∈ C⊥.

Proof. Fix x ∈ H. If x ∈ C then we chose c̄ := x which satisfies all the above assumptions.

In the more general case, since d := dist (x,C) is an infimum over a nonempty set there
must be a sequence ci ∈ C such that

∥x− ck∥
k→∞−−−→ d.

We need to show that ci converges (if we already had reflexivity of Hilbert spaces we
could use weak convergence, however that prove is based on this lemma): For this what
essentially amounts to quantifiable strict convexity of the unit disk.

43since we might be in infinite dimensions, linear subspaces might not be closed! Think of C∞
c (Rn) ⊂

L2(Rn) with the L2-norm.
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Consider ck, cℓ for k and ℓ large. We could imagine that either ck ≈ cℓ or the convex
combination 1

2ck + 1
2cℓ should be “even closer”. With the scalar product we can quantify

this:

Consider u, v ∈ C (in our imagination we should think ∥v−x∥ and ∥u−x∥ close to d, but
this is not necessary for the argument):

∥∥∥∥x− v + u

2

∥∥∥∥2
=1

4 ∥(x− v) + (x− u)∥2

=1
4
(
∥x− v∥2 + ∥x− u∥2 + 2⟨x− v, x− u⟩

)
=1

4
(
2∥x− v∥2 + 2∥x− u∥2−∥x− v∥2−∥x− u∥2 + 2⟨x− v, x− u⟩

)
=1

4
(
2∥x− v∥2 + 2∥x− u∥2 − ∥u− v∥2

)
This is a very geometric inequality: if u and v are not very close to each other, then the
convex combination v+u

2 will be closer to x than the worst distance of x to v or u.

In particular we have

1
4∥u− v∥

2 ≤1
2∥x− v∥

2 + 1
2∥x− u∥

2 −
∥∥∥∥x− v + u

2

∥∥∥∥2

Since C is convex, we have that v+u
2 ∈ C and thus

∥∥∥x− v+u
2

∥∥∥ ≥ d. We conclude

(19.1) 1
4∥u− v∥

2 ≤ 1
2
(
∥x− v∥2 − d2

)
+ 1

2
(
∥x− u∥2 − d2

)
∀u, v ∈ C.

If we set u = ck and v = cℓ and use that ∥ck − x∥, ∥cℓ − x∥ k,ℓ→∞−−−−→ d we conclude that
(cℓ)ℓ∈N is a Cauchy sequence, since H is Hilbert and C is closed we find a limit c̄ ∈ C. By
continuity we conclude that

∥c̄− x∥ = dist(x,C).

We now prove uniqueness of c̄ - and it relies on quantifiable strict convexity (19.1): If c̄
and c̃ both satisfy ∥c̄− x∥ = ∥c̃− x∥ = dist(x,C) then by (19.1) we have that c̃ = c̄.

Lastly we need to show that (if C is a linear space!)

x− c̄ ∈ C⊥.

Fix any c ∈ C, then (1− t)c̄+ tc ∈ C for all t ∈ [0, 1]. Set

f(t) := ∥x− (1− t)c̄− tc∥2 − d2
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We then have f(t) ≥ 0 for all t ∈ [0, 1] and f(0) = 0. We then know the sign of the
one-sided derivative

0 ≤ lim
t→0+

f(t)− f(0)
t− 0 = lim

t→0+

∥x− (1− t)c̄− tc∥2 − ∥x− c̄∥2

t

= lim
t→0+

∥x− c̄− t(c− c̄)∥2 − ∥x− c̄∥2

t

= lim
t→0+

∥x− c̄∥2 + t2∥c− c̄∥2 − 2t⟨c− c̄, x− c̄⟩ − ∥x− c̄∥2

t
=2⟨c− c̄, x− c̄⟩

So we have
0 ≤ ⟨c− c̄, x− c̄⟩ ∀c ∈ C.

If C is a linear space, we can take c = c̄+ c̃ and have
0 ≤ ⟨c̃, x− c̄⟩ ∀c̃ ∈ C.

We can also take −c̃ and thus have
0 ≤ ⟨−c̃, x− c̄⟩ ∀c̃ ∈ C.

which implies
0 ≥ ⟨c̃, x− c̄⟩ ∀c̃ ∈ C.

Together we have shown
0 = ⟨c̃, x− c̄⟩ ∀c̃ ∈ C

and thus can conclude. □

Proposition 19.12. H Hilbert and Y linear space. Then Y ⊥ = {0} means Y = H.

Proof. Let z ∈ H. Since Y is closed and convex, by Lemma 19.11 there must be some
y ∈ Y with dist (z, Ȳ ) = ∥z − y∥ – and we have

y − z ∈ Y ⊥.

Since Y ⊥ = {0} we find that y = z and thus z ∈ Ȳ . That is Ȳ = H. □

Lemma 19.13. Let H be a Hilbert space and Y a closed linear space. Then H = Y ⊕ Y ⊥

in the sense that for any x ∈ H there exists a unique y ∈ Y and a unique ỹ ∈ Y ⊥ such
that

x = y + ỹ

and we have
∥x∥2 = ∥y∥2 + ∥y⊥∥2.

Proof. First we discuss uniqueness. If y1, y2 ∈ Y and ỹ1, ỹ2 ∈ Y ⊥ such that
x = y1 + ỹ1 = y2 + ỹ2.

Then
y1 + ỹ1 = y2 + ỹ2,
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then we have
Y ∋ y1 − y2 = ỹ2 − ỹ1 ∈ Y ⊥

Thus y1 − y2 and ỹ2 − ỹ1 ∈ Y ⊥ ∩ Y . But if y ∈ Y \ {0} then ⟨y, y⟩ = ∥y∥2 > 0 so y ̸∈ Y ⊥.
Thus Y ∩ Y ⊥ = {0}. This implies y1 = y2 and ỹ1 = ỹ2, so uniqueness is established.

Now let x ∈ H. Since Y is a closed linear space, by Lemma 19.11 there exists a unique
y ∈ Y such that

∥y − x∥ = dist (x, Y ).
and we have

ỹ := y − x ∈ Y ⊥.

We can conclude. □

Lemma 19.14. Let H be a Hilbert-space. Consider Y ⊥⊥ =
(
Y ⊥

)⊥
. Then we have

Y ⊥⊥ = spanY .
In particular if Y is a closed linear subspace we have Y ⊥⊥ = Y .

Proof. Clearly we have Y ⊥⊥ ⊃ Y .

Set W := spanY . By Exercise 19.8 we have W⊥ ⊂ Y ⊥, and thus
W⊥⊥ ⊃ Y ⊥⊥.

Also observe that for any v ∈ Y ⊥ and any y ∈ spanY we have y ⊥ v by lienarity of the
scalar product. Thus spanY ⊂ Y ⊥⊥, and with Lemma 19.9 we find that

W⊥⊥ ⊃ Y ⊥⊥ ⊃ spanY = W.

It suffices thus to show that W⊥⊥ ⊂ W , then the previous set inequalities are equalities
and we can conclude.

Take now any y ∈ W⊥⊥. Since W⊥⊥ is a closed linear subspace of a Hilbert space, W⊥⊥

is itself a Hilbert space. So we can apply Lemma 19.11 and find w ∈ W ⊂ W⊥⊥ with
w = dist (y,W ), and then we have v := y − w ∈ W⊥∩W ⊥⊥. But then ⟨v, v⟩ = 0, which
means v = 0 which means y = w ∈ W . We have shown that W⊥⊥ ⊂ W as requested and
we can conclude. □

Theorem 19.15. Let H be a Hilbert space, then the following are equivalent

(1) H is separable (i.e. there exists a countable dense set)

(2) H has a countable orthonormal basis, i.e. there exists a sequence (ok)dim H
k=1 for each

x ∈ H we have

x =
dim H∑
k=1

ok⟨x, ok⟩

where the convergence of the (possibly infinite) sum is in H.
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We only prove (1) ⇒ (2), the other direction follows from the exercise Exercise 19.17.

Proof of Theorem 19.15: (1) ⇒ (2). Let Q ⊂ H be a countable dense set. In particular
spanQ = H.

Where span denotes all the finite linear combinations of Q.

We can now pass to a smaller set Q̃ such that still

spanQ̃ = H,

but each finite subset of Q̃ is linearly independent (simply consecutively remove linearly
dependent vectors, which we can do since Q is countable). Let N be the number of elements
in Q̃ (clearly N ≤ dimH).

We write
Q̃ = (v1, v2, . . .).

Since each finite subset of Q̃ is linear independent we know |v1| ≠ 0, so we may set

o1 := v1

|v1|
.

Now we define oi, i = 1, . . . , N inductively by

õi+1 := vi+1 −
n∑

i=1
oi⟨oi, vi+1⟩

and set
oi+1 := oi

|oi+1|
.

This process is called Gram-Schmidt-orthogonalization of linearly independent vectors.
For this we observe that by linear independence õi+1 ̸= 0 and õi+1 is linear independent of
(ok)i

k=1.

By induction we conclude that (oi)N
i=1 is a (finite or infinite) sequence of mutually orthog-

onal vectors, all satisfying ∥oi∥ = 1.

On the other hand we still have
span{oi : i = 1, . . .} = spanQ̃ = H,

since oi are each (finite) linear combinations of elements of Q̃.

We claim that (ok)N
k=1 is a basis as in (2). So let x ∈ H.

Consider for ℓ = 1, . . . , N ,

yℓ := x−
ℓ∑

k=1
ok⟨x, ok⟩.

Then we have
yℓ ⊥ span{o1, . . . , oℓ} ∀ℓ.
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Thus,

∥x∥ = ∥yℓ∥2 +
ℓ∑

k=1
|⟨x, ok⟩|2

In particular we get
N∑

k=1
|⟨x, ok⟩|2 <∞,

and thus yN ∈ H, defined as

yN := x−
N∑

k=1
ok⟨x, ok⟩

exists. If yN = 0 we are done. Assume yN ̸= 0 then

0 ̸= yN ⊥ ok ∀k = 1, . . . , N

In particular, for any z ∈ span{o1, . . . , oN}

∥yN − z∥2 = ∥yN∥+ ∥z∥2 ≥ ∥yN∥2 > 0.

That is dist (yN , span{o1, . . . , oN}) > 0 which implies

yN ̸∈ span{o1, . . . , oN},

which is a contradiction to the construction of (oi)i.

Thus yN = 0 and we can conclude. □

Exercise 19.16. Assume that H is a Hilbert space, (ok)k∈N with ∥ok∥ = 1 and ok ⊥ oj for
k ̸= j. Assume that x ∈ X satisfies

x =
∞∑

k=1
λkok ≡ lim

N→∞

N∑
k=1

λkok,

(convergence in H).

Then
∞∑

k=1
|λk|2 = ∥x∥2.

Exercise 19.17. Show that every seperable Hilbert space is isometric isomorphic to ℓ2(N).

Hint: Use the representation (2) in Theorem 19.15 and show with the help of Exercise 19.16
that

x 7→ (⟨x, ok⟩)k∈N

is an isometric isomorphism.
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19.1. Riesz Representation for Hilbert spaces and reflexivity.

Theorem 19.18 (Riesz representation theorem). Let H be a Hilbert space. Let x∗ ∈ H∗,
then there exists exactly one x̄ ∈ H such that

x∗[y] = ⟨x̄, y⟩ ∀y ∈ Y.
Moreover, ∥x∗∥H∗ = ∥x̄∥H .

Proof. If x∗ = 0 there is nothing to show, we just take x̄ = 0.

So without loss of generality we may assume
∥x∗∥H∗ = 1.

We take any sequence (xk)k∈N, ∥xk∥ = 1 such that

x∗(xk) k→∞−−−→ ∥x∗∥ = 1.
We now essentially use strict convexity of the unit ball of H: xk+xℓ

2 is strictly inside that
unit ball. Using the scalar product structure we can quantify this (the following argument
should remind you of the argument used in Lemma 19.11):∥∥∥∥xk + xℓ

2

∥∥∥∥2

H
=1

4
(
∥xk∥2 + ∥xℓ∥2 + 2⟨xk, xℓ⟩

)
=1

4 (2 + 2⟨xk, xℓ⟩)

=1
4 (4− 2 + 2⟨xk, xℓ⟩)

=1
4
(
4− ∥xk∥2 − ∥xℓ∥2 + 2⟨xk, xℓ⟩

)
=1

4
(
4− ∥xk − xℓ∥2

)
=1−

∥∥∥∥xk − xℓ

2

∥∥∥∥2

(19.2)

Let ε ∈ (0, 1), take k, ℓ large enough so that x∗(xk) > 1− ε and x∗(xℓ) > 1− ε. Then

1− ε ≤1
2 (x∗(xk) + x∗(xℓ))

=x∗
(
xk + xℓ

2

)
≲ ∥x∗∥︸ ︷︷ ︸

=1

∥∥∥∥xk + xℓ

2

∥∥∥∥
Squaring this inequality we have

1 + ε2 − 2ε ≤ 1−
∥∥∥∥xk − xℓ

2

∥∥∥∥2
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and thus ∥∥∥∥xk − xℓ

2

∥∥∥∥2
≤ 2ε− ε2 ε<ε2

≤ ε.

This holds for any ε ∈ (0, 1) for all large k and ℓ, so we have shown that (xk)k is Cauchy,
so since we are in a Hilbert space there exists a limit x̄ = limk→∞ xk. By continuity we
have ∥x̄∥ = 1 and

x∗[x̄] = 1.
Assume there is any other x̃ with ∥x̃∥ = 1 such that x∗(x̃) = 1. Set w := x̃+x̄

2 . We have

x∗ (w) = 1

and in particular

x∗
(
w

∥w∥

)
= 1
∥w∥

If x̃ ̸= x̄ we have ∥w∥ < 1 ((19.2) – strict convexity of the unit ball), and thus we have

x∗
(
w

∥w∥

)
> 1,

which is a contradiction to ∥x∗∥ = 1. So x̃ = x̄, i.e. x̄ is the unique vector such that

∥x̄∥H = 1 and x∗[x̄] = ∥x∗∥.

(so far the above argument is based only on the (quantifiable) strict convexity of the unit
ball in the space X)

We now claim that
x∗[y] = ⟨x̄, y⟩ ∀y ∈ H.

If y = λx̄ this is clear, because

x∗[λx̄] = λ = ⟨x̄, λx̄⟩.

Now let y ∈ x̄⊥. We claim that x∗(y) = 0. W.l.o.g. we may assume that ∥y∥ = 1. For any
t ∈ R we then have by orthogonality

∥x̄+ ty∥2 = ∥x̄∥2 + t2∥y∥2 = 1 + t2.

Set
z(t) := x̄+ ty

1 + t2
.

Then ∥z(t)∥ = 1 for all t, z(0) = x̄, and we have

y = d

dt

∣∣∣∣
t=0
z(t) ≡ lim

t→0

x+ty
1+t2 − x

t
.

Setting now
f(t) := x∗ (z(t))
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we have that f(0) = x∗(x̄) = 1 and f(t) = x∗(z(t)) ≤ ∥x∗∥ = 1 for all t. That is f attains
its maximum at t = 0 and f ′(0) = 0 (checking the differentiability of f is an exercise). But
then

x∗(y) = f ′(0) = 0.
Thus, we conclude that x∗(y) = 0 for all y ∈ Y ⊥.

Let now y ∈ H. In view of Lemma 19.13, we can uniquely split y into

y = λx̄+ ỹ,

where ỹ ∈ x̄⊥. We then have

x∗(y) = λx∗(x̄)︸ ︷︷ ︸
=1

+x∗(ỹ)︸ ︷︷ ︸
=0

= λ = ⟨x̄, λx̄⟩+ ⟨y, x̄⟩ = ⟨y, x̄⟩.

We can conclude. □

With Theorem 19.18 the structure of the dual space of a Hilbert space is very similar to
the Hilbert space itself. Firstly we observe

Corollary 19.19. Let H be a Hilbert space. Then H and H∗ are isomorphic under the
isomorphism

H ∋ x 7→ x∗,

where for fixed x ∈ X we set
x∗[y] := ⟨x, y⟩ y ∈ Y.

Exercise 19.20. Prove Corollary 19.19.

We can define a scalar product for H∗:

For x∗, y∗ ∈ H∗ let x, y be the (unique) representatives of x∗ and y∗, respectively, from
Theorem 19.18. Then we set

⟨x∗, y∗⟩H∗ := ⟨x, y⟩H
Exercise 19.21. Show that ⟨·, ·⟩H∗ defined as above

(1) defines indeed a scalar product in H∗ and
(2) induces the norm ∥ · ∥H∗.
(3) Conclude that H∗ is a Hilbert space.

This is what it means when we sometimes say H∗ = H for a Hilbert space.

If H∗ = H then certainly H∗∗ = H∗ = H – so we should have reflexivity? Yes, indeed.

Corollary 19.22. Let H be a Hilbert space, then H is reflexive.
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Proof. Recall, cf. Section 11, that the canonical isomorphism
JH : H 7→ H∗∗

is given
JH : H ∋ x 7→ x∗∗ ∈ H∗∗.

Here for fixed x the functional x∗∗ ∈ H∗∗ is given by
x∗∗(y∗) := y∗(x) for y∗ ∈ H∗.

JH is always injective and an isometry from H to H∗∗. H is called reflexive if JH is
moreover surjective.

So let x∗∗ ∈ H∗∗. Since by Exercise 19.21 H∗ is a Hilbert space, we can apply Riesz
representation theorem, Theorem 19.18, and find some x∗ ∈ H∗ such that
(19.3) x∗∗[y∗] = ⟨x∗, y∗⟩H∗ ∀y∗ ∈ H∗.

Again applying Theorem 19.18 to H, we find the representative x ∈ H such that
x∗[y] = ⟨x, y⟩H ∀y ∈ H.

Clearly x is a plausible candidate to satisfy JXx = x∗∗. To see this is correct, we need to
show
(19.4) x∗∗[y∗] = JXx[y∗] ≡ y∗[x] ∀y∗ ∈ H∗.

Fix any y∗ ∈ H∗. Again by Theorem 19.18 there exists y ∈ H such that
(19.5) y∗[z] = ⟨y, z⟩ ∀z ∈ H.
In particular we have

y∗[x] (19.5)= ⟨x, y⟩H
def
≡ ⟨x∗, y∗⟩H∗

(19.3)= x∗∗[y∗].
This shows (19.4) and we can conclude. □

19.2. Lax-Milgram Theorem and application to existence theory. Another impor-
tant application of the Hilbert-space Riesz representation theorem is
Theorem 19.23 (Lax-Milgram). Let H be a Hilbert space, A : H ×H → R be a bilinear
and continuous map44, such that for some Λ > 0

|A(x, y)| ≤ Λ∥x∥H ∥y∥H ∀x, y ∈ H,
and for some λ > 0
(19.6) |A(x, x)| > λ∥x∥2

H ∀x ∈ H
Then there exists a bounded linear isomorphism T : H → H such that

A(x, y) = ⟨Tx, y⟩ ∀x, y ∈ H,
and we have

∥T∥L(H,H) ≤ Λ, ∥T−1∥L(H,H) ≤ λ−1

44may be not symmetric!
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Proof. Fix x ∈ H then the map
H ∋ y 7→ A(x, y) ∈ R

is linear and bounded – thus it belongs to H∗. Consequently, by the Riesz Representation
Theorem, Theorem 19.18, there exists exactly on element of H, we shall call it suggestively
Tx (because it depends on x) such that

A(x, y) = ⟨Tx, y⟩ ∀x, y ∈ H.
It seems like this is it, but obverse: we don’t know much about T – we still need to establish
it is a bounded linear isomorphism H → H.

As for linearity: Let x1, x2 ∈ H and µ1, µ2 ∈ R. We then have by definition of T
A(x1, y) = ⟨T (x1), y⟩, A(x2, y) = ⟨T (x2), y⟩ ∀y ∈ H.

Then we have for any y ∈ H,
⟨T (µ1x1 + µ2x2), y⟩

=A(µ1x1 + µ2x2, y)
=µ1A(x1, y) + µ2A(x2, y)
=µ1⟨Tx1, y⟩+ µ2⟨Tx2, y⟩

Thus
⟨T (µ1x1 + µ2x2)− µ1Tx1 − µ2Tx2, y⟩ = 0 ∀y ∈ H.

Taking y = T (µ1x1 + µ2x2)− µ1Tx1 − µ2Tx2 we find that
∥T (µ1x1 + µ2x2)− µ1Tx1 − µ2Tx2∥2

H = 0
and thus

T (µ1x1 + µ2x2)− µ1Tx1 − µ2Tx2 = 0
i.e. we have shown

T (µ1x1 + µ2x2) = µ1Tx1 + µ2Tx2 = 0.
That is, we have established linearity of T (we haven’t used (19.6) for this).

Now we show that T is bounded. Observe that
|⟨Tx, y⟩| = |A(x, y)| ≤ Λ∥x∥∥y∥

Let now y := Tx then we have
∥Tx∥2 = |⟨Tx, Tx⟩| ≤ Λ∥x∥∥Tx∥

Dividing by ∥Tx∥ we find that ∥Tx∥ ≤ Λ∥x∥ which means that ∥T∥L(H,H) ≤ Λ. Thus
T : H → H is a linear bounded operator.

Next we show injectivity. Let x ∈ H. Then we have
A(x, y) = ⟨Tx, y⟩ ∀y ∈ H.

Set y := x, using (19.6) we find with Cauchy-Schwartz,
λ∥x∥2 ≤ ⟨Tx, x⟩ ≤ ∥Tx∥∥x∥,
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dividing this inequality by ∥x∥ we have shown
λ∥x∥ ≤ ∥Tx∥,

which implies injectivity.

We can also use this to show closedness of TH. Indeed, let xk ∈ H and assume that
Txk

k→∞−−−→ z ∈ H. We then have
λ∥xk − xℓ∥ ≤ ∥Txk − Txℓ∥,

and thus since (Txk)k∈N is a Cauchy sequence, so is xk (here we use that λ > 0). Since H
is a Hilbert space there exists x̄ = limk→∞ xk. By continuity we have

T x̄ = lim
k→∞

Txk = z.

That is x̄ = T−1z. We conclude that TH ⊂ H is closed.

Now we want to show that TH = H (i.e. T is surjective). In view of Proposition 19.12
and closedness, TH = TH, it suffices to show that (TH)⊥ = {0}. Assume z ∈ (TH)⊥.
Then we have

⟨Tx, z⟩ = 0 ∀x ∈ H
By the definition of A we conclude that

A(x, z) = 0 ∀x ∈ H.
But then we can take x = z and have

λ∥z∥2 ≤ A(z, z) = 0,
that is (since λ > 0) we have z = 0. Thus TH⊥ = {0}. We conclude that T is linear a
bijection with bounded ∥T∥ and ∥T−1∥. That is, T is a linear bounded isomorphism. □

The following very useful statement, a consequence of Theorem 19.23, is often referred to
as Lax-Milgram Theorem as well. It has more the feeling of solving an equation (and we
will see this is exactly what it does in PDE).

Corollary 19.24 (Lax-Milgram). Let H be a Hilbert space, A : H ×H → R be a bilinear
and continuous map45, such that for some Λ > 0

|A(x, y)| ≤ Λ∥x∥H ∥y∥H

and for some λ > 0
|A(x, x)| > λ∥x∥2

H .

Assume z∗ ∈ H∗. Then there exists exactly one x̄ ∈ H such that
A(x̄, y) = z∗(y) ∀y ∈ H

and x̄ satisfies
∥x̄∥H ≤ λ−1∥z∗∥H∗ .

45may be nonsymemtric!
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Proof. In view of Theorem 19.23 we find T : H → H a linear bounded isomorphism such
that

A(x, y) = ⟨Tx, y⟩ ∀x, y ∈ H.
Now let z∗ ∈ H∗. By Riesz Represenation Theorem, Theorem 19.18, there exists an z̄ ∈ H
such that

z∗[y] = ⟨z̄, y⟩.
Set x̄ := T−1z̄. Then we have the estimate

∥x̄∥ ≤ ∥T−1∥ ∥z̄∥ ≤ λ−1∥z̄∥.

Morever,
A(x̄, y) = ⟨T x̄, y⟩ = ⟨TT−1z̄, y⟩ = ⟨z̄, y⟩ = z∗[y] ∀y ∈ H.

We can conclude. □

The typical application of Lax-Milgram is as follows.

Example 19.25. We want to solve the PDE

−div (A∇u) = f in Ω

where u ∈ W 1,2
0 (Ω). We know this is equivalent to solving∫

Ω
Aαβ∂βu · ∂αv = f [v].

Let f ∈ (W 1,2
0 (Ω))∗ and assume A : Ω → Rn×n is measurable, uniformly elliptic, i.e. for

some constant λ > 0
⟨Av, v⟩ ≥ λ|v|2 in Ω

and A is bounded supΩ |A| ≤ Λ.

We can set
A(u, v) :=

∫
Ω
Aαβ∂βu · ∂αv.

Then by ellipticity,
A(u, u) ≥ λ

∫
Ω
|∇u|2 ≳ ∥u∥W 1,2(Ω),

where the last inequality is Poincaré inequality.

And by boundedness,

|A(u, v)| ≲ Λ∥∇u∥L2(Ω) ∥∇v∥L2(Ω) ≤ Λ∥u∥W 1,2(Ω) ∥∇v∥W 1,2(Ω).

Thus the conditions for Lax-Milgram Theorem 19.23 are satisfied, and we find that there
exists a unique solution u ∈ W 1,2

0 (Ω) to∫
Ω
Aαβ∂βu · ∂αv = f [v].
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20. Open Mapping, Inverse Mapping, Closed Graph Theorem

We now begin to discuss some important results from classical Functional analysis, and for
this review briefly the main definitions

• Normed spaces, Banach spaces, Hilbert spaces, Section 7
• linear bounded map, Section 8

20.1. Weak Baire Category Theorem. These sections are inspired by [Megginson, 1998]
and [StackExchange, a].

We want to avoid the full notion of Baire category, instead we prove a weak version of
the Baire Category theorem, that implies as important consequences Zabreiko’s Lemma,
Lemma 20.8, which in turn implies such important theorems as open mapping theorem
etc.
Definition 20.1. Let X be a vector space. A set A ⊂ X is called absorbing if for each
x ∈ X there exists a number sx > 0 such that

1
t
x ∈ A ∀t > sx.

Clearly if X is a normed space and A is any open set containing the origin, then A is
absorbing. The converse may not be true in general, see Exercise 20.3 below, but we have
the following (which is a weak version of the Baire cateogory theorem)
Theorem 20.2. Let X be a Banach space and C ⊂ X be a closed, convex, and absorbing
set. Then there exists an open set U ⊂ C containing the origin 0 ∈ U .

Proof. Let
D := {x ∈ X : x ∈ C, −x ∈ C} ⊂ C.

Observe that D is closed and convex. Consider the interior Do of D
Do = {x ∈ D : such that ∃r > 0 with B(x, r) ⊂ D}.

Clearly, Do is an open set. In general it could be empty, but if we can show that Do ̸= ∅,
then we can set

U := {x : x = 1
2a−

1
2b a, b ∈ Do},

which is an open set. Moreover if x ∈ Do then −x ∈ Do, so Do ̸= ∅ implies 0 ∈ U . Lastly,
if a ∈ Do and b ∈ Do then −b ∈ Do and thus by convexity of D,

1
2a−

1
2b = 1

2a+ 1
2(−b) ∈ D,

and thus U ⊂ D ⊂ C. Thus U is the open set we were looking for. We just need to show
that Do is nonempty.

Assume to the contrary that Do = ∅.
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We are going consider for n ∈ N,

nD := {nx : x ∈ D}.

If Do = ∅ then (nD)o = ∅ for all n ∈ N.

This implies that for each n ∈ N the set X \ nD is dense in X. Moreover X \ nD is open
(since nD is closed).

Since X \D is open (and since its dense X \D ̸= ∅), there must be x1 ∈ X and r1 ∈ (0, 1)
such that B(x1, r1) ⊂ X \D.

Since X \2D is open, we have that B(x1, r1)\2D = (X \2D)∩B(x1, r1) is open. Moreover,
since X \ 2D is dense in X, B(x1, r1) \ 2D is nonempty. So there must be x2 ∈ X,
r2 ∈ (0, 1/2) such that B(x2, r2) ⊂ B(x1, r1) \ 2D.

We continue like this and find a sequence of points (xi)∞
i=1 and radii ri ∈ (0, 1

i
) such that

B(xi, ri) ⊂ B(xi−1, ri−1) \ iD ̸= ∅.

We then have that

|xi − xℓ| ≤ 2 max{1
i
,
1
ℓ
},

that is (xi)i∈N is a Cauchy sequence and thus x̄ := limi→∞ xi ∈ X (since X is a Banach
space).

We then have for any i ∈ N

x̄ ∈ B(xi, ri) ⊂ X \ iD.

That is, 1
i
x̄ ̸∈ D for all i ∈ N.

On the other hand, since C is absorbing, there must be some ℓ ∈ N such that 1
ℓ
x̄ ∈ C and

1
ℓ
(−x̄) ∈ C, and thus 1

ℓ
x̄ ∈ D, contradicting the previous statement. Thus X \ iD cannot

be dense for all i, meaning in particular D cannot have nonempty interior.

□

Exercise 20.3. Let X = (ℓ1(N), ∥ · ∥ℓ∞).

(1) Show that X is not a Banach space.
(2) Consider the set

C := {(an)n∈N ∈ X : ∥an∥ℓ1} ≤ 1}

Show that C is closed, convex and absorbing. However show that C has empty
interior.
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20.2. Zabreiko’s Lemma. For us the important consequence of Theorem 20.2 (which
is a weak version of Baire’s theorem that we will not discuss here) is Zabreiko’s Lemma,
Lemma 20.8. It implies many of the results that are usually proven by Baire’s category
theorem.

Definition 20.4. A seminorm on a vector space X is a map p : X → R such that

(1) p(λx) = |λ|p(x) for all x ∈ X, λ ∈ R
(2) p(x+ y) ≤ p(x) + p(y) for all x, y ∈ X

(observe this is lightly different from sublinearity in Hahn-Banach, Theorem 10.2, which
assumes the multiplicity only for λ ≥ 0)

Exercise 20.5. Show p(0) = 0 for any seminorm p on a vector space X

Exercise 20.6. Show the reverse triangle inequality holds for any seminorm p on a vector
space X

|p(x)− p(y)| ≤ p(x− y) ∀x, y ∈ X.

Exercise 20.7. Let p be any seminorm on a vector space X. Show that if p is continuous
at 0 then p is continuous in any point x ∈ X.

Lemma 20.8 (Zabreiko’s Lemma). Assume p : X → R is a nonnegative seminorm on a
Banach space X that is moreover countably subadditive, namely

p(
∞∑

n=1
xn) ≤

∑
n

p(xn)

whenever (xn)n∈N ⊂ X such that
∞∑

n=1
xn := lim

N→∞

N∑
n=1

xn︸ ︷︷ ︸
∈X

in X

Then p is continuous.

Exercise 20.9. Let (X, ∥ · ∥) be a normed space.

(1) Show that p(x) := ∥x∥ is a countably subadditive seminorm.
(2) Let p : X → R be any nonnegative seminorm on X. Show that if p is continuous

then p is countably subadditive.

Proof of Lemma 20.8. By Exercise 20.7 we need to show that p is continuous in 0.

Set
G := {x ∈ X : p(x) < 1}

Clearly 0 ∈ G and if x ∈ X then for sx := 2∥x∥ we have 1
t
x ∈ G for any t > sx since p is a

seminorm. That is G is absorbing.
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G is also convex, indeed if x, y ∈ G and λ ∈ (0, 1) then
p(λx+ (1− λ)y) ≤ λp(x) + (1− λ)p(y) < 1,

and thus λx+ (1− λ)y ∈ G.

Albeit, G is not closed. However its closure G is still convex (exercise) and absorbing
(exercise).

By Theorem 20.2 there exists some θ > 0 such that
∥x∥ < θ ⇒ x ∈ G.

Fix now ε > 0. We claim that
∥x∥ < ε

2θ ⇒ p(x) < ε.

which readily implies continuity of p at 0.

All we need to show for this is (by homogeneity of p),
(20.1) ∥x∥ < θ ⇒ p(x) < 2.
Fix any such x with ∥x∥ < θ. We know that x ∈ G but this does not yet imply x ∈ G
(and thus we do not know p(x) < 1)!.

However, since x ∈ G we do know that there exists some x1 ∈ G such that ∥x−x1∥X < 2−1θ.
Then

2(x− x1) ∈ G,
and thus there exists x2 with 2x2 ∈ G, i.e. p(x2) < 1

2 and

∥2(x− x1 − 2x2)∥X < 2−2θ

continuing like this we find xn ∈ X such that 2n−1xn ∈ G, i.e. p(xn) < 21−n, and

∥x−
n∑

k=1
xk∥X < 2−nθ

n→∞−−−→ 0.

That is ∑∞
k=1 xk = x. Then we have by countable subadditivity of p

p(x) ≤
∞∑

k=1
p(xk) <

∞∑
k=1

21−k = 2.

This implies (20.1) and we can conclude. □

Completeness of the space X is really important, Zabreiko’s Lemma fails without it.

Exercise 20.10. Consider X the vector space of sequences (ak)k∈N with only finitely many
nonzero entries, i.e.

X = {(ak)k∈N : ∃K ∈ N : ak = 0 ∀k ≥ K}.
We can equip X with two norms, the ℓ∞-norm and the ℓ1-norm.
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(1) Show that (X, ∥ · ∥ℓ∞) and (X, ∥ · ∥ℓ1) are not complete.
(2) Show that the

p((ak)k∈N) := ∥ak∥ℓ1

is a countably subadditive seminorm on (X, ∥ · ∥ℓ∞) but p is not continuous on
(X, ∥ · ∥ℓ∞).

Zabreiko’s Lemma implies several important theorems at once – we will discuss them in
the next sections.

20.3. Uniform Boundedness Principle/ Banach Steinhaus Theorem. We have
proven the Uniform Boundedness Principle or Banach Steinhaus Theorem in Theorem 12.18,
but we state it here again.

Theorem 20.11 (Banach-Steinhaus or Uniform Boundedness Principle). Let X be a Ba-
nach space and Y a normed vector space. Suppose that F is a (possibly uncountable) family
of continuous, linear operators T ∈ L(X, Y ). If F is pointwise bounded, that is if for all
x ∈ X we have

sup
T ∈F
∥Tx∥ <∞

then F is uniformly bounded in norm, i.e.

sup
T ∈F
∥T∥

Exercise 20.12. Use Zabreiko’s Lemma, Lemma 20.8, to show Theorem 20.11.

Hint: Set p(x) = supT ∈F ∥Tx∥.

Again, completeness is important

Exercise 20.13. Let X be as in Exercise 20.10. For (an)n∈N ∈ X and m ∈ N

Tm((an)n∈N) := mam.

Set
F := {Tm,m ∈ N}.

Show that the uniform boundedness principle fails for F in (X, ∥ · ∥ℓ1).

Corollary 20.14. Let (Tn)n∈N be a sequence of linear bounded operators from a Banach
space X to a normed space Y . Assume that for each fixed x ∈ X the limit limn→∞ Tnx
exists in Y and set Tx := limn→∞ Tnx. Then T is a linear bounded operator from X to Y .

Exercise 20.15. Prove Corollary 20.14.
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20.4. Open Mapping Theorem. A (not necessarily linear) function from a topological
X to another topological space Y is open mapping if for any open set U ⊂ X we have
f(U) ⊂ Y is also open – i.e. if f maps open sets to open sets.

Theorem 20.16 (The Open Mapping Theorem). Let X, Y be two Banach spaces and
T : X → Y be a bounded linear operator. If T is surjective then T is open.

Proof. It suffices to prove that for the open unit ball B ⊂ X the set TB ⊂ Y is open.
Indeed let U ⊂ X be any other open set and y ∈ T (U). Then there exists x ∈ U such that
Tx = y. Since x ∈ U and U is open there exists a scaled copy of B centered at x inside U ,
that is there exist r > 0 such that

x+ rB ⊂ U.

Since T (B) is open, so is T (x+rB) = y+rTB. On the other hand y+rTB = T (x+rB) ⊂
T (U) so an open neighborhood of y lies inside T (U). This holds for any y ∈ T (U) so T (U)
is open.

So we only show that T (B) is open, where B is the open unit ball.

For y ∈ Y set
p(y) := inf{∥x∥ : x ∈ X,Tx = y}.

p is well-defined since T is surjective.

We observe that
(20.2) p(Tx) ≤ ∥x∥

Clearly p(0) = 0. Let λ ∈ R \ {0} then

p(λy) = inf{∥x∥ : x ∈ X,Tx = λy} = inf{|λ|∥x/λ∥ : x ∈ X,T 1
λ
x = y}

=|λ| inf{∥̃x∥ : x̃ ∈ X,T x̃ = y}
=|λ|p(y).

We prove countable subadditivity and triangular inequality for p at the same time.

Let (yn)n∈N be a sequence in Y such that ∑n yn converges in Y . Fix ε > 0, then for each
n ∈ N there exists xn ∈ X such that Txn = yn and

∥xn∥ ≤ p(yn) + 2−nε.

Then we have ∑
n

∥xn∥ ≤
∑

n

p(yn) + ε.

In particular ∑n∈N xn ∈ X converges (here we use that X is a Banach space). Since T is
continuous we have ∑

n

yn =
∑

n

T (xn) = T

(∑
n

xn

)
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Applying p we have

p(
∑

n

yn) = p(T
(∑

n

xn

)
)

(20.2)
≤ ∥

(∑
n

xn

)
∥ ≤

∑
n

∥xn∥X ≤
∑

n

p(yn) + ε.

Letting ε→ 0 we conclude.

By Zabreiko’s Lemma, Lemma 20.8 we conclude that p is continuous. But now observe
T (B) = {y ∈ Y : ∃x ∈ B : Tx = y} = {y ∈ Y : p(y) < 1} = p−1((−1, 1)).

Since p is continuious p−1 of (−1, 1) is open, so T (B) is open, so we can conclude. □

Exercise 20.17. Consider the identity operator on X from Exercise 20.10 defined as
I ((an)n∈N) := ((an)n∈N) .

Show that I : (X, ∥ · ∥ℓ1)→ (X, ∥ · ∥ℓ∞) is a bounded linear operator that is not open.

Corollary 20.18. Let X, Y be two Banach spaces and let T : X → Y be a compact linear
operator. If T is surjective, then Y must be finite dimensional.

Proof. If T : X → Y is surjective (it is also continuous) then T is open by Theorem 20.16.

Let B denote the open unity ball in X. Since T is open, then T (B) ⊂ Y is an open set
containing the origin, so there exists a closed ball B(0, ε) ⊂ T (B). Now B(0, ε) is compact
(since its closed and lies in the impage of a bounded set under the compact operator T ).
The Riesz lemma, Exercise 7.20, says that the unit ball (hence also B(0, ε)) is only compact
iff the dimension is finite. □

20.5. Inverse Mapping Theorem. As a corollary of the open mapping theorem we have
the the inverse mapping theorem. Observe that in general just because f : X → Y is con-
tinuous and bijective there is (in general) no reason that f−1 is continuous, Exercise 20.20.

For linear maps on Banach spaces this is true however.

Theorem 20.19 (Bounded inverse theorem / Inverse Mapping theorem). Let X be a
Banach space and T : X → Y be a bounded linear operator such that T : X → Y is
bijective. Then T−1 : Y → X is a linear bounded map

Proof. The fact that T−1 is linear is easy to show from the bijectivity. By the open
mapping theorem T maps open sets to open sets, and since (T−1)−1 = T we have that T−1

is necessarily continuous. □

Exercise 20.20. Consider the identity operator on X from Exercise 20.10 defined as
I ((an)n∈N) := ((an)n∈N) .

Show that I : (X, ∥ · ∥ℓ1)→ (X, ∥ · ∥ℓ∞) is a bounded linear operator which is bijective – but
whose inverse is not continuous.
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The inverse mapping theorem says that vectors spaces X which are Banach with respect
to two norms which create the same topology have equivalent norms.

Exercise 20.21. Let (X, ∥·∥1) and (X, ∥·∥2) be two Banach spaces with the same underlying
Vector space X. If the identity map I : (X, ∥ · ∥1) → (X, ∥ · ∥2) is continuous, then the
norms ∥ · ∥1 is equivalent to ∥ · ∥2.

Exercise 20.22. Let (X, ∥·∥1) and (X, ∥·∥2) be two Banach spaces with the same underlying
Vector space X. Assume that for some Λ > 0 we have

∥x∥1 ≤ Λ∥x∥2 ∀x ∈ X.

Then there exists λ > 0 such that

λ∥x∥2 ≤ ∥x∥1 ∀x ∈ X.

20.6. Closed Graph theorem.

Theorem 20.23 (Closed Graph Theorem). Let T : X → Y be a linear map from a Banach
space X to a Banach space Y .

Suppose that T is a closed operator in the following sense: whenever xn ∈ X converges to
x ∈ X and at the same time Txn converges to y ∈ Y then we have Tx = y.

Then T is a bounded operator.

Proof. For x ∈ X we set p(x) := ∥Tx∥Y . If we show that p is continuous then there must
be some δ > 0 such that

sup
∥x∥≤δ

∥Tx∥Y ≡ sup
∥x∥X≤δ

(p(x)− p(0)) ≤ 1.

This clearly implies

∥Tx∥Y ≤
1
δ
∥x∥X ,

and thus T is bounded.

How do we show p is continuous? Zabreiko’s lemma, Lemma 20.8.

Clearly p(λx) = |λ|p(x).

So let ∑k∈N xk be a convergent series in X. We need to show

p(
∑

k

xk) ≤
∑

k

p(xk).

If the right-hand side is infinite, there is nothing to show. So we may assume that∑
k

p(xk) =
∑

k

∥Txk∥Y <∞.
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Since Y is a Banach space we have that ∑k Txk converges in Y . Then we have the following
n∑

k=1
xk

n→∞−−−→
∞∑

k=1
xk in X

and
T

(
n∑

k=1
xk

)
=

n∑
k=1

Txk
n→∞−−−→

∞∑
k=1

Txk in Y

By the assumption of closedness of T we then have

T (
∞∑

k=1
xk) =

∞∑
k=1

Txk,

and thus

p(
∞∑

k=1
xk) = ∥T (

∞∑
k=1

xk)∥Y = ∥
∞∑

k=1
Txk∥Y ≤

∞∑
k=1
∥Txk∥Y =

∞∑
k=1

p(xk).

□

We can strengthen the Inverse mapping theorem Theorem 20.19,

Theorem 20.24. Let X, Y be Banach spaces, and assume Z ⊂ X. Assume that T : Z → Y
is linear, closed (as defined in Theorem 20.23), injective, and surjective. Then there exists
a map T−1 ∈ L(Y,X) such that TT−1 : Y → Y is the identity and T−1T : Z → Z is the
identity.

A good example to have in mind for the above is X = L2(Ω), Z = W 2,2(Ω) ∩W 1,2
0 (Ω)

(equipped with the L2-norm!) and Y = L2(Rd) and T = ∆.

Proof of Theorem 20.24. Set
Γ := {(x, Tx) : x ∈ Z} ⊂ X × Y.

Since T is a closed operator we have that Γ ⊂ X × Y is a closed subspace, and thus a
Banach space. Set π : Γ→ Y ,

π((x, y)) := y

the projection into Y . Since T is injective, so is π (on Γ). Since T is surjective, so is π.
That is π : Γ→ Y is bijective.

Moreover π : Γ → Y is closed. If (xk, yk) ∈ Γ converge to (x, y) ∈ Γ and zk ∈ Y converge
to z ∈ Y and we know that π((xk, yk)) = zk then we have yk = zk and thus y = z. Since
(xk, yk) ∈ Γ we have Txk = yk, and by closedness of T we conclude that Tx = y. Thus
π(x, y) = y = z, and π is closed.

By the closed graph theorem, Theorem 20.23, π is continuous. By Theorem 20.19 π−1 :
Y → Γ is continuous.
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Set
ψ : Γ→ X

as the projection ψ(x, y) := x. Clearly ψ : Γ→ X is bounded linear.

Now we check that
T−1 := ψ ◦ π−1 : Y → X

is indeed the map we are looking for. □

Exercise 20.25. Consider the identity operator on X from Exercise 20.10 defined as
I ((an)n∈N) := ((an)n∈N) .

Show that I : (X, ∥ · ∥ℓ∞)→ (X, ∥ · ∥ℓ1) contradicts the closed graph theorem on incomplete
normed spaces.

Exercise 20.26. Show that Closed Graph theorem, Inverse Mapping theorem, Open Map
theorem are equivalent (i.e. show that assuming any of the three is proven, it implies the
other two).

An application of the closed graph theorem
Proposition 20.27 (Hellinger-Toeplitz). Let H be a Hilbert space and suppose that T :
X → X is a linear (but not necessarily bounded) map, such that there exists the adjoint
T ∗, namely a map T ∗ : H → H such that

⟨Tx, y⟩ = ⟨x, T ∗y⟩ for all x, y ∈ H.
Then T is bounded.

Exercise 20.28. Show that T ∗ as above is necessarily linear

Proof. In view of Theorem 20.23 we need to show that T is closed. So assume that (xn)n∈N
converges in H to x, and Txn

n→∞−−−→ z. We need to show that Tx = z.

We have for any y ∈ H,
⟨z, y⟩ = lim

n→∞
⟨Txn, y⟩ = lim

n→∞
⟨xn, T

∗y⟩ = ⟨x, T ∗y⟩ = ⟨Tx, y⟩

That is
⟨z − Tx, y⟩ = 0 ∀y ∈ H.

Taking y = z − Tx we find
∥z − Tx∥2

H = 0,
thus z = Tx and we can conclude. □

Exercise 20.29 (Jesús Gil de Lamadrid). Let (X, ∥ · ∥X) and (Y, ∥ · ∥Y ) be both Banach
spaces. Assume Y can be equipped with another norm ∥ ·∥2 which satisfies, for some C > 0

∥x∥2 ≤ C ∥x∥Y ∀x ∈ Y.

(1) Give an example to show that (Y, ∥ · ∥2) may not be complete.
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(2) Let T : (X, ∥ · ∥X)→ (Y, ∥ · ∥2) is a bounded linear operator. Using the closed graph
theorem, show that T : (X, ∥ · ∥X)→ (Y, ∥ · ∥Y ) is also bounded.

Exercise 20.30. (1) Let (X, ∥ · ∥X) be a Banach space and Y ⊂ X a Vector-subspace
of X. Assume that there exists a norm ∥ · ∥Y which satisfies

∥y∥X ≤ C ∥y∥Y for all y ∈ Y .
Let T : (X, ∥ · ∥X) → (X, ∥ · ∥X) be a bounded linear operator, and assume that
T (Y ) ⊂ Y . Then

T

∣∣∣∣
Y

: (Y, ∥ · ∥Y )→ (Y, ∥ · ∥Y )

is a bounded linear operator.
Hint: Show that T

∣∣∣∣
Y

: (Y, ∥ · ∥Y )→ (Y, ∥ · ∥X) is bounded and use Exercise 20.29.
(2) Let T : (L2([0, 1]), ∥·∥L2([0,1]))→ (L2([0, 1]), ∥·∥L2([0,1])) be a linear bounded operator

with the following property. If φ ∈ C0([0, 1]) then Tφ ∈ C0([0, 1]). Then
T : (C0([0, 1]), ∥ · ∥L∞([0,1]))→ (C0([0, 1]), ∥ · ∥L∞([0,1]))

is a linear bounded operator.

21. Closed Range Theorem, Spectral Theory, Fredholm Alternative

Although we did not discuss this before, especially for spectral theory it makes sense to
consider spaces X on the compact field C. There is not much difference (except for the
scalar product) in doing so.

21.1. Adjoint operators. Let T : X → Y be a linear and bounded operator.

Consider y∗ ∈ Y ∗. Then y∗ ◦ T ∈ X∗. We call the operator that maps y∗ into y∗ ◦ T the
adjoint operator T ∗,

T ∗ : Y ∗ → X∗,

and we record its defining property
y∗[Tx] = (T ∗y∗)[x] ∀x ∈ X.

Since T is linear, so is T ∗, and we have

Theorem 21.1. Let T ∈ L(X, Y ). Then T ∗ ∈ L(Y ∗, X∗) and we have
∥T∥L(X,Y ) = ∥T ∗∥L(Y ∗,X∗)

Proof. For y∗ ∈ Y ∗ we have
|y∗[Tx]| ≤ ∥y∗∥Y ∗ ∥T∥L(X,Y ) ∥x∥X .
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Thus,
sup

∥y∗∥Y ∗ ≤1
∥T ∗y∗∥X∗ = sup

∥x∥X≤1, ∥y∗∥Y ∗ ≤1
|T ∗y∗[x]|

= sup
∥x∥X≤1, ∥y∗∥Y ∗ ≤1

|y∗[Tx]|

=∥T∥L(X,Y )

by Corollary 10.14. □

How should we think of T ∗?

Assume that X and Y are finitedimensional spaces, e.g. X = Rn and Y = Rm. Let
T : X → Y is linear (and thus bounded). Every norm is equivalent on finite dimensional
spaces, so we might take as well the scalar product norm. We then have that each element
of X∗ corresponds to an element of X, via the identification

x∗ : X ∋ z 7→ ⟨z, x⟩

So if y∗ ∈ Y ∗ then we have y∗ = ⟨·, y⟩. Thus

y∗[Tx] = (T ∗y∗)[x] ∀x ∈ X, y∗ ∈ Y ∗

becomes
⟨y, Tx⟩Rm = ⟨T ∗y, x⟩ ∀x ∈ X, y ∈ Y

Now in finite dimensions, we know that T corresponds to a matrix T ∈ Rm×n and Tx is
simply the matrix-vector product. Then what is T ∗? it is the transpose T t ∈ Rm×n.

⟨y, Tx⟩Rm ≡ ytTx = (T ty)x ≡ ⟨T ∗y, x⟩Rm .

So T ∗ is a generalization of the transpose operator in R-valued vector spaces.

What if X = Cn and Y = Cm? Recall that the complex scalar product

⟨v, w⟩Cm = vtw

Then Then we have
ytTx = (T ∗y)tx,

so T ∗ = T
t – i.e. the conjugate transpose or Hermitian transpose.

More generally, if T : H1 → H2 are two Hilbert spaces, we have H∗
1
∼= H1, and H∗

2
∼= H2,

see Corollary 19.19, so we can identify T ∗ : H2 → H1 so that

⟨y, Tx⟩H2 = ⟨T ∗y, x⟩H1 for x ∈ H1, y ∈ H2.

Example 21.2.

Let I : X → X be the identity. Then I∗ is the identity as well.
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Let X = Y = ℓp(N) where 1 ≤ p <∞. Set the right-shit operator
S+ : (x1, x2, x3, . . .) 7→ (0, x1, x2, x3, . . .).

What is S∗
+? By Riesz representation theorem we know that any element of (ℓp)∗ can be

identified with an element of ℓq, where 1
p

+ 1
q

= 1.

Given x ∈ ℓp(N), y ∈ ℓq(N), we have
∞∑

k=1
((S+)x)k yk =

∞∑
k=2

xk−1yk =
∞∑

k̃=1

xk̃yk̃+1 =
∞∑

k=1
xk(S+)∗yk.

That is (S+)∗ is the left-shit operator
S− : (x1, x2, x3, . . .) 7→ (x2, x3, . . .).

Exercise 21.3. Let X, Y, Z be normed vector spaces, T : X → Y , S : Y → Z be linear
and bounded. Show that

(1) (T1 + T2)∗ = T ∗
1 + T ∗

2
(2) (λT1)∗ = λT ∗

1 for all λ ∈ C,
(3) (S ◦ T )∗ = T ∗ ◦ S∗

Theorem 21.4. Let T : X → Y be linear and bounded, and assume T−1 : Y → X exists
and is continuous. Then T ∗ is continously invertible as well and we have

(T ∗)−1 = (T−1)∗.

Proof. Since T is continuously invertable we have T ◦ T−1 = IdX and T−1T = IdY . We
take the adjoint of both sides, and from Exercise 21.3 we obtain

T ∗ ◦
(
T−1

)∗
= IX∗(

T−1
)∗
◦ T ∗ = IY ∗

Thus (T−1)∗ is the inverse of T ∗. □

21.2. Closed Range Theorem. We can use the adjoint operator to study solutions of
the equation

Tx = y

Solution means that for given y we find x and hopefully x is unique – i.e. the question
is about surjectivity and injectivity. Recall the finite-dimensional case: If T : V → W
is a matrix operator then T is surjective if and only if T t ≡ T ∗ is injective – this is the
rank-nullity theorem:

dim imT + dim kerT = dimV.

For an operator T : X → Y we denote by its image or range
imT = {y ∈ Y : ∃x ∈ X : Tx = y}.
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and its kernel
kerT = {x ∈ X : Tx = 0}.

Observe that the kerT is always a closed set if T is continuous – but imT may not be
closed.

The following result is an extension of that concept – where we will use of annihilators:
For A∗ ⊂ Y ∗

⊥A∗ = {y ∈ Y : for all y∗ ∈ A∗: y∗[y] = 0}
and for A ⊂ Y

A⊥ := {y∗ ∈ Y ∗ : ∀y ∈ Y : y∗[y] = 0}.
We then have (cf. Lemma 19.9 for the Hilbert-space version)

Exercise 21.5. (1) Let A ⊂ X. Then A⊥ ⊂ X∗ is a closed linear subspace of X∗

(2) Let A ⊂ X∗ then ⊥A ⊂ X is a closed linear subspace of X

Observe that for Hilbert spaces H its dual H∗ corresponds to the scalar product with H
itself.

Exercise 21.6. Let H be a Hilbert space and consider the canonical identification ι : H∗ →
H from the Riesz representation theorem, Theorem 19.18. Let A ⊂ H, and consider by the
usual orthogonal space Ã

Ã := {x ∈ H : x ⊥ a ∀a ∈ Ã}
Show that

Ã = ιA⊥

We also have the following (cf. Lemma 19.14 for the Hilbert-space version).

Exercise 21.7. Let X be a normed vector space and U ⊂ X be a subspace. Then
⊥
(
U⊥

)
= U

Hint: If x ̸∈ U use the Hahn-Banach theorem, Corollary 10.18. For the other direction
show that ⊥

(
U⊥

)
is closed and U ⊂ ⊥

(
U⊥

)
.

With the notion of annihilators we have the following partial extension of the rank-nullity
theorem:

Theorem 21.8. Let X and Y be normed vector spaces and T : X → Y be linear and
bounded. Then

(1) (imT )⊥ = kerT ∗

(2) ⊥(kerT ∗) = imT
(3) ⊥(imT ∗) = kerT
(4) (kerT )⊥ ⊃ imT ∗
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Proof of Theorem 21.8(1). Let y∗ ∈ (imT )⊥. Then we have for all x ∈ X
0 = y∗[Tx] = (T ∗y∗) (x).

Since this holds for all x we have that T ∗y∗ = 0 and thus y∗ ∈ kerT ∗.

On the other hand, assume that y∗ ∈ kerT ∗. Then y∗[Tx] = 0 for all x ∈ X and thus
y∗ ∈ (imT )⊥. □

Proof of Theorem 21.8(2). From (1) we have
(imT )⊥ = kerT ∗

Applying ⊥ to both sides we have
⊥
(
(imT )⊥

)
= ⊥ (kerT ∗)

So the claim follows once we show that
⊥
(
(imT )⊥

)
= imT .

This follows from Exercise 21.7 □

Proof of Theorem 21.8(3),(4). We skip those, they are similar to (1) and (2) – cf. [Clason, 2020,
Theorem 9.6] □

In particular, T is surjective if and only if T ∗ is injective and imT is closed.

Theorem 21.9 (Closed range theorem). Let X, Y be Banach spaces and assume that
T : X → Y is a linear bounded operator. Then the following properties are equivalent.

(1) imT ⊂ Y is closed
(2) imT = ⊥ kerT ∗

(3) ker(T ∗) is closed
(4) imT ∗ = (kerT )⊥.

Proof of Theorem 21.9: (2) ⇒ (1). By Exercise 21.5, if (2) holds then imT is closed. □

Proof of Theorem 21.9: (1) ⇒ (2). Let y ∈ imT . Then there exists x ∈ X such that
Tx = y. For any z∗ ∈ ker(T ∗) ⊂ Y ∗ we then find

z∗[y] = z∗[Tx] = (T ∗z∗)[x] z∗∈ker T ∗
= 0.

Thus y ∈ ⊥ kerT ∗.

So we have shown imT ⊂ ⊥ kerT ∗.

For the other direction, it follows from Exercise 21.7, but we repeat the proof: set Z :=
⊥ kerT ∗ ⊂ Y ∗ (a linear normed space) and assume there exists y0 ∈ Z \ imT . Then

y∗[y0] = 0 ∀y∗ ∈ kerT ∗.
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On the other hand we can apply Hahn-Banach theorem, in the form of Corollary 10.18
(here we assume (1) i.e. that imT ⊂ Y is a closed space). Then we find some y∗ ∈ Z∗ with
y∗[y0] ̸= 0 and y∗(imT ) = 0. The latter says

y∗[Tx] = 0 ∀x ∈ X.
We can extend (again by Hahn-Banach) y∗ from imT to a map on Y , i.e. y∗ ∈ Y ∗. Thus,

(T ∗y∗)[x] = y∗[Tx] = 0 ∀x ∈ X.
But this implies that T ∗y∗ = 0, thus y∗ ∈ kerT ∗. Since y0 ∈ Z = ⊥ kerT ∗ we have

y∗[y0] = 0,
so we found a contradiction and such a y0 does not exist.

We can conclude. □

Proof. The proof of the remaining directions of Theorem 21.9 can be found e.g. in
[Clason, 2020, Theorem 9.10]. □

As a corollary to Theorem 21.9 we obtain

Corollary 21.10. Let X, Y be Banach spaces and assume that T : X → Y is a bounded
linear operator with dual operator T ∗ : Y ∗ → X∗. Assume that

(1) imT ⊂ Y
(2) kerT ∗ = 0.

Then T is surjective. I.e. for any y ∈ Y there exists x ∈ X such that Tx = y.

If T is moreover injective, we have for some constant µ > 0 (only depending on T )
∥x∥ ≤ µ∥y∥.

Proof. The surjectivity follows immediately from Theorem 21.9. The last estimate follows
from Theorem 20.24 (Inverse mapping theorem). □

Remark 21.11. The closed range theorem can extended to densely defined operators
(such as ∆ on L2) – this can be be found in [Brezis, 2011, Theorem 2.19.]

21.3. Example: Solving a PDE via the closed range theorem. The typical example
to have in mind is the following.

Example 21.12. Let Ω ⊂⊂ Rn and A : Ω→ Rn×n an measurable, bounded, and uniformly
elliptic matrix i.e. for some λ > 0

⟨Av, v⟩ ≥ λ|v|2 a.e. in Ω
and A is bounded supΩ |A| ≤ Λ.
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We want to solve −div (A∇u) = f in Ω
u = 0 on ∂Ω

We already discussed how to obtain a solution u ∈ W 1,2
0 (Ω) via the Riesz representation

theorem (in the form of Lax-Milgram Example 19.25).

Recall that
H−1(Ω) :=

(
W 1,2

0 (Ω)
)∗
.

This is a Hilbert-space, so (H−1(Ω))∗ “ =′′ H−1(Ω) – but this is inconvenient to use. Instead
we use that W 1,2

0 (Ω) is reflexive (as a Hilbert space), so we use (H−1(Ω))∗ = W 1,2
0 (Ω).

Set
Tu := div (A∇u).

Then T : W 1,2(Ω)→ H−1(Ω) is continuous.

Let v ∈ (H−1(Ω))∗ then we can identify v with an element in W 1,2
0 (Ω), and we have

v[Tu] =
∫

Ω
⟨A∇u,∇v⟩ =

∫
Ω
⟨∇u,At∇v⟩ = −div (At∇v)[u].

That is T ∗ : W 1,2
0 (Ω) = (H−1(Ω))∗ → H−1(Ω) = (W 1,2(Ω))∗ is simply −div (At∇·).

• It is easy to see that both T and T ∗ are injective, i.e. kerT ∗ = 0 (this follows from
uniqueness of solutions).
• We show that T (W 1,2

0 (Ω)) is a closed subset of H−1(Ω): Assume ∆uk = fk for
uk ∈ W 1,2

0 and fk ∈ H−1 and fk → f in H−1. Testing this equation with uk we
have

∥∇uk∥2
L2(Ω) ≤ ∥fk∥H−1 ∥uk∥W 1,2 .

Using Poincaré inequality we obtain

∥uk∥2
W 1,2(Ω) ≲ ∥fk∥H−1 ∥uk∥W 1,2 .

That is
∥uk∥W 1,2(Ω) ≲ ∥fk∥H−1 .

That is uk is bounded in W 1,2, so up to subsequence uk weakly converges to some
u ∈ W 1,2

0 (Ω). Using testfunction we see that ∆u = f . Thus, ∆(uk − u) = fk − f ,
so from the same argument as above

∥uk − u∥W 1,2(Ω) ≲ ∥fk − f∥H−1
k→∞−−−→ 0.

Corollary 21.10 implies surjectivity of T , i.e. for any f ∈ H−1(Ω) there exists u ∈ W 1,2
0 (Ω)

solving
div (A∇u) = f.
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21.4. Fredholm Alternative. The following looks very similar to the closed range theo-
rem, Theorem 21.9, (and philosophically it is not too far). Our proof will however not use
that.

Theorem 21.13 (Fredholm Alternative). Let X be a Banach space. Let K : X → X be
a compact operator and λ ∈ C \ {0}. Then one and only one of the following properties
holds.

(1) The homogeneous equation
λx−Kx = 0

has a nontrivial solution x ̸= 0
(2) For each y ∈ X the inhomogeneous

λx−Kx = y

has a unique solution x ∈ X

Proof of Theorem 21.13: if (1) holds then (2) does not hold. This is the easy part: As-
sume (1) holds, that is there exists x̄ ̸= 0 such that

λx̄−Kx̄ = 0.
Take any y ∈ X. Either there is no solution to

λx−Kx = y

(i.e. existence fails). Alternatively, if there is some x̃ with
λx̃−Kx̃ = y

then also x̃ + x̄ solves the same equation (i.e. uniqueness fails). In either case (2) cannot
be true. □

For the other direction in the proof of Theorem 21.13 we need two lemmata:

Lemma 21.14. Let K : X → X linear bounded and compact and set Y := ker(I − K).
For each x ∈ X there exists y ∈ Y such that

∥x− y∥ ≤ Λ∥(I −K)x∥.

Proof. First we observe that for each x ∈ X there exists (at least) one y ∈ Y such that
∥y − x∥ = inf

y∈Y
∥x− y∥.

Indeed, let (yℓ)ℓ∈N be a sequence

∥yℓ − x∥
ℓ→∞−−−→ inf

y∈Y
∥x− y∥.

Then w.l.o.g.
∥yℓ∥ ≤ ∥x∥+ inf

y∈Y
∥x− y∥+ 1 ∀ℓ
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That is yℓ is bounded. Moreover yℓ = Kyℓ (since yℓ ∈ Y ), so by compactness, up to
subsequence, yℓ

ℓ→∞−−−→ y ∈ Y . Since Y is closed (by continuity of I and K) we find that
y ∈ Y , and indeed

∥y − x∥ = inf
y∈Y
∥x− y∥.

Assume now the claimed inequality does not hold for any Λ, then there exists xk such that
inf
y∈Y
∥xk − y∥ > k∥(I −K)xk∥.

Taking yk the optimal projection of xk into Y from above (i.e. ∥yx−xk∥ = infy∈Y ∥y−x∥)
we can also say

∥(xk − yk)− y∥ ≥ ∥xk − yk∥ > k∥(I −K)(xk − yk)∥ ∀y ∈ Y.
Set zk := xk−yk

∥xk−yk∥ , then we conclude

∥zk − y∥≥ 1 > k∥(I −K)zk∥ ∀y ∈ Y.

Since K is compact, we can pick a subsequence such that Kzk
k→∞−−−→ z̄, then from the

above inequality we find

∥zk − z̄∥ ≤ ∥(I −K)zk∥+ ∥Kzk − z̄∥
k→∞−−−→ 0.

That is limk→∞ zk = z̄, and thus
∥z̄ − y∥ ≥ 1 = ∥z̄∥ ∀y ∈ Y.

On the other hand from the convergence we have z̄ = limk→∞ Kzk = Kz̄, that is z̄ ∈ Y .
This contradicts the previous estimate since we could choose y = z̄. □

Lemma 21.15. Let X be a Banach space and K : X → X compact and bounded and
linear. Then im(I −K) is closed.

Proof. Let zk ∈ im(I−K) with z = limk→∞ zk. We need to find x ∈ X with (I−K)x = z.
Firstly, there must be xk ∈ X such that zk = (I −K)xk. Secondly, by Lemma 21.14 we
may assume that

∥xk∥ ≤ ΛK∥zk∥,
that is (xk)k∈N is bounded. Up to subsequence we then may assume that Kxk converges,
and thus xk = zk +Kxk is convergent to some x ∈ X. By continuity we have (I −K)x =
z. □

Proof of Theorem 21.13: if (1) does not hold then (2) holds. W.l.o.g. λ = 1, otherwise
multiply with 1

λ
and consider 1

λ
K instead (which is still compact).

We have S := I − K : X → X is a linear bounded operator, which by assumption is
injective. We need to show that S is surjective.

Set
Sn := S ◦ . . . ◦ S,
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and set Un := imSn. By Lemma 21.15, Un are closed subspaces, since we can write

Sn = (I −K)n = I +
n∑

ℓ=0

(
n

ℓ

)
(−K)ℓ = I + K̃,

where K̃ is compact.

Clearly Un+1 = Sn+1(X) = Sn(S(X)) ⊂ Sn(X) = Un. If S is not surjective, then this
set-inequality is strict:

Indeed assume that y ̸∈ imS. Then Sny ∈ Un. Assume Sny ∈ Un+1 then there must be
some x ∈ X with Sn+1x = Sny, which implies

Sn(Sx− y) = 0.

Since S is injective by assumption, we conclude that Sx = y, a contradiction to y ̸̸∈ imS.

So either S is surjective, or there exists x ̸∈ imS, which implies that Un+1 ⊊ Un.

Hence, if we assume S is not injective, we can apply the Riesz Lemma, Lemma 7.18, to the
closed subspaces Un+1 ⊊ Un: we can pick sequences (xn)n∈N such that xn ∈ Un, ∥xn∥X = 1

∥u− xn∥X ≥
1
2 ∀u ∈ Un+1.

Thus if m > n

∥Kxn −Kxm∥X = ∥Sxn − Sxm + xm︸ ︷︷ ︸
∈Un+1

−xn∥ ≥
1
2 .

But this implies that K cannot be compact, because the sequence is (xn)n∈N are bounded.
Contradiction, so S must have been surjective all along. □

Theorem 21.16. Let Ω ⊂ Rn be a smoothly bounded open set. Let λ ∈ L∞(Ω)

Then exactly one of the following statements is true:

•
∆u− λ(x)u = 0 in Ω

has a nontrivial solution u ∈ H1
0 (Ω) \ {0} in distributional sense (i.e. λ behaves

like an eigenvalue!)
• For each f ∈ L2(Ω) there exists exactly on u ∈ H1

0 (Ω) such that

∆u− λ(x)u = f in Ω

in the distributional sense.

Proof. Fix λ ∈ L∞(Ω).

We want to apply the Fredholm alternative, but where is the compact operator?
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And why don’t we just apply the Direct method, Theorem 12.30, to solve this sort of PDE?
Well the issue is that λ has no prescribed sign, so the energy we used in Theorem 12.30
may not be coercive.

Let Λ := ∥λ∥L∞(Ω)

E(v) := 1
2

∫
Ω
|Dv|2 + 1

2

∫
Ω

(λ(x)+Λ) |v|2 +
∫
fv

This energy is coercive, and as in Theorem 12.30, for each f ∈ L2(Ω) there exists a unique
solution u = u(f) ∈ H1

0 (Ω) to its Euler-Lagrange equation
∆u− (λ+ Λ)u = f in Ω,

and we have
∥∇u∥L2(Ω) ≤ C ∥f∥L2(Ω)

So if we set Kf := u(f) we have a linear bounded map from L2(Ω)→ H1
0 (Ω). By Rellich’s

theorem, Theorem 13.35,we can consider K : L2(Ω)→ L2(Ω) as a linear bounded, compact,
map.

Our original solution
∆u− λu = f

is then equivalent to
∆u− (λ+ Λ)u = f − Λu

Which, applying K to this equation, is equivalent to
u = K(f − Λu)

or equivalently,
u+ ΛKu = Kf.

Setting h := Kf we conclude that we would like to solve
u+ ΛKu = h.

The claim now follows from Theorem 21.13. □

21.5. Spectrum. (We follow substantially the exposition in [Clason, 2020]) For a matrix
A ∈ Cn×n we say that λ ∈ C is an eigenvalue if there exists an eigenvector v ∈ Cn \ {0}

Av = λv

We now extend this notion to bounded linear operators (where we switch for completeness
now to C as an underlying field).

Let T ∈ L(X,X). Then the spectrum σ(T ) is defined as
σ(T ) = {λ ∈ C : T − λI is not bijective},

that is λ ̸∈ σ(T ) if and only if T − λI : X → X is bijective (and thus by the inverse
mapping theorem, Theorem 20.19, (T − λI)−1 : X → X is a linear bounded operator).
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If for some λ ∈ C there exists v ∈ X \ {0} such that
Tv = λv,

then we call λ an eigenvalue and v its eigenvector. The Eigenspace of an eigenvalue λ is
given by

ker(T − λI) := {v ∈ X : Tv − λv = 0}.

In contrast to the matrix (i.e. finite dimensional) case, λ ∈ σ(T ) does not necessarily mean
λ is an eigenvalue! It could also happen that T − λI is simply not surjective!

The complement of the spectrum (i.e. all λ where T−λI is continuously invertible is called
the resolvent set

ρ(T ) = C \ σ(T ).
and

R(λ) = (T − λI)−1

is the resolvent function.

The spectrum σ(T ) is sometimes decomposed into

(1) point spectrum σp(T ) = {λ ∈ C : λI − T not injective}
(2) continuous spectrum σc(T ) := {λ ∈ C : λI−T is injective but not surjective, but with dense range}
(3) residual spectrum σr(T ) = {λ ∈ C : λI−T is injective, but not surjective and without dense range}.

So: elements of the point spectrum are the eigenvalues.

if λ ∈ σp(T ) then ker(λI − T ) is called the Eigenspace. Observe

Lemma 21.17. ker(λI − T ) is invariant under T , in the following sense
x ∈ ker(λI − T ) ⇒ Tx ∈ ker(λI − T ).

Proof. If x ∈ ker(λI − T ) then
(λI − T )Tx = T (λI − T )x = 0

That is Tx ∈ ker(λI − T ). □

Example 21.18. Consider again the right-shift operator
S+ : ℓp → ℓp,

(x1, x2, . . . , ) 7→ (0, x1, x2, . . .).
We have

(λI − S+)x = (λx1, λx2 − x1, λx3 − x2, . . .).
That is, for any λ ∈ C, (λI − S+) is injective, i.e. σp(S+) = ∅.

Observe that 0 ∈ σrS+ since imS+ contains only sequeneces with first entry zero (i.e. is
not dense in ℓp).



ANALYSIS I & II & III VERSION: December 5, 2022 347

One can show that the operator S+ is surjective if and only if |λ| > 1. Thus σ(S+) =
B(0, 1) ⊂ C.

The spectral radius
r(T ) := sup

λ∈σ(T )
|λ|

We recall the von Neumann theorem:
Exercise 21.19. Assume T : X → X is a linear bounded operator with ∥T∥ < 1

Show that I − T is invertible, i.e. there exists (I − T )−1 : X → X which is linear and
bounded.

For this you can use the von Neumann sum

Sx := lim
N→∞

N∑
k=0

T k,

where T k = T ◦ . . .◦T . Show that S is a linear bounded operator, and it is indeed (I−T )−1.

We have for the spectral radius
r(T ) ≤ ∥T∥,

by the following
Lemma 21.20 (Spectral radius bound). If λ ∈ C and |λ| > ∥T∥ then λ ̸∈ σ(T ).
Exercise 21.21. Prove Lemma 21.20 – Hint: consider ( 1

λ
T − I) and use Exercise 21.19.

Lemma 21.22. Let X be a Banach space and T : X → X linear and bounded. Then
σ(T ) ⊂ C is a closed set in C.

Proof. We prove that ρ(T ) = C \ σ(T ) is open.

Let λ0 ∈ ρ(T ). Since (λ0I − T ) is invertible we may write
λI − T =(λ0I − T )− (λ0 − λ)I

=(λ0I − T )
(
I − (λ0 − λ)(λ0I − T )−1

)
=(λ0I − T )

(
I − T̃

)
where we set

T̃ := (λ0 − λ)(λ0I − T )−1,

which is a bounded linear operator from X → X.

By Exercise 21.19, if ∥T̃∥ < 1 then I − T̃ is invertible. On the other hand ∥T̃∥ = ∥λ0 −
λ∥∥(λ0I − T )−1∥ < 1 whenever |λ0 − λ| ≪ 1. Thus

λI − T = (λ0I − T )(I − T̃ )
is invertible for λ ≈ λ0, and thus λ ∈ ρ(T ). □
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Exercise 21.23. Prove the following extension of Lemma 21.22:

Let X be a Banach space and T : X → X linear and bounded. Take λ0 ∈ ρ(T ) = C \σ(T ).
Then for any λ ∈ C with

|λ− λ0| < ∥Tλ0∥−1

we have that λI − T is bijective and

(λI − T )−1 =
∞∑

k=0
(λ0 − λ)kT k+1

λ0 .

Here Tλ0 := (λI − T )−1.

We can obtain the following structure

Theorem 21.24. Let X be a Banach space and assume T : X → X is linear and bounded.
Then

(1) σ(T ) is compact
(2) |λ| ≤ ∥T∥ for all λ ∈ σ(T )
(3) If X ̸= ∅ then σ(T ) ⊂ C is nonempty.

Proof. The first two properties have been proven already: Lemma 21.20 implies that the
spectrum σ(T ) is a bounded set, and Lemma 21.22 implies σ(T ) is closed.

It remains to prove (3).

Let ξ ∈ L(X,X)∗ a functional on the space L(X,X) which consists of bounded linear
mappings from X to X.

We consider fξ : ρ(T ) ⊂ C→ C given as
fξ(λ) := ξ[(λI − T )−1].

For λ0 ∈ ρ(T ) whenever |λ− λ0| ≪ 1 by Exercise 21.23,

fξ(λ) = ξ[(λI − T )−1] =
∞∑

k=0
(λ0 − λ)kξ[(λ0 I − T )−(k+1)].

Here we have used the convergence of the series in L(X,X) and the continuity of ξ.

Thus fξ(λ) is a power series for C ∋ λ ≈ λ0. That is:

For any λ0 ∈ ρ(T ) we know that fξ(λ) is holomorphic for all λ ≈ λ0.

If σ(T ) = ∅ then ρ(T ) = C, that is f is a power series everywhere, i.e. f : C → C is
holomorphic.

We are now going to use Liouville theorem (bounded holomorphic functions in C are
constant):
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Observe that if λ > 2∥T∥ then, by von Neumann series Exercise 21.19,

(λI − T )−1 = λ−1
∞∑

k=0
(λ−1T )k,

since
∥λ−1T∥L(X,X) ≤

1
2 .

That is,

|fξ(λ)| ≤ ∥ξ∥L(X,X)∗
1
λ
∥

∞∑
k=0

(λ−1T )k∥L(X,X) ≤
2
λ
∥ξ∥L(X,X)∗ .

That is, fξ decays at infinity, since it is holomorphic it is also continuous: that is f is a
globally bounded holomorphic function. By Liouville theorem, fξ must be constant. Since
fξ = 0 at infinity we see that fξ ≡ 0.

That is for all ξ ∈ L(X,X)∗ and all λ ∈ C we have
ξ[(λI − T )−1] = 0.

But then (by Hahn-Banach, e.g. Corollary 10.14) (λI − T )−1 = 0 which is impossible
because (λI − T )−1 must be invertible (as the inverse of a function). Contradiction, and
we can conclude. □

We recall the notion of spectral radius
r(T ) := sup

λ∈σ(T )
|λ|

Now we get all algebraic:

Let p be any (complex) polynomial of degree n,

p(z) =
n∑

k=0
akz

k.

Then we can define
p(T ) :=

n∑
k=0

akT
k.

Here T k = T ◦ . . . T k times and T 0 = I.

Then p(T ) : X → X is still a bounded linear operator as a composition of bounded and
linear operators.

We have the following curious relation

Theorem 21.25 (Spectral polynomial theorem). Let X be a Banach space and T ∈
L(X,X) linear and bounded, and let p be a polynomial as above.

Then
σ(p(T )) = p(σ(T )) ≡ {p(λ) : λ ∈ σ(T )}.
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Proof. If p is constant, then p(T ) = a0T , and the above statement is obvious.

Assume now p has degree at least 1.

Assume λ ∈ σ(p(T )). We show that λ ∈ p(σ(T )), i.e. there exists µ ∈ σ(T ) such that λ =
p(µ).

Set
q(z) = p(z)− λ.

This is a polynomial of degree n. The fundamental theorem of algebra gives us n roots
µ1, . . . , µn ∈ C, and we write for some c ∈ C \ {0}

q(z) = cΠn
k=1(z − µk).

Since λ ∈ σ(p(T )) we know that p(T ) − λI is not bijective. The above formula implies
that there must be some k̄ ∈ {1, . . . , n} such that T − µk̄I cannot be bijective, so this
µk̄ ∈ σ(T ).

We then have
λ = λ+ q(µk̄)︸ ︷︷ ︸

=0

= p(µk̄).

That is, λ ∈ p(σ(T )).

Now assume λ ∈ σ(T ). We show that p(λ) ∈ σ(p(T )).

Set
q(z) := p(z)− p(λ).

Then λ is a root of q, and thus
q(z) = (z − λ)r(z),

for some polynomial r of degree at most n− 1.

Then
p(T )− p(λ)I = q(T ).

Since λ ∈ σ(T ), we have T − λI is not bijective.

We need to conclude that q(T ) is not bijective. Assume to the contrary it is, then by the
following exercise and since

q(T ) = (T − λI)r(T ) = r(T )(T − λI),
we have that r(T ) must be bijective (since T − λI is not bijective). But then

q(T )r(T )−1 = (T − λI),
that is T − λI is bijective, a contradiction. Thus q(T ) = p(T )− p(λ) is not bijective, and
thus p(λ) ∈ σ(p(T )). □

Exercise. Let X be a Banach space and let S, T : X → Y be bounded, linear operators.
Assume that neither S, T are bijective.
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(1) Give an example of X, S, T as above such that ST is bijective
(2) Show that S ◦ T or T ◦ S are not bijective.

Exercise 21.26. Let X be a Banach space and T : X → X linear and bounded. Show that

lim
n→∞

∥T n∥
1
n = inf

n∈N
∥T n∥

1
n

L(X).

Hint: ∥T 2∥ ≤ ∥T∥2.
Theorem 21.27 (Spectral radius theorem). Let X ̸= ∅ be a Banach space and T : X → X
linear and bounded. Then the spectal radius r(T ) can be computed by

r(T ) = lim
n→∞

∥T n∥
1
n = inf

n∈N
∥T n∥

1
n

L(X).

Proof. We prove first the lower bound

r(T ) ≤ inf
n∈N
∥T n∥

1
n

L(X).

Assume λ ∈ σ(T ) (observe that by Theorem 21.24, σ(T ) ̸= ∅).

By the spectral polynomial theorem, Theorem 21.25, we have λn ∈ σ(T n). By Lemma 21.20
this implies |λn| ≤ ∥T n∥. That is

|λ| ≤ ∥T n∥
1
n .

Take the supremum over all λ ∈ σ(T ) then we have shown
r(T ) ≤ ∥T n∥

1
n ∀n ∈ N.

That is
r(T ) ≤ inf

n∈N
∥T n∥

1
n = lim

n→∞
∥T n∥

1
n .

This establishes the lower bound.

Now we prove the upper bound. Recall the function
fξ : ρ(T ) = C \ σ(T )→ C

given by
fξ(λ) := ξ[(λI − T )−1]

where ξ ∈ L(X,X)∗ was any fixed functional, from the proof of Theorem 21.24. We had
shown already that f is holomorphic around any point λ ∈ ρ(T ) = C \ σ(T ).

In particular, fξ is holomorphic in {|λ| > r(T )}, and we have for |λ| > ∥T∥ (by von
Neumann series, Exercise 21.19) the Laurent series

fξ(λ) =
∞∑

k=0
λ−k−1ξ[T k].

This Laurent series must be valid in the whole annulus {|λ| > r(T )}. That is the above
series converges, in particular ∣∣∣λ−k−1ξ[T k]

∣∣∣ k→∞−−−→ 0.
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This holds for any ξ in L(X,X)∗ so we have weak convergence (see Section 12) for any
|λ| > r(T ),

λ−k−1T k ↪→ 0 weakly in L(X,X).
Weakly convergent sequences are bounded, Theorem 12.17, so we have

sup
k∈N
∥λ−k−1T k∥L(X,X) <∞.

That is for any |λ| > r(T ) ther must be some C = C(λ) > 0 such that

∥T k∥
1
k ≤

(
C|λ|k+1

) 1
k k→∞−−−→ |λ|

That is for any |λ| > r(T )
lim sup

k→∞
∥T k∥

1
k ≤ |λ|,

we conclude that
lim sup

k→∞
∥T k∥

1
k ≤ r(T ).

Combining this with the lower bound and Exercise 21.26 we conclude. □

Next we try to recover properties of eigenvalues, the first one is that eigenspaces are linearly
independent:

Theorem 21.28. Let T : X → X be linear and bounded. Then eigenvectors corresponding
to distinct eigenvalues are linearly independent.

Proof. We argue by induction on the number of eigenvectors N . If we have only one
eigenvector there is nothing to show.

So now we assume that we have already shown that if we have N eigenvectors to distinct
eigenvalues, then they are linearly independent.

Let now
(xi)N+1

i=1 ∈ X \ {0}
be eigenvectors of T to eigenvalues λi ∈ C, i.e. Txi = λixi, where (λi)N+1

i=1 are pairwise
distrinct, λi ̸= λj for all i ̸= j.

Assume that

0 =
N+1∑
i=1

µixi = 0.

We can apply T to that sum and obtain that

0 =
N+1∑
i=1

µiλixi = 0.
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One of the eigenvalues λi is nonzero, w.l.o.g. λN+1 ̸= 0. Then we have two equations0 = ∑N+1
i=1 µixi = 0

0 = ∑N+1
i=1

λi

λN+1
µixi = 0

Subtracting the last from the first equation we find that

0 =
N∑

i=1

(
1− λi

λN+1

)
µixi = 0

Since the first N eigenvalues must be linearly independent by induction hypothesis, we
conclude that (

1− λi

λN+1

)
µi = 0 i = 1, . . . , N

since λi ̸= λN+1 for i = 1, . . . , N we conclude
µi = 0 i = 1, . . . , N.

We conclude that also µN+1 = 0 (since xN+1 ̸= 0) so we have that µi = 0 for i = 1, . . . , N+1,
and thus (xi)N+1

i=1 must have been linearly independent. □

21.6. Spectrum for compact operators. When looking at compact operators, we can
say more. First of all: any nonzero λ in the spectrum is an eigenvalue. And if the dimension
is infinite, 0 is in the spectrum (but it may or may not be an eigenvalue)
Theorem 21.29. Assume that T : X → X is a linear bounded and compact operator and
X is a Banach space. Then every nonzero element in λ ∈ σ(T ) \ {0} is an eigenvalue.
Also if dim(X) =∞ then 0 ∈ σ(T ).

Proof. We can apply the Fredholm alternative, Theorem 21.13. If λ ̸= 0 is not an eigenvalue
(i.e. there is no nontrivial solution to the homogeneous equation (λI −K)v = 0), then by
Fedholm alternative (λI − K) must be surjective (and since λ is not an eigenvalue it is
injective). Thus λI −K is bijective, thus invertible – meaning that λ ̸∈ σ(T ).

Also, since T is compact, in view of Corollary 20.18 (which is a consequence of open
mapping theorem and Riesz Lemma), T is not surjective. Meaning 0 ∈ σ(T ) since T − 0I
is not invertible. □

Lemma 21.30. Let T : X → X be compact and λ ̸= 0 an eigenvalue. Then the eigenspace
ker(λI − T )

is finite dimensional.

Proof. Since λ ̸= 0 we can consider λI − T = λ(I − 1
λ
T ). 1

λ
T is still compact, so w.l.o.g.

λ = 1.

Set Y := ker(I − T ). Then
Ty = y ∀y ∈ Y.
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Thus T
∣∣∣∣
Y

: Y → Y is the identity, in particular T
∣∣∣∣
Y

: Y → Y is surjective. Since on the

other hand T

∣∣∣∣
Y

is still compact, by Corollary 20.18, Y must be finite dimensional. □

Theorem 21.31. Assume that T : X → X is a linear bounded and compact operator and
X is a Banach space. Then eigenvalues form a finite or countable set, i.e.

σ(T ) = {0} ∪ {λi}N
i=1 if X is infinite dimensional,

or
σ(T ) = {λi}N

i=1 if X is finite dimensional,
where N ∈ {0, 1, . . . , } ∪ {∞} and each λi ∈ C \ {0} is an eigenvalue. If N = ∞ then we
can order

|λ1| ≥ |λ2| ≥ . . .

and then have limi→∞ λi = 0.

Proof. It suffices to prove that for any r > 0 the number of eigenvalues satisfying |λ| ≥ r
is finite. If this was not true, then there’d be distinct eigenvalues

λi, |λi| ≥ r, i = 1, 2, 3, . . .

and corresponding eigenvectors

Txi = λixi, ∥xi∥ = 1.

For n ∈ N we consider the (closed) linear spaces

Hn = span{x1, . . . , xn}.

Since each xi belongs is eigenvector to a different eigenvalue λi, we have that dimHn = n,
Theorem 21.28.

By the Riesz lemma, Lemma 7.18, we can find wn ∈ Hn such that

∥wn∥ = 1, ∥wn − y∥ ≥
1
2 for any y ∈ Hn−1.

We can represent wn = anxn + yn−1 for some yn−1 ∈ Hn−1, an ∈ R. Thus for k < n,
Twk ∈ Hk ⊂ Hn−1 and hence

∥Twn − Twk∥ = ∥anλnxn + Tyn−1 − Twk∥

=|λn| ∥ anxn + yn−1︸ ︷︷ ︸
wn

− (yn−1 − λ−1
n (Tyn−1 − Twk))︸ ︷︷ ︸

∈Hn−1

∥ ≥ r

2 .

Therefore the sequence {Twn} has no convergent subsequence which contradicts compact-
ness of T . □
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21.7. Spectral theory in Hilbert spaces. We now restrict our attention further to
Hilbert spaces.

We work in complex Hilbert spaces, so in particular
⟨v, w⟩ ∈ C

and
⟨v, w⟩ = ⟨w, v⟩,

and (this is a choice)
⟨λu+ µv, w⟩ = λ⟨u,w⟩+ µ⟨v, w⟩,

and thus
⟨w, λu+ µv⟩ = λ⟨w, u⟩+ µ⟨w, v⟩.

If T ∈ L(H,H) where H is a Hilbert space, then T ∗ : H → H. In particular we can talk
about what it means to say T = T ∗. Observe for (real) matrices T we have T ∗ = T if
T t = T . For complex matrices these are unitary matrices Ū t = U .
Definition 21.32. Let H be a Hilbert space. A linear operator T : H → H is said to be
self-adjoint if

⟨Tx, y⟩ = ⟨x, Ty⟩ ∀x, y ∈ H.
Observe that in view of Proposition 20.27 any such T is a bounded operator.
Theorem 21.33. Let T ∈ L(H,H) be self-adjoint then

(1) ⟨Tx, x⟩ is real
(2) Eigenvalues are real
(3) Eigenspace of T corresponding to distrinct eigenvalues are orthogonal to each other46

Proof. Observe we use here the complex scalar product, i.e. ⟨Tx, x⟩ ∈ C in general.
However we have

⟨Tx, x⟩ = ⟨x, Tx⟩ = ⟨Tx, x⟩,
and thus ⟨Tx, x⟩ must be real.

In particular if λ is an eigenvalue of T and x an eigenvector, then
R ∋ ⟨Tx, x⟩ = λ⟨x, x⟩ = λ∥x∥2

Thus λ ∈ R as well.

Assume that λ1 ̸= λ2 are two eigenvalues with corresponding eigenvectors v1 and v2. Then
λ1⟨v1, v2⟩ = ⟨Tv1, v2⟩ = ⟨v1, T v2⟩ = λ̄2⟨v1, v2⟩.

Since λ1, λ2 ∈ R this implies
(λ1 − λ2) ⟨v1, v2⟩ = 0,

i.e. v1 ⊥ v2 (since λ1 ̸= λ2). □

46from Theorem 21.28 we already know linear independence



ANALYSIS I & II & III VERSION: December 5, 2022 356

We already know that any σ(T ) is bounded by ∥T∥, Lemma 21.20. Here we can obtain
the maximum value

Theorem 21.34. Let T ∈ L(H,H) be self-adjoint and compact, the ∥T∥ or −∥T∥ is an
eigenvalue of T .

Proof. Let xn ∈ H be a sequence such that ∥xn∥ = 1, ∥Txn∥ → ∥T∥. Since T is compact,
we may assume that Txn

n→∞−−−→ y ∈ H, and thus ∥y∥ = ∥T∥.

Moreover we have T 2xn
n→∞−−−→ Ty. Then

∥Ty∥ = lim
n→∞

∥T 2xn∥
C.S.
≥ lim

n→∞
⟨T 2xn, xn⟩

T ∗=T= lim
n→∞
⟨Txn, Txn⟩ = ∥T∥2.

Repeating this argument
∥T 2y∥∥y∥ ≥ ⟨T 2y, y⟩ = ∥Ty∥2 ≥ ∥T∥4 = ∥T∥2∥y∥2 ≥ ∥T 2y∥∥y∥.

Thus we actually have an equality
⟨T 2y, y⟩ = ∥T 2y∥∥y∥.

This is equality in the Cauchy-Schwartz inequality – which means that T 2y and y must be
collinear, i.e.

T 2y = µy

for some µ ∈ C (but since T 2 is still self-adjoint, we already know that µ ∈ R). Also
observe that we already know T 2y ̸= 0 from the above estimates.

We have
µ = ⟨T

2y, y⟩
⟨y, y⟩

= ∥T∥
4

∥T∥2 = ∥T∥2.

Let x = y + ∥T∥−1Ty. If x = 0 then Ty = −∥T∥y and hence −∥T∥ is an eigenvalue of T .
If x ̸= 0 then

Tx = Ty + ∥T∥−1T 2y = Ty + ∥T∥−1∥T∥2y = Ty + ∥T∥y = ∥T∥x .
That is ∥T∥ is an eigenvalue. □

The following is the infinite dimensional version of the spectral theorem of Algebra (saying
that we can diagonalize symmetric matrices)

Theorem 21.35 (Spectral Theorem). Let T : H → H be compact and selfadjoint linear
map, where H is a Hilbert space.

Then there exists a finite or countable sequence of real eigenvalues (λi)N
i=1 ∈ R, |λ1| >

|λ2| ≥ . . ., for some N ∈ {0, 1, 2, . . .} ∪ {∞}. If N =∞ then limi→∞ λi = 0.

(1) For each eigenvalue λi, its corresponding eigenspace is finite dimensional
dim ker(λiI − T ) <∞.
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(2) For two distinct eigenvalues the eigenspaces are perpendicular
ker(λiI − T ) ⊥ ker(λjI − T ) whenever i ̸= j.

(3) And, we can decompose H into kerT and the eigenspaces, namely

H = kerT ⊕
N⊕

i=1
ker(λiI − T ),

in the following sense. For any vector x ∈ H there exists exactly one y ∈ kerT ,
yi ∈ ker(λiI − T ) such that

x = y +
N∑

i=1
yi in H

Moreover y and yi are all mutually perpendicular.
In particular if kerT = 0 we can form a orthonormal basis of eigenvectors of X,

i.e. there exists a countable sequence (ok)M
k=0 where M ≥ N , ∥ok∥ = 1, ok ⊥ oj for

k ̸= j, each ok is an eigenvector to some λj, and for each x ∈ H,

x =
M∑

k=1
⟨x, ok⟩ ok convergence in H

Proof. We obtain the sequence of eigenvalues λi ̸= 0 from Theorem 21.31.

(1) This is true since T is compact by Lemma 21.30.
(2) This follows from Theorem 21.33
(3) Set

Y :=
N⊕

i=1
ker(λiI − T ),

i.e. for each y ∈ H,

y ∈ Y :⇔ y =
N∑

i=1
yi,

where yi ∈ ker(λi − T ). Observe that the right-hand side assumes convergence in
H! Clearly, Y is a linear space. We can also check it is a closed linear space: let
zk ∈ Y , z̄ = limk→∞ zk ∈ H. Then

zk =
N∑

i=1
yi;k,

and thus

zk − zℓ =
N∑

i=1
(yi;k − yi;ℓ).

Since for i ̸= j,
(yi;k − yi;ℓ) ∈ ker(λiI − T ) ⊥ ker(λjI − T ) ∋ (yj;k − yj;ℓ)
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we have

(21.1) ∥zk − zℓ∥2
H =

N∑
i=1
∥yi;k − yi;ℓ∥2

H .

So in particular
∥zk − zℓ∥H < ε⇒ sup

i
∥yi;k − yi;ℓ∥H < ε.

This implies that for each fixed i, the sequence (yi;k)k∈N is a Cauchy sequence, thus
there exists a limit z̄i := limk→∞ yi;k. Since yi;k ∈ ker(λiI − T ) (which is a closed
space) we have zi ∈ ker(λiI − T ).

For each L ∈ N and any k ∈ N we then have
L∑

i=1
∥yi;k − ȳi∥2

H ≲
L∑

i=1
∥yi;k − yi;ℓ∥2

H +
L∑

i=1
∥yi;ℓ − ȳi∥2

H

Thus,
L∑

i=1
∥yi;k − ȳi∥2

H ≲ ∥zk − zℓ∥H +
L∑

i=1
∥yi;ℓ − ȳi∥2

H .

So for each ε > 0 there exist some K ∈ N such that for all k, ℓ > K,
L∑

i=1
∥yi;k − ȳi∥2

H ≲ ε+
L∑

i=1
∥yi;ℓ − ȳi∥2

H .

Taking the limit in ℓ→∞ we have
L∑

i=1
∥yi;k − ȳi∥2

H ≲ ε.

This holds independently of L, and thus for any ε > 0 there exist K ∈ N such that
for k > K

∞∑
i=1
∥yi;k − ȳi∥2

H ≲ ε.

In particular we have ∑∞
i=1 ȳi ∈ H and for all k > K,∥∥∥∥∥zk −

∞∑
i=1

ȳi

∥∥∥∥∥
2

H

≲ ε,

that is,

lim
k→∞

∥∥∥∥∥zk −
∞∑

i=1
ȳi

∥∥∥∥∥
2

H

= 0.

Consequently,∥∥∥∥∥z −
∞∑

i=1
ȳi

∥∥∥∥∥
2

≲ ∥z − zk∥2 +
∥∥∥∥∥zk −

∞∑
i=1

ȳi

∥∥∥∥∥
2

k→∞−−−→ 0.

Thus z = ∑∞
i=1 ȳi ∈ Y – i.e. Y is closed.
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Next we are going to show that
kerT = Y ⊥.

For ⊆ we see that if ȳ ∈ H such that Ty = 0, then

⟨
N∑

i=1
yi, y⟩ =

N∑
i=1
⟨yi, y⟩

T yi=λyi=
N∑

i=1

1
λi︸︷︷︸

̸=∞

⟨Tyi, y⟩

=
N∑

i=1

1
λi

⟨yi, T y⟩

=
N∑

i=1

1
λi

⟨yi, 0⟩

=0

So we have for any y ∈ kerT that y ∈ Y ⊥.
For ⊇ let z ∈ Y ⊥. We claim that Tz ∈ Y ⊥. For this take any y ∈ Y . Then, by

definition of Y , for some yi ∈ ker(λiI − T ) we have

y =
N∑

i=1
yi,

and thus

Ty = T

 lim
k→∞

min{N,i}∑
i=1

yi

 = lim
k→∞

min{N,i}∑
i=1

Tyi = lim
k→∞

min{N,i}∑
i=1

λiyi︸︷︷︸
∈ker(λiI−T )

∈ Y.

Consequently,
⟨Tz, y⟩ = ⟨ z︸︷︷︸

∈Y ⊥

, T y︸︷︷︸
∈Y

⟩ = 0.

That is T
∣∣∣∣
Y ⊥

: Y ⊥ → Y ⊥ is a linear compact, self-adjoint operator. Observe that

the only eigenvalue T
∣∣∣∣
Y ⊥

could have is 0 (because any other eigenvalue must lie in

Y ). However in view of Theorem 21.34,
∥∥∥∥T ∣∣∣∣

Y ⊥

∥∥∥∥ or −
∥∥∥∥T ∣∣∣∣

Y ⊥

∥∥∥∥ must be an eigenvalue

of T
∣∣∣∣
Y ⊥

– thus 0 =
∥∥∥∥T ∣∣∣∣

Y ⊥

∥∥∥∥ and we conclude that Y ⊥ ⊂ kerT .
We have thus established

kerT = Y ⊥.

By Lemma 19.13, using that Y is closed we have
H = kerT ⊕ Y.

We can conclude.
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□

Exercise 21.36. Let (λi)∞
i=1 ⊂ C be any sequence with limi→∞ λi = 0.

Set
T : ℓ2(N)→ ℓ2(N)

be defined as follows
T (x1, x2, . . .) = (λ1x1, λx2, . . . , ).

Show that

• T is compact.
• T is self-adjoint on ℓ2(N) if and only if λi ∈ R for all i ∈ N
• Show that the eigenvalues of T are exactly λ1, . . . ,.
• If λi ̸= 0 for all i show that T is injective, i.e. kerT ̸= 0.
• Given an example to show that T is not surjective (which according to Corol-

lary 20.18 it can’t be).

21.8. Spectral theorem for the Laplace-Operator. We want to study the eigenvalues
of the Laplace operator ∆. This is not so obvious, because for what space would we have

∆ : X → X?
We could take X = L2, and consider ∆ : D(∆)→ L2 as densily defined operator by taking
D(∆) = W 2,2. But this is very messy (also then ∆ is not compact...)

The principle idea is that (at least formally) if we want to consider eigenvalues, e.g.
Tu = λu

then if we can apply T−1 (i.e. if it makes sense) this is as good as
u = λT−1u.

That is (formally) 1
λ

is an eigenvalue of the inverse operator if λ is an eigenvalue of T and
vice versa.

To make this precise, we need to precisely write what we want. We say that λ ∈ C is an
eigenvalue for the (Dirichlet-)Laplace problem in Ω (for simplicity: open, bounded set with
smooth boundary) if there exists a solution u ̸= 0 of−∆u = λu in Ω

u = 0 in Ω

Observe that if we change Ω, or change the boundary data then the Eigenvalue of ∆ will
likely change47.

47this is related to the famous 1966 article ”Can One Hear the Shape of a Drum?” article by Mark Kac
in the American Mathematical Monthly
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So if we want to consider the inverse operator for ∆ (depending on Ω of course) then we
want to consider the solution operator T that maps f ∈ L2(Ω) to u ∈ W 1,2

0 (Ω) solving−∆u = f in Ω
u = 0 in Ω

From existence theory (we have considered various arguments) T : L2(Ω) → W 1,2
0 (Ω) ⊂

L2(Ω) is well-defined linear operator and we have
∥Tf∥W 1,2(Ω) ≤ ∥f∥L2(Ω).

(Actually from regularity theory we know more: we know the same estimate for W 2,2(Ω)
on the left-hand side, but that does not matter for us, so we are content with the W 1,2-
estimate).

Now if −∆u = λu in Ω
u = 0 in Ω

Then this implies Tλu = u and thus 1
λ
Tu = u – and vice versa. So Eigenvalues of T are

as good as discussing eigenvalues of ∆.

Moreover T : L2(Ω) → L2(Ω) is compact. Indeed, let (fk)k∈N be a bounded sequence in
L2(Ω),

sup
k
∥fk∥L2(Ω) <∞.

Then by the above estimate
sup

k
∥Tfk∥W 1,2(Ω) <∞.

By Rellich’s theorem, Theorem 13.35 there exists a subsequence (fki
)i∈N such that fki

con-
verges strongly to some limit f with respect to the L2(Ω)-norm (here we use the boundary
regularity of ∂Ω) – thus T : L2(Ω)→ L2 (Ω) is indeed compact.

Proposition 21.37. The operator T : L2(Ω)→ L2(Ω) is a self-adjoint, compact operator.

Proof. Compactness we have discussed. As for self-adjointness, we need to show
(21.2) ⟨Tf, g⟩ = ⟨f, Tg⟩ ∀f, g ∈ L2(Ω).
Set u := Tf and v := Tg. Then u ∈ W 1,2

0 (Ω) and −∆u = f , that is (the distributional
definition) ∫

∇u∇φ =
∫
f φ ∀φ ∈ C∞

c (Ω).

By density we can use the above equation also for φ ∈ W 1,2
0 (Ω). Indeed, let φk ∈ C∞

c (Ω),
φk

k→∞−−−→ φ in W 1,2
0 (Ω) (this smooth sequence exists by definition of W 1,2

0 !). Then we have∫
∇u∇φ k→∞←−−−

∫
∇u∇φk =

∫
f φ ∀φk

k→∞−−−→
∫
fφ
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Thus we actually have ∫
∇u∇φ =

∫
f φ ∀φ ∈W 1 ,2

0 (Ω).
In particular we can take φ := v and then have∫

∇u∇v =
∫
f v = ⟨f, Tg⟩.

On the other hand, using the equation ∆v = g, tested with u ∈ W 1,2
0 (Ω) we also have∫

∇u∇v =
∫
ug = ⟨Tf, g⟩.

So we have established (21.2) and T is self-adjoint. □

We can now apply the spectral theorem to T (and thus −∆) By Theorem 21.33 all eigen-
values of T (and thus of ∆) must be real numbers, and they form a (finite or countable)
sequence (µi)N

i=1, where N ∈ N ∪ {+∞}.

Lemma 21.38 (−∆ is a positive operator). Let Ω ⊂ Rn be open and bounded.

Then all eigenvalues λ of −∆ are strictly positive.

Proof. Assume that u ∈ W 1,2
0 (Ω) solves

−∆u = λu in Ω,
which means ∫

∇u∇φ = λ
∫
uφ ∀φ ∈ W 1,2

0 (Ω).

Testing this equation with φ := u ∈ W 1,2
0 (Ω) itself we have∫

Ω
|∇u|2 = λ

∫
Ω
|u|2.

If λ ≤ 0 this implies that |∇u| ≡ 0, that is u ≡ const in each connected component of Ω,
and thus since u ∈ W 1,2

0 (Ω), u ≡ 0. But then u is not an eigenfunction to λ.

That is, whenever u is an eigenfunction of λ we have λ > 0. □

So when we apply the spectral theorem Theorem 21.35, we find that

L2(Ω) = kerT ⊕
N⊕

i=1
ker(T − µiI)

Since kerT = 0 (0 is not an eigenvalue by Lemma 21.38) and the dimension of the
Eigenspaces ker(T − µiI) is finite, Lemma 21.30, we must have N =∞ and thus there are
must be a decreasing sequence µ1 > µ2 > . . . > 0 such that limi→∞ µi = 0.

Since T = (−∆)−1 we have for λi := 1
µi

the following results

Theorem 21.39. Let Ω ⊂ Rn be open, bounded, and with smooth boundary ∂Ω ∈ C∞.
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(1) The eigenvalues of the Laplace operator −∆ : W 1,2
0 (Ω) → L2(Ω) are positive and

form an increasing sequence
λ1 < λ2 < λ3 < . . . , lim

i→∞
λi =∞.

(2) The dimensions of the corresponding eigenspaces are finite, dimEλi
<∞, i = 1, 2,

3 . . .
(3) We have

L2(Ω) =
∞⊕

i=1
Eλi

and hence we may choose an orthonormal basis of L2(Ω) consisting of eigenfunctions
(uk)k∈N of −∆.

Observe that by regularity theory all eigenvalues must be C∞(Ω).

In particular we may expand any f ∈ L2(Ω) into

f =
∞∑

k=1
uk⟨uk, f⟩.

Then the action of the Laplacian −∆ on f is (at least formally)

−∆f =
∞∑

k=1
−∆uk⟨uk, f⟩ =

∞∑
k=1

λkuk⟨uk, f⟩.

Observe that in general the series on the right-hand side has no reason to converge in L2(Ω)
– since −∆f may not belong to L2!

Observe also that in general uk and λk depend on the shape of Ω!.

We can use this spectral decomposition to write a power of (−∆). Using that λk > 0, we
can write

(−∆)sf :=
∞∑

k=1
(λk)suk⟨uk, f⟩.

This is called the spectral fractional Laplacian.

Example 21.40. Let n = 1 and Ω = (0, 1). Then −∆ = − d2

dx2 and one can check

wn(x) :=
√

2 sin(nπx), n ∈ N
are eigenfunctions of −∆ and the corresponding eigenvalues are (nπ)2. And indeed wn

form an orthogonal basis of L2((0, 1)) – and the expansion in that basis is the (sinusoidal)
Fourier series.

For n ≥ 2 such explicit computations are very difficult (already: there are many more
open sets Ω in 2D than in 1D – although observe Theorem 21.34 (which since we look at
inverses, describes the smallest eigenvalue of −∆).



ANALYSIS I & II & III VERSION: December 5, 2022 364

There is a method of computing the eigenvalues variationally, which is the method of
Rayleigh Quotients, which is defined as

∥∇w∥2
L2(Ω)

∥w∥L2(Ω)
.

Theorem 21.41. Let Ω ⊂ Rn be an open, bounded set with smooth boundary ∂Ω.

There exists a minimizier of the functional

E(w) :=
∥∇w∥2

L2(Ω)

∥w∥L2(Ω)
,

in the the set of functions
Y := {w ∈ W 1,2

0 (Ω), ∥w∥L2(Ω) ̸= 0}.
And any minimizer w satisfies

∆w = λ1w,

where λ1 is the smallest eigenvalue of −∆.

Proof. Let wk be a minimizing sequence in Y of E, i.e.
0 < inf

w∈Y
E(w) = lim

k→∞
E(wk).

We may assume that
sup
k∈N

E(wk) ≤ Λ,

for some huge Λ (simply take Λ := E(φ) where φ is any choice of a nonzero C∞
c (Ω)-

function).

Otherwise replacing wk by wk

∥wk∥L2(Ω)
we may assume

∥wk∥L2(Ω) ≡ 1 ∀k ∈ N.
Then we have

sup
k
∥wk∥L2(Ω) + ∥∇wk∥L2(Ω) ≤ Λ,

and in particular wk is uniformly bounded in W 1,2
0 (Ω). By reflexivity there must exists a

subsequence wk converging weakly to w̄ in W 1,2
0 (Ω), and by Rellich’s theorem strongly in

L2(Ω). We conclude that ∥w̄∥L2(Ω) = 1. In particular w̄ ∈ Y . Moreover we have by weak
lower semicontinuity of the norm

E(w̄) = ∥∇w∥2
L2(Ω) ≤ lim inf

k→∞
∥∇wk∥2 = lim inf

k→∞
E(wk) = inf

w∈Y
E(w).

Since w ∈ Y we have that w̄ is indeed a minimizer of E.

Now let φ ∈ C∞
c (Ω) and consider

E(w + tφ) =
∥∇w + t∇φ∥2

L2(Ω)

∥w + tφ∥L2(Ω)
.
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For small t we surely have ∥w + tφ∥L2(Ω) ̸= 0 since ∥w∥L2 = 1, so this is all well-defined.
By minimality we know

t 7→ E(w + tφ)
has a minimum at t = 0, so

0 = d

dt

∣∣∣∣
t=0
E(w+tφ) =

2
∫

Ω∇w · ∇φ∥w∥2
L2Ω − 2∥∇w∥2

L2(Ω)
∫
wφ

∥w∥L2(Ω)

∥w∥L2 =1
= 2

∫
Ω
∇w·∇φ−2∥∇w∥2

L2(Ω)

∫
wφ.

We conclude that
−∆w = ∥∇w∥2

L2(Ω)w.

So w is indeed an eigenfunction of the eigenvalue λ := ∥∇w∥2
L2(Ω) (whatever that value is).

The theorem claims that λ is the smallest eigenvalue.

So assume u ∈ W 1,2
0 (Ω) \ {0} satisfies

−∆u = µu in Ω
We can normalize to assume that ∥u∥L2(Ω) = 1.

Then we have

λ = ∥∇w∥L2(Ω) = E(w) ≤ E(u) =
∫

Ω
∇u · ∇u =

∫
Ω
−∆u u = µ

∫
Ω
|u|2 = µ.

So we have shown λ ≤ µ for any eigenvalue µ of ∆. □

Alright, so this is how we find the first eigenvalue, how do we find the next eigenvalue?

Let w1, w2, . . . , wn be the first n eigenfunction we have found already (for now n = 1). To
find the n + 1st Eigenfunction wn+1, compute the infimum of the Raleigh quotient, only
we minimize in the set

Yn+1 := {w ∈ W 1,2
0 (Ω), w ∈ {w1, . . . , wn}⊥, ∥w∥L2(Ω) ̸= 0}.

Its now a nice but not completely trivial exercise to show this works:

Exercise 21.42. Show that the minimum E in Yn+1 is attained, and that it computes the
n+ 1-st eigenvalue.

22. Semigroup theory

As references we refer to [Evans, 2010, §7.4] and [Cazenave and Haraux, 1998].

We could look at (∂t −∆)u = 0 and naively we should have

u = et∆u(0).(22.1)

We can make this precise with the help of the Fourier Transform.
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Is there a similar relation if we look at an elliptic operator L instead of ∆ – or work with
∆ on a domain where there is no Fourier transform? The first issue is that while we prefer
to work in L2(Ω), ∆ is not defined everywhere.

22.1. Unbounded Operators. Let us introduce here the notion of unbounded operators.

Let X, Y be a Banach space. An operator
T : D(T ) ⊂ X → Y(22.2)

is called linear, if and only if D(T ) is a linear subspace and T is linear on D(T ). We say T
is densely defined, if

D(T ) = X.(22.3)

T is bounded (or continuous), if and only if
∥T∥ := sup

∥x∥≤1
∥Tx∥ <∞.(22.4)

Otherwise it is called unbounded.

examples

(1) X = L2(Rn), T = ∆, D(T ) = H2(Rn) or D(T ) = C∞.
(2) X = C0([0, 1]), D(T ) = X, K ∈ C0([0, 1]× [0, 1])

Tu(x) =
∫ 1

0
K(x, y)u(y) dy(22.5)

is bounded.

We use the following notation.
G(T ) = {(u, Tu) ⊂ X ×X : u ∈ D(T )}(22.6)

is the graph of T ,
R(T ) = {Tu : u ∈ D(T )}(22.7)

the range of T . An extension of T is

T̃ : D(T̃ ) ⊂ X → X,(22.8)

such that

D(T ) ⊂ D(T̃ ) and Tu = T̃ u ∀u ∈ D(T ).(22.9)

T is called closed, if G(T ) is closed in X × X. That is, whenever (uk)k∈N ⊂ D(T ) and
u, g ∈ X with uk

k→∞−−−→ u in X , Tuk
k→∞−−−→ g ∈ X we have u ∈ D(T ) and g = Tu.

T is called closable, if there exists a closed extension T̃ . Recall the Closed Graph Theorem
Theorem 20.23 – which shows that ifD(T ) = X then closedness is the same as boundedness.
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22.2. semigroup setup. Generally: Let X be a real Banach space and a linear map A,

A : D(A) ⊂ X → X,(22.10)

where D(A) is the domain of A, a linear (usually dense) subset of X. We are looking for
solutions u ∈ C1((0, T ), X) of

u̇ = Au, t ∈ (0, T ),
u(0) = φ.

(22.11)

A is in general not bounded, but closed. Assume there exists a solution to (22.11), then

T (t)φ := u(t)(22.12)

defines an operator. Resonable properties of T : are

• T (t) : X → X is linear.

• T : [0, T )→ L(X). (hopefully)

• T (0) = id ,

• T (t+ s) = T (t) ◦ T (s), (from uniqueness hopefully)

• t 7→ T (t)φ is continuous.

The latter three properties are characteristic for a semigroup.

Assume now that we have a semigroup

T : [0,∞)×X → X.(22.13)

Then we find some A such that T is the semigroup of A. A will then be called the generator
of T.

Indeed, let u(t) := T (t)φ. Then,

u̇(t) = lim
s→0

u(t+ s)− u(t)
s

= lim
s→0

T (t+ s)φ− T (t)φ
s

= lim
s→0

T (s)− T (0)
s

u(t)

≡ Au(t).

(22.14)

Hence let

Au = lim
s→0

T (s)− T (0)
s

u,(22.15)

whenever the limit exists. Call D(A) the set of u ∈ X where this limit exists.

One might conjecture there is some sort of equivalence between generators A and semi-
groups T .
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Questions: Which generators A allow semigroups? Which generators are obtained by
semigroups?

The main theorem which gives us an answer to this question is the Hille-Yoshida Theorem,
Theorem 22.20 and 22.22. For Schrödinger equations this is (a generalization of) Stones’
theorem, it also appears under the name Lumer–Phillips theorem.

22.3. m-dissipative operators. Take an operator
A : D(A) ⊂ X → X,(22.16)

where X is a Banach space and D(A) a linear subspace, e.g. X = L2 and D(A) = H2 and
A = ∆. The norm of our space X is the L2-norm, and then A is not a bounded operator.
On the other hand, since C∞

c is dense in L2, D(A) is dense in L2 (everything with respect
to the L2-norm).

We want to solve (i.e. find u(t)) such that

(22.17)
u′(t) = Au(t), t > 0
u(0) = φ

22.3.1. The (easy) case of linear bounded operator A. If A is simply a Rn×n-matrix, the
situation is easy.

Example 22.1 (finite dimensional case). Let X = Rn or Cn, A : X → X linear (and thus
bounded), then

u(t) = etAφ(22.18)

is the unique solution to (22.17), where

etA =
∞∑

k=0

1
k!t

kAk.(22.19)

Now let X be a general Banach space and A ∈ L(X), where L(X) is the space of bounded
linear operators from X to X. I.e. A is bounded. Then etA still makes sense

Exercise 22.2. Let A,B ∈ L(X). Show

(1) eA converges absolutely, where

eA =
∞∑

k=0

1
k! A

k.

(2) We have the estimate
∥eA∥L(X) ≤ e∥A∥L(X) .

(3) e0 = id ,
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(4) if A and B commute, i.e. AB = BA, then48 eA+B = eAeB

(5) e−A =
(
eA
)−1

.

(6) If we set f(t) := etA then f ∈ C∞(R) and we have f ′(t) = etAA = AetA.

Theorem 22.3. Let A ∈ L(X), φ ∈ X, T > 0. Then there exists a unique solution
u ∈ C1((0, T ), X) of u′(t) = Au(t) t ∈ (0, T )

u(0) = φ.

Proof. Put

u(t) = etAφ.(22.20)

Then

u′(t) = etAAφ = Au(t).(22.21)

For a second solution v set

w(t) = e−tAv(t),(22.22)

then w′(t) = 0 and hence w(t) = w(0) = φ. □

Recall Section 22.1 for the notion of unbounded operators.

22.3.2. Notion of m-dissipative operators. Let (X, ∥·∥) be a Banach space, and D(A) ⊂ X
a dense subspace.

Let A : D(A) ⊂ X → X be linear (but not necessarily bounded, nor closed).

Definition 22.4. A is dissipative, if
∥u− λAu∥ ≥ ∥u∥ ∀u ∈ D(A), λ > 0.(22.23)

A is called accretive, if −A is dissipative.

Lemma 22.5. Let X be a Hilbert49 space,

A : D(A) ⊂ X → X(22.24)

linear, then A is dissipative if and only if

Re ⟨u,Au⟩ ≤ 0 ∀u ∈ D(A).(22.25)
48If AB ̸= BA there is a formula in terms of commutators [A, B] = AB − BA, the

Baker–Campbell–Hausdorff formula
49i.e. there exists a scalar product ⟨, ⟩ : X × X → C such that ∥v∥2 = ⟨v, v⟩. For L2(Ω) the scalar

product ⟨f, g⟩ :=
∫

Ω fg (real) or ⟨f, g⟩ :=
∫

Ω fg (complex)
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Proof of Lemma 22.5. Assume A dissipative, then:

∥u∥2 + λ2∥Au∥2 − 2λRe ⟨u,Au⟩ − ∥u∥2 = ∥u− λAu∥2 − ∥u∥2 ≥ 0.(22.26)

Dividing by λ and letting λ→ 0 gives
Re ⟨u,Au⟩ ≤ 0.(22.27)

For the converse, assume that
Re ⟨Au, u⟩ ≤ 0,(22.28)

then

∥u− λAu∥2 = ∥u∥2 + λ2∥Au∥2 − 2λRe ⟨u,Au⟩ ≥ ∥u∥2.(22.29)

□

Example 22.6. • Heat equation (∂t −∆)u = 0:
Then A = ∆, X = L2(Rn), D(A) = H2(Rn), then

⟨u,∆u⟩ = −
∫
Rn
|∇u|2 ≤ 0.

• Schrödinger equation (∂t − i∆)u = 0. A = i∆, D(A) = H2(Rn),

⟨u,±i∆u⟩ = ∓i
∫
Rn
|∇u|2

and hence the real part is 0. That is, both i∆ and −i∆ are dissipative.

Definition 22.7 (m-dissipative). A linear operator A : D(A) ⊂ X → X is called m-
dissipative, if A is dissipative and I − λA is surjective for all λ > 0.

We call A m-accretive, if −A is m-dissipative.

Our later goal is to show that for any m-dissipative A we can define (some sort of) eA.,
which we will do for Hille-Yoshida Theorem 22.20.

Observe that for the notion of m-dissipative the right choice of D(A) becomes relevant.
E.g., if we choose D(∆) = C∞

c (Ω) then ∆ is dissipative, but not m-dissipative; but if we
choose D(∆) = H2(Ω) then ∆ is m-dissipative, see Example 22.11.

Exercise 22.8. Show that if A : D(A) ⊂ X → X is m-dissipative, then I−λA : D(A)→ X
is bijective and has a continuous inverse I − λA : X → D(A).

Set

Jλ = (I − λA)−1 : X → D(A).(22.30)

Then (22.23) implies for m-dissipative A
∥Jλv∥ ≤ ∥v∥ ∀v ∈ X.(22.31)
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Lemma 22.9. Let A be dissipative, then A is m-dissipative if and only if there exists
λ0 > 0 such that I − λ0A is surjective.

Proof. Let λ ∈ (0,∞) and v ∈ X. Our goal is to find u ∈ D(A) such that u − λAu = v.
Observe that it is equivalent to find u such that

u− λ0Au = λ0

λ
v +

(
1− λ0

λ

)
u,(22.32)

or equivalently (recall Jλ0 = (I − λ0A)−1 : X → D(A))

u = Jλ0

(
λ0

λ
v +

(
1− λ0

λ

)
u

)
=: F (u).(22.33)

That is, the desired u is a fixed point of u = F (u).

First we show that F : X → X is a contraction for λ > λ0
2 . (Recall, that we need to find

u ∈ D(A)).

Observe, by (22.31),

∥F (u)− F (w)∥ =
∥∥∥∥∥Jλ0

((
1− λ0

λ

)
(u− w)

)∥∥∥∥∥ ≤
∣∣∣∣∣1− λ0

λ

∣∣∣∣∣ ∥u− w∥.(22.34)

Hence F is a contraction, whenever λ > λ0/2.

Then we apply Banach Fixed Point theorem , on X (not D(A) which is not closed in
general).

Let u ∈ X be the fixed point, then we have u = F (u) ∈ Jλ0(X) ⊂ D(A).

That is, there is a unique u ∈ D(A) with F (u) = u. This I − λA is surjective, whenever
λ > λ0

2 .

Iterating this argument, e.g setting λi+1 := 2
3λi, we find that for any λ > λi, i ∈ N, I −λA

is surjective, and letting i → ∞ we see that for any λ > 0 we have I − λA is surjective.
□

Proposition 22.10. All m-dissipative operators (A,D(A)) are closed.

Proof. Let uk → u in X and Auk → g in X. We need to show that u ∈ D(A) and Au = g.

Observe that (I − A)uk → u+ g. Since A is m-dissipative, J1 = (I − A)−1 exists and is a
continuous map X → D(A). Thus

u
k→∞←−−− uk = J1((I − A)uk) k→∞−−−→ J1(u− g) = J1u− J1g ∈ D(A)

That is, u = J1u − J1g ∈ D(A), and applying I − A we obtain (I − A)u = u − g, i.e.
Au = g. □
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Example 22.11. Let Ω be a bounded set, ∂Ω ∈ C∞(Ω), or Ω = Rn.

Set X = L2(Ω), A = ∆, D(A) = H1
0 (Ω) ∩H2(Ω). Then A is m-dissipative.

Proof. We already know that A is dissipative (Example 22.6), so by Lemma 22.9 we only
need to show that

∀v ∈ L2(Ω) ∃u ∈ H2(Ω) ∩H1
0 (Ω) : u−∆u = v.(22.35)

There are several ways to do this. Observe that −1 is not an eiganvalue of −∆ (since
−∆ is positive, Lemma 21.38, so we could use Fredholm alternative Theorem 21.13 to find
u ∈ H1

0 (Ω).

Another option is to go variational, computing via the direct method of Calculus of Vari-
ations, Theorem 12.30, that the minimizer u ∈ H1

0 (Ω) of

E(u) := 1
2

∫
Ω
|∇u|2+1

2

∫
u2 −

∫
uv

exists.

In both cases we find u ∈ H1
0 (Ω) that solve the equation. In particular we have

∆u ∈ L2(Ω).
From L2-regularity theory in PDE we then conclude u ∈ H2(Ω). □

Proposition 22.12. Let A be m-dissipative, then

∀u ∈ D(A) : ∥Jλu− u∥
λ→0−−→ 0.(22.36)

Proof. Observe that by (22.31), Jλ − I : X → X is bounded linear operator, i.e.
∥Jλ − I∥ ≤ ∥Jλ∥+ ∥I∥ ≤ 2.(22.37)

By density D(A) ⊂ D(A), it thus suffices to prove the result for u ∈ D(A). Since Jλ =
(I − λA)−1 using again (22.31)

∥Jλu− u∥ = ∥Jλ (u− (I − λA)u) ∥ ≤ λ∥Au∥ → 0, λ→ 0.(22.38)

□

Observe that from (22.31) we have the following useful observations
Jλ − I = Jλ(I − (I − λA)) = λJλA,

and
Jλ − I = ((I − (I − λA))) Jλ = λAJλ.

Set

Aλ := AJλ = 1
λ

(Jλ − I).(22.39)
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This Aλ ∈ L(X) will serve as an “approximation” for A, so that we can make (certain)
sense of an operator etA in terms of limλ→0 e

tAλ . This is justified by the following
Proposition 22.13. Let A be m-dissipative and D(A) = X. Then

Aλu
λ→0−−→ Au, ∀u ∈ D(A).(22.40)

Proof. We have
(I − λA)A = A(I − λA).(22.41)

Thus, multiplying both sides with Jλ from the left and also from the right, we have Aλ =
AJλ = JλA.

Now observe that by Proposition 22.12,

JλAu
λ→0−−→ Au,(22.42)

since D(A) is dense in X □

22.4. Semigroup Theory. Let X be a Banach space. A semigroup is an operator
T : [0,∞)→ L(X),(22.43)

such that

(i) T (0) = I,
(ii) T (t+ s) = T (t)T (s).

T is called C0-semigroup (strongly continuous semigroup), if

(iii) limt→0 ∥T (t)u− u∥X = 0 ∀u ∈ X.

Note, that by (ii) we necessarily have T (s)T (t) = T (t)T (s).
Example 22.14. (1) A ∈ L(X), T (t) = etA.

(2) X = Lp(R), p ∈ [1,∞].
T (t)u(x) = u(t+ x).(22.44)

If p <∞, then T is a continuous semigroup, since C∞
c is dense and hence for u ∈ Lp

and ε > 0 there exists f ∈ C∞
c with
∥f − u∥p < ε/3.(22.45)

We have for all small t,
sup

x
|f(x− t)− f(x)| < t∥∇f∥∞ < ε/3,(22.46)

and thus for t≪ 1(∫
R
|T (t)f − f |p

) 1
p

<
ε

3 (diam(supp f) + 1) .(22.47)
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Moreover, by the definition of T (t)

∥T (t)(u− f)∥p,Rn = ∥u− f∥p,Rn ≤ ε

3 .

Thus,
∥T (t)u− u∥p ≤ ∥T (t)f − f∥p + ∥T (t)(u− f)∥p + ∥u− f∥p

≤ ε

The situation is different for p =∞: let u = χ[0,1], then
∥u− T (t)u∥∞ = sup

x
|u(x)− u(x+ t)| ≥ 1 ∀t > 0.(22.48)

Thus T is no C0-semigroup for p =∞.

Proposition 22.15. Let T (t) be a C0-semigroup on X. Then ∃M ≥ 1 and ω ∈ R such
that

∥T (t)∥L(X) ≤Meωt ∀t > 0.(22.49)

Proof. We show that there exists δ > 0 such that
M := sup

0<t<δ
∥T (t)∥ <∞.(22.50)

If this was not the case, then there exists a sequence tn → 0 with
(22.51) ∥T (tn)∥ → ∞.

Recall Banach-Steinhaus Theorem, Theorem 12.18: If for a sequence An ∈ L(X) we have
∀u ∈ X : sup

n
∥Anu∥ <∞,(22.52)

then supn ∥An∥ <∞.

Hence, if (22.51) holds, then there must be u ∈ X such that ∥T (tn)u∥ → ∞. But this is
in contradiction to the C0-property. Hence (22.51) cannot hold, i.e. (22.50) must be true.

Now let t > 0, then there exists n ∈ N and s ∈ (0, δ), such that
t = nδ + s.(22.53)

Then by the semigroup property
T (t) = T (δ) ◦ · · · ◦ T (δ)︸ ︷︷ ︸

n times

◦T (s).(22.54)

That is, with (22.50),

∥T (t)∥ ≤ ∥T (δ)∥n∥T (s)∥ ≤Mn+1 ≤MM
t
δ = Met log M

δ .(22.55)

□
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Proposition 22.16. Let T (t) be a C0-semigroup. Then the map

(t, u) 7→ T (t)u(22.56)

is continuous.

Exercise 22.17. Prove Proposition 22.16.

Definition 22.18. Let T (t) be a C0-semigroup. Then

ω0 = inf{w ∈ R : ∃M ≥ 1, ∥T (t)∥ ≤Meωt}(22.57)

ist called the growth bound of the semigroup.

Definition 22.19. A C0-semigroup is called contraction semigroup, if

∀t > 0: ∥T (t)∥ ≤ 1.(22.58)

Recall that

∥Jλ∥ ≤ 1, ∥Aλ∥ ≤
2
λ
,(22.59)

where

Aλ := AJλ = 1
λ

(Jλ − I).(22.60)

We define

Tλ(t) = etAλ .(22.61)

For any λ > 0, Tλ is a C0-semigroup (because Aλ ∈ L(X)). Moreover, for any λ > 0 we
have that Tλ it is a contraction semigroup:

(22.62) ∥Tλ(t)∥L(X) = ∥etJλ
1
λ e− t

λ
I∥ = e− t

λ∥e
t
λ

Jλ∥ ≤ e− t
λ e

t
λ = 1.

Observe that in contrast, et∥Aλ∥ is in generally not uniformly bounded w.r.t λ→ 0.

The semigroup for an m-dissipative operator A will be constructed out of Tλ
λ→0−−→ T (t).

The following is the (first part) of the main theorem of the semigroup theory:

Theorem 22.20 (Hille Yoshida (Part I)). Let A : D(A) ⊂ X → X m-dissipative and
densely defined. Then for all u ∈ X the limit

T (t)u = lim
λ→0

Tλ(t)u(22.63)

exists and the convergence is uniform (w.r.t. t) on time-intervals of the form [0, T ].

Furthermore (T (t))t≥0 is a contraction semigroup, T (t)(D(A)) ⊂ D(A), and for all u ∈
D(A),

u(t) := T (t)u(22.64)
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is the unique solution u ∈ C0([0,∞), D(A)) ∩ C1((0,∞), X) to

(22.65)
u̇(t) = Au(t) t > 0
u(0) = u

Proof. Step (1): On the contraction semigroup property

First we show that for µ, λ, t > 0

(22.66) ∥Tλ(t)u− Tµ(t)u∥X ≤ t ∥Aµu− Aλu∥X .

Indeed, observe that (Aλ and Aµ commute!)

Tλ(t)− Tµ(t) =etAλ − esAµ =
∫ t

0

d

ds

(
e(t−s)AµesAλ

)
ds

=
∫ t

0
e(t−s)AµesAλ ds (Aλ − Aµ)

Consequently, (recall (22.62))

∥Tλ(t)u− Tµ(t)u∥X ≤
∫ t

0
∥e(t−s)Aµ∥L(X)︸ ︷︷ ︸

≤1

∥esAλ∥L(X)︸ ︷︷ ︸
≤1

ds ∥(Aλ − Aµ)u∥X

≤t∥(Aλ − Aµ)u∥X .

Thus (22.66) is established.

From (22.66) we conclude for any fixed u ∈ D(A), using also Proposition 22.13, that
(Tλ(t)u)λ>0 is a Cauchy-sequence as λ → 0 in X w.r.t λ, and this Cauchy sequence is
uniform in t ∈ [0, T ] for any fixed T <∞.

Hence the proposed limit T (t)u := limλ→0 Tλ(t)u exists for any u ∈ D(A), and Precisely,

∥Tλ(t)u− T (t)u∥X ≤ t∥(Aλ − A)u∥X ∀u ∈ D(A).

Clearly, T (t) a linear operator, and from the above estimate together with (22.62) we find

∥T (t)u∥X ≤∥Tλ(t)u− T (t)u∥X + ∥Tλ(t)u∥X

≤∥Tλ(t)u− T (t)u∥X + ∥u∥X

≤t∥(Aλ − A)u∥X + ∥u∥X .

Letting λ→ 0, we find
∥T (t)u∥X ≤ ∥u∥X ∀u ∈ D(A).

That is T (t) : D(A) → X is a linear bounded operator; since D(A) is a dense set in X,
T (t) can be extended to a linear bounded operator on all of X.
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Now let u ∈ X with approximating sequence un ∈ D(A).
∥Tλ(t)u− T (t)u∥ ≤ ∥Tλ(t)u− Tλ(t)un∥+ ∥Tλ(t)un − T (t)un∥

+ ∥T (t)(un − u)∥
≤ 2∥un − u∥+ ∥Tλ(t)un − T (t)un∥
≤ 2∥un − u∥+ t∥(Aλ − A)un∥X

(22.67)

Hence by (22.66) we find Tλ(t)u → T (t)u for all u ∈ X, and indeed the above estimate
implies even uniformity in t: namely, for any t0 > 0,

(22.68) sup
t∈[0,t0)

∥Tλ(t)u− T (t)u∥ λ→0−−→ 0 ∀u ∈ X.

Furthermore we have the semigroup property
∥T (t)T (s)u− T (t+ s)u∥ ≤ ∥T (t)T (s)u− T (t)Tλ(s)u∥

+ ∥T (t)Tλ(s)u− Tλ(t)Tλ(s)u∥
+ ∥Tλ(t+ s)u− T (t+ s)u∥
→ 0.

(22.69)

As for the C0-continuity, we have
∥T (t)u− u∥X ≤ ∥Tλ(t)u− u∥X + ∥Tλ(t)u− T (t)u∥X .

By (22.68), for any ε > 0 and any t0 > 0 there exists λ > 0 such that

sup
t∈[0,t0)

∥Tλ(t)u− T (t)u∥X <
1
2ε.

On the other hand for this fixed λ > 0 there exists t1 ∈ (0, t0) such that

sup
t<t1
∥Tλ(t)u− u∥X <

ε

2 .

In particular,
sup
t<t1
∥T (t)u− u∥X ≤ ε.

That is T (t) is a contractive C0-semigroup.

Next we show that T (t) maps D(A) to D(A). First we observe that Tλ maps D(A) to
D(A). Indeed, since we can write eJλ = I +JλB (with B convergent since Jλ ∈ L(X)) and
since Jλ maps X into D(A) we have that eJλ maps D(A) into D(A). Moreover, by (22.60)
we have Tλ(t) = etAλ = et 1

λ
(Jλ−I) = e− t

λ eJλ , so Tλ(t) maps D(A) into D(A). Now let u ∈
D(A), then Tλ(t)u λ→0−−→ T (t)u, and ATλ(t)u = Tλ(t)Au→ T (t)Au. By Proposition 22.10,
A is a closed operator, which implies that T (t)u ∈ D(A) and limλ→0 ATλ(t)u = AT (t)u,
and in particular,
(22.70) AT (t)u = T (t)Au ∀u ∈ D(A).
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Step (2): On the equation (22.65)

Let u ∈ D(A) and set

uλ(t) = etAλu.(22.71)

Then
d

dt
uλ = etAλAλu = Tλ(t)Aλu.(22.72)

Equivalently, for u ∈ D(A) using Aλu→ Au and Tλ → T ,

u(t)← uλ(t) = u+
∫ t

0
Tλ(s)Aλu ds→ u+

∫ t

0
T (s) Au ds.(22.73)

Thus u(·) ∈ C1 and (cf. (22.70))

u̇(t) = T (t)Au = Au(t).(22.74)

Uniqueness proceeds as in Theorem 22.3. □

22.4.1. Generators of semigroups. Let T (t) be a contraction semigroup. Define

D(A) :=
{
u ∈ X : lim

h→0+

T (h)u− u
h

exists
}
.(22.75)

For u ∈ D(A) set

Au = lim
h→0+

T (h)u− u
h

.(22.76)

Example 22.21. X = Cub(R) be the set of uniformly continuous, bounded functions with
the A∞-norm.

T (t)u(x) := u(x+ t).(22.77)

Then T (t) is a contraction semigroup. Then

Au = u′, D(A) = {u, u′ ∈ Cub(R)}.(22.78)

Proof. It is clear that u, u′ ∈ Cub(R) implies∥∥∥∥∥u(x+ h)− u(x)
h

− u′(x)
∥∥∥∥∥

∞
→ 0.(22.79)

Now let u ∈ D(A), then u′
+ ∈ Cub(R) and hence u′

+ = u′ ∈ Cub(R). □

Theorem 22.22 (Hille Yoshida Part II). Let T (t) be a contraction semigroup with gener-
ator A. Then A is m-dissipative and densely defined.
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Proof. (i) A is dissipative, i.e. for all λ > 0, ∥u− λAu∥ ≥ 0. Indeed,∥∥∥∥∥u− λT (h)u− u
h

∥∥∥∥∥ ≥
∥∥∥∥∥
(

1 + λ

h

)
u

∥∥∥∥∥−
∥∥∥∥∥λhT (h)u

∥∥∥∥∥
=
(

1 + λ

h

)
∥u∥ − λ

h
∥T (h)u∥

≥
(

1 + λ

h
∥u∥ − λ

h
∥u∥

)
= ∥u∥.

(22.80)

In the last step we used that T (h) is contracting, i.e. ∥T (h)u∥X ≤ ∥u∥X . Letting h → 0
on the left hand side shows A is dissipative.

(ii) A is m-dissipative. It suffices to show that (I −A) is surjective. Thus we want to find
Ju, such that

(I − A)Ju = u.(22.81)

Ansatz:

Ju =
∫ ∞

0
e−tT (t) dt.(22.82)

Why? Because (formally!) we know
(I − A)T (t)u = T (t)u− ∂t(T (t)u)

This is equivalent to
(I − A)e−tT (t)u = −∂t(e−tT (t)u)

Integrating on both sides on t ∈ (0,∞) we then should get
(I − A)Ju = T (0)u = u.

To make this more precise, first observe

∥Ju∥ ≤
∫ ∞

0
e−t∥T (t)u∥ dt ≤ ∥u∥(22.83)

and hence ∥J∥ ≤ 1. Now let us compute (with the semigroup property T (h)T (t) = T (h+t)
for h, t > 0),

(T (h)− I) Ju =
∫ ∞

0
e−tT (t+ h)u dt−

∫ ∞

0
e−tT (t)u dt

=
∫ ∞

h
e−t+hT (t)u dt−

∫ ∞

0
e−tT (t)u dt

=
∫ ∞

0

(
e−t+h − e−t

)
T (t)u−

∫ h

0
e−t+hT (t)u dt

= (eh − 1)
∫ ∞

0
e−tT (t)u dt− eh

∫ h

0
e−tT (t)u dt

= (eh − 1)Ju− eh
∫ h

0
e−tT (t)u dt.

(22.84)
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Hence
T (h)− I

h
Ju = eh − 1

h
Ju− eh

h

∫ h

0
e−tT (t)u dt.(22.85)

The right-hand side converges as h → 0 (we use that T is continuous at 0), consequently
so does the left-hand side. Thus Ju ∈ D(A) and

AJu = Ju− u,(22.86)

which is the claim.

(iii) D(A) is dense. Let u ∈ X, then we claim that the following uh ∈ D(A) and uh
h→0−−→ u

in X. Namely,

uh := 1
h

∫ h

0
T (s)u ds.(22.87)

First we show that uh
h→0−−→ u holds. Indeed, we use again that T is continuous at 0,

∥uh − u∥ =
∥∥∥∥∥1
h

∫ h

0
(T (s)− I)u ds

∥∥∥∥∥
≤ 1
h

∫ h

0
∥ (T (s)− I)u∥ h→0−−→ 0.

(22.88)

Now show that uh ∈ D(A) for all h > 0. Let t << h. We calculate
T (t)− I

t
uh = 1

ht

∫ h

0
T (t) ◦ T (s)u ds− 1

ht

∫ h

0
T (s)u ds

= 1
ht

∫ t+h

t
T (s)u ds− 1

ht

∫ h

0
T (s)u ds

= 1
ht

∫ t+h

h
T (s)u ds+ 1

ht

∫ h

t
T (s)u ds

− 1
ht

∫ t

0
T (s)u ds− 1

ht

∫ h

t
T (s)u ds

t→0−−→ 1
h
T (h)u− 1

h
T (0)u ∈ X.

(22.89)

Hence the left hand side converges in X, that is uh ∈ D(A). □

22.5. An example application of Hille-Yoshida.

Example 22.23. Let Ω ⊂ Rn be a bounded domain with smooth boundary ∂Ω. We want
to find solutions to the equation

(22.90)


(∂t − L)u = 0 in Ω× (0,∞)
u = 0 in (∂Ω)× (0,∞)
u = u0 in Ω× {0}
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where the operator L given as
Lu(x) := ∂i(aij(x)∂ju) + bi(x)∂iu(x) + c(x)u(x)

has smooth (time-independent) coefficients a, b, c ∈ C∞(Ω), and is uniformly elliptic, i.e.
for some λ > 0

aij(x)ξi ξj ≥ λ|ξ|2 ∀x ∈ Ω, ξ ∈ Rn.

We claim that there exists a solution to (22.90) (in the sense of a semigroup) such that
∥u(t)∥L2(Ω) ≤ ect∥u0∥L2(Ω) ∀t ∈ (1,∞).

Proof. To see this let X = L2(Ω), D(A) := H2(Ω) ∩H1
0 (Ω), and A := L− ω for an ω ≥ 0

yet to be chosen. Observe that if we show that A is m-dissipative then by Hille-Yoshida,
Theorem 22.20, we find a contraction semigroup T (t) such that for ũ(t) := T (t)u0

∂t(ũ(t)) = Aũ(t)
with the contractive property

∥ũ(t)∥L2(Ω) ≤ ∥u0∥L2(Ω).

Setting u(t) := eωtũ(t) then u(0) = ũ(0) = u0 and the requested equation is satisfied
∂t(u(t)) = ωeωtũ(t) + Aeωtũ(t) = Lu(t).

Moreover, we obtain
∥u(t)∥L2(Ω) ≤ eωt∥u0∥L2(Ω).

That is, we need to show that A is m-dissipative (clearly D(A) is dense in L2). □

First we would like to show that A is dissipative.

Lemma 22.24. There exist ω0 > 0 such that for any ω ≥ ω0, A as above is dissipative.

Proof. In view of Lemma 22.5 we need to show that
⟨Au, u⟩L2(Ω) ≤ 0 ∀u ∈ D(A).

Here is where we need to make use of ω:
⟨Au, u⟩L2(Ω) ≤ −

∫
Rn
aij∂iu∂ju+ C(b)

(
∥∇u∥L2∥u∥L2 + ∥u∥2

L2

)
− ω∥u∥L2(Ω)

By ellipticity,
−
∫
Rn
aij∂iu∂ju ≤ −λ∥∇u∥L2(Ω)

Moroever by Young’s inequality, for any ε > 0,

∥∇u∥L2∥u∥L2 ≤ ε∥∇u∥2
L2(Ω) + C

1
ε
∥u∥2

L2(Ω),

so that for small enough ε > 0 we arrive at

⟨Au, u⟩L2(Ω) ≤ −
λ

2∥∇u∥
2
L2 + C∥u∥2

L2 − ω∥u∥L2(Ω)
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Choosing ω := C we conclude

(22.91) ⟨Au, u⟩L2(Ω) ≤ −
λ

2∥∇u∥
2
L2 ≤ 0.

that is, by Lemma 22.5, A is dissipative. □

The next step is to prove that A is actually m-dissipative.

In view of Lemma 22.9 it suffices to show that I − λ0A is surjective for some λ0 > 0.

That is, for some fixed λ0 > 0 and ω > ω0 we need to show that for any f ∈ L2(Ω) there
exists u ∈ H1

0 (Ω) ∩H2(Ω) with (I − λ0A)u = f , that is we need to find u such that

(22.92) ∂i(aij∂ju) = − 1
λ0
f + ( 1

λ0
+ ω)u− bj∂ju− cu

The ∂i(aij∂ju) is the leading order term, the remaining terms are lower order terms that
can be dealt with by a fixed point argument. First we treat the leading order term:

Lemma 22.25. Let g ∈ L2(Ω)50 then there exists exactly one u ∈ H1
0 (Ω) with

(22.93) ∂i(aij∂ju) = g

in distributional sense. Moreover,
(22.94) ∥u∥H1(Ω) ≤ C ∥g∥L2(Ω)

Proof. This can be done, e.g. by a variational argument, the direct method.

Let E : H1
0 (Ω)→ R be an energy defined as

E(u) := 1
2

∫
Ω
aij ∂iu ∂ju+

∫
Ω
g u.

• Assume that E(·) has a minimizer u ∈ H1
0 (Ω), i.e. E(u) ≤ E(v) for all v ∈ H1

0 (Ω).
Then E(u) ≤ E(u + tφ) for any φ ∈ C∞

c (Ω), t ∈ R. Thus t 7→ E(u + tφ) as a
minimum at t = 0, and consequently, by Fermat’s theorem (aij is symmetric!)

0 = d

dt

∣∣∣∣
t=0
E(u+ tφ) =

∫
Ω
aij ∂iu ∂jφ+

∫
Ω
g φ.

This holds for any φ ∈ C∞
c (Ω); That is, (22.93) is satisfied (in distributional sense).

Indeed, we say that (22.93) is the Euler-Lagrange equation of the energy E .
• E(·) is coercive (it controls ∥∇u∥L2(Ω).

E(u) ≥ λ∥∇u∥2
L2(Ω) − ∥g∥L2(Ω) ∥u∥L2(Ω).

By Poincare inequality, and Youngs inequality (C changes from line to line)

E(u) ≥ λ∥∇u∥2
L2(Ω) − C∥g∥L2(Ω) ∥∇u∥L2(Ω) ≥ λ∥∇u∥2

L2(Ω) − C∥g∥2
L2(Ω) −

λ

2∥∇u∥
2
L2(Ω).

50g ∈ H−1(Ω) suffices
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That is,
λ

2∥∇u∥
2
L2(Ω) ≤ E(u) + C∥g∥2

L2 .

Again, by Poincaré inequality, this implies
(22.95) ∥u∥2

H1(Ω) ≲ E(u) + C∥g∥2
L2 .

• Now let uk ∈ H1
0 (Ω) be a sequence such that E(uk) k→∞−−−→ infH1

0 (Ω) E . Since 0 ∈
H1

0 (Ω) we may assume, w.l.o.g., that E(uk) ≤ E(0) = 0. By coercivity, (22.95),
∥uk∥2

H1(Ω) ≲ E(uk) + C∥g∥2
L2 ≤ 0 + C∥g∥2

L2 ,

that is
sup
k∈N
∥uk∥2

H1(Ω) <∞.

By weak compactness, Rellich, Theorem 13.25 and Theorem 13.35 we may assume
w.l.o.g. (otherwise taking a subsequence) that there is u ∈ H1

0 (Ω) and
– uk

k→∞−−−→ u strongly in L2(Ω) and a.e.
– ∇uk weakly converges to ∇u in L2(Ω), that is for any G ∈ L2(Ω,Rn),∫

Ω
∇ukG

k→∞−−−→
∫

Ω
∇uG.

Consequently, ∫
Ω
guk

k→∞−−−→
∫

Ω
gu.

Moreover,∫
Ω
aij∂iuk∂juk =

∫
Ω
aij∂iuk∂ju+

∫
Ω
aij∂iuk∂j(uk − u)

=
∫

Ω
aij∂iuk∂ju+

∫
Ω
aij∂iu∂j(uk − u)︸ ︷︷ ︸

k→∞−−−→0

+
∫

Ω
aij∂i(uk − u)∂j(uk − u)︸ ︷︷ ︸

≥0

so
(22.96) lim inf

k→∞

∫
Ω
aij∂iuk∂juk ≥ lim inf

k→∞

∫
Ω
aij∂iuk∂ju =

∫
Ω
aij∂iu∂ju

Together we have shown
lim inf

k→∞
E(uk) ≥ E(u).

But since u ∈ H1
0 (Ω) we have that

E(u) ≥ inf
H1

0 (Ω)
E ,

and by construction
lim

k→∞
E(uk) = inf

H1
0 (Ω)
E

So (22.96) implies that
E(u) = inf

H1
0 (Ω)
E ,
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that is u minimizes E in H1
0 (Ω).

• we have found a minimizer of E and this minimizer satisfies the equation.

We still need to show uniqueness and the estimate (22.94) of the solution. Observe that
uniqueness follows once we show that (22.94) holds for any solution u ∈ H1

0 (Ω) of (22.93).
Assume this is true, then if we have two solutions u and v for the same g, then w := u−v ∈
H1

0 (Ω) satisfies
∂i(aij∂jw) = 0.

By (22.94) we have ∥w∥H1 = 0 that is w ≡ 0.

It remains to show (22.94) for an arbitrary solution u ∈ H1
0 (Ω) of (22.93). This follwos

from multiplying (22.93) by u and integrating. By ellipticity we then find,

∥∇u∥2
L2(Ω) ≲

∫
Ω
aij∂iu ∂ju = |

∫
Ω
gu| ≲ ∥g∥L2(Ω) ∥u∥L2(Ω).

By Poincare on the left-hand side we find
∥u∥2

H1(Ω) ≤ |g∥L2(Ω) ∥u∥H1(Ω).

Dividing both sides by ∥u∥H1(Ω) we have established (22.93). □

Now we need to take care of the lower order guys in (22.92), and for this we use a fixed
point argument. Let f be fixed and for u ∈ H1

0 (Ω) set Tu ∈ H1
0 (Ω) be the solution of

(22.97) ∂i(aij∂j(Tfu)) = − 1
λ0
f + ( 1

λ0
+ ω)u− bj∂ju− cu.

By Lemma 22.25 is well-defined, linear, and bounded (observe if u ∈ H1 then the right-
hand side of the equation above belongs to L2(Ω)). But more is true: for any f ∈ L2(Ω),
Tf is compact, which will be a consequence of the following estimate

Lemma 22.26. For f ∈ L2(Ω) let Tf : H1
0 (Ω)→ H1

0 (Ω) be defined as above. Then

∥Tf (u)∥H1(Ω) ≤ C
(
∥u∥L2(Ω) + ∥f∥L2(Ω)

)
and

∥Tf (u)− Tf (v)∥H1(Ω) ≤ C ∥u− v∥L2(Ω)

Proof. Testing (22.97) we have by ellipticity and Poincaré inequality

∥Tf (u)∥2
H1(Ω) ≲ C

(
∥u∥L2(Ω) + ∥f∥L2(Ω)

)
∥Tf (u)∥L2(Ω) +

∣∣∣∣∫
Ω
bj∂juTf (u)

∣∣∣∣
By another integration by parts, (recall: b ∈ C∞)∣∣∣∣∫

Ω
bj∂juTf (u)

∣∣∣∣ ≤ C(b,∇b) ∥u∥L2(Ω)∥Tf (u)∥H1(Ω).

Consequently, we find
∥Tf (u)∥2

H1(Ω) ≲ C
(
∥u∥L2(Ω) + ∥f∥L2(Ω)

)
∥Tf (u)∥H1(Ω),



ANALYSIS I & II & III VERSION: December 5, 2022 385

and dividing both sides by ∥Tf (u)∥H1(Ω) we find the first estimate.

The second estimate follows by the same argument: observe that Tf (u)−Tf (v) = T0(u−v).
Then, by the above argument,

∥T0(u− v)∥2
H1(Ω) ≲ C ∥u− v∥L2(Ω)

□

From Lemma 22.26 we readily conclude that Tf is actually compact for any f ∈ L2(Ω)
Corollary 22.27. For f ∈ L2(Ω), let Tf be defined as above. Then Tf : H1

0 (Ω)→ H1
0 (Ω)

is a continuous, compact operator. That is, for any bounded sequence (uk)k ∈ H1
0 (Ω),

sup
k
∥uk∥H1(Ω) <∞

there exists a subsequence uki
such that (Tfuki

)i is convergent in H1
0 (Ω).

Proof. Clearly from Lemma 22.26 we obtain that Tf is Lipschitz continuous.

Now let uk be a bounded H1
0 -sequence. Up to a subsequence we can assume that uk weakly

converge to some u ∈ H1
0 (Ω) and by Rellich, Theorem 13.35, the convergence is strong in

L2(Ω). By Lemma 22.26,

∥Tfuk − Tfu∥H1(Ω) ≲ ∥uk − u∥L2(Ω)
k→0−−→ 0.

Thus, Tf is compact. □

Observe that this does not mean that Tf is contracting, so we cannot apply e.g. Banach
Fixed Point argument. Instead we use the Schauder fixed point theorem in the form of
Schaefer’s fixed point theorem also known as the Leray-Schauder theorem, Corollary 18.10.

We can apply this theorem to the compact operator T essentially since we dissipativity:
Lemma 22.28. There exist ω0 > 0 such that for any ω > ω0 and any λ0 > 0 we have the
following:

Let µ ∈ [0, 1] and assume that u ∈ H1
0 (Ω) satisfies

u = µTu

then with a constant independent of µ,
∥u∥H1(Ω) ≤ C∥f∥L2(Ω)

Lemma 22.29. From u = µTu we conclude in view of the definition of T , (22.97),

−∂i(aij∂ju) = −µ
(
− 1
λ0
f + ( 1

λ0
+ ω)u− bj∂ju− cu

)
.

Similar to the proof of A being dissipativ, we test this equation with u, and obtain

∥∇u∥2
L2(Ω) ≤ C∥f∥L2(Ω) +

∫
Ω

(
c− ω − 1

λ0

)
|u|2 +

∫
Ω
bj∂juu.
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Observe that ∂juu = 1
2∂j|u|2 and integrating by parts we find

∥∇u∥2
L2(Ω) ≤ C∥f∥L2(Ω) −

(
ω + 1

λ0

) ∫
Ω
|u|2 + C(c, b) ∥u∥2

L2(Ω)

If ω is large enough, namely ω > C(c, b) this implies

∥∇u∥2
L2(Ω) ≤ C∥f∥L2(Ω).

By Poincaré inequality we obtain the claim.

No we can conclude:

A is m-dissipative. We argued above that A is m-dissipative if for any f ∈ L2(Ω) there
exists u ∈ H2(Ω)∩H1

0 (Ω) such that Tu = u. Since T is compact by Corollary 22.27 and in
view of Lemma 22.28, Leray-Schauder in form of Corollary 18.10 is applicable, and implies
that there exists a fixed point u ∈ H1

0 (Ω) such that Tu = u.

Observe that this implies that u solves an equation of the form∂i(aij∂ju) = g in Ω
u = 0 in ∂Ω

for g ∈ L2(Ω).

Now with PDE theory we can obtain interior regularity, indeed we find

∥u∥W 2,2
loc

(Ω) ≤ C(Ω) ∥g∥L2(Ω).

Close to the boundary one needs to do a reflection argument to obtain the same estimate
up to the boundary.

Up to doing this, we have shown that there is u ∈ D(A) and (I − λ0A)u = f ;

That is, A is m-dissipative, and thus generates a contractive semigroup as claimed. □

Exercise 22.30. Find a solution to the inhomogeneous equation∂tu(x, t)− Lu(x, t) = f(x, t) in Ω× (0,∞)
u(x, 0) = u0(x).

Here L is the usual elliptic operator with smooth coefficients.

Find an estimate of ∥u(t)∥L2(Ω) in terms of ∥f∥L2 , ∥u0∥L2 and t.

hint: Use the Duhamel Ansatz from the heat equation in Rn, i.e. set

u(t) =
∫ t

0
vs(t) ds
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where vs(t) is the solution associated to∂tv(x, t)− Lv(x, t) = 0 in Ω× (s,∞)
v(x, s) = f(x, s).

Observe that vs(t) can be written as semigroup!

Email address: armin@pitt.edu
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