Homework for week of $11 / 10 / 2008$

Deadline 11/17/2008

Problem 1:

Find the stationary states and energy eigenvalues of the two-dimensional infinite square well,

$$
V(x, y)= \begin{cases}0 & \text { for }|x| \leq a \text { and }|y| \leq a \\ \infty & \text { otherwise }\end{cases}
$$

by using separation of variables in x, y.
Determine the degeneracies of the first six energy levels.

Problem 2:

A particle with mass m is placed in the three-dimensional finite spherical well:

$$
V(r)= \begin{cases}-V_{0} & \text { for } r \leq a \\ 0 & \text { for } r>a\end{cases}
$$

Find the ground state, by solving the radial equation with $l=0$. Show that there is no bound state if $V_{0}<\frac{\pi^{2} \hbar^{2}}{8 m a^{2}}$.

Problem 3:

a) Find $\langle r\rangle$ and $\left\langle r^{2}\right\rangle$ for an electron in the ground state of hydrogen. Express your answers in terms of the Bohr radius.
b) Find $\langle y\rangle$ and $\left\langle y^{2}\right\rangle$ for an electron in the ground state of hydrogen.

Hint: You can exploit the result of (a) and the symmetry of the ground state.
c) Find $\left\langle y^{2}\right\rangle$ in the state $n, l, m=2,1,0$.

Note: This state is not spherically symmetric. Translate y to spherical coordinates.

Problem 4:

Consider the three-dimensional harmonic oscillator with

$$
V(r)=\frac{1}{2} m \omega^{2} r^{2} .
$$

a) Use separation of variables in cartesian coordinates to turn this into three one-dimensional oscillators, and determine the allowed energies E_{n}.
b) Determine the degeneracy $d(n)$ of E_{n}.
c) Because the three-dimensional harmonic oscillator is spherically symmetric, the Schrödinger equation can also be solved by separation of variables in spherical coordinates. Determine the ground state by solving the radial equation with $l=0$. Compare your answers in (a) and (c).

[^0]
[^0]: "Ohhhhhhh . . . Look of that, Sehuster . . . Dogs are so cute when they try to comprahend quantum mechanice."

