PHYS 1370 Introduction to Quantum Mechanics I Fall 2008

Ayres Freitas

http://www.pitt.edu/~afreitas/phy1370.html

Homework for week of 11/17/2008

Deadline 11/24/2008

Problem 1: (3 points)

An electron is in the spin state

$$|\chi\rangle = A[(1+i)|\uparrow\rangle_z + (1-i)|\downarrow\rangle_z]$$

- a) Determine the normalization constant A. What is the spinor in S_z -basis?
- b) Find the expectation values and standard deviations of S_x , S_y , and S_z .
- c) Check that your results satisfy all three uncertainty principles (eq. [4.100] in the book and its cyclic permutations).

Problem 2: (3 points)

Find the eigenvalues and eigenspinors of S_y . If you measured S_y on a particle in the general state $|\chi\rangle = a |\uparrow\rangle_z + b |\downarrow\rangle_z$, what values can you get, and with what probabilities? Check that the probabilities add up to 1.

Problem 3: (2 points)

Construct the spin matrices for a particle of spin 1. Start with the eigenstates of \hat{S}_z and follow the procedure in the lecture/book for spin 1/2.

Problem 4: (2 points)

Let us use the abbreviation $SGZ\pm$ for a Stern-Gerlach experiment with magnetic field gradient in the positive/negative z direction.

- a) For an atom with total spin quantum number S = 1, into how many spatially separate parts will an arbitrary wave function split upon passing through a SGZ?
- b) How many spatially separate parts would you expect instead if S=0?
- c) Suppose that you prepare silver atoms (with $S = \frac{1}{2}$) with an initial state $|\psi\rangle = \frac{3}{5}|\uparrow\rangle_z + \frac{4}{5}|\downarrow\rangle_z$ and let them pass through SGZ—. If you place a single detector in the path of the "spin-up" component what is the probability for a detection? What spin state can we get from the down channel of the SGZ—?

Problem 5: (3 points)

Study the following conversations. In each case, with whom do you agree? If you do not agree with someone, explain why that person is not correct.

- a) **Donald:** There is no difference between silver atoms in a "pure" state given by $\frac{1}{\sqrt{2}}(|\uparrow\rangle_z + |\downarrow\rangle_z)$ and an unpolarized mixture in which half of the atoms are in the $|\uparrow\rangle_z$ state and half are in $|\downarrow\rangle_z$ state. If I had sent atoms in the superposition state $\frac{1}{\sqrt{2}}(|\uparrow\rangle_z + |\downarrow\rangle_z)$ through the SGZ of problem 3c), half of them in the $|\uparrow\rangle_z$ state would have registered in the "up" detector and half of them in the $|\downarrow\rangle_z$ state would have been collected. There is no way to distinguish a mixture from a superposition.
 - **Daisy:** I disagree. We can distinguish between the superposition and mixture you mentioned by passing each of them through an SGX.
- b) Mad Hatter: The eigenstates of \hat{S}_x are orthogonal to the eigenstates of \hat{S}_z .
 - **Alice:** I disagree. The different eigenstates of \hat{S}_x are orthogonal to one another, however. In fact, the orthogonal eigenstates of \hat{S}_x form one basis for the vector space for the spin degrees of freedom and the orthogonal eigenstates of \hat{S}_z form another basis.
- c) Sokrates: If an atom in the state $|\uparrow\rangle_z$ were sent through an SGX-, the atom will be unaffected by the field gradient. The atom cannot feel a force because its state $|\uparrow\rangle_z$ is perpendicular to the magnetic field.
 - **Plato:** I disagree. You are getting confused between a state in the Hilbert space and the magnetic field in the physical space. We can write $|\uparrow\rangle_z$ in terms of the eigenstates of \hat{S}_x and the magnetic field gradient in the x direction will spatially separate the $|\uparrow\rangle_x$ and $|\downarrow\rangle_x$ components.