Homework for week of 10/27/2008

Deadline 11/03/2008

Problem 1:

Find the momentum space wave function, $\Phi(p, t)$, for a particle in the ground state of the harmonic oscillator.

Problem 2:

(3 points)
Show that

$$
\langle x\rangle=\int \Phi^{*}\left(-\frac{\hbar}{i} \frac{\partial}{\partial p}\right) \Phi d p
$$

Hint: Notice that $x e^{i p x / \hbar}=-i \hbar \frac{d}{d p} e^{i p x / \hbar}$.
Thus we find more generally

	position space	momentum space
position operator \hat{x}	x	$\frac{\hbar}{i} \frac{\partial}{\partial x}$
momentum operator \hat{p}	$i \hbar \frac{\partial}{\partial p}$	p

In principle you can do all calculations in momentum space just as well as in position space.

Problem 3:

a) Show that the following commutator identity holds:

$$
[\hat{A} \hat{B}, \hat{C}]=\hat{A}[\hat{B}, \hat{C}]+[\hat{A}, \hat{C}] \hat{B}
$$

b) Prove the following relation between the uncertainty in position $(\hat{x}=x)$ and energy $\left(\hat{H}=\hat{p}^{2} /(2 m)+V(x)\right)$:

$$
\sigma_{x} \sigma_{H} \geq \frac{\hbar}{2 m}|\langle p\rangle| .
$$

What does this relation tell you about stationary states?

Problem 4:

Apply

$$
\begin{equation*}
\frac{d}{d t}\langle Q\rangle=\frac{i}{\hbar}\langle[\hat{H}, \hat{Q}]\rangle+\left\langle\frac{\partial \hat{Q}}{\partial t}\right\rangle \tag{1}
\end{equation*}
$$

to the special cases $\hat{Q}=1, \hat{Q}=\hat{H}, \hat{Q}=\hat{x}$, and $\hat{Q}=\hat{p}$.

Problem 5: Virial theorem.
(2 points)
Use (1) to show that

$$
\frac{d}{d t}\langle x p\rangle=2\langle T\rangle-\left\langle x \frac{d V}{d x}\right\rangle .
$$

where T is the kinetic energy, $H=T+V$. In a stationary state the left hand side is zero, so

$$
\left.2\langle T\rangle=\left\langle x \frac{d V}{d x}\right\rangle . \quad \quad \text { (Virial theorem }\right)
$$

Use this to prove $\langle T\rangle=\langle V\rangle$ for stationary states of the harmonic oscillator.

Problem 6:

a) For a function $f(x)$ that can be expanded in a Taylor series, show that

$$
f\left(x+x_{0}\right)=e^{i \hat{p} x_{0} / \hbar} f(x)
$$

(with x_{0} constant). For this reason, \hat{p} / \hbar is called the generator of space translations. Note: The exponential of an operator is defined by the power series $e^{\hat{Q}}=1+\hat{Q}+\frac{1}{2} \hat{Q}^{2}+\frac{1}{3!} \hat{Q}^{3}+\ldots$
b) If $\Psi(x, t)$ satisfies the (time-dependent) Schrödinger equation, show that

$$
\Psi\left(x, t+t_{0}\right)=e^{-i \hat{H} t_{0} / \hbar} \Psi(x, t)
$$

(with a constant t_{0}). $-\hat{H} / \hbar$ is called the generator of time translations.
c) Show that the expectation value of a dynamical variable $Q(x, p)$ at time $t+t_{0}$ can be written as

$$
\langle Q\rangle_{t+t_{0}}=\langle\Psi(x, t)| e^{i \hat{H} t_{0} / \hbar} \hat{Q}(\hat{x}, \hat{p}) e^{-i \hat{H} t_{0} / \hbar}|\Psi(x, t)\rangle .
$$

