Homework for week of $09 / 29 / 2008$

Deadline 10/06/2008

Problem 1:

a) Show that

$$
\begin{equation*}
\Psi(x, t)=\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} \exp \left[-\frac{m \omega}{2 \hbar}\left(x^{2}+\frac{a^{2}}{2}\left(1+e^{-2 i \omega t}\right)+\frac{i \hbar t}{m}-2 a x e^{-i \omega t}\right)\right] \tag{1}
\end{equation*}
$$

satisfies the time-dependent Schrödinger equation for the harmonic oscillator potential. Here a is a real constant with the dimension of length.
b) Eq. (1) can be rewritten as

$$
\begin{equation*}
\Psi(x, t)=\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} \exp \left[-\frac{m \omega}{2 \hbar}\left(x-x_{c}(t)\right)^{2}+\frac{i}{\hbar} x p_{c}(t)+i f(t)\right] \tag{2}
\end{equation*}
$$

where $x_{c}(t)=a \cos (\omega t)$ and $p_{c}(t)=m \dot{x}_{c}(t)$ describe a solution for the classical harmonic oscillator, and $f(t)$ is a real function that only depends on t. Find $|\Psi(x, t)|^{2}$ and describe the motion of the wave packet.
c) Compute $\langle x\rangle$ and $\langle p\rangle$ (it is not necessary to perform any integral explicitly for this), and check that Ehrenfest's theorem

$$
\begin{equation*}
\frac{d\langle p\rangle}{d t}=-\left\langle\frac{\partial V}{\partial x}\right\rangle . \tag{3}
\end{equation*}
$$

is satisfied.

Problem 2: The gaussian wave packet.
A free particle has the initial wave function

$$
\begin{equation*}
\Psi(x, 0)=A e^{-a x^{2}} \tag{4}
\end{equation*}
$$

where A and a are constants, and $a>0$.
a) Normalize $\Psi(x, 0)$.
b) Find $\Psi(x, t)$.

Hint: Integrals of the form

$$
\int_{-\infty}^{+\infty} e^{-\left(a x^{2}+b x\right)} d x
$$

can be handled by "completing the square": let $y \equiv \sqrt{a}[x+b /(2 a)]$, and note that $\left(a x^{2}+b x\right)=y^{2}-b^{2} /(4 a)$.

In the end you should find

$$
\begin{equation*}
\Psi(x, t)=\left(\frac{2 a}{\pi}\right)^{1 / 4} \frac{e^{-a x^{2} /(1+2 i \hbar a t / m)}}{\sqrt{1+2 i \hbar a t / m}} \tag{5}
\end{equation*}
$$

c) Find $|\Psi(x, t)|^{2}$. It is useful to introduce $\theta \equiv 1+2 i \hbar a t / m$ as an abbreviation.

Sketch $|\Psi|^{2}$ as a function of x, at $t=0$ and for some large t. Qualitatively, what happens to $|\Psi|^{2}$ as time goes on?
d) Calculate $\langle x\rangle,\left\langle x^{2}\right\rangle,\langle p\rangle,\left\langle p^{2}\right\rangle, \sigma_{x}$ and σ_{p}. Does the uncertainty principle hold? At what time t does the system come closest to the uncertainty limit?

Problem 3:

The delta function can be defined by

$$
\begin{equation*}
\int_{-\infty}^{+\infty} f(x) \delta(x) d x=f(0) \tag{6}
\end{equation*}
$$

for every regular function $f(x)$.
a) Show that $\delta(c x)=\frac{1}{|c|} \delta(x)$ for any real constant c. [Check both $c>0$ and $c<0$.]
b) Let $\theta(x)$ be the step function,

$$
\theta(x) \equiv \begin{cases}1, & \text { for } x>0 \tag{7}\\ 0, & \text { for } x \leq 0\end{cases}
$$

Show that $d \theta / d x=\delta(x)$.
c) Using Plancherel's theorem, show that the Fourier transform of $\delta(x)$ is given by

$$
\begin{equation*}
\delta(x)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{-i k x} d k \tag{8}
\end{equation*}
$$

Note: technically, the delta function does not meet the requirements for Plancherel's theorem, and the integral on the right-hand side of eq. (8) seems ill-defined. This formula is still very useful, though, for many applications.

