Homework for week of $10 / 14 / 2008$

Deadline 10/20/2008

Notice:

The midterm exam will be on Wed, Oct 22, 2008 during regular class at 11am.

Problem 1:
Given the two matrices

$$
\mathrm{A}=\left(\begin{array}{ccc}
1 & 0 & i \\
0 & 0 & -i \\
-i & i & -1
\end{array}\right), \quad \mathrm{B}=\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & i \\
0 & -i & 0
\end{array}\right)
$$

calculate $[A, B], A^{\dagger}, B^{\dagger}$. Which of the matrices are symmetric, hermitian, and/or unitary?

Problem 2:

a) For what range of $r \in \mathbb{R}$ is the function $f(x)=x^{r}$ in Hilbert space, on the interval $(0,1)$?
b) For the specific case $r=1 / 2$, is $f(x)$ in Hilbert space? What about $\frac{d}{d x} f(x)$?

Problem 3:

Show that if $\langle h \mid \hat{Q} h\rangle=\langle\hat{Q} h \mid h\rangle$ for all functions h in Hilbert space, then $\langle f \mid \hat{Q} g\rangle=\langle\hat{Q} f \mid g\rangle$ for all f, g in the same space.
Hint: first let $h=f+g$, and then $h=f+i g$.

Problem 4:

The hermitian conjugate (or adjoint) of an operator \hat{Q} is the operator \hat{Q}^{\dagger} with

$$
\langle f \mid \hat{Q} g\rangle=\left\langle\hat{Q}^{\dagger} f \mid g\right\rangle, \quad \text { for all } f \text { and } g \text { in Hilbert space. }
$$

a) Find the hermitian conjugates of x, i, and $\frac{d}{d x}$.
b) Construct the hermitian conjugate of the harmonic oscillator raising operator \hat{a}_{+}.
c) Show that $(\hat{Q} \hat{R})^{\dagger}=\hat{R}^{\dagger} \hat{Q}^{\dagger}$.
d) Show that the position operator, $\hat{x}=x$, and the Hamiltonian operator,

$$
\hat{H}=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+V(x)
$$

are hermitian, i.e. $\hat{x}^{\dagger}=\hat{x}$ and $\hat{H}^{\dagger}=\hat{H}$.

Problem 5:

(1 point)
Show that the eigenfunctions of the hermitian operator $\hat{Q}=i d / d \phi$ (see example in the lecture) are orthogonal (for distinct eigenvalues).

Problem 6:

Consider the operator $\hat{Q}=d^{2} / d \phi^{2}$, where (as in the example in the lecture) ϕ is the polar coordinate in two dimensions, i.e. it is restricted to the interval $0 \leq \phi \leq 2 \pi$. Is \hat{Q} hermitian? Find its eigenfunctions and eigenvalues. What is the spectrum of \hat{Q} ? Is the spectrum degenerate?

