Homework for week of $09 / 22 / 2008$

Deadline 09/29/2008

Problem 1:

a) Construct the stationary state $\psi_{2}(x)$ of the harmonic oscillator using the algebraic method.
b) Check the orthogonality of ψ_{0}, ψ_{1}, and ψ_{2} by explicit integration.

Hint: If you exploit the even-ness and odd-ness of the functions, there is really only one integral left to do.

Problem 2:

a) Compute $\langle x\rangle,\left\langle x^{2}\right\rangle,\langle p\rangle$, and $\left\langle p^{2}\right\rangle$ for the state ψ_{0} of the harmonic oscillator.

Hint: here and in other problems involving the harmonic oscillator it simplifies matters to introduce the variable $\xi \equiv \sqrt{m \omega / \hbar} x$ and the constant $\alpha \equiv(m \omega /(\pi \hbar))^{1 / 4}$.
b) Check the uncertainty principle for this state.
c) Compute $\langle T\rangle$ (the average kinetic energy) and $\langle V\rangle$ (the average potential energy) for this state, using the results from (a). Is their sum what you would expect?

Problem 3:

(3 points)
Find $\langle x\rangle,\left\langle x^{2}\right\rangle,\langle p\rangle,\left\langle p^{2}\right\rangle$, and $\langle T\rangle$, for the nth stationary state of the harmonic oscillator, using the method of example 2.5 in the book. Check that the uncertainty principle is satisfied.

Problem 4: Relations for Hermite polynomials
a) The Rodrigues formula says that

$$
\begin{equation*}
H_{n}(\xi)=(-1)^{n} e^{\xi^{2}}\left(\frac{d}{d \xi}\right)^{n} e^{-\xi^{2}} \tag{1}
\end{equation*}
$$

Use it to derive H_{3} and H_{4}.
b) Use the recursion relation

$$
\begin{equation*}
H_{n+1}(\xi)=2 \xi H_{n}(\xi)-2 n H_{n-1}(\xi), \tag{2}
\end{equation*}
$$

together with the result from (a), to obtain H_{5} and H_{6}.
c) Prove that

$$
\begin{equation*}
H_{n}^{\prime}(\xi)=2 n H_{n-1}(\xi) \tag{3}
\end{equation*}
$$

using $\hat{a}_{-} \psi_{n}=\sqrt{n} \psi_{n-1}$ and equation [2.85] in the book.

